Science.gov

Sample records for accumulating elastic strain

  1. Evaluation Of Elastic Strain Accumulation In The Southern Indian Peninsula By GPS-Geodesy

    NASA Astrophysics Data System (ADS)

    Narayanababu, R.; Ec, M.; Tummala, C.

    2004-12-01

    The computed elastic strain accumulation in the southern Indian peninsula from the GPS derived velocity fields of the global network of GPS stations, in and around the Indian plate which includes Maitri, Indian Antarctic Station, show a significant departure from rigid plate behaviour in a manner consistent with the mapped intra plate stress field, observations of deformations and seismicity in the region. Our results of intraplate strain accumulation within Antarctica Plate covering three sites MAIT, CAS1 and DAV1 are 1.8x10-9yr-1, 1.6x10-9yr-1 and 1.1x10-9yr-1, respectively. Similarly, the estimates of interplate strain accumulation between Antarctica and other plates Somalia (SEY1), Africa (HARO), Australia (YAR1), and diffuse plate boundary between India and Australia (COCO) are found to be 1.1x10-9yr-1, 1.0x10-10yr-1, 1.27x10-8yr-1 and 1.18x10-8yr-1, respectively. These estimates are in good agreement with the earlier studies on estimation of global strain rate. The combined GPS and seismic analysis confirm the emergence of diffuse plate boundary between India and Australia and relates to the late Miocene Himalayan uplift. The calculated stress field in the West of the Indian Peninsula has a roughly N-S directed tensional and E-W oriented compressional character and the velocity vectors of all other sites throw a significant insight into the plausible causes of the strain accumulation processes in the Indian Ocean and the northward movement of Indian plate.

  2. Elastic and Inelastic Strain Accumulation Along the Northern and Central Itoigawa-Shizuoka Tectonic Line, Central Japan

    NASA Astrophysics Data System (ADS)

    Teratani, N.; Sagiya, T.; Nishimura, T.; Yarai, H.; Suito, H.

    2014-12-01

    Itoigawa-Shizuoka Tectonic Line (ISTL) in central Japan is one of the most active fault systems in Japan. The Japanese government evaluated a M8 class earthquake may occur at the Gofukuji fault in the central ISTL with a possibility of 14% in the next 30 years. So we analyze GPS data around the northern and the central ISTL to monitor tectonic strain accumulation and to propose a fault model for future earthquake in this area. Along the northern and central ISTL, there exist active faults such as the Kamishiro fault (KF), the East Mathumoto Basin fault (EMBF) and the Gofukuji fault (GF). KF and EMBF are east-dipping reverse faults, and GF is a left-lateral strike slip fault. We analyzed GPS data of 34 campaign sites during 2002-2010 and 55 continuous sites during 1998-2013 to obtain 3-dimentional velocities in the ITRF 2008 reference frame. Around GF, the velocity field represents a typical inter-seismic pattern around a strike slip fault. By applying an elastic dislocation model, we estimate a fault slip rate as 5-7 mm/yr with a locking depth of over 5 km. These parameters are consistent with the seismogenic zone depth and the geological slip rate of GF. On the other hand, for KF and EMBF, we model the deformation pattern with faults in an elastic layer overlying a viscoelastic substratum to represent steady contraction. The modeling result shows KF dips at 30-40 degree and its locking depth is only 2 km, implying that the whole fault is creeping. EMBF dips at 40-50 degree with a locking depth of 2 km. The results indicate that there is ongoing stress accumulation around GF, but KF and EMBF accommodates contraction inelastically. GF at the central ISTL is considered to store strain energy more than 1.000 years and a future major earthquake should occur to release shear stress along the central part. The rupture may continue to the south, but more observation and modeling effect is necessary.

  3. Strain patterns and strain accumulation along plate margins

    NASA Technical Reports Server (NTRS)

    Savage, J. C.

    1978-01-01

    Observations of strain accumulation along plate margins in Japan, New Zealand, and the United States indicate that: (1) a typical maximum rate of secular strain accumulation is on the order of 0.3 ppm/a, (2) a substantial part of the strain accumulation process can be attributed to slip at depth on the major plate boundary faults, and (3) some plastic deformation in a zone 100 km or more in width is apparently involved in the strain accumulation process.

  4. On Dynamic Nonlinear Elasticity and Small Strain

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Sutin, A.; Guyer, R. A.; Tencate, J. A.

    2002-12-01

    We are addressing the question of whether or not there is a threshold strain behavior where anomalous nonlinear fast dynamics (ANFD) commences in rock and other similar solids, or if the elastic nonlinearity persists to the smallest measurable values. In qualitative measures of many rock types and other materials that behave in the same manner, we have not observed a threshold; however the only careful, small strain level study conducted under controlled conditions that we are aware of is that of TenCate et al. in Berea sandstone (Phys. Rev. Lett. 85, 1020-1024 (2000)). This work indicates that in Berea sandstone, the elastic nonlinearity persists to the minimum measured strains of at least 10-8. Recently, we have begun controlled experiments in other materials that exhibit ANFD in order to see whether or not they behave as Berea sandstone does. We are employing Young's mode resonance to study resonance peak shift and amplitude variations as a function of drive level and detected strain level. In this type of experiment, the time average amplitude is recorded as the sample is driven by a continuous wave source from below to above the fundamental mode resonance. The drive level is increased, and the measurement is repeated progressively over larger and larger drive levels. Experiments are conducted at ambient pressure. Pure alumina ceramic is a material that is highly, elastically-nonlinear and nonporous, and therefore the significant influence of relative humidity on elastic nonlinear response that rock suffers is avoided. Temperature is carefully monitored. Measurements on pure alumina ceramic show that, like Berea sandstone, there is no threshold of elastic nonlinearity within our measurement capability. We are now studying other solids that exhibit ANFD including rock and mixed phase metal. These results indicate that elastic nonlinearity influences all elastic measurments on these solids including modulus and Q at ambient conditions. There appears to be no

  5. Dislocation Modeling and Comparison With GPS Data to Assess Possible Elastic Strain Accumulation in the Central Lesser Antilles: New Constraints From the NSF REU Site in Dominica Between 2001 and 2007

    NASA Astrophysics Data System (ADS)

    Staisch, L.; Styron, R. H.; James, S.; Turner, H. L.; Ashlock, A.; Cavness, C. L.; Collier, X.; Fauria, K.; Feinstein, R.; Murphy, R.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    The Caribbean, North and South American plates are converging at a rate of 2 cm/yr in the central region of the Lesser Antilles arc. Here we report high-precision GPS data in concert with forward modeling of a simplified subduction zone geometry to assess strain accumulation for the Lesser Antilles trench. We are able to constrain both vertical and horizontal surface deformation from campaign and continuous GPS observations from 28 geodetic benchmarks located in Guadeloupe, Dominica and Aves Island. Precise station positions were estimated with GIPSY-OASIS II using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Surface displacements for each site were estimated over 2-7 years. CAR-fixed velocities are projected onto a 500 kilometer transect from the LA trench to Aves Island and compared to calculated displacements for 88 different subduction models. Finite dislocations within an elastic half-space with variable parameters such as angle of the subducting slab, the downdip extent of the locked zone, and percentage of plate interface locking were investigated. Other parameters, such as trench length and slip remained constant. Using a chi-squared, best-fit statistical criterion, the GPS data constrain the subduction interface to a 75 kilometer downdip extent, a 10° dip angle, and near 50% locking. This implies that the subduction zone offshore Dominica is in an interseismic state, thus accumulating strain and causing small westward and upward displacement of the Lesser Antilles relative to the stable Caribbean interior.

  6. Models for elastic shells with incompatible strains

    PubMed Central

    Lewicka, Marta; Mahadevan, L.; Pakzad, Mohammad Reza

    2014-01-01

    The three-dimensional shapes of thin lamina, such as leaves, flowers, feathers, wings, etc., are driven by the differential strain induced by the relative growth. The growth takes place through variations in the Riemannian metric given on the thin sheet as a function of location in the central plane and also across its thickness. The shape is then a consequence of elastic energy minimization on the frustrated geometrical object. Here, we provide a rigorous derivation of the asymptotic theories for shapes of residually strained thin lamina with non-trivial curvatures, i.e. growing elastic shells in both the weakly and strongly curved regimes, generalizing earlier results for the growth of nominally flat plates. The different theories are distinguished by the scaling of the mid-surface curvature relative to the inverse thickness and growth strain, and also allow us to generalize the classical Föppl–von Kármán energy to theories of prestrained shallow shells. PMID:24808750

  7. Strain accumulation along the Cascadia subduction zone

    USGS Publications Warehouse

    Murray, M.H.; Lisowski, M.

    2000-01-01

    We combine triangulation, trilateration, and GPS observations to determine horizontal strain rates along the Cascadia subduction zone from Cape Mendocino to the Strait of Juan de Fuca. Shear-strain rates are significantly greater than zero (95% confidence) in all forearc regions (26-167 nanoradians/yr), and are not significant in the arc and backarc regions. The deformation is primarily uniaxial contraction nearly parallel to Juan de Fuca-North America plate convergence (N55??-80??E). The strain rates are consistent with an elastic dislocation model for interseismic slip with a shallow 100-km wide locked zone and a deeper 75-km transition zone along the entire megathrust, except along the central Oregon coast where relatively lower strain rates are consistent with 30-40 km wide locked and transition zones.

  8. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  9. Elastically relaxed free-standing strained-silicon nanomembranes.

    PubMed

    Roberts, Michelle M; Klein, Levente J; Savage, Donald E; Slinker, Keith A; Friesen, Mark; Celler, George; Eriksson, Mark A; Lagally, Max G

    2006-05-01

    Strain plays a critical role in the properties of materials. In silicon and silicon-germanium, strain provides a mechanism for control of both carrier mobility and band offsets. In materials integration, strain is typically tuned through the use of dislocations and elemental composition. We demonstrate a versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects. We grow Si/SiGe layers on a substrate from which they can be released, forming nanomembranes. X-ray-diffraction measurements confirm a final strain predicted by elasticity theory. The effectiveness of elastic strain to alter electronic properties is demonstrated by low-temperature longitudinal Hall-effect measurements on a strained-silicon quantum well before and after release. Elastic strain sharing and film transfer offer an intriguing path towards complex, multiple-layer structures in which each layer's properties are controlled elastically, without the introduction of undesirable defects.

  10. Himalayan Strain Accumulation 100 ka Timescales

    NASA Astrophysics Data System (ADS)

    Cannon, J. M.; Murphy, M. A.; Liu, Y.

    2015-12-01

    Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.

  11. Application Of Elastic Perfectly Plastic Cyclic Analysis To Assessment Of Creep Strain

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    A cyclic elastic-perfectly plastic analysis method is proposed which provides a conservative estimate to cyclic creep strain accumulation within the ratchet boundary. The method is to check for ratcheting based on an elastic-perfectly material with a temperature-dependent pseudo yield stress defined by temperature, time and stress to give 1% creep strain. It does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. This simplified method could be used as a rapid screening calculation, with full time-dependent creep analysis used if necessary.

  12. Ismetpasa and Destek regions; Creeping or accumulating strain

    NASA Astrophysics Data System (ADS)

    Yavasoglu, Hakan; Alkan, M. Nurullah; Aladogan, Kayhan; Ozulu, I. Murat; Ilci, Veli; Sahin, Murat; Tombus, F. Engin; Tiryakioglu, Ibrahim

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most destructive fault system all over the world. In the last century, many devastating seismic event happened on it and its shear zone (NAFZ). Especially, after the 1999 Izmit and Duzce earthquakes, the earth science studies increase to save human life. To better understand the mechanism of the active fault system, tectonic stress and strain are important phenomena. According to elastic rebound theory, the locked active faults release the accumulated strain abruptly in four periods; interseismic, preseismic, coseismic and postseismic. In the literature, this phase is called the earthquake cycle. On the other hand, there is another scenario (aseismic deformation or creep) to release the strain without any remarkable seismic event. For the creep procedure, the important subject is threshold of the aseismic slip rate. If it is equal or larger than long-term slip rate, the destructive earthquakes will not occur along the fault which has aseismic slip rate. On the contrary, if the creep motion is lower than long-term slip rate along the fault, the fault has potential to produce moderate-to-large size earthquakes. In this study, the regions, Ismetpasa and Destek, have been studied to determine the aseismic deformation using GPS data. The first and second GPS campaigns have been evaluated with GAMIT/GLOBK software. Preliminary results of the project (slip-rate along the NAF in this region and aseismic deformation) will be presented.

  13. Evidence for residual elastic strain in deformed natural quartz

    SciTech Connect

    Kunz, Martin; Chen, Kai; Tamura,Nobumichi; Wenk, Hans-Rudolf

    2009-01-30

    Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron x-rays. The measurements with a resolution of one micrometer allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress in the order of {approx} 50 MPa.

  14. Strain Accumulation in Montenegro Using GPS Measurements

    NASA Astrophysics Data System (ADS)

    Glavatovic, B.; Vucic, L.; D'Agostino, N.; D'Anastasio, E.; Selvaggi, G.

    2011-12-01

    In this work we present the preliminary results of the analysis of GPS measurements collected from continuous stations belonging to networks deployed for both sceintific and societal purposes. The area is particularly interesting in relationship with the large Mw 7.1 earthquake that affected the Montenegro coastal areas in 1979 and the large uncertainties associated with recurrence times of large events and the present-day rate of strain accumulation. The dataset from the MEPOS (Montenegro), MONTEPOS (Montenegro), AGROS (Serbia) and MAKPOS (Macedonia) networks, combined with data from the RING (http://ring.gm.ingv.it) and other continuous GPS networks in the Mediterranean, Eurasian and African regions, has been analyzed using the GIPSY-OASIS II software package and the precise point positioning method [Zumberge et al., 1997]. Carrier phase ambiguities have been successfully resolved across the entire network using an algorithm based on a fixed-point theorem that closely approximates a full-network resolution [Blewitt, 2008]. Satellite orbit and clock parameters, and daily coordinate transformation parameters into ITRF2005 were provided by the Jet Propulsion Laboratory (JPL). ITRF2005 positions were transformed into an Eurasia fixed reference frame by performing daily transformations into a frame that is defined by minimizing the horizontal velocities of 30 stations across the stable part of the Eurasian continent (away from areas affected by glacial isostatic adjustments). Common mode errors for this continental scale frame are further reduced by including an additional 60 stations as far away as Iceland, Eastern Eurasia, and Africa in a daily spatial (7 parameters) filter [D'Anastasio et al., 2008]. We estimate velocities from the continuous GPS time-series using the CATS software package [Williams, 2003] while accounting for annual and semi-annual constituents, simultaneously estimating rate uncertainties given the assumption that the error model is dominated by

  15. Approaching the ideal elastic strain limit in silicon nanowires.

    PubMed

    Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang

    2016-08-01

    Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid-grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this "deep ultra-strength" for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising "elastic strain engineering" applications. PMID:27540586

  16. Approaching the ideal elastic strain limit in silicon nanowires

    PubMed Central

    Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang

    2016-01-01

    Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications. PMID:27540586

  17. Approaching the ideal elastic strain limit in silicon nanowires.

    PubMed

    Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang

    2016-08-01

    Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid-grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this "deep ultra-strength" for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising "elastic strain engineering" applications.

  18. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Heflin, Michael B.; Peltzer, Gilles; Crampé, FréDeric; Webb, Frank H.

    2005-04-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm yr-1 in the Santa Ana and San Gabriel aquifers and faster than 5 mm yr-1 in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm yr-1 at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel Mountains shortening at 4.5 ± 1 mm yr-1 (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ± 2 mm yr-1 beneath and north of a position 6 ± 2 km deep and 8 ± 8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  19. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Heflin, M. B.; Peltzer, G.; Crampe, F.; Webb, F. H.

    2005-05-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm/yr in the Santa Ana and San Gabriel aquifers and faster than 5 mm/yr in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm/yr at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel mountains shortening at 4.5 ±1 mm/yr (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ±2 mm/yr beneath and north of a position 6 ±2 km deep and 8 ±8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  20. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    DOE PAGES

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; Beyerlein, Irene Jane; Wang, Jian; Tome, Carlos N.

    2015-07-16

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less

  1. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  2. Medical ultrasound: imaging of soft tissue strain and elasticity.

    PubMed

    Wells, Peter N T; Liang, Hai-Dong

    2011-11-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.

  3. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    NASA Astrophysics Data System (ADS)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  4. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  5. Prediction of the elastic strain limit of tendons.

    PubMed

    Reyes, A M; Jahr, H; van Schie, H T M; Weinans, H; Zadpoor, A A

    2014-02-01

    The elastic strain limit (ESL) of tendons is the point where maximum elastic modulus is reached, after which micro-damage starts. Study of damage progression in tendons under repetitive (fatigue) loading requires a priori knowledge about ESL. In this study, we propose three different approaches for predicting ESL. First, one single value is assumed to represent the ESL of all tendon specimens. Second, different extrapolation curves are used for extrapolating the initial part of the stress-strain curve. Third, a method based on comparing the shape of the initial part of the stress-strain curve of specimens with a database of stress-strain curves is used. A large number of porcine tendon explants (97) were tested to examine the above-mentioned approaches. The variants of the third approach yielded significantly (p<0.05) smaller error values as compared to the other approaches. The mean absolute percentage error of the best-performing variant of the shape-based comparison was between 8.14±6.44% and 9.96±9.99% depending on the size of the initial part of the stress-strain curves. Interspecies generalizability of the best performing method was also studied by applying it for prediction of the ESL of horse tendons. The ESL of horse tendons was predicted with mean absolute percentage errors ranging between 10.53±7.6% and 19.16±14.31% depending on the size of the initial part of the stress-strain curves and the type of normalization. The results of this study suggest that both ESL and the shape of stress-strain curves may be highly different between different individuals and different anatomical locations.

  6. Controlling surface reactions with nanopatterned surface elastic strain.

    PubMed

    Li, Zhisheng; Potapenko, Denis V; Osgood, Richard M

    2015-01-27

    The application of elastic lattice strain is a promising approach for tuning material properties, but the attainment of a systematic approach for introducing a high level of strain in materials so as to study its effects has been a major challenge. Here we create an array of intense locally varying strain fields on a TiO2 (110) surface by introducing highly pressurized argon nanoclusters at 6-20 monolayers under the surface. By combining scanning tunneling microscopy imaging and the continuum mechanics model, we show that strain causes the surface bridge-bonded oxygen vacancies (BBOv), which are typically present on this surface, to be absent from the strained area and generates defect-free regions. In addition, we find that the adsorption energy of hydrogen binding to oxygen (BBO) is significantly altered by local lattice strain. In particular, the adsorption energy of hydrogen on BBO rows is reduced by ∼ 35 meV when the local crystal lattice is compressed by ∼ 1.3%. Our results provide direct evidence of the influence of strain on atomic-scale surface chemical properties, and such effects may help guide future research in catalysis materials design.

  7. Tunable thermoelectric transport in nanomeshes via elastic strain engineering

    SciTech Connect

    Piccione, Brian; Gianola, Daniel S.

    2015-03-16

    Recent experimental explorations of silicon nanomeshes have shown that the unique metastructures exhibit reduced thermal conductivity while preserving bulk electrical conductivity via feature sizes between relevant phonon and electron mean free paths, aiding in the continued promise that nanometer-scale engineering may further enhance thermoelectric behavior. Here, we introduce a strategy for tuning thermoelectric transport phenomena in semiconductor nanomeshes via heterogeneous elastic strain engineering, using silicon as a model material for demonstration of the concept. By combining analytical models for electron mobility in uniformly stressed silicon with finite element analysis of strained silicon nanomeshes in a lumped physical model, we show that the nonuniform and multiaxial strain fields defined by the nanomesh geometry give rise to spatially varying band shifts and warping, which in aggregate accelerate electron transport along directions of applied stress. This allows for global electrical conductivity and Seebeck enhancements beyond those of homogenous samples under equivalent far-field stresses, ultimately increasing thermoelectric power factor nearly 50% over unstrained samples. The proposed concept and structures—generic to a wide class of materials with large dynamic ranges of elastic strain in nanoscale volumes—may enable a new pathway for active and tunable control of transport properties relevant to waste heat scavenging and thermal management.

  8. Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires.

    PubMed

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E; Li, Ju

    2016-02-10

    Individual metallic nanowires can sustain ultralarge elastic strains of 4-7%. However, achieving and retaining elastic strains of such magnitude in kilogram-scale nanowires are challenging. Here, we find that under active load, ∼ 5.6% elastic strain can be achieved in Nb nanowires embedded in a metallic matrix deforming by detwinning. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the external load was fully removed, and adjustable in magnitude by processing control. It is then demonstrated that the retained tensile elastic strains of Nb nanowires can increase their superconducting transition temperature and critical magnetic field, in comparison with the unstrained original material. This study opens new avenues for retaining large and tunable elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.

  9. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  10. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  11. Rapid intraplate strain accumulation in the New Madrid seismic zone

    USGS Publications Warehouse

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-01-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes >8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time.

  12. Rapid intraplate strain accumulation in the New Madrid seismic zone

    SciTech Connect

    Liu, L.; Zoback, M.D.; Segall, P. USGS, Menlo Park, CA )

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  13. Dependence of the elastic strain coefficient of copper on the pre-treatment

    NASA Technical Reports Server (NTRS)

    Kuntze, Wilhelm

    1950-01-01

    The effect of various pre-treatments on the elastic strain coefficient (alpha) (defined as the reciprocal of the modulus of elasticity E) (Epsilon) and on the mechanical hysteresis of copper has been investigated. Variables comprising the pre-treatments were pre-straining by stretching in a tensile testing machine and by drawing through a die, aging at room and elevated temperatures and annealing. The variation of the elastic strain coefficient with test stress was also investigated.

  14. The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction.

    PubMed

    Yan, Kai; Maark, Tuhina Adit; Khorshidi, Alireza; Sethuraman, Vijay A; Peterson, Andrew A; Guduru, Pradeep R

    2016-05-17

    Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity. PMID:27079940

  15. Biaxial load effects on the crack border elastic strain energy and strain energy rate

    NASA Technical Reports Server (NTRS)

    Eftis, J.; Subramonian, N.; Liebowitz, H.

    1977-01-01

    The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.

  16. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  17. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  18. Strain accumulation in southern California, 1973-1980.

    USGS Publications Warehouse

    Savage, J.C.; Prescott, W.H.; Lisowski, M.; King, N.E.

    1981-01-01

    Frequent surveys of seven trilateration networks in southern California over the interval 1973-1980 suggest that a regional increment in strain may have occurred in 1978-1979. Prior to 1978 and after late 1979 the strain accumulation has been predominantly a uniaxial north-south compression. This secular trend was interrupted sometime in 1978-1979 by an increment in both north-south and east-west extension in five of the seven networks. The onset of this change appears to have occurred first in the networks farthest south. The changes occurred without any unusual seismicity within the networks, but the overall seismicity in southern California was unusually low prior to and has been unusually high since the occurrence. The average principal strain rates for the seven networks in the 1973-1980 interval are 0.17 mu strain/yr north- south contraction and 0.08 mu strain/yr east-west extension. Although the observed increment in strain could be related to unidentified systematic error in the measuring system, a careful review of the measurements and comparisons with three other measuring systems reveal no appreciable cumulative systematic error. -Authors

  19. Near tip stress and strain fields for short elastic cracks

    NASA Technical Reports Server (NTRS)

    Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.

    1994-01-01

    Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.

  20. ETS Related Uplift and Strain Accumulation in Northern Cascadia from Tidal Records

    NASA Astrophysics Data System (ADS)

    Alba, S. K.; Weldon, R. J.; Livelybrooks, D.; Schmidt, D. A.; Krogstad, R.

    2011-12-01

    suggests that ETS events are, on average, approximately releasing strain accumulated between ETS events, i.e. that ETS is consistent with elastic rebound. While the current uncertainties are too large to determine exactly how much of the strain accumulated between events is released during ETS, long term (~70 yr) leveling and tidal records suggest that up to 25% of the strain accumulated between ETS events is not released by ETS events. Our interseismic (ETS) uplift rates strongly support the hypothesis that ETS is caused by the accumulation and release of elastic strain on a deep patch of fault on the subduction interface. The fact that ETS is generated by strain generated across the subduction interface and that some fraction of this strain does not appear to be released by ETS events allows the possibility that future subduction zone earthquakes will release this strain by rupturing deeper than expected from models that only consider strain accumulation from the updip locked portion of the interface.

  1. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    SciTech Connect

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; Beyerlein, Irene Jane; Wang, Jian; Tome, Carlos N.

    2015-07-16

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that the magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.

  2. On the origin of elastic strain limit of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Ding, J.; Cheng, Y. Q.; Ma, E.

    2014-01-01

    All bulk metallic glasses exhibit a large and almost universal elastic strain limit. Here, we show that the magnitude of the yield strain of the glass state can be quantitatively derived from a characteristic property of the flow state typical in running shear bands (the root cause of yielding). The strain in the shear flow is mostly plastic, but associated with it there is an effective elastic atomic strain. The latter is almost identical for very different model systems in our molecular dynamics simulations, such that the corresponding yield strain is universal at any given homologous temperature.

  3. Dramatic effect of elasticity on thermal softening and strain localization during lithospheric shortening

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Duretz, Thibault; Schmalholz, Stefan M.

    2016-02-01

    We present two-dimensional numerical simulations for shortening a viscoelastoplastic lithosphere to quantify the impact of elasticity on strain localization due to thermal softening. The model conserves energy and mechanical work is converted into heat or stored as elastic strain energy. For a shear modulus G = 1010 Pa, a prominent lithospheric shear zone forms and elastic energy release increases the localization intensity (strain rate amplification). For G = 5 × 1010 Pa shear zones still form but deformation is less localized. For G = 1012 Pa, the lithosphere behaves effectively viscoplastic and no shear zones form during homogeneous thickening. Maximal shearing-related increase of surface heat flux is 15-25 mW m-2 and of temperature at lower crustal depth is ˜150 °C, whereby these peak values are transient (0.1-1 My). Elasticity and related energy release can significantly contribute to strain localization and plate-like behaviour of the lithosphere required for plate tectonics.

  4. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys.

    PubMed

    Bönisch, Matthias; Calin, Mariana; van Humbeeck, Jan; Skrotzki, Werner; Eckert, Jürgen

    2015-03-01

    While the current research focus in the search for biocompatible low-modulus alloys is set on β-type Ti-based materials, the potential of fully martensitic Ti-based alloys remains largely unexplored. In this work, the influence of composition and pre-straining on the elastic properties of martensitic binary Ti-Nb alloys was studied. Additionally, the phase formation was compared in the as-cast versus the quenched state. The elastic moduli and hardness of the studied martensitic alloys are at a minimum of 16wt.% Nb and peak between 23.5 and 28.5wt.% Nb. The uniaxial deformation behavior of the alloys used is characterized by the absence of distinct yield points. Monotonic and cyclic (hysteretic) loading-unloading experiments were used to study the influence of Nb-content and pre-straining on the elastic moduli. Such experiments were also utilized to assess the recoverable elastic and anelastic deformations as well as hysteretic energy losses. Particular attention has been paid to the separation of non-linear elastic from anelastic strains, which govern the stress and strain limits to which a material can be loaded without deforming it plastically. It is shown that slight pre-straining of martensitic Ti-Nb alloys can lead to considerable reductions in their elastic moduli as well as increases in their total reversible strains.

  5. Low-density lipoprotein accumulation within a carotid artery with multilayer elastic porous wall: fluid-structure interaction and non-Newtonian considerations.

    PubMed

    Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza

    2015-09-18

    Low-density lipoprotein (LDL), which is recognized as bad cholesterol, typically has been regarded as a main cause of atherosclerosis. LDL infiltration across arterial wall and subsequent formation of Ox-LDL could lead to atherogenesis. In the present study, combined effects of non-Newtonian fluid behavior and fluid-structure interaction (FSI) on LDL mass transfer inside an artery and through its multilayer arterial wall are examined numerically. Navier-Stokes equations for the blood flow inside the lumen and modified Darcy's model for the power-law fluid through the porous arterial wall are coupled with the equations of mass transfer to describe LDL distributions in various segments of the artery. In addition, the arterial wall is considered as a heterogeneous permeable elastic medium. Thus, elastodynamics equation is invoked to examine effects of different wall elasticity on LDL distribution in the artery. Findings suggest that non-Newtonian behavior of filtrated plasma within the wall enhances LDL accumulation meaningfully. Moreover, results demonstrate that at high blood pressure and due to the wall elasticity, endothelium pores expand, which cause significant variations on endothelium physiological properties in a way that lead to higher LDL accumulation. Additionally, results describe that under hypertension, by increasing angular strain, endothelial junctions especially at leaky sites expand more dramatic for the high elastic model, which in turn causes higher LDL accumulation across the intima layer and elevates atherogenesis risk. PMID:26300402

  6. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    SciTech Connect

    Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  7. On the influence of strain rate in acousto-elasticity : experimental results for Berea sandstone

    NASA Astrophysics Data System (ADS)

    Riviere, J. V.; Candela, T.; Scuderi, M.; Marone, C.; Guyer, R. A.; Johnson, P. A.

    2013-12-01

    Elastic nonlinear effects are pervasive in the Earth, including during strong ground motion, tidal forcing and earthquake slip processes. We study elastic nonlinear effects in the laboratory with the goal of developing new methods to probe elastic changes in the Earth, and to characterize and understand their origins. Here we report on nonlinear, frequency dispersion effects by applying a method termed dynamic acousto-elasticity (DAE), analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on samples of Berea sandstone subject to 0.5 MPa uniaxial and biaxial loading conditions with oscillating loads at frequencies from 0.001 to 10 Hz and amplitudes of a few 100 kPa. We compare results to DAE measurements made in the kHz range. We observe that the average decrease in modulus due to nonlinear material softening increases with frequency, suggesting a frequency and/or a strain rate dependence. Previous quasi-static measurements (Claytor et al., GRL 2009) show that stress-strain nonlinear hysteretic behavior disappears when the experiment is performed at a very low strain-rate, implying that a rate dependent nonlinear elastic model would be useful (Gusev et al., PRB 2004). Our results also suggest that when elastic nonlinear Earth processes are studied, stress forcing frequency is an important consideration, and may lead to unexpected behaviors.

  8. Is there Link between the Type of the Volumetric Strain Curve and Elastic Constants, Porosity, Stress and Strain Characteristics ?

    NASA Astrophysics Data System (ADS)

    Palchik, V.

    2013-03-01

    The stress [crack damage stress ( σ cd) and uniaxial compressive strength ( σ c)] and strain characteristics [maximum total volumetric strain ( ɛ cd), axial failure strain ( ɛ af)], porosity ( n) and elastic constants [elastic modulus ( E) and Poisson's ratio ( ν)] and their ratios were coordinated with the existence of two different types (type 1 and type 2) of volumetric strain curve. Type 1 volumetric strain curve has a reversal point and, therefore, σ cd is less than the uniaxial compressive strength ( σ c). Type 2 has no reversal point, and the bulk volume of rock decreases until its failure occurs (i.e., σ cd = σ c). It is confirmed that the ratio between the elastic modulus ( E) and the parameter λ = n/ ɛ cd strongly affects the crack damage stress ( σ cd) for both type 1 and type 2 volumetric strain curves. It is revealed that heterogeneous carbonate rock samples exhibit different types of the volumetric strain curve even within the same rock formation, and the range of σ cd/ σ c = 0.54-1 for carbonate rocks is wider than the range (0.71 < σ cd/ σ c < 0.84) obtained by other researchers for granites, sandstones and quartzite. It is established that there is no connection between the type of the volumetric strain curve and values of n, E, σ cd, ν, E/(1 - 2 ν), M R = E/ σ c and E/ λ. On the other hand, the type of volumetric strain curve is connected with the values of λ and the ratio between the axial failure strain ( ɛ af) and the maximum total volumetric strain ( ɛ cd). It is argued that in case of small ɛ af/ ɛ cd-small λ, volumetric strain curve follows the type 2.

  9. Elastic strain relaxation in axial Si/Ge whisker heterostructures

    SciTech Connect

    Hanke, M.; Eisenschmidt, C.; Werner, P.; Zakharov, N. D.; Syrowatka, F.; Heyroth, F.; Schaefer, P.; Konovalov, O.

    2007-04-15

    The elastic behavior of molecular beam epitaxy-grown SiGe/Si(111) nanowhiskers (NWs) has been studied by means of electron microscopy, x-ray scattering, and numerical linear elasticity theory. Highly brilliant synchrotron radiation was applied to map the diffusely scattered intensity near the asymmetric (115) reciprocal lattice point. The larger lattice parameter with respect to the Si matrix causes a lateral lattice expansion within embedded Ge layers. This enables a clear separation of scattering due to NWs and laterally confined areas aside. Finite element calculations prove a lateral lattice compression in the Si matrix close to the NW apex above buried threefold and single Ge layer stacks. This suggests an incorporation probability, which additionally depends on the radial position within heteroepitaxial NWs.

  10. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    SciTech Connect

    W.R. Solonick

    2003-04-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  11. Elastic-plastic strain acceptance criterion for structures subject to rapidly applied transient dynamic loading

    SciTech Connect

    Solonick, W.

    1996-11-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local, or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  12. Constraints on accumulated strain near the ETS zone along Cascadia

    NASA Astrophysics Data System (ADS)

    Krogstad, Randy D.; Schmidt, David A.; Weldon, Ray J.; Burgette, Reed J.

    2016-04-01

    Current national seismic hazard models for Cascadia use the zone of episodic tremor and slip (ETS) to denote the lower boundary of the seismogenic zone. Recent numerical models have suggested that an appreciable amount of long-term strain may accumulate at the depth of ETS and questions this assumption. We use uplift rates from leveling campaigns spanning approximately 50-70 yrs in Washington and Oregon to investigate the amount of potential long-term locking near the ETS zone. We evaluate the potential for deeper locking in Cascadia by exploring a range of locking parameters along the subduction zone, including the ETS zone. Of the four east-west leveling profiles studied, three show a reduction in the misfit when secondary locking near the ETS zone is included; however the reduction in misfit values is only statistically significant for one profile. This would suggest that models including a small amount of secondary locking are broadly indistinguishable from models without any secondary locking. If secondary locking is considered, the leveling data allow for locking up to ∼20% of the plate rate near the updip edge of the ETS zone. These results are consistent with, but less resolved, by GPS observations.

  13. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix

    PubMed Central

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-01-01

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties. PMID:26625854

  14. Beyond linear elasticity: jammed solids at finite shear strain and rate.

    PubMed

    Boschan, Julia; Vågberg, Daniel; Somfai, Ellák; Tighe, Brian P

    2016-06-28

    The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and weak. Both of these approximations must break down when the material loses rigidity, such as in foams and emulsions at their (un)jamming point - suggesting that the window of linear elastic response near jamming is exceedingly narrow. Yet precisely when and how this breakdown occurs remains unclear. To answer these questions, we perform computer simulations of stress relaxation and shear start-up tests in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain amplitude, strain rate, distance to jamming, and system size, we identify characteristic strain and time scales that quantify how and when the window of linear elasticity closes, and relate these scales to changes in the microscopic contact network. PMID:27212139

  15. Nonlinear elastic response in solid helium: critical velocity or strain?

    PubMed

    Day, James; Syshchenko, Oleksandr; Beamish, John

    2010-02-19

    Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter such as displacement. In contrast with the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied.

  16. Strain fluctuations and elastic moduli in disordered solids

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schoenholz, Samuel S.; Xu, Ye; Still, Tim; Yodh, A. G.; Liu, Andrea J.

    2015-08-01

    Recently there has been a surge in interest in using video-microscopy techniques to infer the local mechanical properties of disordered solids. One common approach is to minimize the difference between particle vibrational displacements in a local coarse-graining volume and the displacements that would result from a best-fit affine deformation. Effective moduli are then inferred under the assumption that the components of this best-fit affine deformation tensor have a Boltzmann distribution. In this paper, we combine theoretical arguments with experimental and simulation data to demonstrate that the above does not reveal information about the true elastic moduli of jammed packings and colloidal glasses.

  17. Variability of polyploid strains of Candida scottii in accumulation of riboflavin in the medium.

    PubMed

    Imshenetsky, A A; Kondratieva, T F

    1977-01-01

    Polyploid strains of Candida scottii show a higher spontaneous and UV-induced variability in accumulation of riboflavin in the medium than the original haploid strain. UV irradiation affects the formation of variants and induces those which accumulate more riboflavin than any of the most productive variants resulting from spontaneous variability. In the polyploid strains the frequency of plus-variants increases. Therefore, polyploid strains of C. scottii are advantageous for selection processes. PMID:855365

  18. Super-elastic graphene ripples for flexible strain sensors.

    PubMed

    Wang, Yi; Yang, Rong; Shi, Zhiwen; Zhang, Lianchang; Shi, Dongxia; Wang, Enge; Zhang, Guangyu

    2011-05-24

    In this study, we report a buckling approach for graphene and graphene ribbons on stretchable elastomeric substrates. Stretched polydimethylsiloxane (PDMS) films with different prestrains were used to receive the transferred graphene, and nanoscale periodical buckling of graphene was spontaneously formed after strain release. The morphology and periodicity of the as-formed graphene ripples are dependent strongly on their original shapes and substrates' prestrains. Regular periodicity of the ripples preferred to form for narrow graphene ribbons, and both the amplitude and periodicity are reduced with the increase of prestrain on PDMS. The graphene ripples have the ability to afford large strain deformation, thus making it ideal for flexible electronic applications. It was demonstrated that both graphene ribbon and nanographene film ripples could be used for strain sensors, and their resistance changes upon different strains were studied. This simple and controllable process of buckled graphene provides a feasible fabrication for graphene flexible electronic devices and strain sensors due to its novel mechanical and electrical properties. PMID:21452882

  19. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation

    NASA Astrophysics Data System (ADS)

    Lim, C. W.; Zhang, G.; Reddy, J. N.

    2015-05-01

    In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational

  20. Analytical phase-tracking-based strain estimation for ultrasound elasticity.

    PubMed

    Yuan, Lili; Pedersen, Peder C

    2015-01-01

    A new strain estimator for quasi-static elastography is presented, based on tracking of the analytical signal phase as a function of the external force. Two implementations are introduced: zero-phase search with moving window (SMW) and zero-phase band tracking using connected component labeling (CCL). Low analytical signal amplitude caused by local destructive interference is associated with large error in the phase trajectories, and amplitude thresholding can thus be used to terminate the phase tracking along a particular path. Interpolation is then applied to estimate displacement in the eliminated path. The paper describes first a mathematical analysis based on 1-D multi-scatter modeling, followed by a statistical study of the displacement and strain error. Simulation and experiment with an inhomogeneous phantom indicate that SMW and CCL are capable of reliably estimating tissue displacement and strain over a larger range of deformation than standard timedomain cross-correlation (SCC). Results also show that SMW is roughly 40 times faster than SCC with comparable or even better accuracy. CCL is slower than SMW, but more noise robust. Simulation assessment at compression level 3% and 6% with SNR 20 dB demonstrates average strain error for SMW and CCL of 10%, whereas SCC achieves 18%. PMID:25585402

  1. Determination of Constant Strain Gradients of Elastically Bent Crystal Using X-ray Mirage Fringes

    NASA Astrophysics Data System (ADS)

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Hirano, Kenji; Ju, Dongying; Negishi, Riichirou; Shimojo, Masayuki; Hirano, Keiichi; Kawamura, Takaaki

    2012-07-01

    Two experimental approaches are studied to determine a parameter of the strain gradient in an elastically bent crystal. In one approach, the parameter is determined by measuring the third peak of the X-ray mirage interference fringes and in the other, by measuring the region where no mirage diffraction beam reaches on the lateral surface of the crystal. Using the X-rays from synchrotron radiation, the mirage fringes have been observed in the 220 reflection of the Si crystal whose strain is controlled in cantilever bending. These two approaches both give accurate values of the parameter of the strain gradient, showing good agreement with the values calculated using elastic theory. In addition, the residual strain due to gravity is observed by measuring mirage fringes when the bending force becomes zero.

  2. Correlation of data on strain accumulation adjacent to the San Andreas Fault with available models

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1986-01-01

    Theoretical and numerical studies of deformation on strike slip faults were performed and the results applied to geodetic observations performed in the vicinity of the San Andreas Fault in California. The initial efforts were devoted to an extensive series of finite element calculations of the deformation associated with cyclic displacements on a strike-slip fault. Measurements of strain accumulation adjacent to the San Andreas Fault indicate that the zone of strain accumulation extends only a few tens of kilometers away from the fault. There is a concern about the tendency to make geodetic observations along the line to the source. This technique has serious problems for strike slip faults since the vector velocity is also along the fault. Use of a series of stations lying perpendicular to the fault whose positions are measured relative to a reference station are suggested to correct the problem. The complexity of faulting adjacent to the San Andreas Fault indicated that the homogeneous elastic and viscoelastic approach to deformation had serious limitations. These limitation led to the proposal of an approach that assumes a fault is composed of a distribution of asperities and barriers on all scales. Thus, an earthquake on a fault is treated as a failure of a fractal tree. Work continued on the development of a fractal based model for deformation in the western United States. In order to better understand the distribution of seismicity on the San Andreas Fault system a fractal analog was developed. The fractal concept also provides a means of testing whether clustering in time or space is a scale-invariant process.

  3. On consistent micromechanical estimation of macroscopic elastic energy, coherence energy and phase transformation strains for SMA materials

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Andrzej

    2016-09-01

    An apparatus of micromechanics is used to isolate the key ingredients entering macroscopic Gibbs free energy function of a shape memory alloy (SMA) material. A new self-equilibrated eigenstrains influence moduli (SEIM) method is developed for consistent estimation of effective (macroscopic) thermostatic properties of solid materials, which in microscale can be regarded as amalgams of n-phase linear thermoelastic component materials with eigenstrains. The SEIM satisfy the self-consistency conditions, following from elastic reciprocity (Betti) theorem. The method allowed expressing macroscopic coherency energy and elastic complementary energy terms present in the general form of macroscopic Gibbs free energy of SMA materials in the form of semilinear and semiquadratic functions of the phase composition. Consistent SEIM estimates of elastic complementary energy, coherency energy and phase transformation strains corresponding to classical Reuss and Voigt conjectures are explicitly specified. The Voigt explicit relations served as inspiration for working out an original engineering practice-oriented semiexperimental SEIM estimates. They are especially conveniently applicable for an isotropic aggregate (composite) composed of a mixture of n isotropic phases. Using experimental data for NiTi alloy and adopting conjecture that it can be treated as an isotropic aggregate of two isotropic phases, it is shown that the NiTi coherency energy and macroscopic phase strain are practically not influenced by the difference in values of austenite and martensite elastic constants. It is shown that existence of nonzero fluctuating part of phase microeigenstrains field is responsible for building up of so-called stored energy of coherency, which is accumulated in pure martensitic phase after full completion of phase transition. Experimental data for NiTi alloy show that the stored coherency energy cannot be neglected as it considerably influences the characteristic phase transition

  4. [Dynamic accumulation regulation of curcumin, demethoxycurcumin and bisdemethoxyeurcumin in three strains of curcuma longae rhizome].

    PubMed

    Li, Qing-Miao; Yang, Wen-Yu; Tang, Xue-Mei; Zhang, Mei; Zhou, Xian-Jian; Shu, Guang-Ming; Zhao, Jun-Ning; Fang, Qing-Mao

    2014-06-01

    The paper is aimed to study the dynamic accumulation regulation of curcumin (Cur), demethoxycurcumin (DMC) and bisdemethoxyeurcumin (BDMC) in three strains of Curcuma longa, and provide scientific references for formalized cultivation, timely harvesting, quality control and breeding cultivation of C. longa. The accumulation regulation of the three curcumin derivatives was basically the same in rhizome of three strains. The relative contents decreased along with plant development growing, while the accumulation per hectare increased with plant development growing. The accumulation of curcuminoids per hectare could be taken as the assessment standard for the best harvest time of C. longa. A3 was the best strain in terms of Cur and BDMC content.

  5. Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.

    2016-04-01

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.

  6. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.

    PubMed

    Nam, Sungmin; Hu, Kenneth H; Butte, Manish J; Chaudhuri, Ovijit

    2016-05-17

    The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction. PMID:27140623

  7. Scaling Behavior and Strain Dependence of In-Plane Elastic Properties of Graphene.

    PubMed

    Los, J H; Fasolino, A; Katsnelson, M I

    2016-01-01

    We show by atomistic simulations that, in the thermodynamic limit, the in-plane elastic moduli of graphene at finite temperature vanish with system size L as a power law L(-η(u)) with η(u)≃0.325, in agreement with the membrane theory. We provide explicit expressions for the size and strain dependence of graphene's elastic moduli, allowing comparison to experimental data. Our results explain the recently experimentally observed increase of the Young modulus by more than a factor of 2 for a tensile strain of only a few per mill. The difference of a factor of 2 between the measured asymptotic value of the Young modulus for tensilely strained systems and the value from ab initio calculations remains, however, unsolved. We also discuss the asymptotic behavior of the Poisson ratio, for which our simulations disagree with the predictions of the self-consistent screening approximation.

  8. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility.

  9. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    PubMed

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402932

  10. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    PubMed

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  11. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  12. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.

    PubMed

    Nobakhti, Sabah; Limbert, Georges; Thurner, Philipp J

    2014-01-01

    Bone is multi-scale hierarchical composite material making the prediction of fragility, as well as pinning it to a certain cause, complicated. For proper mechanical simulation and reflection of bone properties in models, microscopic structural features of bone tissue need to be included. This study sets out to gain a mechanistic insight into the role of various microstructural features of bone tissue in particular cement lines and interlamellar areas. Further the hypothesis that compliant interlamellar areas and cement lines within osteonal bone act as strain amplifiers was explored. To this end, a series of experimentally-based micromechanical finite element models of bovine osteonal bone were developed. Different levels of detail for the bone microstructure were considered and combined with the results of physical three-point bending tests and an analytical composite model of a single osteon. The objective was to examine local and global effects of interface structures. The geometrical and microstructural characteristics of the bone samples were derived from microscopy imaging. Parametric finite element studies were conducted to determine optimal values of the elastic modulus of interstitial bone and interlamellar areas. The average isotropic elastic modulus of interfaces suggested in this study is 88.5MPa. Based on the modelling results, it is shown that interfaces are areas of accumulated strain in bone and are likely to act as potential paths for crack propagation. The strain amplification capability of interface structures in the order of 10 predicted by the models suggests a new explanation for the levels of strain required in bone homoeostasis for maintenance and adaptation.

  13. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.

    PubMed

    Nobakhti, Sabah; Limbert, Georges; Thurner, Philipp J

    2014-01-01

    Bone is multi-scale hierarchical composite material making the prediction of fragility, as well as pinning it to a certain cause, complicated. For proper mechanical simulation and reflection of bone properties in models, microscopic structural features of bone tissue need to be included. This study sets out to gain a mechanistic insight into the role of various microstructural features of bone tissue in particular cement lines and interlamellar areas. Further the hypothesis that compliant interlamellar areas and cement lines within osteonal bone act as strain amplifiers was explored. To this end, a series of experimentally-based micromechanical finite element models of bovine osteonal bone were developed. Different levels of detail for the bone microstructure were considered and combined with the results of physical three-point bending tests and an analytical composite model of a single osteon. The objective was to examine local and global effects of interface structures. The geometrical and microstructural characteristics of the bone samples were derived from microscopy imaging. Parametric finite element studies were conducted to determine optimal values of the elastic modulus of interstitial bone and interlamellar areas. The average isotropic elastic modulus of interfaces suggested in this study is 88.5MPa. Based on the modelling results, it is shown that interfaces are areas of accumulated strain in bone and are likely to act as potential paths for crack propagation. The strain amplification capability of interface structures in the order of 10 predicted by the models suggests a new explanation for the levels of strain required in bone homoeostasis for maintenance and adaptation. PMID:24113298

  14. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    SciTech Connect

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2014-01-20

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences.

  15. Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity

    NASA Astrophysics Data System (ADS)

    Gourgiotis, P. A.; Georgiadis, H. G.

    2009-11-01

    The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed

  16. Effect of high-energy X-ray doses on bone elastic properties and residual strains.

    PubMed

    Singhal, A; Deymier-Black, Alix C; Almer, J D; Dunand, D C

    2011-11-01

    Bone X-ray irradiation occurs during medical treatments, sterilization of allografts, space travel and in vitro studies. High doses are known to affect the post-yield properties of bone, but their effect on the bone elastic properties is unclear. The effect of such doses on the mineral-organic interface has also not been adequately addressed. Here, the evolution of elastic properties and residual strains with increasing synchrotron X-ray dose (5-3880 kGy) is examined on bovine cortical bone. It is found that these doses affect neither the degree of nanometer-level load transfer between the hydroxyapatite (HAP) platelets and the collagen up to stresses of -60 MPa nor the microscopic modulus of collagen fibrils (both measured by synchrotron X-ray scattering during repeated in situ loading and unloading). However, the residual elastic strains in the HAP phase decrease markedly with increased irradiation, indicating damage at the HAP-collagen interface. The HAP residual strain also decreases after repeated loading/unloading cycles. These observations can be explained by temporary de-bonding at the HAP/collagen interface (thus reducing the residual strain), followed by rapid re-bonding (so that load transfer capability is not affected).

  17. Inter-Rifting and Inter-Seismic Strain Accumulation in a Propagating Ridge System: A Geodetic Study from South Iceland

    NASA Astrophysics Data System (ADS)

    Travis, M. E.; La Femina, P. C.; Geirsson, H.

    2012-12-01

    The Mid-Atlantic Ridge, a slow spreading (~19 mm/yr) mid-ocean ridge boundary between the North American and Eurasian plates, is exposed subaerially in Iceland as the result of ridge-hotspot interaction. Plate spreading in Iceland is accommodated along neovolcanic zones comprised of central volcanoes and their fissure swarms. In south Iceland plate motion is partitioned between the Western Volcanic Zone (WVZ) and Eastern Volcanic Zone (EVZ). The EVZ is propagating to the southwest, while the WVZ is dying out from the northeast. Plate motion across both systems has been accommodated by repeated rifting events and fissure eruptions. In this study we investigate whether the WVZ is active and accumulating strain, and how strain is partitioned between the WVZ and EVZ. We also test how strain is accumulating along fissure swarms within the EVZ (i.e. is strain accumulation localized to one fissure swarm, or are multiple systems active?). We use GPS data and elastic block models run using the program DEFNODE to investigate these issues. GPS data are processed using the GIPSY-OASIS II software, and have been truncated to the 2000.5-2011 time period to avoid co-seismic displacement from the two June 2000 South Iceland Seismic Zone earthquakes. We also truncate the time series for sites within 20 km of Eyjafjallajökull to the beginning of 2010 to eliminate deformation associated with the March 2010 eruption of that volcano. We correct for co-seismic displacement from the two May 2008 SISZ earthquakes, inflation at Hekla volcano and the horizontal component of glacial isostatic rebound (GIA). Our best-fit model for inter-rifting and inter-seismic elastic strain accumulation suggests 80-90% of spreading is accommodated in the EVZ with the other 10-20% accommodated by the WVZ. The best-fit location of the EVZ is between Veidivotn and Lakigigar in an area of no Holocene volcanic activity. We suggest the WVZ is only active at Hengill and its associated fissure swarm. Geologic and

  18. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.

  19. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. PMID:24316480

  20. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  1. Influence of Elastic and Surface Strains on the Optical Properties of Semiconducting Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mangeri, John; Heinonen, Olle; Karpeyev, Dmitry; Nakhmanson, Serge

    2015-07-01

    Core-shell nanoparticle systems of Zn-ZnO and ZnO -TiO2 are studied computationally using finite-element methods. The inclusion of a surface free energy and the elastic mismatch of the core and shell create an imprinting effect within the shell structure that produces a wide variation of strains. Due to this diversity of strains, the sharp, direct, band-gap edges of the bulk semiconductor are observed to be broadened. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of elastic anisotropy, can influence the distribution of optical band-gap values throughout the particle.

  2. Accumulation of plastic strain in Zircaloy-4 at low homologous temperature

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tetsuya; Satoh, Yuhki; Abe, Hiroaki

    2015-10-01

    Time-dependent strain accumulation in Zircaloy-4 was evaluated at 294 K, i.e., homologous temperature (T/Tm, where Tm is the melting temperature) of 0.14, to ascertain the mechanical response in fuel cladding material, even at the time of storage. Although diffusion processes are suppressed, considerable strain accumulation was observed at less than 0.2% offset stress. Transmission electron microscopy and electron backscattered diffraction analyses were used to investigate the dominant microstructural mechanism. Results showed that the heterogeneous dislocation structure generated strain accumulation, where straightly aligned dislocation arrays on the prismatic plane move freely and few deformation twins were formed in the grain interior. Furthermore, few dislocation tangles were observed because the slip systems were limited to one. Therefore, Zircaloy-4 shows weak work-hardening at the low homologous temperature because of the fewer interactions among dislocations, leading to unexpected strain accumulation under constant load conditions.

  3. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    SciTech Connect

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  4. Elastic Strain Energy Storage and Neighboring Organ Assistance for Fluid Propulsion

    NASA Astrophysics Data System (ADS)

    Arun, C. P.

    2003-11-01

    Storage of elastic strain energy by non-muscular structures such as tendons and ligaments, is a common scheme employed by jumping animals. Also, since skeletal muscle is attached to bone, mechanical advantage is obtained, allowing a burst of power that is unobtainable by muscle contraction alone. This is important at launch since force may be applied for only the brief period when the legs are in contact with the ground. Liquid propelling structures such as the urinary bladder and the heart face the similar problem of being able to impart force to the content only as long as the wall is in a stretched state. Using data from videocystometry and cardiac catheterisation we show that the means employed to achieve liquid propulsion appears to involve a combination of isometric contraction (contraction against a closed sphincter or valve) with hyperelastic stretch of the wall, elastic strain energy storage by the wall, overshoot past the undistended state and neighboring organ assistance (NOA). Thus, the heart, a partially collapsible thick muscular shell without the benefit of NOA manages an ejection fraction of about 70%. Using all of the above means, the collapsible urinary bladder is able to nearly always empty. Elastic strain energy storage and NOA appear to be important strategies for liquid propulsion employed by hollow viscera.

  5. Unified ab initio formulation of flexoelectricity and strain-gradient elasticity

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano

    2016-06-01

    The theory of flexoelectricity and that of nonlocal elasticity are closely related, and are often considered together when modeling strain-gradient effects in solids. Here I show, based on a first-principles lattice-dynamical analysis, that their relationship is much more intimate than previously thought, and their consistent simultaneous treatment is crucial for obtaining correct physical answers. In particular, I identify a gauge invariance in the theory, whereby the energies associated to strain-gradient elasticity and flexoelectrically induced electric fields are individually reference dependent, and only when summed up they yield a well-defined result. To illustrate this, I construct a minimal thermodynamic functional incorporating strain-gradient effects, and establish a formal link between the continuum description and ab initio phonon dispersion curves to calculate the relevant tensor quantities. As a practical demonstration, I apply such a formalism to bulk SrTiO3, where I find an unusually strong contribution of nonlocal elasticity, mediated by the interaction between the ferroelectric soft mode and the transverse acoustic branches. These results have important implications towards the construction of well-defined thermodynamic theories where flexoelectricity and ferroelectricity coexist. More generally, they open exciting new avenues for the implementation of hierarchical multiscale concepts in the first-principles simulation of crystalline insulators.

  6. Lesion edge preserved direct average strain estimation for ultrasound elasticity imaging.

    PubMed

    Hussain, Mohammad Arafat; Alam, Farzana; Rupa, Sharmin Akhtar; Awwal, Rayhana; Lee, Soo Yeol; Hasan, Md Kamrul

    2014-01-01

    Elasticity imaging techniques with built-in or regularization-based smoothing feature for ensuring strain continuity are not intelligent enough to prevent distortion or lesion edge blurring while smoothing. This paper proposes a novel approach with built-in lesion edge preservation technique for high quality direct average strain imaging. An edge detection scheme, typically used in diffusion filtering is modified here for lesion edge detection. Based on the extracted edge information, lesion edges are preserved by modifying the strain determining cost function in the direct-average-strain-estimation (DASE) method. The proposed algorithm demonstrates approximately 3.42-4.25 dB improvement in terms of edge-mean-square-error (EMSE) than the other reported regularized or average strain estimation techniques in finite-element-modeling (FEM) simulation with almost no sacrifice in elastographic-signal-to-noise-ratio (SNRe) and elastographic-contrast-to-noise-ratio (CNRe) metrics. The efficacy of the proposed algorithm is also tested for the experimental phantom data and in vivo breast data. The results reveal that the proposed method can generate a high quality strain image delineating the lesion edge more clearly than the other reported strain estimation techniques that have been designed to ensure strain continuity. The computational cost, however, is little higher for the proposed method than the simpler DASE and considerably higher than that of the 2D analytic minimization (AM2D) method.

  7. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  8. Reduced uptake and accumulation of norfloxacin in resistant strains of Neisseria gonorrhoeae isolated in Japan.

    PubMed Central

    Tanaka, M; Fukuda, H; Hirai, K; Hosaka, M; Matsumoto, T; Kumazawa, J

    1994-01-01

    OBJECTIVE--To investigate the alteration of cell permeability toward fluoroquinolones in Neisseria gonorrhoeae, which is a major quinolone-resistance mechanism along with the alteration of DNA gyrase in gram-negative bacteria. The prevalence of fluoroquinolone-resistant N gonorrhoeae strains is rapidly increasing in Japan. MATERIALS AND METHODS--The uptake and accumulation of norfloxacin by gonococcal cells, including six clinical and five World Health Organization (WHO) reference strains, were measured. Of the six clinical strains, two were highly resistant to norfloxacin (MIC 8.0 and 4.0 micrograms/ml), two were moderately resistant (MIC 1.0 and 0.5 microgram/ml), and two were sensitive (MIC 0.063 and 0.004 microgram/ml). All five WHO reference strains were sensitive to norfloxacin (MIC < or = 0.001 to 0.063 microgram/ml). RESULTS--Mean initial norfloxacin uptake in the four resistant strains (104 ng/mg of dry cells) was significantly lower than that in the seven sensitive strains (158 ng/mg of dry cells) (p < 0.05). The mean uptake after 20 minutes was also significantly lower in the four resistant strains (130 ng/mg of dry cells) than in the seven sensitive strains (194 ng/mg of dry cells) (p < 0.05). However, there was no significant difference in mean norfloxacin accumulation after 20 minutes between the four resistant strains (26 ng/mg of dry cells) and the seven sensitive strains (36 ng/mg of dry cells). The accumulation of norfloxacin after 20 minutes was almost zero in two of the four resistant strains, while the remaining two strains accumulated norfloxacin as well as the sensitive strains. CONCLUSIONS--These findings suggest that alteration of bacterial cell permeability is a quinolone-resistance mechanism in N gonorrhoeae isolated in Japan, and that this bacteria may exhibit other mechanisms such as alteration of DNA gyrase. PMID:7959709

  9. Orientation-dependence of elastic strain energy in hexagonal and cubic boron nitride layers in energetically deposited BN films

    SciTech Connect

    Cardinale, G.F.; Medlin, D.L.; Mirkarimi, P.B.; McCarty, K.F.; Howitt, D.G.

    1997-01-01

    Using anisotropic elasticity theory, we analyze the relative thermodynamic stabilities of strained graphitic (hexagonal) BN and cubic BN (cBN) single-crystal structures for all orientations of biaxial stress and strain fields relative to the crystallographic directions. In hBN, the most thermodynamically stable orientation has the graphitic basal planes oriented roughly 45{degree} relative to either the plane of stress or strain. For cBN, the lowest-energy configuration differs for the constant stress or constant strain assumptions. Importantly, these most-stable orientations of hBN and cBN differ from those found experimentally for graphitic BN and cBN in polycrystalline BN films produced by energetic deposition processes. Therefore, the observed textures are not those that minimize elastic strain energy. We discuss possible origins other than elastic strain{endash}energy effects for the observed textures. {copyright} {ital 1997 American Vacuum Society.}

  10. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. PMID:25818950

  11. Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    NASA Astrophysics Data System (ADS)

    Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.

    2016-09-01

    This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

  12. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    DOE PAGES

    Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; Xue, Fei; Chen, Long -Qing; Maksymovych, Petro; Kalinin, Sergei V.; Balke, Nina; Li, Q.; Cao, Y.; et al

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ~103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) on the kinetics ofmore » this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less

  13. Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone

    DOE PAGES

    Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Schubnel, Alexandre; Fortin, Jerome

    2016-04-14

    Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less

  14. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.

    2015-11-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral-tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ~103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions.

  15. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    PubMed Central

    Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483

  16. Slip-rates along the Chaman fault: Implication for transient strain accumulation and strain partitioning along the western Indian plate margin

    NASA Astrophysics Data System (ADS)

    Ul-Hadi, Shams; Khan, Shuhab D.; Owen, Lewis A.; Khan, Abdul S.; Hedrick, Kathryn A.; Caffee, Marc W.

    2013-11-01

    The Chaman fault in Western Pakistan marks the western collision boundary between the Indian and Eurasian plates and connects the Makran subduction zone to the Himalayan convergence zone. Geomorphic-scale slip-rates along an active strand of the Chaman fault are added to the sporadic data set of this poorly investigated transform system. Field investigations coupled with high-resolution GeoEye-1 satellite data of an alluvial fan surface (Bostankaul alluvial fan) show ~ 1150 m left-lateral offset by the fault since the formation of the alluvial fan surface. A weighted mean 10Be exposure age of 34.8 ± 3 kyr for the Bostankaul alluvial surface yields a slip-rate of 33.3 ± 3.0 mm/yr. This rate agrees with the geologically defined slip-rates along the Chaman fault, but is approximately twice as large as that inferred from the decade-long global positioning system measurements of 18 ± 1 mm/yr. The contrast in geomorphic and geodetic slip-rates along the Chaman fault, like other major intra-continental strike-slip faults, has two major implications: 1) the geodetic rates might represent a period of reduced displacement as compared to the averaged Late Pleistocene rate because of transient variations in rates of elastic strain accumulation; or 2) strain partitioning within the plate boundary zone. While strain partitioning could be the reason of slip-rate variations within the western Indian plate boundary zone, transient strain accumulation could explain contrasting slip-rates along the Chaman fault at this stage in its poorly understood seismic cycle.

  17. Strain accumulation and rotation in western Nevada, 1993-2000

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Ramelli, A.R.

    2002-01-01

    The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 ?? 5.3 nstrain yr-1 N88.4??E ?? 5.4?? and -12.8 ?? 6.0 nanostrain yr-1 N01.6??W ?? 5.4??, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 ?? 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35??W subject to 16.8 ?? 4.9 nstrain yr-1 extension perpendicular to it and 19.5 ?? 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35??W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 ?? 11.0 nstrain yr-1 N49.9??W ?? 6.0?? and -13.6 ?? 6.1 nstrain yr-1 N40.1??E ?? 6.0??, and the clockwise rotation rate about a vertical axis is 20.3 ?? 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12??E subject to 32.6 ?? 11.0 nstrain yr-1 extension perpendicular to it and 25.1 ?? 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12??E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.

  18. Strain accumulation and rotation in western Oregon and southwestern Washington

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.

    2002-01-01

    Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.

  19. Hydrodynamic description of elastic or viscoelastic composite materials: Relative strains as macroscopic variables.

    PubMed

    Menzel, Andreas M

    2016-08-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotations that were previously introduced in different contexts. As a central point, our approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two simplified minimal example geometries as an illustration. PMID:27627384

  20. Hydrodynamic description of elastic or viscoelastic composite materials: Relative strains as macroscopic variables

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2016-08-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotations that were previously introduced in different contexts. As a central point, our approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two simplified minimal example geometries as an illustration.

  1. Interseismic Strain Accumulation in Metropolitan Los Angeles Distinguished from Oil and Water management using InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Agram, P. S.; Rollins, C.; Avouac, J. P.; Barbot, S.

    2015-12-01

    Thesis.InSAR measurements from 1992 to 2012 are detecting deformation due to oil pumping and groundwater changes throughout metropolitan Los Angeles. This is allowing elastic strain build up on blind thrusts beneath the city to be accurately evaluated using GPS. Oil Fields.Pumping and repressurization of oil fields have generated substantial displacement in metropolitan Los Angeles, causing Beverly Hills, downtown, and Whittier to subside at 3-10 mm/yr and Santa Fe Springs and La Mirada to rise at 5-9 mm/yr. Aquifers.Displacements of the Santa Ana and San Gabriel Valley aquifers accumulate in response to sustained changes in groundwater over periods of either drought or heavy precipitation. Santa Ana aquifer has subsided nearly 0.1 m in response to lowering of the groundwater level by about 25 m over the past 18 years. Anthropogenic Vs. Tectonic Motion.We are assessing horizontal motions due to changes groundwater using an empirical relationship established on the basis of seasonal oscillations of Santa Ana aquifer. Anthropogenic horizontal motion is estimated to be proportional to the directional gradient in vertical motion inferred with InSAR. We are finding this rough approximation to be quite useful for evaluating deviations of GPS positions from a constant velocity. We are also constructing Mogi models of volume change in oil fields to evaluate GPS deviations. Earthquake Strain Buildup on Blind Thrust Faults.NNE contraction perpendicular to the big restraining bend in the San Andreas fault is fastest not immediately south of the San Andreas in the San Gabriel Mountains, but instead 50 km south of the fault in northern metropolitan Los Angeles. An elastic model of interseismic strain accumulation fit to GPS data and incorporating a 1D approximation of the rheology of the Los Angeles basin indicates the deep segment of the Puente Hills (-upper Elysian Park) Thrust to be slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km. Please see also our

  2. Elastic strain gradients and x-ray line broadening effects as a function of temperature in aluminum thin films on silicon

    SciTech Connect

    Venkatraman, R. ); Besser, P.R.; Bravman, J.C. ); Brennan, S. )

    1994-02-01

    Grazing incidence x-ray scattering (GIXS) with a synchrotron source was used to measure elastic strain gradients as a function of temperature in aluminum and aluminum alloy thin films of different thicknesses on silicon. The stresses in the films are induced as a result of the difference in thermal expansion coefficient between film and substrate. Disregarding minor deviations at the surface, it is shown that there are no gross strain gradients in these films in the range of temperatures (between room temperature and 400 [degree]C) considered. Significant x-ray line broadening effects were observed, suggesting an accumulation of dislocations on cooling the films and their annealing out as the films were being reheated. The variation of the dislocation density during thermal cycling compares well in nature with that of the concurrent variation in film stress, indicating that large strain hardening effects contribute towards the film flow stress.

  3. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.

    PubMed

    Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook

    2015-06-23

    The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain. PMID:26038807

  4. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.

    PubMed

    Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook

    2015-06-23

    The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.

  5. On local total strain redistribution using a simplified cyclic inelastic analysis based on an elastic solution

    NASA Technical Reports Server (NTRS)

    Hwang, S. Y.; Kaufman, A.

    1985-01-01

    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction purposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure has been found to predict stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load cycled problems. This study derived and incorporated Neuber type corrections in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was exercised on a mechanically load cycled benchmark notched plate problem. Excellent agreement was found between the predicted material response and nonlinear finite element solutions for the problem. The simplified analysis computer program used 0.3 percent of the CPU time required for a nonlinear finite element analysis.

  6. Absence of strain accumulation in the Shumagin seismic gap, Alaska, 1980-1987 ( USA).

    USGS Publications Warehouse

    Lisowski, M.; Savage, J.C.; Prescott, W.H.; Gross, W.K.

    1988-01-01

    Measurements of the deformation of a trilateration network in the Shumagin seismic gap in the interval 1980-1987 failed to detect any significant strain accumulation (observed extension rate in the direction of plate convergence 0.00 + or - 0.03 mu strain/yr). Dislocation models of the subduction process and measurements at a comparable network at a known seismic subduction zone (Nankai Trough, Japan) suggest that a rate of the order of -0.2 mu strain/yr should have been observed if the main thrust zone beneath the Shumagin Islands were locked. The simplest explanation of the observed absence of strain accumulation in the Shumagin seismic gap is that the main thrust zone beneath the Shumagin Islands is not presently locked. Other possible explanations depend upon very particular circumstances.-Authors

  7. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    PubMed

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. PMID:27268248

  8. Strain accumulation across the Denali fault in the Delta River canyon, Alaska.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Deformation along the Denali fault in the Delta River canyon was determined from geodetic surveys in 1941/1942, 1970, 1975, and 1979. The data were best for the 1975-79 interval; in that period the average strain accumulation was essentially pure right lateral shear at a rate of 0.6+-0.1 murad/a (a is years) (engineering shear) across a vertical plane striking N87oE. The plane of maximum shear is rotated about 30o countercloskwise from the local strike of the Denali fault but closely coincides with the strike of a major linear segment of the fault that begins 50 km farther W. The deformation between 1941-42 and 1970 is consistent with a similar rate of strain accumulation if one removes the coseismic strain step contributed by the 1964 Alaska earthquake. The 1970-75 deformation is poorly defined owing to uncertainties in the 1970 survey, but the strain accumulation during that period is certainly much less than during the 1975-79 interval. The 1975-79 strain accumulation is interpreted by means of a dislocation model which suggests that the Denali fault in the vicinity of the Delta River Canyon behaves as a leaky transform fault.-Authors

  9. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations

    PubMed Central

    Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.

    2014-01-01

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258

  10. Multi phase field model for solid state transformation with elastic strain

    NASA Astrophysics Data System (ADS)

    Steinbach, I.; Apel, M.

    2006-05-01

    A multi phase field model is presented for the investigation of the effect of transformation strain on the transformation kinetics, morphology and thermodynamic stability in multi phase materials. The model conserves homogeneity of stress in the diffuse interface between elastically inhomogeneous phases, in which respect it differs from previous models. The model is formulated consistently with the multi phase field model for diffusional and surface driven phase transitions [I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147; J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modeling solute diffusion, Physica D 115 (1998) 73-86; I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999) 385] and gives a consistent description of interfacial tension, multi phase thermodynamics and elastic stress balance in multiple junctions between an arbitrary number of grains and phases. Some aspects of the model are demonstrated with respect to numerical accuracy and the relation between transformation strain, external stress and thermodynamic equilibrium.

  11. Relationship between muscle forces, joint loading and utilization of elastic strain energy in equine locomotion.

    PubMed

    Harrison, Simon M; Whitton, R Chris; Kawcak, Chris E; Stover, Susan M; Pandy, Marcus G

    2010-12-01

    Storage and utilization of strain energy in the elastic tissues of the distal forelimb of the horse is thought to contribute to the excellent locomotory efficiency of the animal. However, the structures that facilitate elastic energy storage may also be exposed to dangerously high forces, especially at the fastest galloping speeds. In the present study, experimental gait data were combined with a musculoskeletal model of the distal forelimb of the horse to determine muscle and joint contact loading and muscle-tendon work during the stance phase of walking, trotting and galloping. The flexor tendons spanning the metacarpophalangeal (MCP) joint - specifically, the superficial digital flexor (SDF), interosseus muscle (IM) and deep digital flexor (DDF) - experienced the highest forces. Peak forces normalized to body mass for the SDF were 7.3±2.1, 14.0±2.5 and 16.7±1.1 N kg(-1) in walking, trotting and galloping, respectively. The contact forces transmitted by the MCP joint were higher than those acting at any other joint in the distal forelimb, reaching 20.6±2.8, 40.6±5.6 and 45.9±0.9 N kg(-1) in walking, trotting and galloping, respectively. The tendons of the distal forelimb (primarily SDF and IM) contributed between 69 and 90% of the total work done by the muscles and tendons, depending on the type of gait. The tendons and joints that facilitate storage of elastic strain energy in the distal forelimb also experienced the highest loads, which may explain the high frequency of injuries observed at these sites.

  12. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.

    2008-02-25

    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  13. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lipomi, Darren J.; Vosgueritchian, Michael; Tee, Benjamin C.-K.; Hellstrom, Sondra L.; Lee, Jennifer A.; Fox, Courtney H.; Bao, Zhenan

    2011-12-01

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm-1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  14. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.

    PubMed

    Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G

    2014-09-01

    The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work.

  15. A computational framework for polyconvex large strain elasticity for geometrically exact beam theory

    NASA Astrophysics Data System (ADS)

    Ortigosa, Rogelio; Gil, Antonio J.; Bonet, Javier; Hesch, Christian

    2016-02-01

    In this paper, a new computational framework is presented for the analysis of nonlinear beam finite elements subjected to large strains. Specifically, the methodology recently introduced in Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) in the context of three dimensional polyconvex elasticity is extended to the geometrically exact beam model of Simo (Comput Methods Appl Mech Eng 49:55-70, 1985), the starting point of so many other finite element beam type formulations. This new variational framework can be viewed as a continuum degenerate formulation which, moreover, is enhanced by three key novelties. First, in order to facilitate the implementation of the sophisticated polyconvex constitutive laws particularly associated with beams undergoing large strains, a novel tensor cross product algebra by Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) is adopted, leading to an elegant and physically meaningful representation of an otherwise complex computational framework. Second, the paper shows how the novel algebra facilitates the re-expression of any invariant of the deformation gradient, its cofactor and its determinant in terms of the classical beam strain measures. The latter being very useful whenever a classical beam implementation is preferred. This is particularised for the case of a Mooney-Rivlin model although the technique can be straightforwardly generalised to other more complex isotropic and anisotropic polyconvex models. Third, the connection between the two most accepted restrictions for the definition of constitutive models in three dimensional elasticity and beams is shown, bridging the gap between the continuum and its degenerate beam description. This is carried out via a novel insightful representation of the tangent operator.

  16. Stored energy in metallic glasses due to strains within the elastic limit

    NASA Astrophysics Data System (ADS)

    Greer, A. L.; Sun, Y. H.

    2016-06-01

    Room temperature loading of metallic glasses, at stresses below the macroscopic yield stress, raises their enthalpy and causes creep. Thermal cycling of metallic glasses between room temperature and 77 K also raises their enthalpy. In both cases, the enthalpy increases are comparable to those induced by heavy plastic deformation, but, as we show, the origins must be quite different. For plastic deformation, the enthalpy increase is a fraction (<10%) of the work done (WD) (and, in this sense, the behaviour is similar to that of conventional polycrystalline metals and alloys). In contrast, the room temperature creep and the thermal cycling involve small strains well within the elastic limit; in these cases, the enthalpy increase in the glass exceeds the WD, by as much as three orders of magnitude. We argue that the increased enthalpy can arise only from an endothermic disordering process drawing heat from the surroundings. We examine the mechanisms of this process. The increased enthalpy ('stored energy') is a measure of rejuvenation and appears as an exothermic heat of relaxation on heating the glass. The profile of this heat release (the 'relaxation spectrum') is analysed for several metallic glasses subjected to various treatments. Thus, the effects of the small-strain processing (creep and thermal cycling) can be better understood, and we can explore the potential for improving properties, in particular the plasticity, of metallic glasses. Metallic glasses can exhibit a wide range of enthalpy at a given temperature, and small-strain processing may assist in accessing this for practical purposes.

  17. Simple structures test for elastic-plastic strain acceptance criterion validation

    SciTech Connect

    Trimble, T.F.; Krech, G.R.

    1997-11-01

    A Simple Structures Test Program was performed where several cantilevered beam and fixed-end beam test specimens (fabricated from HY-80 steel) were subjected to a series of analytically predetermined rapidly applied transient dynamic input loads. The primary objective of the test program was to obtain dynamic nonlinear response for simple structures subjected to these load inputs. Data derived from these tests was subsequently used to correlate to analysis predictions to assess the capability to analytically predict elastic-plastic nonlinear material behavior in structures using typical time-dependent (transient) design methods and the ABAQUS finite element analysis code. The installation of a significant amount of instrumentation on these specimens and post-test measurements enabled the monitoring and recording of strain levels, displacements, accelerations, and permanent set. An assessment of modeling parameters such as the element type and mesh refinement was made using these test results. In addition, currently available material models and the incremental time step procedure used in the transient analyses were evaluated. Comparison of test data to analysis results shows that displacements, accelerations, and peak strain can be predicted with a reasonable level of accuracy using detailed solid models of the tested specimens. Permanent set is overpredicted by a factor of approximately two. However, the accuracy of the prediction of permanent set is being enhanced by updating material modeling in the ABAQUS code to account for effects of strain reversal in oscillatory behavior of dynamically loaded specimens.

  18. A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity

    NASA Astrophysics Data System (ADS)

    Areias, P.; Samaniego, E.; Rabczuk, T.

    2016-02-01

    We develop an algorithm and computational implementation for simulation of problems that combine Cahn-Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo-mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is proposed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of strain in concentration, and (iv) lithiation. We analyze convergence with respect to spatial and time discretization and found that very good results are achievable using both a staggered scheme and approximated strain interpolation.

  19. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    SciTech Connect

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  20. Draft Genome Sequence of Arenibacter sp. Strain C-21, an Iodine-Accumulating Bacterium Isolated from Surface Marine Sediment

    PubMed Central

    Ito, Kohei; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru

    2016-01-01

    Arenibacter sp. strain C-21, isolated from surface marine sediment of Japan, accumulates iodine in the presence of glucose and iodide (I-). We report here the draft genome sequence of this strain to provide insight into the molecular mechanism underlying its iodine-accumulating ability. PMID:27738047

  1. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  2. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium.

    PubMed

    Horiike, Takumi; Yamashita, Mitsuo

    2015-05-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions.

  3. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  4. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  5. Effects of the volume changes and elastic-strain energies on the phase transition in the Li-Sn battery

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wang, Jianchuan; Liu, Shuhong; Du, Yong

    2016-10-01

    Sn and Sn-based compounds have been attracting a great interest as promising alternative materials for commercial anodes in lithium ion batteries. In this study, the phase evolution of the Li-Sn system during the lithiated processes and the effect of the elastic-strain energies caused by volume change on the phase transition are investigated by means of first-principles calculations. Our calculated results demonstrate that the distorted Li7Sn3 crystal tends to be formed in order to decrease the elastic-strain energy. In addition, our work indicates that the whole lithiated processes under the elastically constrained condition could be classified into two steps. The first step is the two-phase equilibrium process, in which the thermodynamic driving force is large enough to facilitate the phase transition and the plateau voltage could be established. The second step is considered to be the selective equilibrium, in which the thermodynamic driving force is not enough to facilitate the nucleation of the new equilibrium phase due to the elastically constrained conditions and the plateau voltage unformed. Besides, we find that in the Li0.4Sn matrix the nucleation of the αSn is more preferential than the βSn due to the effects of the elastic-strain energies.

  6. Comparison of game-farm and wild-strain mallard ducks in accumulation of methylmercury

    USGS Publications Warehouse

    Heinz, G.H.

    1979-01-01

    The accumulation of mercury was compared in game-farm and wild-strain mallard ducks fed a diet containing 0.5 ppm mercury in the form of methylmercury dicyandiamide. There were no significant differences between the two strains in levels of mercury that accumulated in blood, kidney, liver, breast muscle, brain, eggs, or ducklings. Mercury levels in blood were significantly correlated with levels in other tissues and eggs, as were levels in down feathers of ducklings with levels in carcasses of ducklings. The results indicate that game-farm mallards are probably suitable substitutes for wild mallards in toxicological work, that blood samples can be used to estimate levels of mercury in other tissues of adults, and that down feathers are predictive of mercury levels in duckling carcasses.

  7. Size dependent vibrations of micro-end mill incorporating strain gradient elasticity theory

    NASA Astrophysics Data System (ADS)

    Tajalli, S. A.; Movahhedy, M. R.; Akbari, J.

    2013-07-01

    In this paper, a size-dependent formulation is presented for vibration analysis of micro-end mill tool. The formulation is developed based on the strain gradient elasticity theory in order to enhance the modeling capability of micro-size structures. Due to stubby geometry of micro-tool, the shear deformation and rotary inertia effects are considered in the derivation of equations. Hence, based on the strain gradient Timoshenko beam theory, the extended Hamilton's principle is used to formulate a detailed dynamical model of the rotating micro-tool. The dynamical model includes a set of partial differential equations with gyroscopic coupling produced due to the spindle rotation. The governing equations of motion are reduced and solved by assumed mode model. To this end, an exact dynamic stiffness method is developed and employed to investigate the tool's free vibration characteristics such as structure mode shapes and natural frequencies. Also, the well-known Wittrick-Williams algorithm is utilized to guarantee that none of the natural frequencies are missed during the calculations. The mode shapes obtained from dynamic stiffness formulation can be utilized as base functions in the solution. Also, the proposed approach is applied to investigate the force vibration and chatter instability observed in micro-milling operations.

  8. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru

    PubMed Central

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmán Moreno, César Wilber; Carreño Farfán, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487 bp long, with a G+C content of 68%. PMID:26798101

  9. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids.

    PubMed Central

    Leppik, R A; Sinden, D J

    1987-01-01

    Transposon mutant strains which were affected in bile acid catabolism were isolated from four Pseudomonas spp. Two of the mutant groups isolated were found to accumulate 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione as the major product from deoxycholic acid. Strains in one of these two groups were able to grow on steroids such as chenodeoxycholic acid, which lacks a 12 alpha-hydroxy function, whereas the one member of the second group could not. With chenodeoxycholic acid, this latter strain accumulated a yellow muconic-like derivative, tentatively identified as 3,7-dihydroxy-5,9,17-trioxo-4(5),9(10)-disecoandrosta-1(10)2 -dien-4-oic acid. Members of two further mutant groups accumulated either 12 beta-hydroxyandrosta-1,4-diene-3,17-dione or 3,12 beta-dihydroxy-9(10)-secoandrosta-1,3,5(10)-triene-9,17-dione as the major product from deoxycholic acid. The relationship between the catabolism of m- and p-cresol, 3-ethylphenol and the bile acids was also examined. PMID:3038076

  10. Dislocation accumulation at large plastic strains -- An approach to the theoretical strength of materials

    SciTech Connect

    Embury, J.D. |; Han, K.

    1999-04-01

    The usual method of introducing engineers to the concept of dislocations and their role in plastic flow is to compare an estimate of the theoretical strength of solid (of order {micro}/30 where {micro} is the shear modulus) and the observed strength of either single crystals ({mu}/10{sup 4}) or practical engineering material such as structural steels where the yield stress in shear is of order {mu}/10{sup 3}. However, if one considers the problem in reverse, one can consider the accumulation of dislocations as an important mechanism by which one can produce engineering materials in which the strength level approaches the theoretical strength. If one assumes that the flow stress can be expressed in terms of te mean free path between stored dislocations or as the square root of the global dislocation density, then one can see the influence of dislocation density in a diagrammatic form. It is clear that the strengthening by dislocation accumulation due to large imposed plastic strains represents an important approach both to the development of new, potentially valuable, engineering materials and an important area of basic understanding in terms of the mechanical response of materials close to their theoretical strength. Thus, this article will survey some of the factors which influence dislocation accumulation at large strains and the consequences of such accumulation processes.

  11. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  12. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A

    PubMed Central

    van Groenestijn, Johan W.; Vlekke, Gerard J. F. M.; Anink, Désirée M. E.; Deinema, Maria H.; Zehnder, Alexander J. B.

    1988-01-01

    Cells of the strictly aerobic Acinetobacter strain 210A, containing aerobically large amounts of polyphosphate (100 mg of phosphorus per g [dry weight] of biomass), released in the absence of oxygen 1.49 mmol of Pi, 0.77 meq of Mg2+, 0.48 meq of K+, 0.02 meq of Ca2+, and 0.14 meq of NH4+ per g (dry weight) of biomass. The drop in pH during this anaerobic phase was caused by the release of 1.8 protons per PO43− molecule. Cells of Acinetobacter strain 132, which do not accumulate polyphosphate aerobically, released only 0.33 mmol of Pi and 0.13 meq of Mg2+ per g (dry weight) of biomass but released K+ in amounts comparable to those released by strain 210A. Stationary-phase cultures of Acinetobacter strain 210A, in which polyphosphate could not be detected by Neisser staining, aerobically took up phosphate simultaneously with Mg2+, the most important counterion in polyphosphate. In the absence of dissolved phosphate in the medium, no Mg2+ was taken up. Cells containing polyphosphate granules were able to grow in a Mg-free medium, whereas cells without these granules were not. Mg2+ was not essential as a counterion because it could be replaced by Ca2+. The presence of small amounts of K+ was essential for polyphosphate formation in cells of strain 210A. During continuous cultivation under K+ limitation, cells of Acinetobacter strain 210A contained only 14 mg of phosphorus per g (dry weight) of biomass, whereas this element was accumulated in amounts of 59 mg/g under substrate limitation and 41 mg/g under Mg2+ limitation. For phosphate uptake in activated sludge, the presence of K+ seemed to be crucial. PMID:16347788

  13. Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Gan, W.; Prescott, W. H.; Svarc, J. L.

    2004-03-01

    A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29°W. (The local strike of the San Andreas Fault is ˜N34°W.) The observed areal dilatation rate of 6.9 ± 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ± 2.6 mm yr-1 N29.8°W ± 2.8°, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ± 1.2 mm yr-1 N29.0°W ± 0.9° right-lateral shear and 0.4 ± 0.9 mm yr-1 N61°E ± 0.9° extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required.

  14. Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Prescott, W.H.; Svarc, J.L.

    2004-01-01

    A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GIPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29??W. (The local strike of the San Andreas Fault is ???N34??W. The observed areal dilatation rate of 6.9 ?? 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the Working Group on California Earthquake Probabilities [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ?? 2.6 mm yr-1 N29.8??W ?? 2.8??, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ?? 1.2 mm yr-1 N29.0?? ?? 0.9?? right-lateral shear and 0.4 ?? 0.9 mm yr-1 N61??E ?? 0.9?? extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required. Copyright 2004 by the American Geophysical union.

  15. Preferred orientation in carbon and boron nitride: Does a thermodynamic theory of elastic strain energy get it right. [C; BN

    SciTech Connect

    McCarty, K.F. )

    1999-09-01

    We address whether the elastic strain-energy theory (minimizing the Gibbs energy of a stressed crystal) of McKenzie and co-workers [D. R. McKenzie and M. M. M. Bilek, J. Vac. Sci. Technol. A [bold 16], 2733 (1998)] adequately explains the preferred orientation observed in carbon and BN films. In the formalism, the Gibbs energy of the cubic materials diamond and cubic boron includes the strain that occurs when the phases form, through specific structural transformations, from graphitic precursors. This treatment violates the requirement of thermodynamics that the Gibbs energy be a path-independent, state function. If the cubic phases are treated using the same (path-independent) formalism applied to the graphitic materials, the crystallographic orientation of lowest Gibbs energy is not that observed experimentally. For graphitic (hexagonal) carbon and BN, an elastic strain approach seems inappropriate because the compressive stresses in energetically deposited films are orders of magnitude higher than the elastic limit of the materials. Furthermore, using the known elastic constants of either ordered or disordered graphitic materials, the theory does not predict the orientation observed by experiment. [copyright] [ital 1999 American Vacuum Society.

  16. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism.

  17. Patulin Accumulation In Apples During Storage by Penicillium Expansum and Penicillium Griseofulvum Strains

    PubMed Central

    Welke, Juliane Elisa; Hoeltz, Michele; Dottori, Horacio Alberto; Noll, Isa Beatriz

    2011-01-01

    A part of apples destined to juice production is generally of poor quality. Apples from cold storage or recently harvest (ground harvested or low quality apples) are stored under ambient conditions until they are processed. Since Penicillium expansum and P. griseofulvum are the principal fungal species isolated from stored apples in Brazil, the objective of this study was to investigate the ability of these strains to produce patulin in apples and report the consequences of this type of storage in loss of quality. The toxin was quantified using thin layer chromatography and charge-coupled device camera (TLC-CCD). The rate and quantities that P. expansum and P. griseofulvum can grow and produce patulin are highly dependent on the fungal strain and time. Lesion diameter resulted to be independent of the strain considered. The maximum period of time which apples were kept at cold storage (4 °C) without patulin accumulation was 27 days. When these apples were kept at 25 °C during 3 days, both factors lesion diameter and patulin production increased significantly. These results confirm that time in which apples are taken out from cold storage room before juice production is critical in order to prevent patulin accumulation. PMID:24031618

  18. Crustal strain accumulation on Southern Basin and Range Province faults modulated by distant plate boundary earthquakes? Evidence from geodesy, seismic imaging, and paleoseismology

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.

    2014-12-01

    GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes

  19. 20th-Century Strain Accumulation on the Lesser Antilles Megathrust Based on Coral Microatolls

    NASA Astrophysics Data System (ADS)

    Philibosian, B.; Feuillet, N.; Jacques, E.; Weil Accardo, J.; Meriaux, A. S. B.; Guihou, A.; Anglade, A.

    2015-12-01

    The Lesser Antilles subduction zone forms the eastern boundary of the Caribbean plate. The seismic potential of the megathrust remains poorly known, despite the hazard it poses to numerous island populations and its proximity to the Americas. As it has not produced any large earthquakes in modern times, the megathrust has often been assumed to be aseismic. However, historical records of great earthquakes in the 19th century and earlier, which were almost certainly megathrust ruptures, demonstrate that the subduction is not entirely aseismic. Recent occurrences of giant earthquakes in areas where such events were previously thought to be impossible have inspired the geoscience community to re-evaluate the seismic potential of other "low-hazard" subduction zones, such as the Lesser Antilles. Using the method of coral microatoll paleogeodesy developed in Sumatra, we examine 20th-century vertical deformation on the forearc islands of the Lesser Antilles and model the underlying strain accumulation on the megathrust. Our data indicate that the eastern coasts of the forearc islands have been subsiding relative to the arc islands, suggesting that on the time scale of the 20th century, a portion of the megathrust just east of the forearc islands has been locked. Our findings are in contrast to recent GPS-based models that suggest little or no strain accumulation anywhere along the Lesser Antilles megathrust. This discrepancy is potentially explained by the different time scales of measurement, as recent studies elsewhere have indicated that interseismic coupling patterns may vary on decadal time scales and that century-scale or longer records are required to accurately assess seismic potential. The accumulated strain we have detected will likely be released in future earthquakes, uplifting the previously subsiding areas as well as contributing to seismic and potentially to tsunami hazard in the region.

  20. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  1. Strain accumulation in the Shumagin Islands: Results of initial GPS measurements

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Lisowski, Michael

    1994-01-01

    Deformation in the Shumagin seismic gap has been monitored with repeated trilateration (EDM) in the 1980-1987 interval and with the Global Positioning System (GPS) in the 1987-1991 interval. The geodetic network extends for 100-km across the Shumagin Islands to the Alaska Peninsula. Results from the GPS surveys are consistent with those previously reported for the EDM surveys: we failed to detect significant strain accumulation in the N30 deg W direction of plate convergence. Using the method of simultaneous reduction for position and strain rates, we found the average rate of extension in the direction of plate convergence to be -25 +/- 25 nanostrain/yr (nstrain/yr) during the 1987-1991 interval of GPS surveys compared with -20 +/- 15 nstrain/yr during the 1981-1987 interval of complete EDM surveys. We found a marginally significant -26 +/- 12 nstrain/yr extension rate in the 1981-1991 interval covered by the combined EDM and GPS surveys. Strain rates are higher, but not significantly so, in the part of the network closest to the trench. Spatial variation in the deformation is observed in the 1980-1991 average station velocities, where three of the four stations closest to the trench have an arcward velocity of a few mm/yr. The observed strain rates are an order of magnitude lower than the -200 nstrain/yr rate predicted by dislocation models.

  2. Manifestation of nonlinear elasticity in rock: Convincing evidence over large frequency and strain intervals from laboratory studies

    SciTech Connect

    Johnson, P.A. |; Rasolofosaon, P.N.J.

    1995-11-01

    Nonlinear elastic response in rock is established as a robust and representative characteristic of rock rather than a curiosity. This behavior is illustrated from a variety of experiments conducted over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behavior in rock: (1) Nonlinear response in rock is enormous; (2) the response takes place over a large frequency interval (dc--10{sup 6} Hz at least); (3) the response not only occurs, as is commonly appreciated, at large strains but also at small strains where nonlinear response and the manifestations of this behavior are commonly disregarded. Nonlinear response may manifest itself in a variety of manners, including a nonlinear stress{minus}strain relation (hysteretic/discrete memory), nonlinear dissipation, harmonic generation, and resonant peak shift, all of which are related. The experiments described include: quasistatic stress{minus}strain tests (strains of 10{sup -4}--10{sup -1} at frequencies near dc-1Hz); torsional oscillator experiments (strains of 10{sup {minus}4}--10{sup {minus}7}, frequencies between 0.1 and 100Hz); resonant bar experiments (strains of 10{sup {minus}4}--10{sup {minus}8}, frequencies between 10{sup 3} and 10{sup 4} Hz); and dynamic, propagating wave experiments (strains of 10{sup {minus}6}--10{sup {minus}9}, frequencies between 10{sup 3} and 10{sup 6} Hz). [Work supported by OBES/DOE through the University of California and the Institut Francais du Petrole.

  3. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelby’s equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  4. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    SciTech Connect

    Levine, Lyle E.; Okoro, Chukwudi A.; Xu, Ruqing

    2015-09-30

    We report non-destructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

  5. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    DOE PAGES

    Levine, Lyle E.; Okoro, Chukwudi A.; Xu, Ruqing

    2015-09-30

    We report non-destructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positionsmore » were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.« less

  6. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    PubMed Central

    Levine, Lyle E.; Okoro, Chukwudi; Xu, Ruqing

    2015-01-01

    Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components. PMID:26594371

  7. Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory

    NASA Astrophysics Data System (ADS)

    Sedighi, Hamid M.

    2014-02-01

    This paper presents the impact of vibrational amplitude on the dynamic pull-in instability and fundamental frequency of actuated microbeams by introducing the second order frequency-amplitude relationship. The nonlinear governing equation of microbeam predeformed by an electric force including the fringing field effect, based on the strain gradient elasticity theory is considered. The predicted results of the strain gradient elasticity theory are compared with the outcomes that arise from the classical and modified couple stress theory. The influences of basic nondimensional parameters on the pull-in instability as well as the natural frequency are investigated by a powerful asymptotic approach namely the Parameter Expansion Method (PEM). It is demonstrated that two terms in series expansions are sufficient to produce an acceptable solution of the microstructure. The phase portrait of the microstructure shows that by increasing the actuation voltage parameter, the stable center point loses its stability and coalesces with unstable saddle node.

  8. An Analysis of Strain Accumulation in the Western Part of Black Sea Region in Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, I.; Avsar, N. B.; Deniz, R.; Mekik, C.; Kutoglu, S.

    2014-12-01

    Turkish National Horizontal Control Network (TNHCN) based on the European Datum 1950 (ED50) was used as the principal geodetic network until 2005 in Turkey. Since 2005, Turkish Large Scale Map and Map Information Production Regulation have required that that all the densification points have been produced within the same datum of Turkish National Fundamental GPS Network (TNFGN) put into practise in 2002 and based on International Terrestrial Reference Frame (ITRF). Hence, the common points were produced in both European Datum 1950 (ED50), and TNFGN.It is known that the geological and geophysical information about the network area can be obtained by the evaluation of the coordinate and scale variations in a geodetic network. For one such evaluation, the coordinate variations and velocities of network points, and also the strains are investigated. However, the principal problem in derivation of velocities arises from two different datums. In this context, the computation of velocities using the coordinate data of the ED50 and TNFGN is not accurate and reliable. Likewise, the analysis of strain from the coordinate differences is not reliable. However, due to the fact that the scale of a geodetic network is independent from datum, the strains can be derived from scale variations accurately and reliably.In this study, a test area limited 39.5°-42.0° northern latitudes and 31.0°-37.0° eastern longitudes was chosen. The benchmarks in this test area are composed of 30 geodetic control points derived with the aim of cadastral and engineering applications. We used data mining to investigate the common benchmarks in both reference systems for this area. Accordingly, the ED50 and TNFGN coordinates refer 1954 and 2005, respectively. Thus, it has been investigated the strain accumulation of 51 years in this region. It should be also noted that since 1954, the earthquakes have not registered greater than magnitude 6.0 in the test area. It is a considerable situation for this

  9. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    SciTech Connect

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I.; Vikhrova, O. V.; Volkova, E. I.; Zvonkov, B. N.; Malekhonova, N. V.; Sorokin, D. S.

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  10. Interseismic strain accumulation across an active thrust system: an InSAR case study in the Himalaya

    NASA Astrophysics Data System (ADS)

    Grandin, R.; Doin, M.; Ducret, G.; Bollinger, L.; Pinel-Puysségur, B.; Lasserre, C.; Jolivet, R.

    2011-12-01

    The major active thrust system underlying the Himalayan range produces recurrent large earthquakes, posing a significant threat to the densely populated Indo-Gangetic basin. Measuring the interseismic deformation associated with this fault system could provide important constraints on the geometry of the locked faults that are bound to rupture in future great earthquakes. This has so far been considered out of reach of InSAR techniques, due to decorrelation, prominent topographic features, and unfavourable climatic conditions. However, preliminary tests carried out with the archived ASAR data provided by ESA's ENVISAT satellite since 2002 have shown that recent advances in InSAR processing may now allow geodesists to tackle most of these perturbations. In this context, applying these advanced techniques to the case of the Himalayas is both a challenging and necessary task. We will present the methodology and the first results of an InSAR study of interseismic strain accumulation across the Himalayas. Small-baseline processing of ENVISAT data using a combination of ROI_PAC software, NSBAS processing chain and MulSAR technique yields a sufficient number of coherent interferograms to compute a preliminary average velocity map of interseismic uplift. Time-space variations of stratified tropospheric delay observed in these interferogrames are mitigated using a prediction deduced from outputs of the ECMWF global meteorological reanalysis ERA-Interim. Finally, a correction of DEM errors from the wrapped InSAR data set further improves the coherence of interferograms with a large perpendicular baseline. Comparison of the InSAR LOS velocity maps with microseismic activity detected near the transition zone at the base of the seismogenic portion of the Main Himalayan Thrust is expected to provide constraints on the process of elastic strain accumulation during the interseismic period. This will help in understanding the interaction between the construction of topography

  11. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.

    PubMed

    Hudetz, A G; Monos, E

    1981-01-01

    Three-dimensional quasi-static mechanical measurements were carried out on cylindrical segments of the dog carotid and iliac arteries for determination of the passive anisotropic elastic properties of the vessel wall. On the basis of passive characteristics of outer diameter vs. intraluminal pressure, and axial extending force vs. intraluminal pressure, picked up at various fixed initial vascular length values, the incremental Young moduli and poisson ratios of the vessel wall were calculated in the 0--33 kPa (0--250 mm Hg) pressure range. The strain energy function of the arteries was approximated by polynomial and exponential models. We found that an exponential energy function with 4-parameters gives more accurate results than the 7- or 12-parameter polynomial functions. According to the results the axial modulus reaches higher values than the tangential and radial moduli at a low tangential stretch level, while at high tangential stretch the tangential modulus is the highest in both carotid and iliac arteries. After elevation of the initial tangential stretch the increase in the tangential modulus is the most pronounced, while the values of radial and axial moduli increased less. A change in the initial axial stretch influences the axial and radial moduli to a similar extent, but has no substantial effect on the value of the tangential modulus. The values of corresponding poisson ratios depend in a similar way on the initial deformation state. The different behaviour of the two Poisson ratios characterizing the mechanical coupling between tangential and axial directions, indicates that the structural coupling between the two main directions is asymmetrical. It is assumed that this property of the passive vascular structure can be explained by the network arrangement of collagen fibres in the vessel wall.

  12. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system

    NASA Astrophysics Data System (ADS)

    Amelug, F.

    2015-12-01

    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain

  13. Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.

    2014-12-01

    The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.

  14. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation.

    PubMed

    Kolouchová, Irena; Maťátková, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2016-09-01

    We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.

  15. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate

  16. Ultrasound strain zero-crossing elasticity measurement in assessment of renal allograft cortical hardness: a preliminary observation.

    PubMed

    Gao, Jing; Rubin, Jonathan M

    2014-09-01

    To determine whether ultrasound strain zero-crossing elasticity measurement can be used to discriminate moderate cortical fibrosis or inflammation in renal allografts, we prospectively assessed cortical hardness with quasi-static ultrasound elastography in 38 renal transplant patients who underwent kidney biopsy from January 2013 to June 2013. With the Banff score criteria for renal cortical fibrosis as gold standard, 38 subjects were divided into two groups: group 1 (n = 18) with ≤25% cortical fibrosis and group 2 (n = 20) with >26% cortical fibrosis. We then divided this population again into group 3 (n = 20) with ≤ 25% inflammation and group 4 (n = 18) with >26% inflammation based on the Banff score for renal parenchyma inflammation. To estimate renal cortical hardness in both population divisions, we propose an ultrasound strain relative zero-crossing elasticity measurement (ZC) method. In this technique, the relative return to baseline, that is zero strain, of strain in the renal cortex is compared with that of strain in reference soft tissue (between the abdominal wall and pelvic muscles). Using the ZC point on the reference strain decompression slope as standard, we determined when cortical strain crossed zero during decompression. ZC was negative when cortical strain did not return or returned after the reference, whereas ZC was positive when cortical strain returned ahead of the reference. Fisher's exact test was used to examine the significance of differences in ZC between groups 1 and 2 and between groups 3 and 4. The accuracy of ZC in determining moderate cortical fibrosis and moderate inflammation was examined by receiver operating characteristic analysis. The intra-class correlation coefficient and analysis of variance were used to test inter-rater reliability and reproducibility. ZC had good inter-observer agreement (ICC = 0.912) and reproducibility (p = 0.979). ZCs were negative in 18 of 18 cases in group 1 and positive in 19 of 20 cases in

  17. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    SciTech Connect

    Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; Xue, Fei; Chen, Long -Qing; Maksymovych, Petro; Kalinin, Sergei V.; Balke, Nina; Li, Q.; Cao, Y.; Laanait, N.

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ~103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.

  18. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Haibin, Wu

    2015-03-01

    We study the elastic constants and electronic properties of orthorhombic BiMnO3 under uniaxial strain along the c-axis using the first-principles method. It is found that, beyond the range -0.025 < ɛ < 0.055, the predicted stiffness constants cij cannot demand the Born stability criteria and the compliance constant s44 shows abrupt changes, which accompany phase transition. In addition, the results for magnetism moments and polycrystalline properties are also reported. Additionally, under compressive strain, a band gap transition from the indirect to the direct occurs within -0.019 < ɛ < -0.018. Furthermore, the response of the band gap of orthorhombic BiMnO3 to uniaxial strain is studied.

  19. Band-Gap Modulation of GeCH3 Nanoribbons Under Elastic Strain: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Ma, ShengQian; Li, Feng; Jiang, ChunLing

    2016-10-01

    Using the density functional theory method, we researched the band-gap modulation of GeCH3 nanoribbons under uniaxial elastic strain. The results indicated that the band gap of GeCH3 nanoribbons could be tuned along two directions, namely, stretching or compressing ribbons when ɛ was changed from -10% to 10% in 6-zigzag, 10-zigzag, 13-armchair, and 17-armchair nanoribbons, respectively. The band gap greatly changed with strain. In the case of tension, the amount of change in the band gap was bigger. But in the case of compression, the gradient was steeper. The band gap had a nearly linear relationship when ɛ ranges from 0% to 10%. We also investigated if the band gap is changed with widths. The results showed variation of the band gap did not rely on widths. Therefore, the GeCH3 nanoribbons had the greatest potential application in strain sensors and optical electronics at the nanoscale.

  20. On constitutive relations at finite strain - Hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Nagtegaal and de Jong (1982) have studied stresses generated by simple finite shear in the case of elastic-plastic and rigid-plastic materials which exhibit anisotropic hardening. They reported that the shear stress is oscillatory in time. It was found that the occurrence of such an 'anomaly' is not restricted to anisotropic plasticity. Similar behavior in finite shear may result even in the case of hypoelasticity and classical isotropic hardening plasticity theory. The present investigation is concerned with the central problem of 'generalizing' with respect to the finite strain case, taking into account the constitutive relations of infinitesimal strain theories of classical plasticity with isotropic or kinematic hardening. The problem of hypoelasticity is also considered. It is shown that current controversies surrounding the choice of stress rate in the finite-strain generalizations of the constitutive relations and the anomalies surrounding kinematic hardening plasticity theory are easily resolvable.

  1. Band-Gap Modulation of GeCH3 Nanoribbons Under Elastic Strain: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Ma, ShengQian; Li, Feng; Jiang, ChunLing

    2016-06-01

    Using the density functional theory method, we researched the band-gap modulation of GeCH3 nanoribbons under uniaxial elastic strain. The results indicated that the band gap of GeCH3 nanoribbons could be tuned along two directions, namely, stretching or compressing ribbons when ɛ was changed from -10% to 10% in 6-zigzag, 10-zigzag, 13-armchair, and 17-armchair nanoribbons, respectively. The band gap greatly changed with strain. In the case of tension, the amount of change in the band gap was bigger. But in the case of compression, the gradient was steeper. The band gap had a nearly linear relationship when ɛ ranges from 0% to 10%. We also investigated if the band gap is changed with widths. The results showed variation of the band gap did not rely on widths. Therefore, the GeCH3 nanoribbons had the greatest potential application in strain sensors and optical electronics at the nanoscale.

  2. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba N.; Kunc, Vlastimil; Phelps, Jay H; TuckerIII, Charles L.; Bapanapalli, Satish K

    2009-01-01

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using an anisotropic rotary diffusion model recently developed for LFTs. An incremental procedure using Eshelby's equivalent inclusion method and the Mori-Tanaka assumption is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned-fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  3. Accumulation of a bioactive benzoisochromanequinone compound kalafungin by a wild type antitumor-medermycin-producing streptomycete strain.

    PubMed

    Lü, Jin; He, Qiang; Huang, Luyao; Cai, Xiaofeng; Guo, Wenwen; He, Jing; Zhang, Lili; Li, Aiying

    2015-01-01

    Medermycin and kalafungin, two antibacterial and antitumor antibiotics isolated from different streptomycetes, share an identical polyketide skeleton core. The present study reported the discovery of kalafungin in a medermycin-producing streptomycete strain for the first time. A mutant strain obtained through UV mutagenesis showed a 3-fold increase in the production of this antibiotic, compared to the wild type strain. Heterologous expression experiments suggested that its production was severely controlled by the gene cluster for medermycin biosynthesis. In all, these findings suggested that kalafungin and medermycin could be accumulated by the same streptomycete and share their biosynthetic pathway to some extent in this strain. PMID:25695632

  4. Accumulation of a Bioactive Benzoisochromanequinone Compound Kalafungin by a Wild Type Antitumor-Medermycin-Producing Streptomycete Strain

    PubMed Central

    Lü, Jin; He, Qiang; Huang, Luyao; Cai, Xiaofeng; Guo, Wenwen; He, Jing; Zhang, Lili; Li, Aiying

    2015-01-01

    Medermycin and kalafungin, two antibacterial and antitumor antibiotics isolated from different streptomycetes, share an identical polyketide skeleton core. The present study reported the discovery of kalafungin in a medermycin-producing streptomycete strain for the first time. A mutant strain obtained through UV mutagenesis showed a 3-fold increase in the production of this antibiotic, compared to the wild type strain. Heterologous expression experiments suggested that its production was severely controlled by the gene cluster for medermycin biosynthesis. In all, these findings suggested that kalafungin and medermycin could be accumulated by the same streptomycete and share their biosynthetic pathway to some extent in this strain. PMID:25695632

  5. Accumulation of a bioactive benzoisochromanequinone compound kalafungin by a wild type antitumor-medermycin-producing streptomycete strain.

    PubMed

    Lü, Jin; He, Qiang; Huang, Luyao; Cai, Xiaofeng; Guo, Wenwen; He, Jing; Zhang, Lili; Li, Aiying

    2015-01-01

    Medermycin and kalafungin, two antibacterial and antitumor antibiotics isolated from different streptomycetes, share an identical polyketide skeleton core. The present study reported the discovery of kalafungin in a medermycin-producing streptomycete strain for the first time. A mutant strain obtained through UV mutagenesis showed a 3-fold increase in the production of this antibiotic, compared to the wild type strain. Heterologous expression experiments suggested that its production was severely controlled by the gene cluster for medermycin biosynthesis. In all, these findings suggested that kalafungin and medermycin could be accumulated by the same streptomycete and share their biosynthetic pathway to some extent in this strain.

  6. SPONTANEOUS MUTATION ACCUMULATION IN MULTIPLE STRAINS OF THE GREEN ALGA, CHLAMYDOMONAS REINHARDTII

    PubMed Central

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-01-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ∼10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters. PMID:24826801

  7. Along-strike Variations in Active Strain Accumulation in the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Ahmad, T.; Sandiford, M.; Codilean, A. T.; Fulop, R. H.

    2015-12-01

    The spatial distribution of channel steepness, erosion rate, and physiographic data highlight pronounced along-strike changes in active strain accumulation in the northwest Himalaya. In particular, the data suggest that the mid-crustal ramp of the Main Himalayan Thrust could merge along-strike with an active portion of the Main Boundary Thrust near longitude ~77º E. This along-strike change in active fault geometry also coincides with the lateral termination of both lesser and greater Himalayan sequences, a significant reduction in total shortening within the wedge, and pronounced variations in regional seismicity. Recent activity along extensional structures in the high Himalaya of this same region appears to have led to significant reorganization, modification and capture of the Sutlej River basin, one of the largest Himalayan river systems. Given the recent 2015 Gorkha earthquake along a comparable section ~500-km along strike, these new constraints on active fault architecture could have regional implications for how strain is partitioned along seismogenic faults in the northwest Himalaya.

  8. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.

    PubMed

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-09-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters. PMID:24826801

  9. An experimental method to obtain the elastic strain energy function from torsion-tension tests

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1976-01-01

    It is shown that by employing a torsion-tension test, it is possible to have a complete mapping near the origin of the two principal strain invariants associated with the rate of change of the strain energy function. However, the mathematical representation of the twist moment and normal forces vs strain and the strain energy function are complex. This problem is solved by using a set of solid cylindrical bars with different diameters such that the difference in diameter of two successive bars is small. The stress-strain equations can be grossly oversimplified by considering differences in twist moment and normal force as a function of difference in radius.

  10. Approaches to accommodate noisy data in the direct solution of inverse problems in incompressible plane-strain elasticity

    PubMed Central

    Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.

    2014-01-01

    We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085

  11. Measuring Depth-dependent Dislocation Densities and Elastic Strains in an Indented Ni-based Superalloy

    SciTech Connect

    Barabash, O.M.; Santella, M.; Barabash, R.I.; Ice, G.E.; Tischler, J.

    2011-12-14

    The indentation-induced elastic-plastic zone in an IN 740 Ni-based superalloy was studied by three-dimensional (3-D) x-ray microdiffraction and electron back scattering diffraction (EBSD). Large lattice reorientations and the formation of geometrically necessary dislocations are observed in the area with a radius of {approx}75 {mu}m. A residual compression zone is found close to the indent edge. An elastic-plastic transition is observed at {approx}20 {mu}m from the indent edge. Depth dependent dislocation densities are determined at different distances from the indent edge.

  12. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  13. Interseismic strain accumulation in seismic gap of south central Chile from GPS measurements

    NASA Astrophysics Data System (ADS)

    Rudloff, A.; Vigny, C.; Ruegg, J. C.; Campos, J.

    2003-04-01

    Three campaigns of Global Positioning System (GPS) measurements were carried out in the Concepcion-Constitucion seismic gap in South Central Chile in 1996, 1999, and 2002. We observed a network of about 40 sites, made of 2 east-west transects roughly perpendicular to the trench ranging from the coastal area to the Argentina border and 1 north-south profile along the coast. Data sets were processed with MIT's GAMIT/GLOBK package. Horizontal velocities have formal uncertainties around 1 to 2 mm/yr in average. Vertical velocities are also determined and have uncertainties around 2 to 5 mm/yr. We find that the convergence between Nazca and South-America plates better matches the pole previously estimated by (Larson et al, 1997) than the Nuvel-1A estimate. Our estimate predicts a convergence of 72 mm/yr at N70 to be compared with Nuvel-1A 80 mm/yr at N79. With respect to stable South America, horizontal velocities decrease from 35 mm/yr on the coast to 14 mm/yr in the Cordillera. Vertical velocities help constraint lithospheric flecture. Partionning of the slightly oblique convergence will be investigated. The gradient of convergent parallel velocities reflects aseismic elastic loading on a zone of about 400 km width. Interestingly enough, this gradient exhibit a linear pattern, marginally compatible with the expected arctangent shape. 70 mm/yr of motion accumulated since the last big event in this area (1835 Earthquake described by Darwin) represent more than 10 m of displacement. Therefore, this area is probably mature for a next large earthquake, the magnitude of which could reach 8.5.

  14. Local strain redistribution corrections for a simplified inelastic analysis procedure based on an elastic finite-element analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1985-01-01

    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction proposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite-element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure predicts stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load-cycled problems. Neuber-type corrections were derived and incorporated in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was used on a mechanically load-cycled benchmark notched-plate problem. The predicted material response agrees well with the nonlinear finite-element solutions for the problem. The simplified analysis computer program was 0.3% of the central processor unit time required for a nonlinear finite-element analysis.

  15. Strain Accumulation and Release in the South Iceland Seismic Zone (Invited)

    NASA Astrophysics Data System (ADS)

    Arnadottir, T.; Hreinsdottir, S.; Geirsson, H.; Ofeigsson, B.

    2013-12-01

    Iceland is located on the Mid-Atlantic ridge, straddling the plate boundary of the North-American and Eurasian plates. Several active volcanic zones and two main transforms accommodate the plate spreading across the island. In the South, the South Iceland Seismic Zone (SISZ) forms the active plate boundary between the Hengill triple junction in the west, and the Eastern Volcanic Zone. The SISZ translates the E-W left lateral shear at depth by faulting on numerous N-S oriented faults in the brittle crust forming the southern margin of the proposed Hreppar micro-plate in South Iceland. In June 2000 and May 2008, two sets of magnitude 6.5 and 6.0 main shocks struck the SISZ. Both earthquake episodes consisted of a pair of main shocks of similar size rupturing closely spaced faults, where static and dynamic stress changes generated by the first event triggered the second main shock further west. The June 2000 earthquakes occurred in the central part of the SISZ, and the May 2008 events in the western part, close to the Hengill triple junction. Since June 2000 annual GPS measurements have been conducted in a geodetic network in South Iceland and a number of continuous GPS stations have been installed. We report strain rate variations in South Iceland derived from GPS observations during 2000 to 2013. In addition to plate motion, and post-seismic signals, the surface deformation is complicated by magma accumulation under active volcanoes at the eastern border of the SISZ - Hekla, and Eyjafjallajökull - as well as subsidence and contraction in the Hengill area caused by fluid withdrawal for geothermal energy production. We also note an increase in strain rates in the epicentral area of the May 2008 main shocks during 2004 to 2007. Previous studies have indicated that the seismic moment released in the June 2000 and May 2008 earthquakes is only half of the accumulated stress since the last major earthquake sequence in 1896-1912. Thus, magnitude 6-7 events may be expected

  16. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    SciTech Connect

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

  17. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGES

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  18. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    PubMed

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (<500 ppm) can partition into the LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health. PMID:27070511

  19. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    PubMed

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that

  20. Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain

    PubMed Central

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that

  1. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    PubMed

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that

  2. Elastic strain effects on the photocatalytic TiO2 nanofilm: Utilizing the martensitic surface relief of FeNiCoTi alloy substrate

    NASA Astrophysics Data System (ADS)

    Du, Minshu; Wan, Qiong; Wang, Zhongqiang; Cui, Lishan

    2016-08-01

    The application of elastic strain is a promising approach for tuning bandgap of semiconductors; however, the attainment of a simple method for introducing strain has been a major challenge. Here, martensitic surface relief of FeNiCoTi substrate was utilized to tensilely strain TiO2 nanofilm successfully. The elastic strain effects of photocatalysis were also investigated. It was showed that tensile strain reduced the bandgap of TiO2 nanofilm by 50 meV and contributed to a 33.8% faster photodegradation rate of methyl orange, also the photocurrent of the water oxidation reaction of strained TiO2 was 1.4 times as high as that of unstrained nanofilm.

  3. Elastic and plastic strain measurement in high temperature environment using laser speckle

    NASA Technical Reports Server (NTRS)

    Chiang, Fu-Pen

    1992-01-01

    Two laser speckle methods are described to measure strain in high temperature environment and thermal strain caused by high temperature. Both are non-contact, non-destructive and remote sensing techniques that can be automated. The methods have different but overlapping ranges of application with one being more suitable for large plastic deformation.

  4. Global Positioning System measurements of strain accumulation across the Imperial Valley, California - 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1992-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 =/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 =/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  5. Interseismic strain accumulation in south central Chile from GPS measurements, 1996-1999

    NASA Astrophysics Data System (ADS)

    Ruegg, J. C.; Campos, J.; Madariaga, R.; Kausel, E.; de Chabalier, J. B.; Armijo, R.; Dimitrov, D.; Georgiev, I.; Barrientos, S.

    2002-06-01

    Two campaigns of Global Positioning System (GPS) measurements were carried out in the Concepción-Constitución area of Chile in 1996 and 1999. It is very likely that this area is a mature seismic gap, since no subduction earthquake has occurred there since 1835. In 1996, 32 sites were occupied in the range 35°S-37°S, between the Pacific coast of Chile and the Andes near the Chile-Argentina border. In 1999, the network was extended by the installation of 9 new points in the Arauco region whereas 13 points among the 1996 stations were reoccupied. The analysis of this campaign data set, together with the data recorded at eight continuous GPS sites (mostly IGS stations) in South America and surrounding regions, indicates a velocity of about 40 +/- 10 mm/yr in the direction N80-90°S for the coastal sites with respect to stable cratonic South America. This velocity decreases to about 20-25 mm/yr towards the Andes. We interpret this result as reflecting interseismic strain accumulation above the Nazca-South America subduction zone, due to a locked thrust zone extending down to about 60 km depth.

  6. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  7. Effects of physical exercise on the elasticity and elastic components of the rat aorta.

    PubMed

    Matsuda, M; Nosaka, T; Sato, M; Ohshima, N

    1993-01-01

    To evaluate the effects of exercise on aortic wall elasticity and elastic components, young male rats underwent various exercise regimes for 16 weeks. In the exercised rats, the aortic incremental elastic modulus decreased significantly when under physiological strain. The aortic content of elastin increased significantly and the calcium content of elastin decreased significantly in the exercised group. The accumulated data from the exercised and sedentary groups revealed that the elastin calcium content was related positively to the incremental elastic modulus. We concluded that physical exercise from an early age decreases the calcium deposit in aortic wall elastin and that this effect probably produced in the exercised rats a distensible aorta.

  8. Strain coupling mechanisms and elastic relaxation associated with spin state transitions in LaCoO3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Koppensteiner, Johannes; Schranz, Wilfried; Prabhakaran, Dharmalingam; Carpenter, Michael A.

    2011-04-01

    Advantage is taken of the wealth of experimental data relating to the evolution with temperature of spin states of Co3 + in LaCoO3 in order to undertake a detailed investigation of the mechanisms by which changes in electronic structure can influence strain, and elastic and anelastic relaxations in perovskites. The macroscopic strain accompanying changes in the spin state in LaCoO3 is predominantly a volume strain arising simply from the change in effective ionic radius of the Co3 + ions. This acts to renormalize the octahedral tilting transition temperature in a manner that is easily understood in terms of coupling between the tilt and spin order parameters. Results from resonant ultrasound spectroscopy at high frequencies (0.1-1.5 MHz) reveal stiffening of the shear modulus which scales qualitatively with a spin order parameter defined in terms of changing Co-O bond lengths. From this finding, in combination with results from dynamic mechanical analysis at low frequencies (0.1-50 Hz) and data from the literature, four distinctive anelastic relaxation mechanisms are identified. The relaxation times of these are displayed on an anelasticity map and are tentatively related to spin-spin relaxation, spin-lattice relaxation, migration of twin walls and migration of magnetic polarons. The effective activation energy for the freezing of twin wall motion below ~ 590 K at low frequencies was found to be 182 ± 21 kJ mol - 1 (1.9 ± 0.2 eV) which is attributed to pinning by pairs of oxygen vacancies, though the local mechanisms appear to have a spread of relaxation times. It seems inevitable that twin walls due to octahedral tilting must have quite different characteristics from the matrix in terms of local spin configurations of Co3 + . A hysteresis in the elastic properties at high temperatures further emphasizes the importance of oxygen content in controlling the properties of LaCoO3.

  9. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.

    PubMed

    Leiderman, Ricardo; Barbone, Paul E; Oberai, Assad A; Bamber, Jeffrey C

    2006-12-21

    We study the effects of interstitial fluid flow and interstitial fluid drainage on the spatio-temporal response of soft tissue strain. The motivation stems from the ability to measure in vivo strain distributions in soft tissue via elastography, and the desire to explore the possibility of using such techniques to investigate soft tissue fluid flow. Our study is based upon a mathematical model for soft tissue mechanics from the literature. It is a simple generalization of biphasic theory that includes coupling between the fluid and solid phases of the soft tissue, and crucially, fluid exchange between the interstitium and the local microvasculature. We solve the mathematical equations in two dimensions by the finite element method (FEM). The finite element implementation is validated against an exact analytical solution that is derived in the appendix. Realistic input tissue properties from the literature are used in conjunction with FEM modelling to conduct several computational experiments. The results of these lead to the following conclusions: (i) different hypothetical flow mechanisms lead to different patterns of strain relaxation with time; (ii) representative tissue properties show fluid drainage into the local microvasculature to be the dominant flow-related stress/strain relaxation mechanism; (iii) the relaxation time of strain in solid tumours due to drainage into the microvasculature is on the order of 5-10 s; (iv) under realistic applied pressure magnitudes, the magnitude of the strain relaxation can be as high as approximately 0.4% strain (4000 microstrains), which is well within the range of strains measurable by elastography.

  10. InSAR time-series constraints on inter-seismic strain accumulation and creep distribution along North Anatolian and Chaman Faults

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Fattahi, H.; Amelung, F.

    2013-12-01

    In many aspects, the San Andreas and the North Anatolian fault zones show many similarities. They are similarly right-lateral, strike-slip faults, at the same time, are transforms. However, they vary in the maximum amount of lateral displacement and show different topographic features. The maximum offset is nearly 300 km along the San Andreas Fault whereas it is approximately 85-90 km along the North Anatolian Fault. In recent years, interseismic crustal velocities and strains have been determined for North Anatolian Fault Zone through repeated measurements using the Global Positioning System and satellite radar interferometry. The Chaman Fault in Pakistan and Afghanistan is the only major fault along the western India-Eurasia plate boundary zone and probably accommodates the entire relative plate motion of 30-35 mm/yr. Recent GPS and InSAR studies on the Chaman fault yield slip rates of 18 × 1 mm/yr. The inconsistency in geologic, geodetic and seismic slip rates along the Chaman Fault need investigations to better understand the geodynamic responses of the Indo-Asia collision along its western boundary. We use InSAR time-series analysis using archived and new SAR imagery to constrain strain accumulation across the North Anatolian Fault and Chaman Faults. We expect a relative accuracy of InSAR measurements better than 1 mm/yr over 100 km, made possible by recent advances in flattening residual, orbital error and atmospheric correction strategies [Fattahi & Amelung, 2013]. After validation of the technique in Southern San Andreas Fault, using GPS observations, we apply the same InSAR time-series approach to constrain strain accumulation across the North Anatolian and Chaman Faults. We will use the InSAR data to establish the first-order fault properties of the Chaman and North Anatolian Faults (creep distribution, locking depth) using analytical two-dimensional elastic strain accumulation models along different transects across the faults. Our preliminary results

  11. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains

    PubMed Central

    Carroll, James A.; Striebel, James F.; Rangel, Alejandra; Woods, Tyson; Phillips, Katie; Peterson, Karin E.; Race, Brent; Chesebro, Bruce

    2016-01-01

    Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. PMID:27046083

  12. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains.

    PubMed

    Carroll, James A; Striebel, James F; Rangel, Alejandra; Woods, Tyson; Phillips, Katie; Peterson, Karin E; Race, Brent; Chesebro, Bruce

    2016-04-01

    Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. PMID:27046083

  13. A Four-Criterion Selection Procedure for Atherosclerotic Plaque Elasticity Reconstruction based on in Vivo Coronary Intravascular Ultrasound Radial Strain Sequences

    PubMed Central

    Le Floc’h, Simon; Cloutier, Guy; Saijo, Yoshifumi; Finet, Gérard; Yazdani, Saami K.; Deleaval, Flavien; Rioufol, Gilles; Pettigrew, Roderic I.; Ohayon, Jacques

    2016-01-01

    Plaque elasticity (i.e. modulogram) and morphology are good predictors of plaque vulnerability. Recently, our group developed an intravascular ultrasound (IVUS) elasticity reconstruction method which was successfully implemented in vitro using vessel phantoms. In vivo IVUS modulography, however, remains a major challenge as the motion of the heart prevents accurate strain field estimation. We therefore designed a technique to extract accurate strain fields and modulograms from recorded IVUS sequences. We identified a set of four criteria based on tissue overlapping, RF-correlation coefficient between two successive frames, performance of the elasticity reconstruction method to recover the measured radial strain, and reproducibility of the computed modulograms over the cardiac cycle. This 4-CSP was successfully tested on IVUS sequences obtained in twelve patients referred for a directional coronary atherectomy intervention. This study demonstrates the potential of the IVUS modulography technique based on the proposed 4-CSP to detect vulnerable plaques in vivo. PMID:23196202

  14. Ex vivo and in vivo assessment of the non-linearity of elasticity properties of breast tissues for quantitative strain elastography.

    PubMed

    Umemoto, Takeshi; Ueno, Ei; Matsumura, Takeshi; Yamakawa, Makoto; Bando, Hiroko; Mitake, Tsuyoshi; Shiina, Tsuyoshi

    2014-08-01

    The aim of this study was to reveal the background to the image variations in strain elastography (strain imaging [SI]) depending on the manner of manipulation (compression magnitude) during elasticity image (EI) acquisition. Thirty patients with 33 breast lesions who had undergone surgery followed by SI assessment in vivo were analyzed. An analytical approach to tissue elasticity based on the stress-elastic modulus (Young's modulus) relationship was adopted. Young's moduli were directly measured ex vivo in surgical specimens ranging from 2.60 kPa (fat) to 16.08 kPa (invasive carcinoma) under the weak-stress condition (<0.2-0.4 kPa, which corresponds to the appropriate "light touch" technique in SI investigation. The contrast (ratio) of lesion to fat in elasticity ex vivo gradually decreased as the stress applied increased (around 1.0 kPa) on the background of significant non-linearity of the breast tissue. Our results indicate that the differences in non-linearity in elasticity between the different tissues within the breast under minimal stress conditions are closely related to the variation in EI quality. The significance of the "pre-load compression" concept in tissue elasticity evaluation is recognized. Non-linearity of elasticity is an essential attribute of living subjects and could provide useful information having a considerable impact on clinical diagnosis in quantitative ultrasound elastography.

  15. A physical model for strain accumulation in the San Francisco Bay region: Stress evolution since 1838

    USGS Publications Warehouse

    Pollitz, F.; Bakun, W.H.; Nyst, M.

    2004-01-01

    Understanding of the behavior of plate boundary zones has progressed to the point where reasonably comprehensive physical models can predict their evolution. The San Andreas fault system in the San Francisco Bay region (SFBR) is dominated by a few major faults whose behavior over about one earthquake cycle is fairly well understood. By combining the past history of large ruptures on SFBR faults with a recently proposed physical model of strain accumulation in the SFBR, we derive the evolution of regional stress from 1838 until the present. This effort depends on (1) an existing compilation of the source properties of historic and contemporary SFBR earthquakes based on documented shaking, geodetic data, and seismic data (Bakun, 1999) and (2) a few key parameters of a simple regional viscoelastic coupling model constrained by recent GPS data (Pollitz and Nyst, 2004). Although uncertainties abound in the location, magnitude, and fault geometries of historic ruptures and the physical model relies on gross simplifications, the resulting stress evolution model is sufficiently detailed to provide a useful window into the past stress history. In the framework of Coulomb failure stress, we find that virtually all M ??? 5.8 earthquakes prior to 1906 and M ??? 5.5 earthquakes after 1906 are consistent with stress triggering from previous earthquakes. These events systematically lie in zones of predicted stress concentration elevated 5-10 bars above the regional average. The SFBR is predicted to have emerged from the 1906 "shadow" in about 1980, consistent with the acceleration in regional seismicity at that time. The stress evolution model may be a reliable indicator of the most likely areas to experience M ??? 5.5 shocks in the future.

  16. Complex Toxin Profile of French Mediterranean Ostreopsis cf. ovata Strains, Seafood Accumulation and Ovatoxins Prepurification

    PubMed Central

    Brissard, Charline; Herrenknecht, Christine; Séchet, Véronique; Hervé, Fabienne; Pisapia, Francesco; Harcouet, Jocelyn; Lémée, Rodolphe; Chomérat, Nicolas; Hess, Philipp; Amzil, Zouher

    2014-01-01

    Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg−1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg−1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell−1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises. PMID:24828292

  17. Strain-rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity

    PubMed Central

    Caporizzo, Matthew Alexander; Roco, Charles M.; Ferrer, Maria Carme Coll; Grady, Martha E.; Parrish, Emmabeth; Eckmann, David M.; Composto, Russell John

    2015-01-01

    Force-displacement measurements are taken at different rates with an atomic force microscope to assess the correlation between cell health and cell viscoelasticity in THP-1 cells that have been treated with a novel drug carrier. A variable indentation-rate viscoelastic analysis, VIVA, is employed to identify the relaxation time of the cells that are known to exhibit a frequency dependent stiffness. The VIVA agrees with a fluorescent viability assay. This indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. By modelling the frequency dependence of the elastic modulus, the VIVA provides three metrics of cytoplasmic viscoelasticity: a low frequency modulus, a high frequency modulus and viscosity. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent twofold increase in the elastic modulus and cytoplasmic viscosity, while the cytoskeletal relaxation time remains unchanged. This is consistent with the known toxic mechanism of silver nanoparticles, where metabolic stress causes an increase in the rigidity of the cytoplasm. A variable indentation-rate viscoelastic analysis is presented as a straightforward method to promote the self-consistent comparison between cells. This is paramount to the development of early diagnosis and treatment of disease. PMID:26834855

  18. Auxotroph Accumulation in Deoxyribonucleic Acid Polymeraseless Strains of Escherichia coli K-121

    PubMed Central

    Berg, Claire M.

    1971-01-01

    Spontaneous auxotrophs are found with high frequency in several strains of Escherichia coli K-12 deficient in Kornberg deoxyribonucleic acid polymerase. These include amino acid-, vitamin-, purine-, and pyrimidine-requiring strains. Although this was suggestive evidence that these strains might be mutators, reconstruction experiments demonstrate that auxotrophs possess a selective advantage over prototrophs in the same culture. Thus, despite the high frequency of auxotrophs in polymerase-deficient strains, it is not yet clear whether they have elevated mutation rates. PMID:4934065

  19. Development of an elastic cell culture substrate for a novel uniaxial tensile strain bioreactor.

    PubMed

    Moles, Matthew D; Scotchford, Colin A; Ritchie, Alastair Campbell

    2014-07-01

    Bioreactors can be used for mechanical conditioning and to investigate the mechanobiology of cells in vitro. In this study a polyurethane (PU), Chronoflex AL, was evaluated for use as a flexible cell culture substrate in a novel bioreactor capable of imparting cyclic uniaxial tensile strain to cells. PU membranes were plasma etched, across a range of operating parameters, in oxygen. Contact angle analysis and X-ray photoelectron spectroscopy showed increases in wettability and surface oxygen were related to both etching power and duration. Atomic force microscopy demonstrated that surface roughness decreased after etching at 20 W but was increased at higher powers. The etching parameters, 20 W 40 s, produced membranes with high surface oxygen content (21%), a contact angle of 66° ± 7° and reduced topographical features. Etching and protein conditioning membranes facilitated attachment, and growth to confluence within 3 days, of MG-63 osteoblasts. After 2 days with uniaxial strain (1%, 30 cycles/min, 1500 cycles/day), cellular alignment was observed perpendicular to the principal strain axis, and found to increase after 24 h. The results indicate that the membrane supports culture and strain transmission to adhered cells. PMID:23946144

  20. Development of an elastic cell culture substrate for a novel uniaxial tensile strain bioreactor

    PubMed Central

    Moles, Matthew D; Scotchford, Colin A; Ritchie, Alastair Campbell

    2014-01-01

    Bioreactors can be used for mechanical conditioning and to investigate the mechanobiology of cells in vitro. In this study a polyurethane (PU), Chronoflex AL, was evaluated for use as a flexible cell culture substrate in a novel bioreactor capable of imparting cyclic uniaxial tensile strain to cells. PU membranes were plasma etched, across a range of operating parameters, in oxygen. Contact angle analysis and X-ray photoelectron spectroscopy showed increases in wettability and surface oxygen were related to both etching power and duration. Atomic force microscopy demonstrated that surface roughness decreased after etching at 20 W but was increased at higher powers. The etching parameters, 20 W 40 s, produced membranes with high surface oxygen content (21%), a contact angle of 66° ± 7° and reduced topographical features. Etching and protein conditioning membranes facilitated attachment, and growth to confluence within 3 days, of MG-63 osteoblasts. After 2 days with uniaxial strain (1%, 30 cycles/min, 1500 cycles/day), cellular alignment was observed perpendicular to the principal strain axis, and found to increase after 24 h. The results indicate that the membrane supports culture and strain transmission to adhered cells. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2356–2364, 2014. PMID:23946144

  1. The nonconforming linear strain tetrahedron for a large deformation elasticity problem

    NASA Astrophysics Data System (ADS)

    Hansbo, Peter; Larsson, Fredrik

    2016-08-01

    In this paper we investigate the performance of the nonconforming linear strain tetrahedron element introduced by Hansbo (Comput Methods Appl Mech Eng 200(9-12):1311-1316, 2011; J Numer Methods Eng 91(10):1105-1114, 2012). This approximation uses midpoints of edges on tetrahedra in three dimensions with either point continuity or mean continuity along edges of the tetrahedra. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration in the form of one point Gauss integration of volumetric terms in near incompressible situations. We combine under-integration of the volumetric terms with houglass stabilization for the isochoric terms.

  2. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  3. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results

  4. Diffraction Profiles of Elasticity Bent Single Crystals with Constant Strain Gradients

    SciTech Connect

    Yan,H.; Kalenci, O.; Noyan, I.

    2007-01-01

    This work presents a set of equations that can be used to predict the dynamical diffraction profile from a non-transparent single crystal with a constant strain gradient examined in Bragg reflection geometry with a spherical incident X-ray beam. In agreement with previous work, the present analysis predicts two peaks: a primary diffraction peak, which would have still been observed in the absence of the strain gradient and which exits the specimen surface at the intersection point of the incident beam with the sample surface, and a secondary (mirage) peak, caused by the deflection of the wavefield within the material, which exits the specimen surface further from this intersection point. The integrated intensity of the mirage peak increases with increasing strain gradient, while its separation from the primary reflection peak decreases. The directions of the rays forming the mirage peak are parallel to those forming the primary diffraction peak. However, their spatial displacement might cause (fictitious) angular shifts in diffractometers equipped with area detectors or slit optics. The analysis results are compared with experimental data from an Si single-crystal strip bent in cantilever configuration, and the implications of the mirage peak for Laue analysis and high-precision diffraction measurements are discussed.

  5. Strain engineering of the elasticity and the Raman shift of nanostructured TiO2

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Pan, L. K.; Sun, Z.; Chen, Y. M.; Yang, X. X.; Yang, L. W.; Zhou, Z. F.; Sun, Chang Q.

    2011-08-01

    Correlation between the elastic modulus (B) and the Raman shift (Δω) of TiO2 and their responses to the variation of crystal size, applied pressure, and measuring temperature have been established as a function depending on the order, length, and energy of a representative bond for the entire specimen. In addition to the derived fundamental information of the atomic cohesive energy, binding energy density, Debye temperature and nonlinear compressibility, theoretical reproduction of the observations clarified that (i) the size effect arises from the under-coordination induced cohesive energy loss and the energy density gain in the surface up to skin depth; (ii) the thermally softened B and Δω results from bond expansion and bond weakening due to vibration; and, (iii) the mechanically stiffened B and Δω results from bond compression and bond strengthening due to mechanical work hardening. With the developed premise, one can predict the changing trends of the concerned properties with derivatives of quantitative information as such from any single measurement alone.

  6. Analysis of Strains Lacking Known Osmolyte Accumulation Mechanisms Reveals Contributions of Osmolytes and Transporters to Protection against Abiotic Stress

    PubMed Central

    Murdock, Lindsay; Burke, Tangi; Coumoundouros, Chelsea; Culham, Doreen E.; Deutch, Charles E.; Ellinger, James; Kerr, Craig H.; Plater, Samantha M.; To, Eric; Wright, Geordie

    2014-01-01

    Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm. PMID:24951793

  7. Impact of dislocation cell elastic strain variations on line profiles from deformed copper.

    SciTech Connect

    Levine, L. E.; Larson, B. C.; Tischler, J. Z.; Geantil, P.; Kassner, M. E.; Liu, W.; Stoudt, M. R.; NIST; ORNL; Univ. of Southern California

    2008-01-01

    Energy scanned, sub-micrometer X-ray beams were used to obtain diffraction line profiles from individual dislocation cells in copper single crystals deformed in compression. Sub-micrometer depth resolution was provided by translating a wire through the diffracted beams and using triangulation to determine the depths of the diffracting volumes. Connection to classic volume-averaged results was made by adding the line profiles from 52 spatially resolved dislocation cell measurements. The resulting sub profile is smooth and symmetric, in agreement with early assumptions; the mean strain and full width half maximum are consistent with the average of the parameters extracted from the more exact individual dislocation cell measurements.

  8. The young's modulus of 1018 steel and 67061-T6 aluminum measured from quasi-static to elastic precursor strain-rates

    SciTech Connect

    Rae, Philip J; Trujillo, Carl; Lovato, Manuel

    2009-01-01

    The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 10{sup 4} s{sup -1}. Finally, ID plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 10{sup 6} s{sup -1} from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-rate independent within the experimental accuracy.

  9. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  10. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover.

    PubMed

    Sitepu, Irnayuli R; Jin, Mingjie; Fernandez, J Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L

    2014-09-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.

  11. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  12. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  13. Gurson-type elastic-plastic damage model based on strain-rate plastic potential

    NASA Astrophysics Data System (ADS)

    Balan, Tudor; Cazacu, Oana

    2013-12-01

    Ductile damage is generally described by stress-space analytical potentials. In this contribution, it is shown that strain rate potentials, which are exact conjugate of the stress-based potentials, can be equally used to describe the dilatational response of porous metals. This framework is particularly appropriate for porous materials with matrix described by complex yield criteria for which a closed-form expression of the stress-based potential is not available. Illustration of the new approach is done for porous metals containing randomly distributed spherical voids in a von Mises elasto-plastic matrix. Furthermore, a general time integration algorithm for simulation of the mechanical response using this new formulation is developed and implemented in Abaqus/Standard. The proposed model and algorithm are validated with respect to the Abaqus built-in GTN model, which is based on a stress potential, through the simulation of a tensile test on a round bar.

  14. DNAaseI-hypersensitive minichromosomes of SV40 possess an elastic torsional strain in DNA.

    PubMed Central

    Luchnik, A N; Bakayev, V V; Yugai, A A; Zbarsky, I B; Georgiev, G P

    1985-01-01

    Previously, we have shown that DNA in a small fraction (2-5%) of SV40 minichromosomes was torsionally strained and could be relaxed by treating minichromosomes with topoisomerase I. This fraction was enriched with endogeneous RNA polymerase II (Luchnik et al., 1982, EMBO J., 1, 1353). Here we show that one and the same fraction of SV40 minichromosomes is hypersensitive to DNAase I and is relaxable by topoisomerase I. Moreover, this fraction completely loses its hypersensitivity to DNAase I upon relaxation. The possibility that this fraction of minichromosomes can be represented by naked DNA is ruled out by the results of studying the kinetics of minichromosome digestion by DNAase I in comparison to digestion of pure SV40 DNA and by measuring the buoyant density of SV40 chromatin in equilibrium CsCl gradient. Our data obtained with SV40 minichromosomes may be relevant to the mechanism responsible for DNAase I hypersensitivity in the loops or domains of cellular chromatin. Images PMID:2987817

  15. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    the measured compliances in this frequency band using a genetic algorithm that solves for the S-wave velocity, P-wave velocity, and density in a layered structure. By including constraints on the Vp distribution from active-source studies, these parameters appear well constrained down to about 4 km depth from our dataset. There is a clear difference in observed compliance values between stations close to the deformation front (~10 km) and those further up the continental slope (~30-40 km) indicating a region of unconsolidated, high-porosity sediment similar to the off-Tohoku region. The low S-wave velocities and high Vp/Vs ratios in the up-dip region correspond to unconsolidated high-porosity sediments. We calculated the effect of this material property contrast on the inter-seismic strain accumulation in the up-dip region of the subduction zone using a finite element model and find that the sediments can increase the amount of inter-seismic strain accumulated in the up-dip region by >100% relative to a homogenous elastic model.

  16. Strain accumulation and fluid-rock interaction in a naturally deformed diamictite, Willard thrust system, Utah (USA): Implications for crustal rheology and strain softening

    NASA Astrophysics Data System (ADS)

    Yonkee, W. Adolph; Czeck, Dyanna M.; Nachbor, Amelia C.; Barszewski, Christine; Pantone, Spenser; Balgord, Elizabeth A.; Johnson, Kimberly R.

    2013-05-01

    Structural and geochemical patterns of heterogeneously deformed diamictite in northern Utah (USA) record interrelations between strain accumulation, fluid-rock interaction, and softening processes across a major fault (Willard thrust). Different clast types in the diamictite have varying shape fabrics related to competence contrasts with estimated effective viscosity ratios relative to micaceous matrix of: ˜6 and 8 for large quartzite clasts respectively in the Willard hanging wall and footwall; ˜5 and 2 for less altered and more altered granitic clasts respectively in the hanging wall and footwall; and ˜1 for micaceous clasts that approximate matrix strain. Within the footwall, matrix X-Z strain ratios increase from ˜2 to 8 westward along a distinct deformation gradient. Microstructures record widespread mass transfer, alteration of feldspar to mica, and dislocation creep of quartz within matrix and clasts. Fluid influx along microcracks and mesoscopic vein networks increased westward and led to reaction softening and hydrolytic weakening, in conjunction with textural softening from alignment of muscovite aggregates. Consistent Si, Al, and Ti concentrations between matrix, granitic clasts, and protoliths indicate limited volume change. Mg gain and Na loss reflect alteration of feldspar to phengitic muscovite. Within the hanging wall, strain is overall lower with matrix X-Z strain ratios of ˜2 to 4. Microstructures record mass transfer and dislocation creep concentrated in the matrix. Greater Al and Ti concentrations and lower Si concentrations in matrix indicate volume loss by quartz dissolution. Na gain in granitic clasts reflects albitization. Large granitic clasts have less mica alteration and greater competence compared to smaller clasts. Differences in strain and alteration patterns across the Willard thrust fault suggest overall downward (up-temperature) fluid flow in the hanging wall and upward (down-temperature) fluid flow in the footwall.

  17. X-ray Laue micro diffraction and neutron diffraction analysis of residual elastic strains and plastic deformation in a 1% uniaxial tensile tested nickel alloy 600 sample

    SciTech Connect

    Chao, Jing; Mark, Alison; Fuller, Marina; Barabash, Rozaliya; McIntyre, Stewart; Holt, Richard A.; Klassen, Robert; Liu, W.

    2009-01-01

    The magnitude and distribution of elastic strain for a nickel alloy 600 (A600) sample that had been subjected to uniaxial tensile stress were measured by micro Laue diffraction (MLD) and neutron diffraction techniques. For a sample that had been dimensionally strained by 1%, both MLD and neutron diffraction data indicated that the global residual elastic strain was on the order of 10{sup -4}, however the micro-diffraction data indicated considerable grain-to-grain variability amongst individual components of the residual strain tensor. A more precise comparison was done by finding those grains in the MLD map that had appropriate oriented in the specific directions matching those used in the neutron measurements and the strains were found to agree within the uncertainty. Large variations in strain values across the grains were noted during the MLD measurements which are reflected in the uncertainties. This is a possible explanation for the large uncertainty in the average strains measured from multiple grains during neutron diffraction.

  18. A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin's theory of gradient elasticity at finite strains

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Rudraraju, S.; Garikipati, K.

    2016-09-01

    We present a field formulation for defects that draws from the classical representation of the cores as force dipoles. We write these dipoles as singular distributions. Exploiting the key insight that the variational setting is the only appropriate one for the theory of distributions, we arrive at universally applicable weak forms for defects in nonlinear elasticity. Remarkably, the standard, Galerkin finite element method yields numerical solutions for the elastic fields of defects that, when parameterized suitably, match very well with classical, linearized elasticity solutions. The true potential of our approach, however, lies in its easy extension to generate solutions to elastic fields of defects in the regime of nonlinear elasticity, and even more notably for Toupin's theory of gradient elasticity at finite strains (Toupin Arch. Ration. Mech. Anal., 11 (1962) 385). In computing these solutions we adopt recent numerical work on an isogeometric analytic framework that enabled the first three-dimensional solutions to general boundary value problems of Toupin's theory (Rudraraju et al. Comput. Methods Appl. Mech. Eng., 278 (2014) 705). We first present exhaustive solutions to point defects, edge and screw dislocations, and a study on the energetics of interacting dislocations. Then, to demonstrate the generality and potential of our treatment, we apply it to other complex dislocation configurations, including loops and low-angle grain boundaries.

  19. Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Köhler, Denny; Schäfer, Rudolf; Eng, Lukas M.

    2013-02-01

    Multiferroic nanomaterials bear the potential for assembling a manifold of novel and smart devices. For room temperature (RT) applications, however, only the BiFeO3 single-phase perovskites are potential candidates to date. Nevertheless, vertical heterostructures separating magnetic and ferroelectric functionality into different layers are now widely proposed to circumvent this lack in materials’ availability. We show here that the second approach is very profitable as illustrated by the strain-mediated coupling between such two layers, i.e., a ferroelectric barium titanate single-crystal (BTO) and a magnetostrictive nickel (Ni) thin film. Applying an electric field across the BTO substrate forces the magnetic easy axis in the Ni film to rotate by 90∘, resulting in a magnetic anisotropy in the range of -1.2 to -33 kJ/m3. We show that local switching proceeds through the nucleation and growth of straight Néel-domain walls at a cost of zigzag walls. The process is fully reversible and continuously tunable as investigated with magnetooptical Kerr microscopy and magnetic force microscopy probing the local in-plane and out-of-plane magnetizations, respectively. Moreover, the degree of anisotropy can be pre-engineered by depositing the Ni film either at RT, above the Curie temperature Tc of BTO, or at an intermediate temperature. Our findings give evidence for using the reported coupling in modern devices, such as magnetoresistive random access memories, spin valves, spin-polarized electron emission, but equally for the bottom-up assembling of magnetizable molecular nanostructures through magnetic domain wall engineering.

  20. Correlation and size dependence of the lattice strain, binding energy, elastic modulus, and thermal stability for Au and Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Zhou, Z. F.; Yang, L. W.; Li, J. W.; Xie, G. F.; Fu, S. Y.; Sun, C. Q.

    2011-04-01

    As a group of wonder materials, gold and silver at the nanoscale demonstrate many intriguing properties that cannot be seen from their bulk counterparts. However, consistent insight into the mechanism behind the fascinations and their interdependence given by one integrated model is highly desirable. Based on Goldschmidt-Pauling's rule of bond contraction and its extension to the local bond energy, binding energy density, and atomic cohesive energy, we have developed such a model that is able to reconcile the observed size dependence of the lattice strain, core level shift, elastic modulus, and thermal stability of Au and Ag nanostructures from the perspective of skin-depth bond order loss. Theoretical reproduction of the measured size trends confirms that the undercoordination-induced local bond contraction, bond strength gain, and the associated binding energy density gain, the cohesive energy loss and the tunable fraction of such undercoordinated atoms dictate the observed fascinations, which should shed light on the understanding of the unusual behavior of other nanostructured materials as well.

  1. Observations of strain accumulation across the San Andreas fault near Palmdale, California, with a two-color geodimeter

    USGS Publications Warehouse

    Langbein, J.O.; Linker, M.F.; McGarr, A.; Slater, L.E.

    1982-01-01

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. Copyright ?? 1982 AAAS.

  2. Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices.

    PubMed

    Takei, Takayuki; Yamasaki, Mika; Yoshida, Masahiro

    2014-04-01

    Agarose gels were superior to calcium-alginate gels for immobilizing Rhodococcus erythropolis CS98 strain to remove cesium from water. Suitable incubation time of the immobilized cells in cesium solutions, cell number in the gels and volume ratio of the cesium solution to the gels for efficient cesium removal were identified.

  3. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel.

  4. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel. PMID:27521939

  5. Factors affecting accumulation and degradation of curdlan, trehalose and glycogen in cultures of Cellulomonas flavigena strain KU (ATCC 53703).

    PubMed

    Siriwardana, Lakmal S; Gall, Aaron R; Buller, Clarence S; Esch, Steven W; Kenyon, William J

    2011-03-01

    Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.

  6. The strain accumulation studies between India and Antarctica in the Southern Indian Peninsula with GPS/GNSS-Geodesy by geodetically tying the two continents

    NASA Astrophysics Data System (ADS)

    Narayana Babu, R. N.; EC, M.

    2011-12-01

    Two global networks (IND and ANT) have been chosen that geodetically connect the two continents to holistically understand the geodynamical and crustal deformation processes in the south of Indian peninsula between India and Antarctica,. Since the baseline length between HYDE, India and MAIT, Antarctica is more than 10,000 km, it is mandatory to form these two different networks to improve the accuracy of the baseline measurements by GPS and so the IGS Station at Diego Garcia (DGAR) is chosen as the common station between the two networks. 13 years of data from 1997 to 2010 were used. By these global networks' analyses, the stations HYDE and MAIT are geodetically tied through DGAR. Very long baselines have been estimated from HYDE and also from Kerguelen (KERG) to other chosen IGS stations in and around India and Antarctica. Our analysis and results using ANT network show an increase in the baseline lengths between Kerguelen in Antarctic plate and other stations such as SEY1, DGAR and COCO and shortening of baseline lengths between HYDE in Indian plate and all these above stations using IND network. The analysis using ANT network also shows lengthening of baselines from Kerguelen to the sites Yaragadee (YAR1) and Tidbinbilla (TID2) in Australian plate; and Seychelles (SEY1) in Male plate, COCO in the diffuse plate boundary between India and Australia and DGAR in Capricorn plate at the rates of 5.3cm/yr, 3.8cm/yr, 5.6mm/yr, 3.03 cm/yr and 5.5 cm/yr respectively. The high rate of movement of COCO Island in comparison to Seychelles could be the result of excessive strain accumulation due to the Indo-Australia diffuse plate boundary forces acting upon this region. The estimated elastic strain accumulation shows an increasing trend of 1.27x 10-8 yr-1 in the south of Indian peninsula. Our results show the precision of approximately 3-4mm (North), 5-6 mm (East), and 10-12mm (vertical) for the estimation of site coordinates. These results provide new information on the

  7. Geodetic Tying of Antarctica and India With 10 Years of Continuous GPS Measurements for Geodynamical and Strain Accumulation Studies in the South of Indian Peninsula

    NASA Astrophysics Data System (ADS)

    Ec, M.; N, R.

    2008-12-01

    To holistically understand the geodynamical and crustal deformation processes between India and Antarctica, two global networks (IND and ANT) have been chosen. The objective is to geodetically connect the two continents. The IGS Station at Diego Garcia (DGAR) is the common station between the two networks. 10 years of data from 1997 to 2007 were used. By these global networks' analyses, the stations HYDE in India and MAIT at Antarctica are geodetically tied through the station DGAR. Very long baselines have been estimated from HYDE and also from Kerguelen (KERG) to other chosen IGS stations in and around India and Antarctica. Our analysis and results using ANT network show an increase in the baseline lengths between Kerguelen in Antarctic plate and other stations such as SEY1, DGAR and COCO and shortening of baseline lengths between HYDE in Indian plate and all these above stations using IND network. The analysis using ANT network also shows lengthening of baselines from Kerguelen to the sites Yaragadee (YAR1) and Tidbinbilla (TID2) in Australian plate; and Seychelles (SEY1) in Male plate, COCO in the diffuse plate boundary between India and Australia and DGAR in Capricorn plate at the rates of 5.3cm/yr, 3.8cm/yr, 5.6mm/yr, 3.03 cm/yr and 5.5 cm/yr respectively. The high rate of movement of COCO Island in comparison to Seychelles could be the result of excessive strain accumulation due to the Indo-Australia diffuse plate boundary forces acting upon this region. The estimated elastic strain accumulation shows an increasing trend of 1.27x 10-8 yr-1 in the south of Indian peninsula. Our results show the precision of approximately 3-4mm (North), 5-6 mm (East), and 10-12mm (vertical) for the estimation of site coordinates. These results provide new information on the direction and rate of Indian plate motion, the driving mechanisms of Indian plate and intraplate seismicity of the Indian Ocean on the whole.

  8. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice

    SciTech Connect

    Ward, W.F.; Sharplin, J.; Franko, A.J.; Hinz, J.M. )

    1989-10-01

    C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice.

  9. Threshold Setting for Likelihood Function for Elasticity-Based Tissue Classification of Arterial Walls by Evaluating Variance in Measurement of Radial Strain

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kentaro; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2008-05-01

    Pathologic changes in arterial walls significantly influence their mechanical properties. We have developed a correlation-based method, the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791], for measurement of the regional elasticity of the arterial wall. Using this method, elasticity distributions of lipids, blood clots, fibrous tissue, and calcified tissue were measured in vitro by experiments on excised arteries (mean±SD: lipids 89±47 kPa, blood clots 131 ±56 kPa, fibrous tissue 1022±1040 kPa, calcified tissue 2267 ±1228 kPa) [H. Kanai et al.: Circulation 107 (2003) 3018; J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2005) 4593]. It was found that arterial tissues can be classified into soft tissues (lipids and blood clots) and hard tissues (fibrous tissue and calcified tissue) on the basis of their elasticity. However, there are large overlaps between elasticity distributions of lipids and blood clots and those of fibrous tissue and calcified tissue. Thus, it was difficult to differentiate lipids from blood clots and fibrous tissue from calcified tissue by simply thresholding elasticity value. Therefore, we previously proposed a method by classifying the elasticity distribution in each region of interest (ROI) (not a single pixel) in an elasticity image into lipids, blood clots, fibrous tissue, or calcified tissue based on a likelihood function for each tissue [J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2006) 4732]. In our previous study, the optimum size of an ROI was determined to be 1,500 µm in the arterial radial direction and 1,500 µm in the arterial longitudinal direction [K. Tsuzuki et al.: Ultrasound Med. Biol. 34 (2008) 573]. In this study, the threshold for the likelihood function used in the tissue classification was set by evaluating the variance in the ultrasonic measurement of radial strain. The recognition rate was improved from 50 to 54% by the proposed thresholding.

  10. Interseismic Strain Accumulation at the Northern Costa Rica Seismogenic Zone From Integration of InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Schwartz, S. Y.; Xue, L.

    2012-12-01

    The presence of the Nicoya Peninsula directly above the seismogenic zone in northern Costa Rica has allowed detailed studies of its seismic and aseismic behavior. This segment of the Middle American Trench generates large earthquakes about every 50 years with the last event occurring in 1950. Abundant seismicity, multiple episodes of slow slip and tremor and years of surface deformation have been recorded here between 2000 and 2011, since the first GPS and seismic instruments were installed. Several models of interseismic strain accumulation have been produced using the GPS data. These models reveal different patterns of locking and variations in locking magnitude that range between 50% to 100% of the plate convergence rate. The GPS data provide excellent temporal coverage but relatively sparse spatial coverage and poor quality vertical measurements of ground deformation. To improve on this, we combine InSAR and GPS observations to produce the first interseismic deformation estimates obtained by InSAR at a subduction zone. We use 18 ALOS SAR acquisitions between 2007 and 2011 covering the Nicoya Peninsula and ROI_PAC software to construct 120 interferograms with perpendicular baselines under 1200m. GPS data are used to correct for orbital errors and corrected interferograms are stacked to produce a deformation rate map that strongly resembles a synthetic interferogram constructed using a GPS based interseismic deformation model. To detect accumulated interseismic deformation over a longer time period we use the small baseline subset (SBAS) method to construct InSAR time series. The resulting linear rate map agrees very well with the GPS measurements along two profiles perpendicular to the coast where GPS observations are the densest. Maximum displacements reach ~10-15 mm/yr near the coastline. Future work will integrate these results with GPS observations to obtain a high-resolution strain accumulation model for the Nicoya Peninsula.

  11. Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release.

    PubMed

    Murray, Jessica; Segall, Paul

    2002-09-19

    Probabilistic estimates of earthquake hazard use various models for the temporal distribution of earthquakes, including the 'time-predictable' recurrence model formulated by Shimazaki and Nakata (which incorporates the concept of elastic rebound described as early as 1910 by H. F. Reid). This model states that an earthquake occurs when the fault recovers the stress relieved in the most recent earthquake. Unlike time-independent models (for example, Poisson probability), the time-predictable model is thought to encompass some of the physics behind the earthquake cycle, in that earthquake probability increases with time. The time-predictable model is therefore often preferred when adequate data are available, and it is incorporated in hazard predictions for many earthquake-prone regions, including northern California, southern California, New Zealand and Japan. Here we show that the model fails in what should be an ideal locale for its application -- Parkfield, California. We estimate rigorous bounds on the predicted recurrence time of the magnitude approximately 6 1966 Parkfield earthquake through inversion of geodetic measurements and we show that, according to the time-predictable model, another earthquake should have occurred by 1987. The model's poor performance in a relatively simple tectonic setting does not bode well for its successful application to the many areas of the world characterized by complex fault interactions.

  12. Static and reversible elastic strain effects on magnetic order of La0.7Ca0.3MnO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Herklotz, Andreas; Jia Guo, Er; Dörr, Kathrin

    2014-04-01

    [La0.7Ca0.3MnO3(2.6 nm)/SrTiO3(6.3 nm)]15 superlattices (SLs) have been simultaneously grown by Pulsed Laser Deposition (PLD) on different oxide substrates in an attempt to obtain different residual strain states. The substrates are (100)-oriented SrTiO3 (STO), LaAlO3 (LAO), and piezoelectric 0.72Pb (Mg1.3 Nb2.3)3-0.28PbTiO3 (PMN-PT). The La0.7Ca0.3MnO3 layers show tensile strain of ɛ = 1% on LAO and stronger strain on STO and PMN-PT (ɛ = 1.7%). The magnetization has been measured and is found to be quite different for the three SLs. Reversible biaxial compression of Δɛ=-0.1% using the PMN-PT substrate helps one to estimate which part of the differences in magnetic order among the samples is induced by elastic strain. The influence of elastic strain is found to be substantial, but does not completely account for the different behavior of the samples.

  13. Strain-Blood Pressure Index for Evaluation of Early Changes in Elasticity of Anterior Tibial Artery in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Zou, Chunpeng; Jiao, Yan; Zheng, Chao; Zhao, Yaping; Li, Xingwang

    2014-01-01

    Background The aim of this study was to investigate the feasibility and value of strain-blood pressure index (SBPI) to assess early changes in elasticity of anterior tibial artery in patients with type 2 diabetes mellitus (T2DM). Material/Methods Eighty-one randomly selected in-patients with T2DM were divided into 2 groups – a vascular complication negative group (n=42) and a vascular complication positive group (n=39). Forty healthy volunteers were enrolled in a control group. Ultrasonographic scans using Xstrain™ technique were conducted for every patient to obtain the maximum circumferential strain (CSmax) of anterior tibial artery; patient blood pressure was also measured for calculating strain-blood pressure index (SBPI=CSmax/[(local pulse pressure)/local diastolic blood pressure] ×100%. Afterwards, SBPIs of various groups were comparatively analyzed. Results Differences in SBPIs among the 3 groups were statistically significant (control group > negative group > positive group, P<0.05). Conclusions SBPI could be used as a new indicator for the evaluation on the anterior tibial arterial elasticity of T2DM patients and it was able to reflect the early elasticity changes in anterior tibial arteries in T2DM patients with atherosclerosis. PMID:25418129

  14. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate.

    PubMed

    Du, Minshu; Cui, Lishan; Cao, Yi; Bard, Allen J

    2015-06-17

    Both the ligand effect and surface strain can affect the electrocatalytic reactivity. In that matter exists a need to be fundamentally understood; however, there is no effective strategy to isolate the strain effect in electrocatalytic systems. In this research we show how the elastic strain in a platinum nanofilm varies the catalytic activity for the oxygen reduction reaction, a key barrier to the wide applications of fuel cells. NiTi shape memory alloy was selected as the substrate to strain engineer the deposited Pt nanofilm in both compressively and tensilely strained states by taking advantage of the two-way shape memory effect for the first time. We demonstrate that compressive strain weakens the Pt surface adsorption and hence improves the ORR activity, which reflects in a 52% enhancement of the kinetic rate constant and a 27 mV positive shift of the half-wave potential for the compressively strained 5 nm Pt compared to the pristine Pt. Tensile strain has the opposite effect, which is in general agreement with the proposed d-band theory. PMID:25986928

  15. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate.

    PubMed

    Du, Minshu; Cui, Lishan; Cao, Yi; Bard, Allen J

    2015-06-17

    Both the ligand effect and surface strain can affect the electrocatalytic reactivity. In that matter exists a need to be fundamentally understood; however, there is no effective strategy to isolate the strain effect in electrocatalytic systems. In this research we show how the elastic strain in a platinum nanofilm varies the catalytic activity for the oxygen reduction reaction, a key barrier to the wide applications of fuel cells. NiTi shape memory alloy was selected as the substrate to strain engineer the deposited Pt nanofilm in both compressively and tensilely strained states by taking advantage of the two-way shape memory effect for the first time. We demonstrate that compressive strain weakens the Pt surface adsorption and hence improves the ORR activity, which reflects in a 52% enhancement of the kinetic rate constant and a 27 mV positive shift of the half-wave potential for the compressively strained 5 nm Pt compared to the pristine Pt. Tensile strain has the opposite effect, which is in general agreement with the proposed d-band theory.

  16. Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars.

    PubMed

    Venugopal, V; Prasanna, R; Sood, A; Jaiswal, P; Kaushik, B D

    2006-01-01

    The influence of high light intensity on the growth and pigment accumulating ability of Anabaena azollae was investigated. A. azollae responded positively to high light intensity (6 klx) and was further evaluated at higher intensities (10 and 15 klx), in the presence of glucose, sucrose and jaggery +/- DCMU. Significant enhancement in phycobiliproteins and carotenoids was observed in the sugar supplemented cultures at high light intensities. SDS-PAGE profiles of whole cell proteins revealed the presence of unique bands in such treatments. Sucrose supplementation induced a 30-90 % increase in carotenoids, phycocyanin and phycoerythrin content at 10 klx. Molecular analysis of the stimulatory and interactive role of sugars on pigment enhancement at high light intensity may aid in better exploitation of cyanobacteria as a source of pigments.

  17. Role of ultrasonography in the evaluation of correlation between strain and elasticity of common carotid artery in patients with diabetic nephropathy

    PubMed Central

    Zou, Chunpeng; Jiao, Yan; Li, Xingwang; Zheng, Chao; Chen, Maohua; Hu, Chunhong

    2015-01-01

    Objective: This study aimed to investigate the correlation between strain and elasticity of the common carotid artery (CCA) by ultrasonography and evaluate its clinical significance in patients with diabetic nephropathy (DN). Methods: A total of 68 DN patients and 54 healthy subjects were randomly recruited from the Ultrasound Department from April 2014 to March 2015. The maximum of circumferential strain (CSmax), maximum of circumferential strain rate (CSRmax), compliance coefficient (CC) and stiffness index (β) of the CCA were determined by ultrasonography in all the patients, and correlation analysis was performed. Results: The CC, CSmax and CSRmax in DN group were significantly lower than in healthy controls (P<0.05), but β was markedly higher than in control group (P<0.05). There was a significantly positive correlation of CSmax and CSRmax with CC and a negative correlation with β in both control group and DN group. Conclusion: There is significant correlation between strain and elastic of the CCA. CSmax and CSRmax may be used to reflect the mechanical characteristics of CCA. PMID:26770367

  18. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh; Amelung, Falk

    2016-08-01

    We use 2004-2011 Envisat synthetic aperture radar imagery and InSAR time series methods to estimate the contemporary rates of strain accumulation in the Chaman Fault system in Pakistan and Afghanistan. At 29 N we find long-term slip rates of 16 ± 2.3 mm/yr for the Ghazaband Fault and of 8 ± 3.1 mm/yr for the Chaman Fault. This makes the Ghazaband Fault one of the most hazardous faults of the plate boundary zone. We further identify a 340 km long segment displaying aseismic surface creep along the Chaman Fault, with maximum surface creep rate of 8.1 ± 2 mm/yr. The observation that the Chaman Fault accommodates only 30% of the relative plate motion between India and Eurasia implies that the remainder is accommodated south and east of the Katawaz block microplate.

  19. The invalidity of the Laplace law for biological vessels and of estimating elastic modulus from total stress vs. strain: a new practical method.

    PubMed

    Costanzo, Francesco; Brasseur, James G

    2015-03-01

    There are strong medical motivations to measure changes in material properties of tubular organs, in vivo and in vitro. The current approach estimates hoop stress from intraluminal pressure using the Laplace law and identifies 'elastic modulus' as the slope of a curve fitted hoop stress plotted against strain data. We show that this procedure is fundamentally flawed because muscle and other soft tissue are closely incompressible, so that the total stress includes a volume-preserving material-dependent hydrostatic response that invalidates the method. Furthermore, we show that the Laplace law incorrectly estimates total stress in biological vessels. However, the great need to estimate elastic modulus leads us to develop an alternative practical method, based on shear stress-strain, i.e. insensitive to nonelastic response from incompressibility, but that uses the same measurement data as the current (incorrect) method. The individual material parameters in the underlying (unknown) constitutive relation combine into an effective shear modulus that is a true measure of elastic response, unaffected by incompressibility and without reference to the Laplace law. Furthermore, our effective shear modulus is determined directly as a function of deformation, rather than as the slope of a fitted curve. We validate our method by comparing effective shear moduli against exact shear moduli for four theoretical materials with different degrees of nonlinearity and numbers of material parameters. To further demonstrate applicability, we reanalyse an in vivo study with our new method and show that it resolves an inconsistent change in modulus with the current method.

  20. Lead solubilization and accumulation by two strains of Pseudomonas obtained from a contaminated alfisol's effluent in southwestern Nigeria.

    PubMed

    Ekundayo, E O; Killham, K

    2001-10-01

    Two strains of Pseudomonas species (B2 and D5) selected from an array of lead solubilizing and accumulating bacteria obtained from the effluent contaminated soil samples of a battery manufacturing factory were studied. Increase in pH between 4.0 and 6.0 favoured the growth of isolates: Peak log10 cfu mL(-1) values of 7.1, 7.5 and 8.5 were obtained at pH 4, 5 and 6, respectively. Cell bound lead concentrations for B2 (0.34 mg mL(-1)) and D5 (0.30 mg mL(-1)) obtained by direct contact with Pbs were greater than lead concentrations of 0.89 and 0.25 mg mL(-1) for B2 and D5, respectively, obtained in dialyzed cultures. These cell bound lead concentration in undialyzed cultures were also greater than lead concentrations of 0.03 and 0.07 mg mL(-1) for B2 and D5 in culture supernatants. Glucose addition did nor improve lead accumulation in the isolates. Exploitation of such isolates for the biotreatment of lead laden effluent was conducted. PMID:11683230

  1. Lead solubilization and accumulation by two strains of Pseudomonas obtained from a contaminated alfisol's effluent in southwestern Nigeria.

    PubMed

    Ekundayo, E O; Killham, K

    2001-10-01

    Two strains of Pseudomonas species (B2 and D5) selected from an array of lead solubilizing and accumulating bacteria obtained from the effluent contaminated soil samples of a battery manufacturing factory were studied. Increase in pH between 4.0 and 6.0 favoured the growth of isolates: Peak log10 cfu mL(-1) values of 7.1, 7.5 and 8.5 were obtained at pH 4, 5 and 6, respectively. Cell bound lead concentrations for B2 (0.34 mg mL(-1)) and D5 (0.30 mg mL(-1)) obtained by direct contact with Pbs were greater than lead concentrations of 0.89 and 0.25 mg mL(-1) for B2 and D5, respectively, obtained in dialyzed cultures. These cell bound lead concentration in undialyzed cultures were also greater than lead concentrations of 0.03 and 0.07 mg mL(-1) for B2 and D5 in culture supernatants. Glucose addition did nor improve lead accumulation in the isolates. Exploitation of such isolates for the biotreatment of lead laden effluent was conducted.

  2. The Effect of Single Crystal Elastic and Plastic Anisotropy on Strain Heterogeneity: Comparison of Olivine to Other Common Minerals

    NASA Astrophysics Data System (ADS)

    Cline, C. J., II; Burnley, P. C.

    2013-12-01

    In order to extrapolate the rheological behavior of polycrystalline earth materials to conditions and timescales that are unachievable in a laboratory setting, some sort of model is required. Numerical models are particularly appealing for this task but for these models to provide a sound platform for extrapolation they must be based on a complete understanding of all deformation mechanics that are operating in the real material. In a simplified description these mechanics can be thought of as having three components 1) the individual grains, 2) the grain boundaries and 3) the macroscopic aggregate response, which can be thought of as the interaction of the other two components within the polycrystal. Traditionally, the aggregate response is thought to represent the summed or average behavior of all individual grains deforming under the influence of the macroscopic stress tensor but; recent work within our lab using finite element models (FEM) has shown that local stress fields within the aggregate are not representative of the macroscopic stress tensor and can vary in both direction and magnitude. These variations in the stress tensor produce a pattern similar to force chains that are observed in deformation experiments on granular materials; and appear to be a direct consequence of stress percolation which is controlled by the anisotropy of the elastic and plastic strengths of the individual grains. To test this hypothesis we will conduct a suite of deformation experiments utilizing multiple monomineralic polycrystals that have a range of single crystal anisotropies. In order to infer the direction of stress acting on each grain and reconstruct the total modulation of stress direction throughout the sample, we have chosen materials that form microstructures that are sensitive to stress direction, such as deformation twins and kink bands. This experimental technique will allow for a direct comparison between the single crystal anisotropy of a material and the

  3. Elastic limit of silicane.

    PubMed

    Peng, Qing; De, Suvranu

    2014-10-21

    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers. PMID:25190587

  4. The Lima-Peru seismic gap: a study of inter-seismic strain accumulation from a decade of GPS measurements

    NASA Astrophysics Data System (ADS)

    Norabuena, E. O.; Pollitz, F. F.; Dixon, T. H.

    2013-05-01

    The Peruvian subduction zone between the Mendaña Fracture zone and Arica, northern Chile, has been source of large megathrust earthquakes since historical to present times, The two last major events affecting the southern segment corresponds to Arequipa 2001 (Mw 8.3) and Pisco 2007 (Mw 8.1). A noteworthy event is the Lima 1746 earthquake with an assigned magnitude of Mw 8.5 and which is assumed to have broken several km of the seismogenic zone off Lima. The great shock was followed by a devastating tsunami that destroyed the main port of Callao, killing about 99 percent of its population. This extreme event was followed by quiescence of a few hundred years until the XX century when the Lima subduction zone was broken again by the earthquakes of May 1940 (Mw 8.0), October 1966 (Mw 8.0) and Lima 1974 (Mw 8.0). The broken areas overlap partially with the estimated area of the 1746 earthquake and put the region in a state of seismic gap representing a major hazard for Lima city - Peru's capital and its about 9 million of inhabitants. Our study reports the interseismic strain accumulation derived from a decade of GPS measurement at 11 geodetic monuments including one measurement in an island 80 km offshore and models variations of coupling along the plate interface.

  5. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains.

    PubMed

    Hanson, David E; Barber, John L; Subramanian, Gopinath

    2013-12-14

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  6. The internal-strain tensor of crystals for nuclear-relaxed elastic and piezoelectric constants: on the full exploitation of its symmetry features.

    PubMed

    Erba, Alessandro

    2016-05-18

    Symmetry features of the internal-strain tensor of crystals (whose components are mixed second-energy derivatives with respect to atomic displacements and lattice strains) are formally presented, which originate from translational-invariance, atomic equivalences, and atomic invariances. A general computational scheme is devised, and implemented into the public Crystal program, for the quantum-mechanical evaluation of the internal-strain tensor of crystals belonging to any space-group, which takes full-advantage of the exploitation of these symmetry-features. The gain in computing time due to the full symmetry exploitation is documented to be rather significant not just for high-symmetry crystalline systems such as cubic, hexagonal or trigonal, but also for low-symmetry ones such as monoclinic and orthorhombic. The internal-strain tensor is used for the evaluation of the nuclear relaxation term of the fourth-rank elastic and third-rank piezoelectric tensors of crystals, where, apart from a reduction of the computing time, the exploitation of symmetry is documented to remarkably increase the numerical precision of computed coefficients.

  7. The internal-strain tensor of crystals for nuclear-relaxed elastic and piezoelectric constants: on the full exploitation of its symmetry features.

    PubMed

    Erba, Alessandro

    2016-05-18

    Symmetry features of the internal-strain tensor of crystals (whose components are mixed second-energy derivatives with respect to atomic displacements and lattice strains) are formally presented, which originate from translational-invariance, atomic equivalences, and atomic invariances. A general computational scheme is devised, and implemented into the public Crystal program, for the quantum-mechanical evaluation of the internal-strain tensor of crystals belonging to any space-group, which takes full-advantage of the exploitation of these symmetry-features. The gain in computing time due to the full symmetry exploitation is documented to be rather significant not just for high-symmetry crystalline systems such as cubic, hexagonal or trigonal, but also for low-symmetry ones such as monoclinic and orthorhombic. The internal-strain tensor is used for the evaluation of the nuclear relaxation term of the fourth-rank elastic and third-rank piezoelectric tensors of crystals, where, apart from a reduction of the computing time, the exploitation of symmetry is documented to remarkably increase the numerical precision of computed coefficients. PMID:27150599

  8. Elastic And Plastic Deformations In Butt Welds

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.

  9. Finite strain stress fields near the tip of an interface crack between a soft incompressible elastic material and a rigid substrate.

    PubMed

    Krishnan, V R; Hui, C-Y

    2009-05-01

    We present a numerical study of finite strain stress fields near the tip of an interface crack between a rigid substrate and an incompressible hyperelastic solid using the finite element method (FEM). The finite element (FE) simulations make use of a remeshing scheme to overcome mesh distortion. Analyses are carried out by assuming that the crack tip is either pinned, i.e., the elastic material is perfectly bonded (no slip) to the rigid substrate, or the crack lies on a frictionless interface. We focus on a material which hardens exponentially. To explore the effect of geometric constraint on the near tip stress fields, simulations are carried out under plane stress and plane strain conditions. For both the frictionless interface and the pinned crack under plane stress deformation, we found that the true stress field directly ahead of the crack tip is dominated by the normal opening stress and the crack face opens up smoothly. This is also true for an interface crack along a frictionless boundary in plane strain deformation. However, for a pinned interface crack under plane strain deformation, the true opening normal stress is found to be lower than the shear stress and the transverse normal stress. Also, the crack opening profile for a pinned crack under plane strain deformation is completely different from those seen in plane stress and in plane strain (frictionless interface). The crack face flips over and the tip angle is almost tangential to the interface. Our results suggest that interface friction can play a very important role in interfacial fracture of soft materials on hard substrates. PMID:19437055

  10. Evaluation of myocardial strain and artery elasticity using speckle tracking echocardiography and high-resolution ultrasound in patients with bicuspid aortic valve.

    PubMed

    Li, Yang; Deng, You-Bin; Bi, Xiao-Jun; Liu, Ya-Ni; Zhang, Jun; Li, Li

    2016-07-01

    Reduced artery elasticity and reduced myocardial strain were present in patients with bicuspid aortic valve (BAV). Their relation to dilation of proximal aorta is unclear. We aimed to study their relation to dilation of proximal aorta. We studied 57 BAV patients categorized into 2 subgroup according to proximal ascending aortic dimensions (nondilated <35 mm and dilated ≥35 mm). Twenty-nine healthy subjects were recruited as control. Aortic and carotid strain, distensibility and stiffness index were derived. Left ventricular myocardial strain were acquired with speckle-tracking echocardiography. BAV patients with dilation of proximal ascending aorta had lower aortic strain (4.1 ± 4.2 % vs. 7.1 ± 3.5 %) and carotid strain (4.8 ± 1.9 % vs. 10.6 ± 4.2 %), lower aortic distensibility (1.4 ± 1.5 cm(2) dyn(-1) 10(-6) vs. 2.5 ± 1.5 cm(2) dyn(-1) 10(-6)) and carotid distensibility (1.6 ± 0.7 cm(2) dyn(-1) 10(-6) vs. 3.9 ± 2.4 cm(2) dyn(-1) 10(-6)), higher aortic stiffness index (19.7 ± 14.1 vs. 8.3 ± 4.9) and carotid stiffness index (12.2 ± 8.5 vs. 5.0 ± 2.2), and lower global circumferential (-15.9 ± 5.8 % vs. -19.1 ± 4.1 %), radial (19.3 ± 11.6 % vs. 29.8 ± 14.9 %) and longitudinal (-15.7 ± 3.4 % vs. -18.4 ± 3.4 %) compared with those without dilation of proximal ascending aorta. All mean values are different to p < 0.05. Dilation of proximal ascending aorta is associated with more advanced reduction of aortic and carotid elasticity and myocardial strain in BAV patients, supporting the need for detailed and extensive vascular and cardiac surveillance in BAV patients.

  11. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil

    PubMed Central

    Wu, Zhe; Duangmanee, Promchup; Zhao, Pu; Juntawong, Niran; Ma, Chunhong

    2016-01-01

    Background: Developing algal industries in saline-alkali areas is necessary. However, suitable strains and optimal production conditions must be studied before widespread commercial use. Objectives: The effects of light, temperature, KNO3, and CO(NH2)2 on beta-carotene and biomass accumulation were compared and evaluated in order to provide scientific guidance for commercial algal production in northeastern Thailand. Materials and Methods: An orthogonal design was used for evaluating optimal conditions for the algal production of three candidate Dunaliella salina strains (KU XI, KU 10 and KU 31) which were isolated from saline soils and cultured in the column photobioreactor. Results: The optimal light and temperature for algae growth were 135.3 μmol m-2 s-1 and 22°C, while the conditions of 245.6 μmol m-2 s-1 and 22°C induced the highest level of beta-carotene production (117.99 mg L-1). The optimal concentrations of KNO3, CO(NH2)2, and NaHCO3 for algae growth were 0.5 g L-1, 0.36 g L-1, and 1.5 g L-1, respectively, while 0, 0.12 g L-1 and 1.5 g L-1 were best suited for beta-carotene accumulation. The highest beta-carotene rate per cell appeared with the highest light intensity (12.21 pg) and lowest temperature (12.47 pg), and the lowest total beta-carotene content appeared at the lowest temperature (15°C). There was not a significant difference in biomass accumulation among the three Dunaliella strains; however, the beta-carotene accumulation of KU XI was higher than that of the other two strains. Conclusions: Light and temperature were both relevant factors that contributed to the growth and beta-carotene accumulation of the three D. salina strains, and NaHCO3 had significantly positive effects on growth. The degree of impact of the different factors on cell growth was temperature > NaHCO3 > light intensity > KNO3 > CO (NH2)2 > strains; the impact on beta-carotene accumulation was temperature > light intensity > KNO3 > CO (NH2)2 > strains > NaHCO3 PMID

  12. Measurement of interseismic strain accumulation in the Southern Andes (25°-35°S) using Envisat SAR data

    NASA Astrophysics Data System (ADS)

    Ducret, G.; Doin, M. P.; Grandin, R.; Socquet, A.; Vigny, C.; Métois, M.; Béjar-Pizzaro, M.

    2012-04-01

    The Chilean subduction zone is one of the most active in the world. The Nazca plate subducts under the South America plate with a velocity around 7 cm/year. Along-strike and along-dip variations of interseismic coupling suggest that the subduction interface is divided into segments. Rupture of one or several consecutive segments may produce earthquakes of magnitude greater than 8.0. However, the definition of the segmentation in the particular case of the Chilean subduction and its relation to earthquake nucleation in general is a debated topic. We focus on an area extending over 1000 km in latitude, located between Taltal (~25°S) and Constitution (~35°S), which has been accumulating tectonic strain since the mid-20th century. Three main earthquakes occurred in the last decade around the boundaries of this segment : the 1995 Antogagasta (M=8.1) and the 2007 Tocopilla (M=7.7) earthquakes to the North and the 2010 Maule (M=8.8) earthquake to the South. A few seismic swarms occurred in recent years : the episode of Valparaiso (~33°S) in 1985, the Puntaqui (~30°S) crisis in 1997, and the swarms in the Copiapo (~27°S) region in 1973 and 2006. The 25-35°S part of the subduction zone experiences since 38 years a background seismicity (given by USGS catalog), that is mainly located along the plate interface and less frequently within the overriding plate. The seismicity rate is varying from South to North with a maximum seismicity located around La Serena area (~30°S). There, the coupling distribution is constrained by an important GPS dataset that indicate a lower coupling (less than 60%) compared with areas further North and South. Similarly, GPS data suggest that the Copiapo area also corresponds to a local minimum of coupling. However the GPS network is too sparse further North to constrain coupling variations between 28° and 25°S. We use InSAR (Interferometric Synthetic Aperture Radar) to provide additional insights on interseismic strain accumulation and the

  13. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium.

    PubMed

    Landolfo, Sara; Politi, Huguette; Angelozzi, Daniele; Mannazzu, Ilaria

    2008-06-01

    To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the 'fitness' of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.

  14. Bill Armstrong memorial session: elastic modulus and strain recovery testing of variable stiffness composites for structural reconfiguration applications

    NASA Astrophysics Data System (ADS)

    McKnight, Geoff; Doty, Robert; Herrera, Guillermo; Henry, Chris

    2007-04-01

    Morphing structures have the potential to significantly improve vehicle performance over existing fixed component designs. In this paper, we examine new composite material design approaches to provide combined high stiffness and large reversible deformation. These composites employ shape memory polymers (SMP) matrices combined with segmented metallic reinforcement to create materials with variable stiffness properties and reversible accommodation of relatively large strains. By adjusting the temperature of the sample, the storage modulus can be varied up to 200x. We demonstrate the segmented composite concept in prototype materials made using thermoplastic polyurethane SMP reinforced with interlocking segmented steel platelets. Measured storage moduli varied from 5-12 GPa, below SMP T g, and 0.1-0.5 GPa above SMP T g. The samples demonstrated more than 95% recovery from induced axial strains of 5% at 80°C. Viscoelastic effects are dominant in this regime and we investigate the rate dependence of strain recovery.

  15. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.

  16. The elastic energy of damaged rocks

    NASA Astrophysics Data System (ADS)

    Hamiel, Y.; Lyakhovsky, V.; Ben-Zion, Y.

    2009-12-01

    Crustal rocks are typically treated as linear elastic material with constant elastic moduli. This assumption is appropriate for rock with relatively low damage, associated with low concentration of cracks and flaws, and under relatively small strains. However, laboratory and field data indicate that rocks subjected to sufficiently high loads exhibit clear deviations from linear behavior. In general, nonlinear stress-strain relationships of rocks can be approximated by including higher-order terms of the strain tensor in the elastic energy expression (e.g., the Murnaghan model). Such models are successful for calculating rock deformation under high confining pressure. However, values of the third (higher order) Murnaghan moduli estimated from acoustic experiments are one to two orders of magnitude above the expected values of the same moduli estimated from the stress-strain relations in quasi-static rock-mechanics experiments. The Murnaghan model also fails to reproduce an abrupt change in the elastic moduli when deformation changes from compression to tension. Such behavior was observed in laboratory experiments with rocks, concrete, and composite brittle material samples. Bi-linear elastic models with abrupt change of the moduli under stress reversal were suggested based on acoustic experiments ("clapping" nonlinearity) and in continuum damage mechanics (unilateral damage model). Here we present a theoretical basis for general second-order nonlinear expression of the elastic potential. We then show that a simplified version of the general nonlinear model is consistent with bi-linear elastic behavior and accounts for non-linearity even under small strains. We apply the simplified nonlinear model to various laboratory observations, including quasi-static modeling of rocks and composite material with different effective moduli under tension and compression; rock dilation under shear; stress- and damage-induced seismic wave anisotropy observed during cycling load of

  17. Elastic-plastic-brittle transitions and avalanches in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-01-31

    A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

  18. Strain effects and intermixing at the Si surface: Importance of long-range elastic corrections in first-principles calculations

    DOE PAGES

    Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; Mousseau, Normand

    2014-10-06

    Here we investigate Ge mixing at the Si(001) surface and characterize the 2 N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field,more » we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more signi cant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.« less

  19. Strain effects and intermixing at the Si surface: Importance of long-range elastic corrections in first-principles calculations

    SciTech Connect

    Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; Mousseau, Normand

    2014-10-06

    Here we investigate Ge mixing at the Si(001) surface and characterize the 2 N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field, we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more signi cant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.

  20. Strain effects and intermixing at the Si surface: Importance of long-range elastic corrections in first-principles calculations

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; Mousseau, Normand

    2014-10-01

    We investigate Ge mixing at the Si(001) surface and characterize the 2×N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long-range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field, we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more significant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.

  1. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains.

    PubMed

    Sui, Tan; Lunt, Alexander J G; Baimpas, Nikolaos; Sandholzer, Michael A; Hu, Jianan; Dolbnya, Igor P; Landini, Gabriel; Korsunsky, Alexander M

    2014-01-01

    Human enamel is a typical hierarchical mineralized tissue with a two-level composite structure. To date, few studies have focused on how the mechanical behaviour of this tissue is affected by both the rod orientation at the microscale and the preferred orientation of mineral crystallites at the nanoscale. In this study, wide-angle X-ray scattering was used to determine the internal lattice strain response of human enamel samples (with differing rod directions) as a function of in situ uniaxial compressive loading. Quantitative stress distribution evaluation in the birefringent mounting epoxy was performed in parallel using photoelastic techniques. The resulting experimental data was analysed using an advanced multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure of human enamel, and reflects the differing rod directions and orientation distributions of hydroxyapatite crystals. The achieved satisfactory agreement between the model and the experimental data, in terms of the values of multidirectional strain components under the action of differently orientated loads, suggests that the multiscale approach captures reasonably successfully the structure-property relationship between the hierarchical architecture of human enamel and its response to the applied forces. This novel and systematic approach can be used to improve the interpretation of the mechanical properties of enamel, as well as of the textured hierarchical biomaterials in general.

  2. Non-linear visco-elastic analysis and the design of super-pressure balloons : stress, strain and stability

    NASA Astrophysics Data System (ADS)

    Wakefield, David

    approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.

  3. Elastic limit and microplastic response of hardened steels

    SciTech Connect

    Zaccone, M.A. ); Krauss, G. . Dept. of Metallurgical and Materials Engineering)

    1993-10-01

    Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.

  4. Neutron diffraction study on very high elastic strain of 6% in an Fe{sub 3}Pt under compressive stress

    SciTech Connect

    Yamaguchi, Takashi; Fukuda, Takashi Kakeshita, Tomoyuki; Harjo, Stefanus; Nakamoto, Tatsushi

    2014-06-09

    An Fe{sub 3}Pt alloy with degree of order 0.75 exhibits a second-order-like martensitic transformation from a cubic structure to a tetragonal one at about 90 K; its tetragonality c/a changes nearly continuously from 1 to 0.945 on cooling from 90 K to 14 K. We have investigated the change in lattice parameters in a single crystal of the Fe{sub 3}Pt alloy at 93 K under compressive stresses, σ, applied in the [001] direction by neutron diffraction. The tetragonality c/a has decreased continuously from 1 to 0.907 with an increase in |σ| up to |σ| = 280 MPa; the corresponding lattice strain in the [001] direction, due to the continuous structure change, increases from 0% to 6.1%. When the stress of 300 MPa is reached, c/a has changed abruptly from 0.907 to 0.789 due to a first-order martensitic transformation.

  5. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal

  6. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    NASA Astrophysics Data System (ADS)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  7. High-energy transmission Laue micro-beam X-ray diffraction: a probe for intra-granular lattice orientation and elastic strain in thicker samples.

    PubMed

    Hofmann, Felix; Song, Xu; Abbey, Brian; Jun, Tea-Sung; Korsunsky, Alexander M

    2012-05-01

    An understanding of the mechanical response of modern engineering alloys to complex loading conditions is essential for the design of load-bearing components in high-performance safety-critical aerospace applications. A detailed knowledge of how material behaviour is modified by fatigue and the ability to predict failure reliably are vital for enhanced component performance. Unlike macroscopic bulk properties (e.g. stiffness, yield stress, etc.) that depend on the average behaviour of many grains, material failure is governed by `weakest link'-type mechanisms. It is strongly dependent on the anisotropic single-crystal elastic-plastic behaviour, local morphology and microstructure, and grain-to-grain interactions. For the development and validation of models that capture these complex phenomena, the ability to probe deformation behaviour at the micro-scale is key. The diffraction of highly penetrating synchrotron X-rays is well suited to this purpose and micro-beam Laue diffraction is a particularly powerful tool that has emerged in recent years. Typically it uses photon energies of 5-25 keV, limiting penetration into the material, so that only thin samples or near-surface regions can be studied. In this paper the development of high-energy transmission Laue (HETL) micro-beam X-ray diffraction is described, extending the micro-beam Laue technique to significantly higher photon energies (50-150 keV). It allows the probing of thicker sample sections, with the potential for grain-level characterization of real engineering components. The new HETL technique is used to study the deformation behaviour of individual grains in a large-grained polycrystalline nickel sample during in situ tensile loading. Refinement of the Laue diffraction patterns yields lattice orientations and qualitative information about elastic strains. After deformation, bands of high lattice misorientation can be identified in the sample. Orientation spread within individual scattering volumes is

  8. Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630

    PubMed Central

    2013-01-01

    The refinement of biodiesel or renewable diesel from bacterial lipids has a great potential to make a contribution for energy production in the future. This study provides new data concerning suitable nutrient concentrations for cultivation of the Gram-positive Rhodococcus opacus PD630, which is able to accumulate large amounts of lipids during nitrogen limitation. Enhanced concentrations of magnesium have been shown to increase the final optical density and the lipid content of the cells. Elevated phosphate concentrations slowed down the onset of the accumulation phase, without a clear effect on the final optical density and the cell’s lipid content. A robust growth of R. opacus was possible in the presence of ammonium concentrations of up to 1.4 g l-1 and sucrose concentrations of up to 240 g l-1, with an optimum regarding growth and lipid storage observed in the range of 0.2 to 0.4 g l-1 ammonium and 20 to 40 g l-1 sucrose, respectively. Moreover, R. opacus showed tolerance to high salt concentrations. PMID:23855965

  9. Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation

    NASA Astrophysics Data System (ADS)

    Craig, Timothy J.; Calais, Eric

    2014-12-01

    The mechanical behavior—and hence earthquake potential—of faults in continental interiors is an issue of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular, the New Madrid Seismic Zone, struck by four magnitude 7 or greater earthquakes in 1811-1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those plate interior faults, a quantity that remains debated. Here we address this issue with an analysis of up to 14.6 years of continuous GPS data from a network of 200 sites in the central United States centered on the New Madrid and Wabash Valley seismic zones. We find that the high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation. These results place an upper bound on strain accrual on faults of 0.2 mm/yr and 0.6 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. For the New Madrid region, where a paleoseismic record is available for the past ˜5000 years, we argue that strain accrual—if any—does not permit the 500-900 year repeat time of paleo-earthquakes observed in the Upper Mississippi Embayment. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the New Madrid Seismic Zone and possibly plate wide.

  10. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed. PMID

  11. Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit.

    PubMed

    Rhie, Gi-eun; Jung, Hae-Mi; Kim, Bong Su; Mekalanos, John J

    2008-10-01

    Because of its production and use in Vietnam, the most widely used oral cholera vaccine consists of heat- or formalin-killed Vibrio cholerae whole cells (WC). An earlier version of this type of vaccine called whole cell-recombinant B subunit vaccine (BS-WC) produced in Sweden also contained the B subunit of cholera toxin (CTB). Both WC and BS-WC vaccines produced moderate levels of protection in field trials designed to evaluate their cholera efficacy. V. cholerae cells in these vaccines induce antibacterial immunity, and CTB contributes to the vaccine's efficacy presumably by stimulating production of anti-toxin neutralizing antibody. Although more effective than the WC vaccine, the BS-WC vaccine has not been adopted for manufacture by developing world countries primarily because the CTB component is difficult to manufacture and include in the vaccine in the doses needed to induce significant immune responses. We reasoned this was a technical problem that might be solved by engineering strains of V. cholerae that express cell-associated CTB that would co-purify with the bacterial cell fraction during the manufacture of WC vaccine. Here we report that construction of a V. cholerae O1 classical strain, O395-N1-E1, that has been engineered to accumulate CTB in the periplasmic fraction by disrupting the epsE gene of type II secretion pathway. O395-N1-E1 induces anti-CTB IgG and vibriocidal antibodies in mice immunized with two doses of formalin killed whole cells. Intraperitoneal immunization of mice with O395-N1-E1 induced a significantly higher anti-CTB antibody response compared to that of the parental strain, O395-N1. Our results suggest that this prototype cholera vaccine candidate strain may assist in preparing improved and inexpensive oral BS-WC cholera vaccine without the need to purify CTB separately. PMID:18582519

  12. The First Law of Elasticity

    ERIC Educational Resources Information Center

    Girill, T. R.

    1972-01-01

    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  13. An elastic second skin

    NASA Astrophysics Data System (ADS)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  14. An elastic second skin.

    PubMed

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G; Sakamoto, Fernanda H; Gilchrest, Barbara A; Anderson, R Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings. PMID:27159017

  15. [Study of the Accumulation of Rec A from Bacillus subtilis in the Mitochondria of a Recombinant Strain of the Yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Y I; Leonovich, O A; Zylkova, M V; Biriukova, Iu K

    2016-01-01

    No eukaryotic species has a system for homologous DNA recombination of the mitochondrial genome. We report on an integrative genetic systembased on the pQ-SRUS construct that allows the expression of the RecA recombinase from Bacillus subtilis and its transportation to mitochondria of Yarrowia lipolytica. The targeting of recombinant RecA to mitochondria is provided by leader sequences (5'-UTR and 3-UTR) derived from the SOD2 gene mRNA, which exhibit affinity to the outer mitochondrial membrane and provides cotranslational import of RecA to the inner space of mitochondria. The accumulation of RecA in mitochondria of the Y. lipolytica recombinant strain bearing the pQ-SRUS construct has been shown by immunoblotting of purified mitochondrial preparations.

  16. Differential accumulation of poly(A)+ RNA between virulent and double-stranded RNA-induced hypovirulent strains of Cryphonectria (Endothia) parasitica.

    PubMed Central

    Powell, W A; Van Alfen, N K

    1987-01-01

    The double-stranded RNA responsible for transmissible hypovirulence in Cryphonectria (Endothia) parasitica was found to affect the accumulation of specific poly(A)+ RNA. Using differential hybridization techniques, two genes were isolated, Vir1 and Vir2, which were specifically expressed as poly(A)+ RNAs in the virulent cells. The highly expressed RNA sequences from these genes were not found in total RNA isolated from either American or European hypovirulent strains, although the genes were present in their genomes. Other virulence- and hypovirulence-specific RNA sequences were also detected. One isolated hypovirulence-specific RNA sequence was expressed in both virulent and hypovirulent cells, but in a two- to fourfold-higher concentration in the hypovirulent cells. The results show that hypovirulence is associated with concurrent changes in a few highly expressed poly(A)+ RNAs, which suggests a specific effect of the double-stranded RNA on fungal gene expression. Images PMID:2446118

  17. [Study of the Accumulation of Rec A from Bacillus subtilis in the Mitochondria of a Recombinant Strain of the Yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Y I; Leonovich, O A; Zylkova, M V; Biriukova, Iu K

    2016-01-01

    No eukaryotic species has a system for homologous DNA recombination of the mitochondrial genome. We report on an integrative genetic systembased on the pQ-SRUS construct that allows the expression of the RecA recombinase from Bacillus subtilis and its transportation to mitochondria of Yarrowia lipolytica. The targeting of recombinant RecA to mitochondria is provided by leader sequences (5'-UTR and 3-UTR) derived from the SOD2 gene mRNA, which exhibit affinity to the outer mitochondrial membrane and provides cotranslational import of RecA to the inner space of mitochondria. The accumulation of RecA in mitochondria of the Y. lipolytica recombinant strain bearing the pQ-SRUS construct has been shown by immunoblotting of purified mitochondrial preparations. PMID:27266246

  18. The French neurotropic vaccine strain of yellow fever virus accumulates mutations slowly during passage in cell culture.

    PubMed

    Holbrook, M R; Li, L; Suderman, M T; Wang, H; Barrett, A D

    2000-08-01

    This study of the yellow fever French neurotropic vaccine strain from the Institut Pasteur (FNV-IP) demonstrates that this viral genome is not as stable as that of the 17D-204 vaccine virus. FNV-IP was plaque-purified three times and then passaged eight times in Vero cells. Viral populations from the second and eighth passage post purification were sequenced and compared to the published sequences of FNV-IP. The passage-2 viral population had 31 nucleotide and nine amino acid changes compared to the parental virus while the passage-8 virus had six additional nucleotide changes encoding a single amino acid substitution. The plaque-purified virus also had two sequence deletions in the 3'-noncoding region. The plaque purification resulted in selection of a passage-2 virus that had a mouse LD(50) of 20 pfu/ml, 67-fold greater than parental FNV-IP which had an LD(50) of 0.3 pfu/ml. Subsequent passage in Vero cells resulted in a passage-8 virus which had increased neurovirulence with an LD(50) of 3.2 pfu/ml. The only amino acid difference between the passage-2 and passage-8 viruses was at amino acid 638 of NS5 which lies within domain V of the RNA-dependent-RNA polymerase. Overall, these data indicate that FNV-IP virus has an inherently less stable genome than 17D vaccine virus and a variable viral population.

  19. Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement

    PubMed Central

    Leong, Vivian; Kent, Meredith; Jomaa, Ahmad; Ortega, Joaquin

    2013-01-01

    Assembly of the Escherichia coli 30S ribosomal subunits proceeds through multiple parallel pathways. The protein factors RimM, YjeQ, RbfA, and Era work in conjunction to assist at the late stages of the maturation process of the small subunit. However, it is unclear how the functional interplay between these factors occurs in the context of multiple parallel pathways. To understand how these factors work together, we have characterized the immature 30S subunits that accumulate in ΔrimM cells and compared them with immature 30S subunits from a ΔyjeQ strain. The cryo-EM maps obtained from these particles showed that the densities representing helices 44 and 45 in the rRNA were partially missing, suggesting mobility of these motifs. These 30S subunits were also partially depleted in all tertiary ribosomal proteins, particularly those binding in the head domain. Using image classification, we identified four subpopulations of ΔrimM immature 30S subunits differing in the amount of missing density for helices 44 and 45, as well as the amount of density existing in these maps for the underrepresented proteins. The structural defects found in these immature subunits resembled those of the 30S subunits that accumulate in the ΔyjeQ strain. These findings are consistent with an “early convergency model” in which multiple parallel assembly pathways of the 30S subunit converge into a late assembly intermediate, as opposed to the mature state. Functionally related factors will bind to this intermediate to catalyze the last steps of maturation leading to the mature 30S subunit. PMID:23611982

  20. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  1. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  2. Secular Variation in the Storage and Dissipation of Elastic Strain Energy Along the Central Altyn Tagh Fault (86-88.5°E), NW China

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Gold, R. D.; Arrowsmith, R.; Friedrich, A. M.

    2015-12-01

    In elastic rebound theory, hazard increases as interseismic strain rebuilds after rupture. This model is challenged by the temporal variation in the pacing of major earthquakes that is both predicted by mechanical models and suggested by some long paleoseismic records (e.g., 1-3). However, the extent of such behavior remains unclear due to a lack of long (5-25 ky) records of fault slip. Using Monte Carlo analysis of 11 offset landforms, we determined a 16-ky record of fault slip for the active, left-lateral Altyn Tagh fault, which bounds the NW margin of the Tibetan Plateau. This history reveals a pulse of accelerated slip between 6.4 and 6.0 ka, during which the fault slipped 9 +14/-2 m at a rate of 23 +35/-5 mm/y, or ~3x the 16 ky average of 8.1 +1.2/-0.9mm/y. These two modes of earthquake behavior suggest temporal variation in the rates of stress storage and release. The simplest explanation for the pulse is a cluster of 2-8 Mw > 7.5 earthquakes. Such supercyclicity has been reported for the Sunda (4) and Cascadia (3) megathrusts, but contrasts with steady slip along the strike-slip Alpine fault (5), for example. A second possibility is that the pulse reflects a single, unusually large rupture. However, this Black Swan event is unlikely: empirical scaling relationships require a Mw 8.2 rupture of the entire 1200-km-long ATF to produce 7 m of average slip. Likewise, Coulomb stress change from rupture on the adjacent North Altyn fault is of modest magnitude and overlap with the ATF. Poor temporal correlation between precipitation and the slip pulse argues against climatically modulated changes in surface loading (lakes/ice) or pore-fluid pressure. "Paleoslip" studies such as this sacrifice the single-event resolution of paleoseismology in exchange for long records that quantify both the timing and magnitude of fault slip averaged over multiple ruptures, and are essential for documenting temporal variations in fault slip as we begin to use calibrated physical

  3. Effect of Y doping and composition-dependent elastic strain on the electrical properties of (Ba,Sr)TiO{sub 3} thin films deposited at 520 deg. C

    SciTech Connect

    Wang, R.-V.; McIntyre, Paul C.; Baniecki, John D.; Nomura, Kenji; Shioga, Takeshi; Kurihara, Kazuaki; Ishii, Masatoshi

    2005-11-07

    We demonstrate that large and simultaneous improvements in permittivity, tunability, and leakage current density of (Ba,Sr)TiO{sub 3} (BST)-based thin-film capacitors can be achieved by yttrium doping. We have found that, for a low deposition temperature (520 deg. C) sputtering process, Y-doped BST capacitors exhibit tenfold lower leakage current density (<10{sup -9} A/cm{sup 2} at 100 KV/cm) and 70% higher permittivity than nominally undoped BST-based capacitors. Furthermore, this work suggests an intriguing correlation between dopant concentration-dependent elastic strain in the films and their enhanced dielectric properties.

  4. Elastic properties of HMX.

    SciTech Connect

    Sewell, T. D.; Bedrov, D.; Menikoff, Ralph; Smith, G. D.

    2001-01-01

    Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for {beta}-, {alpha}-, and {delta}-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76,2662 (1982)]. Additionally, the isothermal compression curve was computed for {beta}-HMX for 0 {le} p {le} 10.6 GPa; the bulk modulus K and its pressure derivative K{prime} were obtained from two fitting forms employed previously in experimental studies of the {beta}-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of {beta}-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.

  5. Quantum Critical Elasticity.

    PubMed

    Zacharias, Mario; Paul, Indranil; Garst, Markus

    2015-07-10

    We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T(3) law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors. PMID:26207483

  6. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains.

    PubMed

    Baron, C; Domke, N; Beinhofer, M; Hapfelmeier, S

    2001-12-01

    That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did

  7. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  8. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile

    NASA Astrophysics Data System (ADS)

    Ruegg, J. C.; Rudloff, A.; Vigny, C.; Madariaga, R.; de Chabalier, J. B.; Campos, J.; Kausel, E.; Barrientos, S.; Dimitrov, D.

    2009-06-01

    The Concepción-Constitución area [35-37°S] in South Central Chile is very likely a mature seismic gap, since no large subduction earthquake has occurred there since 1835. Three campaigns of global positioning system (GPS) measurements were carried out in this area in 1996, 1999 and 2002. We observed a network of about 40 sites, including two east-west transects ranging from the coastal area to the Argentina border and one north-south profile along the coast. Our measurements are consistent with the Nazca/South America relative angular velocity (55.9°N, 95.2°W, 0.610°/Ma) discussed by Vigny et al. (2008, this issue) which predicts a convergence of 68 mm/year oriented 79°N at the Chilean trench near 36°S. With respect to stable South America, horizontal velocities decrease from 45 mm/year on the coast to 10 mm/year in the Cordillera. Vertical velocities exhibit a coherent pattern with negative values of about 10 mm/year on the coast and slightly positive or near zero in the Central Valley or the Cordillera. Horizontal velocities have formal uncertainties in the range of 1-3 mm/year and vertical velocities around 3-6 mm/year. Surface deformation in this area of South Central Chile is consistent with a fully coupled elastic loading on the subduction interface at depth. The best fit to our data is obtained with a dip of 16 ± 3°, a locking depth of 55 ± 5 km and a dislocation corresponding to 67 mm/year oriented 78°N. However in the northern area of our network the fit is improved locally by using a lower dip around 13°. Finally a convergence motion of about 68 mm/year represents more than 10 m of displacement accumulated since the last big interplate subduction event in this area over 170 years ago (1835 earthquake described by Darwin). Therefore, in a worst case scenario, the area already has a potential for an earthquake of magnitude as large as 8-8.5, should it happen in the near future.

  9. Time series analysis of strain accumulation along the Haiyuan fault (Gansu, China) over the 1993-2009 period, from ERS and ENVISAT InSAR data

    NASA Astrophysics Data System (ADS)

    Jolivet, Romain; Lasserre, Cecile; Doin, Marie-Pierre; Guillaso, Stéphane; Cavalié, Olivier; Peltzer, Gilles; Sun, Jianbao; Rong, Dailu; Shen, Zheng-Kang; Xu, Xiwei

    2010-05-01

    We use SAR interferometry to measure the strain accumulation along the left-lateral Haiyuan fault system (HFS), that marks the north-eastern boundary of the tibetan plateau. The last major earthquakes that occured along the HFS are the M~8 1920 Haiyuan earthquake (strike-slip mechanism) and the Ml=8-8.3 1927 Gulang earthquake that ruptured a thrust fault system. No large earthquake is reported on the central section of the HFS, the "Tianzhu seismic gap", since ~1000 years. We first analyze the complete ENVISAT SAR data archive along 4 descending and 2 ascending tracks for the 2003-2009 period and construct an InSAR-based mean Line-Of-Sight (LOS) velocity map around the HFS from the eastern end of the Qilian shan (102° E), to the west, to the Liupan shan (106° E), to the east. Data are processed using a small baseline chain type. For each track, all radar images are coregistrated to a single master and interferograms are produced using a local adaptative range filtering. Residual orbital and atmospheric delays are jointly inverted and corrected for each unwrapped interferogram. Atmospheric corrections are validated using the ERA40 global atmospheric model (ECMWF). The interferograms series on each track are then inverted to obtain the increments of LOS radar delays between acquisition dates, adapting the Lopez-Quiroz et al. 2009 time series analysis. The obtained LOS mean velocity maps show a dominant left-lateral motion across the fault with along-strike variations: some fault sections are locked at shallow depth while others are creeping and local vertical movements are observed (subsidence in the "Jingtai" pull-apart basin). For various fault slip rates imposed below 20 km (4-10 mm/yr), we model the shallow velocity by inverting the mean LOS velocity maps for both strike-slip and dip-slip motion on vertical, 5km x 2.5km discretized patches, using a least-square method with an appropriate degree of smoothing. The fault geometry follows the surface trace of the

  10. Elastic properties of solids at high pressure

    NASA Astrophysics Data System (ADS)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  11. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery.

  12. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. PMID:25491826

  13. Thermal fluctuations and rubber elasticity.

    PubMed

    Xing, Xiangjun; Goldbart, Paul M; Radzihovsky, Leo

    2007-02-16

    The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation and shows good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the external deformation. PMID:17359034

  14. Thermal Fluctuations and Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Goldbart, Paul M.; Radzihovsky, Leo

    2007-02-01

    The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation and shows good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the external deformation.

  15. Time series and MinTS analysis of strain accumulation along the Haiyuan fault (Gansu, China) over the 2003-2010 period, from ENVISAT InSAR data

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Lasserre, C.; Lin, N.; Simons, M.; Doin, M.; Hetland, E. A.; Muse, P.; Peltzer, G.; Jianbao, S.; Dailu, R.

    2010-12-01

    We use SAR interferometry to measure the strain accumulation along the left-lateral Haiyuan fault system (hereafter HFS), that marks the north-eastern boundary of the tibetan plateau. The last major earthquakes that occured along the HFS are the M~8 1920 Haiyuan earthquake (strike-slip mechanism) and the Ml=8-8.3 1927 Gulang earthquake that ruptured a thrust fault system. There has been no known large earthquake on the central section of the HFS, the “Tianzhu seismic gap”, in the last ~1000 years. We first analyze the complete ENVISAT SAR data archive along three descending and two ascending tracks for the 2003-2009 period and construct an InSAR-based mean line-of-sight (LOS) velocity map around the HFS from the eastern end of the Qilian Shan (102° E), to the west, to the Liupan Shan (106° E), to the east. We empirically correct our interferograms for propagation delays associated with changes on the stratified atmospheric structure. We then estimate the mean LOS velocity for each track using a time series analysis which reveals the existence of a 40 km long creeping segment located at the western end of the 1920 rupture. Extending from the Jingtai pull-apart basin, which shows a 2-3 mm/yr subsidence rate, to the Mao Mao Shan, the creep rate is estimated to reach 8 mm/yr locally and is higher than the long term loading rate of the Haiyuan fault, estimated geodetically at 5±1 mm/yr. The surface extension of the creeping segment is colocated with strong micro- and moderate seismic activity. We also explore the possibility of transient creep during the 2003-2010 time period, using a SBAS style, smoothed, time series analysis and the Multiscale Interferometric Time Series method (MinTS, CalTech, see Hetland et al. 2010 AGU abstract). While classic time series methods are based on a pixel-by-pixel approach and do not consider spatial data covariances, due to residual atmospheric noise, the wavelet decomposition of each interferograms and the time inversion in the

  16. Tunable electronic and magnetic properties of a MoS2 monolayer with vacancies under elastic planar strain: Ab initio study

    NASA Astrophysics Data System (ADS)

    Salami, N.; Shokri, A. A.; Elahi, S. M.

    2016-03-01

    Electronic and magnetic properties of a molybdenum disulfide (MoS2) monolayer with some intrinsic and extrinsic vacancies are investigated using ab initio method in the presence of planar strain distributions. The calculations are carried out within the density functional theory (DFT) as implemented in SIESTA package. By using fully relaxed structures and applying a full spin-polarized description to the system, we concentrate on created magnetic moment due to the vacancies under different planar strains. The results show that the extrinsic MoS6 vacancy induces a net magnetic moment of 6.00 μB per supercell. Also, it is found that the pure MoS2 monolayer for the most cases does not show any magnetic properties under the planar strain. While the net magnetic moment of MoS2 monolayer with the vacancies enhances as the planar tensile strain is applied. The tunable magnetic moment of MoS2 monolayer may be utilized for the development of spintronic and flexible electronic nano-devices.

  17. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  18. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.

  19. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots. PMID:26986237

  20. Elasticity of liquid marbles.

    PubMed

    Asare-Asher, Samuel; Connor, Jason N; Sedev, Rossen

    2015-07-01

    Liquid marbles are liquid droplets covered densely with small particles. They exhibit hydrophobic properties even on hydrophilic surfaces and this behaviour is closely related to the Cassie wetting state and the phenomenon of superhydrophobicity. Typical liquid marbles are of millimetre size but their properties are analogous to smaller capsules and droplets of Pickering emulsions. We study water marbles covered with an uneven multilayer of polyethylene particles. Their elastic properties were assessed under quasi-static conditions. The liquid marbles are highly elastic and can sustain a reversible deformation of up to 30%. The spring constant is of the same order of magnitude as that for bare water droplets. Therefore the elasticity of the liquid marble is provided mainly by the liquid menisci between the particles. Upon further compression, the spring constant increases up to the point of breakage. This increase may be due to capillary attraction acting across the emerging cracks in the particle coating. The stress-strain curve for liquid marbles is similar to that obtained with liquid-filled microcapsules. A mechanical scaling description proposed for capsules is qualitatively applicable for liquid marbles. The exact mechanical role of the multilayer particle network remains elusive.

  1. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies.

    PubMed

    Schichtel, N; Korte, C; Hesse, D; Janek, J

    2009-05-01

    Ionic transport in solids parallel to grain or phase boundaries is usually strongly enhanced compared to the bulk. Transport perpendicular to an interface (across an interface) is often much slower. Therefore in modern micro- and nanoscaled devices, a severe influence on the ionic/atomic transport properties can be expected due to the high density of interfaces.Transport processes in boundaries of ionic materials are still not understood on an atomic scale. In most of the studies on ionic materials the interfacial transport properties are explained by the influence of space charge regions. Here we discuss the influence of interfacial strain at semicoherent or coherent heterophase boundaries on ionic transport along these interfaces in ionic materials. A qualitative model is introduced for (untilted and untwisted) hetero phase boundaries. For experimental verification, the interfacial oxygen ionic conductivity of different multilayer systems consisting of cubic ZrO(2) stabilised by aliovalent dopands (YSZ, CSZ) and an insulating oxide is investigated as a function of structural mismatch. Recent results on extremely fast ionic conduction in YSZ/SrTiO(3) thin film systems ("colossal ionic concuctivity at interfaces") is discussed from the viewpoint of strain effects.

  2. Universal Elasticity and Fluctuations of Nematic Gels

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Radzihovsky, Leo

    2003-04-01

    We study elasticity of spontaneously orientationally ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infrared fixed point. Namely, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible, and exhibit a universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local heterogeneities down to dlc<3.

  3. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  4. Microbial uptake and accumulation of (/sup 14/C Carbofuran) 1,3-dihydro-2,2-dimethyl-7 benzofuranylmethyl carbamate in twenty fungal strains isolated by miniecosystem studies

    SciTech Connect

    Arunachalam, K.D.; Lakshmanan, M.

    1988-07-01

    Studies have amply demonstrated that members of the microbial world vary widely in their response to pesticides and that several factors may influence the toxicity of pesticides. Similarly, the microbial tolerance of pesticides may be affected by growth conditions, physiological conditions of cells and various stress factors which might exist in natural population. The pesticides are incorporated into microorganisms by an active or passive accumulation mechanism. Most observations of pesticide accumulation within the cells were recorded with chlorinated hydrocarbons. It was found that not only live bacterial cells, but autoclaved cells also, show a similar uptake of pesticides. Since aquatic microorganisms and plankton in freshwater and marine environments are an important nutrient source for a broad spectrum of aquatic filter-feeding organisms, their accumulation of pesticides can constitute a hazardous link in the food chain to fish and higher vertebrates.

  5. Cavitation, Elasticity and Fracture in Strong Hydrogels

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Madkour, Ahmad; Tew, Gregory; Crosby, Alfred

    2010-03-01

    The interplay between the molecular network and material microstructure of a polymer-based hydrogel is critical for determining both the low strain elastic properties and fracture toughness. We present a novel complex hydrogel network developed by introducing polydimethylsiloxane (PDMS) into a polyethylene glycol (PEG)-based network. Using a combination of conventional characterization techniques, as well as the recently developed technique of cavitation rheology, we investigate the balance of elasticity and fracture in these complex networks. The polymer network maintains elasticity, with negligible hysteresis, at large strains over a wide range of swelling ratios. These properties are investigated across a continuum of length scales ranging from microns to centimeters by taking advantage of cavitation rheology, which uses the onset of an elastic instability to quantify local network mechanics. We compare our results with established scaling theories to describe both the elastic and fracture properties as a function of polymer volume fraction.

  6. Suppressor Mutations in the Study of Photosystem I Biogenesis: sll0088 Is a Previously Unidentified Gene Involved in Reaction Center Accumulation in Synechocystis sp. Strain PCC 6803

    PubMed Central

    Yu, Jianping; Shen, Gaozhong; Wang, Tao; Bryant, Donald A.; Golbeck, John H.; McIntosh, Lee

    2003-01-01

    In previous work, some members of our group isolated mutant strains of Synechocystis sp. strain PCC 6803 in which point mutations had been inserted into the psaC gene to alter the cysteine residues to the FA and FB iron-sulfur clusters in the PsaC subunit of photosystem I (J. P. Yu, I. R. Vassiliev, Y. S. Jung, J. H. Golbeck, and L. McIntosh, J. Biol. Chem. 272:8032-8039, 1997). These mutant strains did not grow photoautotrophically due to suppressed levels of chlorophyll a and photosystem I. In the results described here, we show that suppressor mutations produced strains that are capable of photoautotrophic growth at moderate light intensity (20 μmol m−2 s−1). Two separate suppressor strains of C14SPsaC, termed C14SPsaC-R62 and C14SPsaC-R18, were studied and found to have mutations in a previously uncharacterized open reading frame of the Synechocystis sp. strain PCC 6803 genome named sll0088. C14SPsaC-R62 was found to substitute Pro for Arg at residue 161 as the result of a G482→C change in sll0088, and C14SPsaC-R18 was found to have a three-amino-acid insertion of Gly-Tyr-Phe following Cys231 as the result of a TGGTTATTT duplication at T690 in sll0088. These suppressor strains showed near-wild-type levels of chlorophyll a and photosystem I, yet the serine oxygen ligand to FB was retained as shown by the retention of the S ≥ 3/2 spin state of the [4Fe-4S] cluster. The inactivation of sll0088 by insertion of a kanamycin resistance cartridge in the primary C14SPsaC mutant produced an engineered suppressor strain capable of photoautotrophic growth. There was no difference in psaC gene expression or in the amount of PsaC protein assembled in thylakoids between the wild type and an sll0088 deletion mutant. The sll0088 gene encodes a protein predicted to be a transcriptional regulator with sequence similarities to transcription factors in other prokaryotic and eukaryotic organisms, including Arabidopsis thaliana. The protein contains a typical helix

  7. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume

    2016-10-01

    The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10-7 to 10-5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10-4 and can reach 10-2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elastic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak amplitude of the dynamic applied strain is 8 × 10-6. The method is shown to be particularly suitable for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static acousto-elastic experiments in such materials are often performed outside the domain of validity of the third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapolated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty of the evaluation of the third-order elastic constants is assessed by repeating multiple times the measurements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic constants are l = -73 GPa ± 9%, m = -34 GPa ± 9%, and n = -61 GPa ± 10% for polymethyl methacrylate, and l = -17 000 GPa ± 20%, m = -11 000 GPa ± 10%, and n = -30 000 GPa ± 20% for dry Berea sandstone.

  8. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  9. Cultivar-Dependent Transcript Accumulation in Wheat Roots Colonized by Pseudomonas fluorescens Q8r1-96 Wild Type and Mutant Strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Triticum aestivum L. (wheat), the root-colonizing bacterium Pseudomonas fluorescens strain Q8r1-96 produces the antifungal metabolite 2,4-diacetylphloroglucinol (DAPG), suppresses damage caused by soilborne root pathogens, and modulates multiple stress or defense pathways in wheat roots. To test...

  10. Evaluation of fatigue damage accumulation in composites via linear and nonlinear guided wave methods

    NASA Astrophysics Data System (ADS)

    Zhao, Jinling; Chillara, Vamshi; Cho, Hwanjeong; Qiu, Jinhao; Lissenden, Cliff

    2016-02-01

    For non-destructive evaluation (NDE) of fatigue damage accumulation in composites, this research proposed a combined linear and a nonlinear ultrasonic guided wave method. For the linear Lamb waves approach, a laser-generation based imaging system (LGBI) is utilized to measure the phase velocities of guided waves in composites. The elastic moduli of the specimen are then obtained by inverting the measured phase velocities using genetic algorithms (GAs). The variation of the above two parameters (phase velocity and elastic moduli), together with the guided wave amplitudes, are then observed during the fatigue process. Nonlinear second harmonics in composites are studied theoretically and numerically. A third-order strain energy function of transversely isotropic materials is expressed by five invariants of the Green-Lagrange strain tensor. Results enable intelligent selection of primary modes for cumulative second harmonics generation. Meanwhile, finite element simulations are conducted to characterize second harmonics in light of the theory.

  11. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  12. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process. PMID:23819291

  13. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

  14. Evidence for lower crustal ductile strain localization in southern New York

    USGS Publications Warehouse

    Zoback, M.D.; Prescott, W.H.; Krueger, S.W.

    1985-01-01

    Historic triangulation data have been analysed to determine whether intraplate seismicity is associated with ongoing ductile deformation in the lower crust. The model we have attempted to test is basically analogous to strain accumulation and release along plate-boundary strike-slip faults like the San Andreas Fault in California. That is, beneath an elastic-seismogenic upper crust ???20 km thick, strain is preferentially localized within ductile shear zones in the lower crust due to broad-scale plate driving forces. The localized lower-crustal ductile strain causes stress and strain to accumulate elastically in the brittle crust which is eventually released in crustal earthquakes. At greater depths, this localized shear deformation probably develops into pervasive ductile flow. Numerous geodetic measurements along the San Andreas Fault confirm that earthquakes in the brittle upper crust are produced by the release of elastic strain that results from ongoing ductile shear or slip in the lower crust1,2. We have found evidence of high rates of crustal deformation in southern New York which suggest that localized ductile shear is occurring in the lower crust. ?? 1985 Nature Publishing Group.

  15. Switches in the mode of transmission select for or against a poorly aphid-transmissible strain of potato virus Y with reduced helper component and virus accumulation.

    PubMed

    Legavre, T; Maia, I G; Casse-Delbart, F; Bernardi, F; Robaglia, C

    1996-07-01

    A poorly aphid-transmissible potato virus Y (PVY-PAT) variant emerged after several cycles of mechanical transmission of an initially aphid-transmissible (AT) isolate. Sequence analysis of the N-terminal region of the helper component-proteinase (HC-Pro) gene revealed a Lys to Glu change at a position previously found to abolish the HC-Pro aphid transmission activity in several potyviruses. Two cycles of aphid transmission allowed the virus population to evolve towards an AT form (PVY-ATnew) where a Glu to Lys change was observed. PVY-PAT produced lower amounts of coat protein and the accumulation of its HC-Pro in infected plants decreased from 7 to 28 days post-inoculation, as compared to PVY-ATnew. RT-PCR and restriction analysis showed that the two virus populations co-existed in the PVY-AT isolate and that the AT form was counter-selected during mechanical transmission. These observations suggest that the Lys to Glu substitution leads to decreased stability of HC-Pro resulting in poor transmissions by aphids, and further strengthen the idea that HC-Pro is involved in the accumulation of potyvirus in infected plants.

  16. The contribution of remotely triggered displacement events to the long-term strain accumulation along the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, P.; Schurr, B.; Sobiesiak, M.; Ewiak, O.; Oncken, O.

    2012-12-01

    The Atacama Fault System (AFS) in N-Chile is an active trench-parallel fault system, located above approximately the down-dip end of coupling of the north Chilean subduction zone. The average long-term displacement rate for the last 100 000 - 10 000 years ranges between 0.2 and 0.3 mm/yr as determined by various methods and authors. The mode of displacement accumulation through time for this type of fault is not well understood. Surface ruptures along individual segments of the main fault scarp unambiguously reveal that the AFS has seismically ruptured several times during its past, but recurrence intervals are at least one order of magnitude longer than the megathrust earthquake cycle of the underlying subduction interface. Nevertheless these trench parallel fault systems bear a potential of unexpected large seismic ruptures as demonstrated by prominent examples like the Kobe Earthquak in 1995 and Denali Earthquake in 2002. The aim of this study is to quantify the relative proportion of aseismic and seismic slip through time and to investigate the impact of subduction zone earthquakes on the slip behavior of the AFS. Since 2008 we continuously monitor four active fault segments of the AFS with an array of 11 creepmeter stations, two of them co-located with Broadband seismometers. The displacement across the fault is continuously monitored with 2 samples/min with a resolution of 1μm. The displacement time series reveals that no continuous creep can be detected for 10 of the 11 stations. Instead we observe sudden displacement events correlated in time with far field megathrust earthquakes or local earthquakes on the plate interface or in the overriding crust. The most prominent event recorded on the creepmeters was the Mw=8.8 Maule earthquake in 2010 located 1500km to 1800km away from the creepmeter array. All of the stations showed a triggered sudden displacement event 6-8 min after the main shock. Correlation with seismological data from a nearby IPOC station

  17. Elasticity and Broken Symmetry in Nematic Elastomers

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Lubensky, T. C.; Xing, Xiangjun; Radzihovsky, Leo

    2002-03-01

    In nematic elastomers, the coupling between the internal liquid crystalline degrees of freedom and elastic strains lead to novel thermodynamic and mechanical behavior. Their remarkable properties make them candidates for a number of applications including artificial muscles and actuators. Other than their technological importance, their behavior highlights a major theme of physics: the interplay between broken symmetries and long-wavelength elasticity and hydrodynamics. In this talk my primary focus will be to show how the elastic "softness" and the pronounced nonlinear stress-strain relations in these materials arise as a consequence of broken rotational symmetry. We will reproduce these properties using simple models in a way that highlights this interplay between broken rotational symmetry and elasticity.

  18. A NONLINEAR MESOSCOPIC ELASTIC CLASS OF MATERIALS

    SciTech Connect

    P. JOHNSON; R. GUYER; L. OSTROVSKY

    1999-09-01

    It is becoming clear that the elastic properties of rock are shared by numerous other materials (sand, soil, some ceramics, concrete, etc.). These materials have one or more of the following properties in common strong nonlinearity, hysteresis in stress-strain relation, slow dynamics and discrete memory. Primarily, it is the material's compliance, the mesoscopic linkages between the rigid components, that give these materials their unusual elastic properties.

  19. Time series analysis of strain accumulation across the Haiyuan fault, Gansu, China, over the 2003-2009 period from ENVISAT InSAR data

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Lasserre, C.; Doin, M.; Guillaso, S.; Cavalie, O.; Peltzer, G.; Sun, J.; Shen, Z.

    2009-12-01

    tends to localize near the western end of the 1920 rupture. Finally, the velocity maps are inverted using a least-square method to solve for the potential creep rate near the surface and the interseismic loading slip-rate at depth. Our preliminary model assumes a vertical dislocation embedded in an elastic half-space and discretized into patches of increasing size with depth.

  20. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26888345

  1. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Initiation of unstable slips-microearthquakes by elastic impulses

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Ponomarev, A. V.; Maibuk, Yu. Ya.

    2016-09-01

    A series of laboratory experiments have been carried out with a model of two granite blocks under biaxial compression loading. The experiments are mainly intended for assessing the possibilities of partially releasing the accumulated potential energy. The model was subjected to calibrated mechanical impacts (strokes) which induced elastic impulses. The mechanical stresses, strains, and acoustic emission were recorded. The strokes caused both large slips releasing the stresses down to their initial level and small slips which reduced the stresses by 5-8%. The small slips mostly occurred after the precursory emergence of the low frequency oscillations having low amplitudes. Before the large slips, the stages of speeding-up of the relative motion of the sides of the block contact was observed, similar to those emerging before the natural slips unrelated to the strokes. This feature was not universal: in some cases, the model recovered to the stationary state of the block contact without a large slip. All the slips occurred with a time delay after the stroke. The time delay was shorter when the energy of the blow was higher. With the shorter time delays, the small slip is more likely to occur. The energy of the impacts was by three orders of magnitude lower than the energy accumulated by the model, which points to the triggering mechanism of slip initiation. The series of strokes resulting in the small displacements partially reduced the accumulated energy and prevented the emergence of large motions such as the stick-slip events. If after a series of such blows a large sliding event still occurred, its energy was higher than in the slips unrelated to the impacts. The experiments revealed the difficulties in solving the problem of earthquake hazard reduction by elastic impacts.

  3. The elastic constants of the human lens.

    PubMed

    Fisher, R F

    1971-01-01

    1. When the lens is spun around its antero-posterior polar axis in an apparatus designed for the purpose, high speed photography can be used to record its changing profile. By this method a variable radial centrifugal force can be applied to the lens which mimics the pull of the zonule.2. If the lens is not stressed at its centre beyond 100 Nm(-2) it behaves as a truly elastic body. When stressed beyond this limit visco-elastic strain is produced at its poles.3. The human lens has isotropic elastic properties at the extremes of life, but at the other times Young's Modulus of Elasticity varies with the direction in which it is measured.4. Young's Modulus of Elasticity of the lens varies with age, polar elasticity and equatorial elasticity, at birth being 0.75 x 10(3) and 0.85 x 10(3) Nm(-2) respectively, while at 63 years of age both are equal to 3 x 10(3) Nm(-2).5. A comparison of Young's Modulus of the young human lens with that of the rabbit and cat shows that the polar elasticity of the lenses of these animals was 5 times greater in the young rabbit, and 21 times greater in the adult cat. Equatorial elasticities of the rabbit and human lens were equal, while in the cat the equatorial elasticity was four times greater.6. A mathematical model showing the lens substance possessing a nucleus of lower isotropic elasticity than that of the isotropic elastic cortex surrounding it, accounts for the difference between polar and equatorial elasticity of the intact adult lens.7. The implications of these findings are discussed in relation to:(i) accommodation and the rheological properties of the lens;(ii) possible differences in the physical state of the lenticular proteins in the cortex and nucleus which may account for the senile variations in Young's Modulus of Elasticity in these regions of the lens;(iii) the loss of accommodation due solely to an increase in Young's Modulus of Elasticity of the lens between the ages of 15 and 60. This would amount to 44% of the total

  4. The elastic constants of the human lens

    PubMed Central

    Fisher, R. F.

    1971-01-01

    1. When the lens is spun around its antero-posterior polar axis in an apparatus designed for the purpose, high speed photography can be used to record its changing profile. By this method a variable radial centrifugal force can be applied to the lens which mimics the pull of the zonule. 2. If the lens is not stressed at its centre beyond 100 Nm-2 it behaves as a truly elastic body. When stressed beyond this limit visco-elastic strain is produced at its poles. 3. The human lens has isotropic elastic properties at the extremes of life, but at the other times Young's Modulus of Elasticity varies with the direction in which it is measured. 4. Young's Modulus of Elasticity of the lens varies with age, polar elasticity and equatorial elasticity, at birth being 0·75 × 103 and 0·85 × 103 Nm-2 respectively, while at 63 years of age both are equal to 3 × 103 Nm-2. 5. A comparison of Young's Modulus of the young human lens with that of the rabbit and cat shows that the polar elasticity of the lenses of these animals was 5 times greater in the young rabbit, and 21 times greater in the adult cat. Equatorial elasticities of the rabbit and human lens were equal, while in the cat the equatorial elasticity was four times greater. 6. A mathematical model showing the lens substance possessing a nucleus of lower isotropic elasticity than that of the isotropic elastic cortex surrounding it, accounts for the difference between polar and equatorial elasticity of the intact adult lens. 7. The implications of these findings are discussed in relation to: (i) accommodation and the rheological properties of the lens; (ii) possible differences in the physical state of the lenticular proteins in the cortex and nucleus which may account for the senile variations in Young's Modulus of Elasticity in these regions of the lens; (iii) the loss of accommodation due solely to an increase in Young's Modulus of Elasticity of the lens between the ages of 15 and 60. This would amount to 44% of the

  5. Localization in an Idealized Heterogeneous Elastic Sheet

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Croll, Andrew B.

    2015-03-01

    Localized deformation is ubiquitous in many natural and engineering materials. Often times such deformations are associated to non-homogeneous strain fields in the materials. In this work we demonstrate the response of idealized non-homogenous elastic sheets to uniaxial compression. The idealized/patterned surface layers are created by selective ultraviolet/ozone (UVO) treatment of the top surface of polydimethylsiloxane (PDMS) using TEM grid mask. By controlling the exposure time of the UVO, samples ranging from continuous thin films to sets of isolated small plates were created. We show how local strains vary with location in a patterned sample, leading to a complex localization process Even at low strains. We also see that continuous regions form isotropic undulations upon compression which persist to high strains, well beyond where localization is observed in the patterned regions. Despite the complexity, the localized deformation profile can be adequately described with a simple elastic model when appropriate local boundary conditions are considered.

  6. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  7. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  8. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  9. Universal elasticity and fluctuations of nematic gels.

    PubMed

    Xing, Xiangjun; Radzihovsky, Leo

    2003-04-25

    We study elasticity of spontaneously orientationally ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infrared fixed point. Namely, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible, and exhibit a universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local heterogeneities down to d(lc)<3. PMID:12732018

  10. Universal elasticity and fluctuations of nematic gels

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Radzihovsky, Leo

    2003-03-01

    We study elasticity of spontaneously orientationally-ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized for example by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infared fixed point. Namely, at long scales, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible and exhibit universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local hetergeneities down to d_lc < 3.

  11. A nonlinear elasticity phantom containing spherical inclusions

    PubMed Central

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio Adilton O.; Hall, Timothy J.

    2012-01-01

    The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions has distinct Young’s modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio (CNR) between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agrees with that predicted with nonlinear FEA. PMID:22772074

  12. Acquired disorders of elastic tissue: part I. Increased elastic tissue and solar elastotic syndromes.

    PubMed

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie

    2004-07-01

    Elastic fibers in the extracellular matrix are an integral component of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin may be attributed to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood due to the paucity of reported cases. Several acquired disorders in which accumulation or elastotic degeneration of dermal elastic fibers produces prominent clinical and histopathologic features have recently been described. They include elastoderma, linear focal elastosis, and late-onset focal dermal elastosis and must be differentiated from better-known disorders, among them acquired pseudoxanthoma elasticum, elastosis perforans serpiginosa, and Favré-Racouchot syndrome. Learning objective At the conclusion of this learning activity, participants should understand the similarities and differences between acquired disorders of elastic tissue that are characterized by an increase in elastic tissue, as well as the spectrum of solar elastotic dermatoses.

  13. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  14. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  15. The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation

    NASA Astrophysics Data System (ADS)

    Sweeney, C. A.; Vorster, W.; Leen, S. B.; Sakurada, E.; McHugh, P. E.; Dunne, F. P. E.

    2013-05-01

    Fatigue crack nucleation in polycrystal ferritic steel is investigated through experimental observation of multiple large-grained, notched, four-point bend tests combined with explicit microstructural representation of the same samples using crystal plasticity finite element techniques in order to assess fatigue indicator parameters, together with the roles of elastic anisotropy and length scale effects in slip development, and hence in crack nucleation. Elastic anisotropy has been demonstrated to play a pivotal role in the distribution and magnitude of polycrystal slip relative to observed crack nucleation sites in the context of constrained cyclic microplasticity. Length scale effects were found not to alter substantively the distributions or magnitudes of slip relative to the observed crack nucleation site, but in detailed analyses of an experimental sample, the location of highest magnitude of geometrically necessary dislocations was found to coincide precisely with the position of predicted peak plasticity and the experimentally observed crack nucleation site. The distributions of microplasticity within polycrystal samples were found to change quite significantly between the first yield and after multiple cycles. As a result, the effective plastic strain per cycle was found to be a better indicator of fatigue crack nucleation than peak effective plastic strain. In nine independently tested and analysed polycrystal samples, the cyclic effective plastic strain and crystallographic system peak accumulated slip were found to be good indicators of a fatigue crack nucleation site.

  16. Documentation of programs that compute 1) quasi-static tilts produced by an expanding dislocation loop in an elastic and viscoelastic material, and 2) surface shear stresses, strains, and shear displacements produced by screw dislocations in a vertical slab with modulus contrast

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    The material in this report can be grouped into two categories: 1) programs that compute tilts produced by a vertically oriented expanding rectangular dislocation loop in an elastic or viscoelastic material and 2) programs that compute the shear stresses, strains, and shear displacements in a three-phase half-space (i.e. a half-space containing a vertical slab). Each section describes the relevant theory, and provides a detailed guide to the operation of the programs. A series of examples is provided at the end of each section.

  17. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham

  18. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another. PMID:26701708

  19. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range. PMID:27314712

  20. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  1. Nonlinear elastic effects in bismuth whiskers

    NASA Astrophysics Data System (ADS)

    Powell, B. E.; Skove, M. J.

    1983-03-01

    Finite deformations have a stress (σ)-strain (ɛ) relation of the form ɛ=s'11σ +δ(s11σ)2, where s'11 is an elastic compliance and δ is a combination of second-order and third-order elastic constants. Tensile tests performed on bismuth whisker crystals oriented in the <111¯> and <11¯0> directions give δ111¯ =7.6±0.5 and δ11¯0 =0±0.3, respectively. Orientations are given in the rhombohedral system in which the angle between axes is approximately 57°.

  2. Myocardial Strain Imaging with High-Performance Adaptive Dynamic Grid Interpolation Method

    NASA Astrophysics Data System (ADS)

    Shuhui Bu,; Makoto Yamakawa,; Tsuyoshi Shiina,

    2010-07-01

    The accurate assessment of local myocardial strain is important for diagnosing ischemic heart diseases because decreased myocardial motion often appears in the early stage. Calculating the spatial derivation of displacement is a necessary step in the strain calculation, but the numerical calculation is extremely sensitive to noise. Commonly used smoothing methods are the moving-average and median filters; however, these methods have a trade-off between spatial resolution and accuracy. A novel smoothing/fitting method is proposed for overcoming this problem. In this method, the detected displacement vectors are discretized at mesh nodes, and virtual springs are connected between adjacent nodes. By controlling the elasticity of the virtual springs, misdetected displacements are fitted without the above problem. Further improvements can be achieved by applying a Kalman filter for position tracking, and then calculating the strain from the accumulated displacement vectors. From the simulation results, we conclude that the proposed method improves the accuracy and spatial resolution of the strain images.

  3. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  4. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  5. Elastic and thermal expansion asymmetry in dense molecular materials

    NASA Astrophysics Data System (ADS)

    Burg, Joseph A.; Dauskardt, Reinhold H.

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  6. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  7. Elastic properties of minerals

    SciTech Connect

    Aleksandrov, K.S.; Prodaivoda, G.T.

    1993-09-01

    Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.

  8. Elasticity and Geomechanics

    NASA Astrophysics Data System (ADS)

    Davis, R. O.; Selvadurai, A. P. S.

    1996-04-01

    This book concisely examines the use of elasticity in solving geotechnical engineering problems. In a highly illustrated and user-friendly format, it provides a thorough grounding in the linear theory of elasticity and an understanding of the applications. The first two chapters present a basic framework of the theory of elasticity and describe test procedures for the determination of elastic parameters for soils. Chapters 3 and 4 present the fundamental solutions of Boussinesque, Kelvin, and Mindlin, and use these to formulate solutions to problems of practical interest in geotechnical engineering. The book concludes with a sequence of appendices designed to provide the interested student with details of elasticity theory that are peripheral to the main text. Each chapter concludes with a set of questions for the student to answer. The book is appropriate for upper level students in civil engineering and engineering geology.

  9. Programmable shape transformation of elastic spherical domes.

    PubMed

    Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy

    2016-07-20

    We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales.

  10. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  11. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  12. Proton Nucleus Elastic Scattering Data.

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  13. Geodetic strain of Greece in the interval 1892-1992

    NASA Astrophysics Data System (ADS)

    Davies, R.; England, P.; Parsons, B.; Billiris, H.; Paradissis, D.; Veis, G.

    1997-11-01

    A first-order triangulation of Greece was carried out in the 1890s. Reoccupation, using Global Positioning System receivers, of 46 of the 93 original markers yielded estimates of the deformation of the region over the intervening interval. Broad regions have similar geodetic strain over the 100-year time span. Strain north of the Gulf of Korinthos is predominantly north-south extension, though with a significant east-west component. The central Peloponnisos is relatively stable, whereas the gulfs of the southern Peloponnisos are all characterized by uniaxial east-west extension. The seismic expression of strain for the entire region, calculated from the seismic moment tensors of earthquakes of MS≥5.8 during the past 100 years, accounts for only 20-50% of the geodetically determined strain. At a scale of 50-100 km, the fraction of the strain that is expressed seismically varies much more than this range. In particular, whereas seismic strain in the eastern Gulf of Korinthos over the past 100 years is commensurate with the geodetic strain, there is rapid extension across the western Gulf of Korinthos (˜0.3 μstrain yr-1), with negligible seismic strain for the 100 year period prior to 1992. The Egion earthquake of June 1995 in the western Gulf of Korinthos released only a small proportion (≤20%) of the elastic strain that had accumulated in that region. The observed distribution of displacements can be explained by the relative rotation of two plates with a broad accommodation zone between them, but it is equally consistent with the deformation that would be expected of a sheet of fluid moving toward a low-pressure boundary at the Hellenic Trench. A simple calculation implies that if the region does behave as a fluid, then its effective viscosity is ˜1022-1023 Pa s. Such viscosities are consistent with the deformation of a lithosphere obeying a rheological law similar to that obtained for olivine in the laboratory.

  14. Tensile Instability in a Thick Elastic Body

    NASA Astrophysics Data System (ADS)

    Overvelde, Johannes T. B.; Dykstra, David M. J.; de Rooij, Rijk; Weaver, James; Bertoldi, Katia

    2016-08-01

    A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality.

  15. Tensile Instability in a Thick Elastic Body.

    PubMed

    Overvelde, Johannes T B; Dykstra, David M J; de Rooij, Rijk; Weaver, James; Bertoldi, Katia

    2016-08-26

    A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality. PMID:27610857

  16. Elastic carbon nanotube straight yarns embedded with helical loops.

    PubMed

    Shang, Yuanyuan; Li, Yibin; He, Xiaodong; Zhang, Luhui; Li, Zhen; Li, Peixu; Shi, Enzheng; Wu, Shiting; Cao, Anyuan

    2013-03-21

    Introducing stretchability and elasticity into carbon nanotube (CNT) yarns could extend their applications to areas such as stretchable and deformable fiber-based devices and strain sensors. Here, we convert a straight and inelastic yarn into a highly elastic structure by spinning a predefined number of helical loops along the yarn, resulting in a short helical segment with smooth structural transition to the straight portions. The loop-forming process is well controlled, and the obtained straight-helical-straight hybrid yarn is freestanding, stable, and based entirely on CNTs. The elastic and conductive yarns can be stretched to moderate tensile strains (up to 25%) repeatedly for 1000 cycles without producing residual deformation, with a simultaneous and linear change of electrical resistance depending on the strain. Our results indicate that conventional straight CNT yarns could be used as fiber-shaped strain sensors by simple structural modification. PMID:23400109

  17. Volume dilatation in a polycarbonate blend at varying strain rates

    NASA Astrophysics Data System (ADS)

    Hiermaier, S.; Huberth, F.

    2012-05-01

    Impact loaded polymers show a variety of strain-rate dependent mechanical properties in their elastic, plastic and failure behaviour. In contrast to purely crystalline materials, the volume of polymeric materials can significantly change under irreversible deformations. In this paper, uni-axial tensile tests were performed in order to measure the dilatation in the Polycarbonate-Acrylnitril-Butadien-Styrol (PC-ABS) Bayblend T65. The accumulation of dilatation was measured at deformation speeds of 0.1 and 500 [ mm/ s]. Instrumented with a pair of two high-speed cameras, volume segments in the samples were observed. The change in volume was quantified as relation between the deformed and initial volumes of the segments. It was observed that the measured dilatations are of great significance for the constitutive models. This is specifically demonstrated through comparisons of stress-strain relations derived from the two camera-perspectives with isochoric relations based on single-surface observations of the same experiments.

  18. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    NASA Technical Reports Server (NTRS)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  19. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  20. Strain concentration factor as a function of strain in a design application

    SciTech Connect

    Smith, R.E.

    1981-01-01

    This paper presents results for a detailed inelastic finite element analysis for a part of the Clinch River Breeder Reactor Control Rod Drive Mechanism. The analysis results indicate that plastic strain concentration factors may in fact be less than corresponding elastic strain concentration factors for nominal strains as low as .2%. This is particularly insightful in that it is presently common practice to approximate inelastic strain concentration factors as the square of the elastic concentration factors. The paper also examines Neuber's relation for predicting strain concentration factors and looks at the variation in the strain concentration factor through the cross-section of the component analyzed.

  1. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  2. Elastic properties of nanowires

    NASA Astrophysics Data System (ADS)

    da Fonseca, Alexandre F.; Malta, C. P.; Galva~O, Douglas S.

    2006-05-01

    We present a model to study Young's modulus and Poisson's ratio of the composite material of amorphous nanowires. It is an extension of the model derived by two of us [da Fonseca and Galva~o, Phys. Rev. Lett. 92, 175502 (2004)] to study the elastic properties of amorphous nanosprings. The model is based on twisting and tensioning a straight nanowire and we propose an experimental setup to obtain the elastic parameters of the nanowire. We used the Kirchhoff rod model to obtain the expressions for the elastic constants of the nanowire.

  3. Elastic carbon nanotube straight yarns embedded with helical loops

    NASA Astrophysics Data System (ADS)

    Shang, Yuanyuan; Li, Yibin; He, Xiaodong; Zhang, Luhui; Li, Zhen; Li, Peixu; Shi, Enzheng; Wu, Shiting; Cao, Anyuan

    2013-02-01

    Introducing stretchability and elasticity into carbon nanotube (CNT) yarns could extend their applications to areas such as stretchable and deformable fiber-based devices and strain sensors. Here, we convert a straight and inelastic yarn into a highly elastic structure by spinning a predefined number of helical loops along the yarn, resulting in a short helical segment with smooth structural transition to the straight portions. The loop-forming process is well controlled, and the obtained straight-helical-straight hybrid yarn is freestanding, stable, and based entirely on CNTs. The elastic and conductive yarns can be stretched to moderate tensile strains (up to 25%) repeatedly for 1000 cycles without producing residual deformation, with a simultaneous and linear change of electrical resistance depending on the strain. Our results indicate that conventional straight CNT yarns could be used as fiber-shaped strain sensors by simple structural modification.Introducing stretchability and elasticity into carbon nanotube (CNT) yarns could extend their applications to areas such as stretchable and deformable fiber-based devices and strain sensors. Here, we convert a straight and inelastic yarn into a highly elastic structure by spinning a predefined number of helical loops along the yarn, resulting in a short helical segment with smooth structural transition to the straight portions. The loop-forming process is well controlled, and the obtained straight-helical-straight hybrid yarn is freestanding, stable, and based entirely on CNTs. The elastic and conductive yarns can be stretched to moderate tensile strains (up to 25%) repeatedly for 1000 cycles without producing residual deformation, with a simultaneous and linear change of electrical resistance depending on the strain. Our results indicate that conventional straight CNT yarns could be used as fiber-shaped strain sensors by simple structural modification. Electronic supplementary information (ESI) available. See DOI

  4. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  5. WE-E-9A-01: Ultrasound Elasticity

    SciTech Connect

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  6. Yielding elastic tethers stabilize robust cell adhesion.

    PubMed

    Whitfield, Matt J; Luo, Jonathon P; Thomas, Wendy E

    2014-12-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  7. Symmetries and elasticity of nematic gels

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials.

  8. Symmetries and elasticity of nematic gels.

    PubMed

    Lubensky, T C; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials. PMID:12241370

  9. Mechanism of Resilin Elasticity

    PubMed Central

    Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.

    2012-01-01

    Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127

  10. Deflation of elastic surfaces

    NASA Astrophysics Data System (ADS)

    Quilliet, Catherine; Quemeneur, François; Marmottant, Philippe; Imhof, Arnout; Pépin-Donat, Brigitte; van Blaaderen, Alfons

    2010-03-01

    The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively explained through simple calculations. This allows to retrieve various shapes observed on hollow shells (from colloidal to centimeter scale), on lipid vesicles, or on some biological objects. The extension of this process to other geometries allows to modelize vegetal objects such as the ultrafast trap of carnivorous plants.

  11. Unconventional elasticity in smectic- A elastomers

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Lubensky, T. C.

    2007-07-01

    We study two aspects of the elasticity of smectic- A elastomers that make these materials genuinely and qualitatively different from conventional uniaxial rubbers. Under strain applied parallel to the layer normal, monodomain smectic- A elastomers exhibit a drastic change in Young’s modulus above a threshold strain value of about 3% , as has been measured in experiments by [Nishikawa and Finkelmann, Macromol. Chem. Phys. 200, 312 (1999)]. Our theory predicts that such strains induce a transition to a smectic- C -like state and that it is this transition that causes the change in elastic modulus. We calculate the stress-strain behavior as well as the tilt of the smectic layers and the molecular orientation for strain along the layer normal, and we compare our findings with the experimental data. We also study the electroclinic effect in chiral smectic- A* elastomers. According to experiments by [Lehmann , Nature (London) 410, 447 (2001)] and [Köhler , Appl. Phys. A 80, 381 (2003)], this effect leads in smectic- A* elastomers to a giant or, respectively, at least very large lateral electrostriction. Incorporating polarization into our theory, we calculate the height change of smectic- A* elastomer films in response to a lateral external electric field, and we compare this result to the experimental findings.

  12. Elastic Collisions and Gravity

    NASA Astrophysics Data System (ADS)

    Ball, Steven

    2009-04-01

    Elastic collisions are fascinating demonstrations of conservation principles. The mediating force must be conservative in an elastic collision. Truly elastic collisions take place only when the objects in collision do not touch, e.g. magnetic bumpers on low friction carts. This requires that we define a collision as a momentum transfer. Elastic collisions in 1-D can be solved in general and the implications are quite remarkable. For example, a heavy object moving initially towards a light object followed by an elastic collision results in a final velocity of the light object greater than either initial velocity. This is easily demonstrated with low friction carts. Gravitational elastic collisions involving a light spacecraft and an extremely massive body like a moon or planet can be approximated as 1-D collisions, such as the ``free return'' trajectory of Apollo 13 around the moon. The most fascinating gravitational collisions involve the gravitational slingshot effect used to boost spacecraft velocities. The maximum gravitational slingshot effect occurs when approaching a nearly 1-D collision, revealing that the spacecraft can be boosted to greater than twice the planet velocity, enabling the spacecraft to travel much further away from the Sun.

  13. Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.

  14. Topological derivatives for fundamental frequencies of elastic bodies

    NASA Astrophysics Data System (ADS)

    Kobelev, Vladimir

    2016-01-01

    In this article a new method for topological optimization of fundamental frequencies of elastic bodies, which could be considered as an improvement on the bubble method, is introduced. The method is based on generalized topological derivatives. For a body with different types of inclusion the vector genus is introduced. The dimension of the genus is the number of different elastic properties of the inclusions being introduced. The disturbances of stress and strain fields in an elastic matrix due to a newly inserted elastic inhomogeneity are given explicitly in terms of the stresses and strains in the initial body. The iterative positioning of inclusions is carried out by determination of the preferable position of the new inhomogeneity at the extreme points of the characteristic function. The characteristic function was derived using Eshelby's method. The expressions for optimal ratios of the semi-axes of the ellipse and angular orientation of newly inserted infinitesimally small inclusions of elliptical form are derived in closed analytical form.

  15. Modeling Pseudo-elastic Behavior of Springback

    NASA Astrophysics Data System (ADS)

    Xia, Z. Cedric

    2005-08-01

    constant. In the context of this investigation we refer psuedoelastic behavior in the most general sense as any deviation from linearity in the unloading curve. The non-linearity leads to a hysteresis loop upon reloading. The approach is based on the non-conventional theory with a vanishing elastic region as advanced by Dafalias and Popov. The treatment is purely phenomenological where we don't distinguish between macroscopic plasticity and micro-plasticity. The macroscopic uniaxial stress-strain curve is used to define effective plastic response in the same manner as classical plasticity theory except that the nonlinearity during unloading and reloading are incorporated into plasticity. It is shown that such models can be easily formulated within the context of elastoplasticity without violating any physical mechanisms of deformation. Springback for a plane strain bending model is used to demonstrate the potential effect if such a model is applied.

  16. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics.

    PubMed

    Najafabadi, Alireza Hassani; Tamayol, Ali; Annabi, Nasim; Ochoa, Manuel; Mostafalu, Pooria; Akbari, Mohsen; Nikkhah, Mehdi; Rahimi, Rahim; Dokmeci, Mehmet R; Sonkusale, Sameer; Ziaie, Babak; Khademhosseini, Ali

    2014-09-01

    Biodegradable nanofibrous polymeric substrates are used to fabricate suturable, elastic, and flexible electronics and sensors. The fibrous microstructure of the substrate makes it permeable to gas and liquid and facilitates the patterning process. As a proof-of-principle, temperature and strain sensors are fabricated on this elastic substrate and tested in vitro. The proposed system can be implemented in the field of bioresorbable electronics and the emerging area of smart wound dressings.

  17. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  18. Morphological study of elastic-plastic-brittle transitions in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-10-01

    We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The elastic-perfectly plastic transition is observed to follow percolation scaling with the correlation length critical exponent ν≈1.59, implying the universality class corresponding to the long-range correlated percolation. A quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of coupling between plasticity and damage evolution. PMID:25375508

  19. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  20. Measurement and Interpretation of High Strain Rates Near Bishkek, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Hager, B. H.; Herring, T. A.; Bragin, V. D.; Zubovicz, A. V.; Molnar, P.; Hamburger, M. A.

    2001-12-01

    In 1996, scientists at the IVTRAN Poligon began frequent measurement of a 25-site GPS network around Bishkek, the capital of Kyrgyzstan. Most of the marks in this network are concentrated near the range front and are measured in campaigns ~6 times/year . Two continuously operating sites spanning the Chu basin to the north and south of Bishkek anchor the network. Outcrop is sparse within the network and most of the campaign sites are mounted on boulders in alluvium. The frequent measurements and dense spacing of the network allow us to judge the stability of the marks, which appears to be, in general, surprisingly good. The geodetic velocity field is dominated by north-south convergence of 3 mm/yr across the network. Most of the convergence occurs over a distance of about 10 km at the southern edge of the basin, resulting in a strain rate of ~0.3 microstrain/yr. This strain rate is high - comparable to that across the San Andreas fault in southern California. Interpretation of this high strain rate in terms of a conventional model using a dislocation in a uniform elastic halfspace would require a shallow locking depth, leading to an inference of relatively low moment release from the earthquakes expected to release the accumulated strain. An alternative explanation is that the strain concentration near the range front results not from a shallow locking depth but from the low elastic modulus of the sediments in the basin. If this model is correct, the rupture area, moment release, and seismic hazard are greater. The network is located just to the west of the surface rupture of the 1911 M ~8 Chon Kemin earthquake, which demonstrated that major earthquakes do occur in this region.

  1. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  2. Advances in biomimetic regeneration of elastic matrix structures.

    PubMed

    Sivaraman, Balakrishnan; Bashur, Chris A; Ramamurthi, Anand

    2012-10-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

  3. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257

  4. Elastic anisotropy of crystals

    NASA Astrophysics Data System (ADS)

    Kube, Christopher M.

    2016-09-01

    An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-6-041609) provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  5. Mechanics of elastic networks

    PubMed Central

    Norris, Andrew N.

    2014-01-01

    We consider a periodic lattice structure in d=2 or 3 dimensions with unit cell comprising Z thin elastic members emanating from a similarly situated central node. A general theoretical approach provides an algebraic formula for the effective elasticity of such frameworks. The method yields the effective cubic elastic constants for three-dimensional space-filling lattices with Z=4, 6, 8, 12 and 14, the last being the ‘stiffest’ lattice proposed by Gurtner & Durand (Gurtner & Durand 2014 Proc. R. Soc. A 470, 20130611. (doi:10.1098/rspa.2013.0611)). The analytical expressions provide explicit formulae for the effective properties of pentamode materials, both isotropic and anisotropic, obtained from the general formulation in the stretch-dominated limit for Z=d+1. PMID:25484608

  6. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  7. Mechanics of elastic networks.

    PubMed

    Norris, Andrew N

    2014-12-01

    We consider a periodic lattice structure in d=2 or 3 dimensions with unit cell comprising Z thin elastic members emanating from a similarly situated central node. A general theoretical approach provides an algebraic formula for the effective elasticity of such frameworks. The method yields the effective cubic elastic constants for three-dimensional space-filling lattices with Z=4, 6, 8, 12 and 14, the last being the 'stiffest' lattice proposed by Gurtner & Durand (Gurtner & Durand 2014 Proc. R. Soc. A470, 20130611. (doi:10.1098/rspa.2013.0611)). The analytical expressions provide explicit formulae for the effective properties of pentamode materials, both isotropic and anisotropic, obtained from the general formulation in the stretch-dominated limit for Z=d+1.

  8. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  9. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    PubMed Central

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-01-01

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design. PMID:25341619

  10. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    SciTech Connect

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.

  11. Elasticity of excised dog lung parenchyma

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Fung, Y. C.; West, J. B.

    1978-01-01

    An optical-electromechanical system is used to measure the force-deformation behavior of biaxially loaded rectangular slabs of excised dog lung parenchyma. In the course of the study, the effects of time, the consistency of reference lengths and areas, the presence of hysteresis, the necessity of preconditioning, the repeatability of results, the effects of lateral load, the effect of strain rate, the effect of pH, the influence of temperature, and the variations among specimens are considered. A new finding is that there is a change in elastic behavior when the tissue undergoes a compressive strain. When the tissue is in tension, increasing the lateral load decreases the compliance, whereas the opposite is true when compressive strain is present.

  12. A Membrane Model from Implicit Elasticity Theory

    PubMed Central

    Freed, A. D.; Liao, J.; Einstein, D. R.

    2014-01-01

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079

  13. Stress Formulation in Three-Dimensional Elasticity

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke Saint Venant, and others. It was deemed complete when Saint Venant provided the strain formulation in 1860. However, unlike Cauchy, who addressed equilibrium in the field and on the boundary, the strain formulation was confined only to the field. Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct stress formulation could not be developed. Stress with traditional methods must be recovered by backcalculation: differentiating either the displacement or the stress function. We have addressed the compatibility on the boundary. Augmentation of these conditions has completed the stress formulation in elasticity, opening up a way for a direct determination of stress without the intermediate step of calculating the displacement or the stress function. This Completed Beltrami-Michell Formulation (CBMF) can be specialized to derive the traditional methods, but the reverse is not possible. Elasticity solutions must be verified for the compliance of the new equation because the boundary compatibility conditions expressed in terms of displacement are not trivially satisfied. This paper presents the variational derivation of the stress formulation, illustrates the method, examines attributes and benefits, and outlines the future course of research.

  14. Nonlinear elasticity of semiflexible filament networks.

    PubMed

    Meng, Fanlong; Terentjev, Eugene M

    2016-08-10

    We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress-strain relationship. The theory fits well to a wide range of experimental data on simple shear in different filament networks, quantitatively matching the differential shear modulus variation with stress, with only two adjustable parameters (which represent the filament stiffness and the pre-tension in the network, respectively). The general theory accurately describes the crossover between the positive and negative Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of tensegrity, showing that filament pre-tension on crosslinking into the network determines the magnitude of linear modulus G0. PMID:27444846

  15. Nonlinear elasticity of semiflexible filament networks.

    PubMed

    Meng, Fanlong; Terentjev, Eugene M

    2016-08-10

    We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress-strain relationship. The theory fits well to a wide range of experimental data on simple shear in different filament networks, quantitatively matching the differential shear modulus variation with stress, with only two adjustable parameters (which represent the filament stiffness and the pre-tension in the network, respectively). The general theory accurately describes the crossover between the positive and negative Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of tensegrity, showing that filament pre-tension on crosslinking into the network determines the magnitude of linear modulus G0.

  16. Acquired disorders of elastic tissue: Part II. decreased elastic tissue.

    PubMed

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie

    2004-08-01

    Elastic fibers in the extracellular matrix are integral components of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin are attributable to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood owing to the paucity of reported cases. Several acquired disorders in which loss of dermal elastic tissue produces prominent clinical and histopathologic features have recently been described, including middermal elastolysis, papular elastorrhexis, and pseudoxanthoma-like papillary dermal elastolysis, which must be differentiated from more well-known disorders such as anetoderma, acquired cutis laxa, and acrokeratoelastoidosis. Learning objective At the conclusion of this learning activity, participants should have an understanding of the similarities and differences between acquired disorders of elastic tissue that are characterized by a loss of elastic tissue.

  17. The Calculus of Elasticity

    ERIC Educational Resources Information Center

    Gordon, Warren B.

    2006-01-01

    This paper examines the elasticity of demand, and shows that geometrically, it may be interpreted as the ratio of two simple distances along the tangent line: the distance from the point on the curve to the x-intercept to the distance from the point on the curve to the y-intercept. It also shows that total revenue is maximized at the transition…

  18. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  19. The Law of Elasticity

    ERIC Educational Resources Information Center

    Cocco, Alberto; Masin, Sergio Cesare

    2010-01-01

    Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…

  20. Hydrodynamic Elastic Magneto Plastic

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  1. Nonlinear elasticity, fluctuations and heterogeneity of nematic elastomers

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Radzihovsky, Leo

    2008-01-01

    Liquid crystal elastomers realize a fascinating new form of soft matter that is a composite of a conventional crosslinked polymer gel (rubber) and a liquid crystal. These solid liquid crystal amalgams, quite similarly to their (conventional, fluid) liquid crystal counterparts, can spontaneously partially break translational and/or orientational symmetries, accompanied by novel soft Goldstone modes. As a consequence, these materials can exhibit unconventional elasticity characterized by symmetry-enforced vanishing of some elastic moduli. Thus, a proper description of such solids requires an essential modification of the classical elasticity theory. In this work, we develop a rotationally invariant, nonlinear theory of elasticity for the nematic phase of ideal liquid crystal elastomers. We show that it is characterized by soft modes, corresponding to a combination of long wavelength shear deformations of the solid network and rotations of the nematic director field. We study thermal fluctuations of these soft modes in the presence of network heterogeneities and show that they lead to a large variety of anomalous elastic properties, such as singular length-scale dependent shear elastic moduli, a divergent elastic constant for splay distortion of the nematic director, long-scale incompressibility, universal Poisson ratios and a nonlinear stress-strain relation for arbitrary small strains. These long-scale elastic properties are universal, controlled by a nontrivial zero-temperature fixed point and constitute a qualitative breakdown of the classical elasticity theory in nematic elastomers. Thus, nematic elastomers realize a stable "critical phase", characterized by universal power-law correlations, akin to a critical point of a continuous phase transition, but extending over an entire phase.

  2. Bulk solitary waves in elastic solids

    NASA Astrophysics Data System (ADS)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  3. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  4. Dynamic Acousto-Elasticity: Pressure and Frequency Dependences in Berea Sandstone.

    NASA Astrophysics Data System (ADS)

    Riviere, J. V.; Pimienta, L.; Latour, S.; Fortin, J.; Schubnel, A.; Johnson, P. A.

    2014-12-01

    Nonlinear elasticity is studied at the laboratory scale with the goal of understanding observations at earth scales, for instance during strong ground motion, tidal forcing and earthquake slip processes. Here we report frequency and pressure dependences on elasticity when applying dynamic acousto-elasticity (DAE) of rock samples, analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on a sample of Berea sandstone subject to 0.5MPa uniaxial load, with sinusoidal oscillating strain amplitudes ranging from 10-6 to 10-5 and at frequencies from 0.1 to 260Hz. In addition, the confining pressure is increased stepwise from 0 to 30MPa. We compare results to previous measurements made at lower (mHz) and higher (kHz) frequencies. Nonlinear elastic parameters corresponding to conditioning effects, third order elastic constants and fourth order elastic constants are quantitatively compared over the pressure and frequency ranges. We observe that the decrease in modulus due to conditioning increases with frequency, suggesting a frequency and/or strain-rate dependence that should be included in nonlinear elastic models of rocks. In agreement with previous measurements, nonlinear elastic effects also decrease with confining pressure, suggesting that nonlinear elastic sources such as micro-cracks, soft bonds and dislocations are turned off as the pressure increases.

  5. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    SciTech Connect

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  6. Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.

    PubMed

    Pythoud, F; Stergiopulos, N; Meister, J J

    1994-11-01

    We propose a new, simple way of constructing elastic tubes which can be used to model the nonlinear elastic properties of large arteries. The tube models are constructed from a silicon elastomer (Sylgard 184, Dow Corning), which exhibits a nonlinear behavior with increased stiffness at high strains. Tests conducted on different tube models showed that, with the proper choice of geometric parameters, the elastic properties, in terms of area-pressure relation and compliance, can be similar to that of real arteries.

  7. Elastic platonic shells.

    PubMed

    Yong, Ee Hou; Nelson, David R; Mahadevan, L

    2013-10-25

    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  8. A new approach to ultrasonic elasticity imaging

    NASA Astrophysics Data System (ADS)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  9. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  10. Structure and elastic properties of smectic liquid crystalline elastomer films.

    PubMed

    Stannarius, R; Köhler, R; Dietrich, U; Lösche, M; Tolksdorf, C; Zentel, R

    2002-04-01

    Mechanical measurements, x-ray investigations, and optical microscopy are employed to characterize the interplay of chemical composition, network topology, and elastic response of smectic liquid crystalline elastomers (LCEs) in various mesophases. Macroscopically ordered elastomer films of submicrometer thicknesses were prepared by cross linking freely suspended smectic polymer films. The cross-linked material preserves the mesomorphism and phase transitions of the precursor polymer. The elastic response of the smectic LCE is entropic, and the corresponding elastic moduli are of the order of MPa. In the tilted ferroelectric smectic-C* phase, the network structure plays an important role. Due to the coupling of elastic network deformations to the orientation of the mesogenic groups in interlayer cross-linked materials (mesogenic cross-linker units), the stress-strain characteristics is found to differ qualitatively from that in the other phases.

  11. Emergence of linear elasticity from the atomistic description of matter

    NASA Astrophysics Data System (ADS)

    Cakir, Abdullah; Pica Ciamarra, Massimo

    2016-08-01

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  12. Emergence of linear elasticity from the atomistic description of matter.

    PubMed

    Cakir, Abdullah; Pica Ciamarra, Massimo

    2016-08-01

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition. PMID:27497565

  13. Elastic scattering of hadrons

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    2013-01-01

    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  14. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    DOE PAGES

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  15. Structure and elastic properties of boron suboxide at 240 GPa

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; He, D. W.

    2009-04-01

    Structure and elastic properties of boron suboxide at high pressure have been investigated using generalized gradient approximation within the plane-wave pseudopotential density functional theory. The elastic constants are calculated using the finite strain method. The pressure dependences of lattice parameters, elastic constants, aggregate elastic moduli, and sound velocities of boron suboxide are predicted. It is found that the most stable structure of hcp boron suboxide at zero pressure corresponds to the ratio c /a of about 2.274 and the equilibrium lattice parameters a0 and c0 are about 5.331 and 12.124 Å, respectively. The high-pressure elastic constants indicate that boron suboxide is mechanically stable up to 368 GPa. The pressure dependence of the calculated normalized volume and the aggregate elastic moduli agree well with the recent experimental results. The sound velocities along different directions for the structure of boron suboxide are obtained. It shows that the velocities of the shear wave decrease as pressure increases but those of all the longitudinal waves increase with pressure. Moreover, the azimuthal anisotropy of the compression and shear aggregate wave velocities for different pressures are predicted. They change behavior with increasing pressure around 87 GPa because of an electronic topological transition. A refined analysis has been made to reveal the high pressure elastic anisotropy in boron suboxide.

  16. On the origin of nonlinear elasticity in disparate rocks

    SciTech Connect

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; Johnson, Paul Allan

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10-7 < ϵ < 10-5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis using model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.

  17. On the origin of nonlinear elasticity in disparate rocks

    DOE PAGES

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; Johnson, Paul Allan

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10-7 < ϵ < 10-5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis using model independentmore » statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less

  18. In situ nonlinear elastic behavior of soil observed by DAET

    SciTech Connect

    Larmat, Carene; Renaud, Guillaume; Rutledge, James T.; Lee, Richard C.; Guyer, Robert A.; Johnson, Paul A.

    2012-07-05

    The key to safe design of critical facilities (strong ground motion in low velocity materials such as soils). Current approaches are predictions from measurements of the elastic non-linear properties of boreholes samples. Need for in-situ, local and complete determination of non-linear properties of soil, rock in response to high-strain motion.

  19. Stepwise Elastic Behavior in a Model Elastomer

    NASA Astrophysics Data System (ADS)

    Bhawe, Dhananjay M.; Cohen, Claude; Escobedo, Fernando A.

    2004-12-01

    MonteCarlo simulations of an entanglement-free cross-linked polymer network of semiflexible chains reveal a peculiar stepwise elastic response. For increasing stress, step jumps in strain are observed that do not correlate with changes in the number of aligned chains. We show that this unusual behavior stems from the ability of the system to form multiple ordered chain domains that exclude the cross-linking species. This novel elastomer shows a toughening behavior similar to that observed in biological structural materials, such as muscle proteins and abalone shell adhesive.

  20. A method for assessment of slope unloading zone based on unloading strain

    NASA Astrophysics Data System (ADS)

    Bao, Han; Wu, Faquan; Xi, Pengcheng

    2016-04-01

    Slope unloading is a process of energy release. During the evolution of slope, unloading deformation appears and unloading zone is formed in shallow slope with rock mass relaxation and extension. In this paper, a new method is proposed to quantify the extent and damage degree of unloading zone according to unloading strain energy which is released in the process of unloading. By using elastic theory and statistical mechanics of rock masses, we establish a relation between accumulative opening displacement of unloading cracks and unloading strain, which is the principle to assess the extent and damage degree of unloading zone. Based on the unloading strain, the degree of unloading zone can be divided into two sub-zones, i.e., strongly unloading zone and slightly unloading zone, and the extent of the two sub-zones can be determined from the accumulative opening displacement curves of cracks. This method is applied to assess the slope unloading zone at a hydropower station dam site in northwest China. Results show that the accumulative opening displacement curves of cracks along adits vary regularly, and the curves can be divided into three parts. The strongly and slightly unloading zones can be recognized from the slope of each part, and their extent is limited by the two inflexions of each curve.

  1. Young's modulus reconstruction for elasticity imaging of deep venous thrombosis: animal studies

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Xie, Hua; Kim, Kang; Rubin, Jonathan M.; O'Donnell, Matthew; Wakefield, T. W.; Myers, D.; Emelianov, Stanislav Y.

    2004-04-01

    Recently, it was suggested that ultrasound elasticity imaging can be used to age deep vein thrombosis (DVT) since blood clot hardness changes with fibrin content. The main components of ultrasound elasticity imaging are deformation of the object, speckle or internal boundary tracking and evaluation of tissue motion, measurement of strain tensor components, and reconstruction of the spatial distribution of elastic modulus using strain images. In this paper, we investigate a technique for Young's modulus reconstruction to quantify ultrasound elasticity imaging of DVT. In-vivo strain imaging experiments were performed using Sprague-Dawley rats with surgically induced clots in the inferior vena cavas (IVC). In this model, the clot matures from acute to chronic in less than 10 days. Therefore, nearly every 24 hours the strain imaging experiments were performed to reveal temporal transformation of the clot. The measured displacement and strain images were then converted into maps of elasticity using model-based elasticity reconstruction where the blood clot within an occluded vein was approximated as a layered elastic cylinder surrounded by incompressible tissue. Results of this study demonstrate that Young's modulus gradually increases with clot maturity and can be used to differentiate clots providing a desperately needed clinical tool of DVT staging.

  2. A new paradigm for the molecular basis of rubber elasticity

    SciTech Connect

    Hanson, David E.; Barber, John L.

    2015-02-19

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There are serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief

  3. Elasticity of polymeric nanocolloidal particles

    PubMed Central

    Riest, Jonas; Athanasopoulou, Labrini; Egorov, Sergei A.; Likos, Christos N.; Ziherl, Primož

    2015-01-01

    Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions. Here we use numerical simulations and self-consistent field theory to study the deformation behaviour of a single spherical polymer brush upon diametral compression. We observe a universal response, which is rationalised using scaling arguments and interpreted in terms of two coarse-grained models. At small and intermediate compressions the deformation can be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, the models may be used to describe microelasticity of nanocolloids in severe confinement including dense disordered and crystalline phases. PMID:26522242

  4. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  5. Elastic-plastic behavior of non-woven fibrous mats

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Pai, Chia-Ling; Rutledge, Gregory C.; Boyce, Mary C.

    2012-02-01

    Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress-strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic-plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic-plastic stress-strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than -1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic-plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic-plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between

  6. Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?

    PubMed

    Dubey, Awadhesh K; Procaccia, Itamar; Shor, Carmel A B Z; Singh, Murari

    2016-02-26

    Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the meaning of such an expansion needs to be reconsidered. We point out the enormous difference between quenched and annealed averages of the stress versus strain curves and propose that a useful description of the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical evaluation exists. The elastic response is piecewise linear rather than nonlinear.

  7. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments

    NASA Astrophysics Data System (ADS)

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic

  8. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic

  9. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic

  10. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  11. Weld stresses beyond elastic limit: Materials discontinuity

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1989-01-01

    When welded structures depend on properties beyond the elastic limit to qualify their ultimate safety factor, and weld-parent materials abruptly change at the interface, then stress discontinuity is inevitable. The stress concentration is mildly sensitive to material relative strain hardening and acutely sensitive to applied stress fields. Peak stresses occur on the weld surface, at the interface, and dissipate within a 0.01-inch band. When the stress is intense, the weld will always fracture at the interface. The analysis incorporates a classical mechanics model to more sharply define stress spikes within the bandwidth, and suggests a relative material index and Poisson's ratio related to strain hardening. Implications are discussed which are applicable to industries of high performance structures.

  12. A cohesive granular material with tunable elasticity

    PubMed Central

    Hemmerle, Arnaud; Schröter, Matthias; Goehring, Lucas

    2016-01-01

    By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media. PMID:27774988

  13. Dynamic Elastic Tides

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack; Meyer, Jennifer

    2016-04-01

    This is an exploration of dynamic tides on elastic bodies. The body is thought of as a dynamical system described by its modes of oscillation. The dynamics of these modes are governed by differential equations that depend on the rheology. The modes are damped by dissipation. Tidal friction occurs as exterior bodies excite the modes and the modes act back on the tide raising body. The whole process is governed by a closed set of differential equations. Standard results from tidal theory are recovered in a two-timescale approximation to the solution of these differential equations.

  14. Dynamic Elastic Tides

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack; Meyer, Jennifer

    2016-11-01

    This is an exploration of dynamic tides on elastic bodies. The body is thought of as a dynamical system described by its modes of oscillation. The dynamics of these modes are governed by differential equations that depend on the rheology. The modes are damped by dissipation. Tidal friction occurs as exterior bodies excite the modes and the modes act back on the tide raising body. The whole process is governed by a closed set of differential equations. Standard results from tidal theory are recovered in a two-timescale approximation to the solution of these differential equations.

  15. Nucleon elastic form factors

    SciTech Connect

    D. Day

    2007-03-01

    The nucleon form factors are still the subject of active investigation even after an experimental effort spanning 50 years. This is because they are of critical importance to our understanding of the electromagnetic properties of nuclei and provide a unique testing ground for QCD motivated models of nucleon structure. Progress in polarized beams, polarized targets and recoil polarimetry have allowed an important and precise set of data to be collected over the last decade. I will review the experimental status of elastic electron scattering from the nucleon along with an outlook for future progress.

  16. Effect of Intrinsic Ripples on Elasticity of the Graphene Monolayer.

    PubMed

    Lee, Seungjun

    2015-12-01

    The effect of intrinsic ripples on the mechanical response of the graphene monolayer is investigated under uniaxial loading using molecular dynamics (MD) simulations with a focus on nonlinear behavior at a small strain. The calculated stress-strain response shows a nonlinear relation through the entire range without constant slopes as a result of the competition between ripple softening and bond stretching hardening. For a small strain, entropic contribution is dominant due to intrinsic ripples, leading to elasticity softening. As the ripples flatten at increasing strain, the energetic term due to C-C bonds stretching competes with the entropic contribution, followed by energetic dominant deformation. Elasticity softening is enhanced at increased temperature as the ripple amplitude increases. The study shows that the intrinsic ripple of graphene affects elasticity. This result suggests that a change of ripple amplitudes due to various environmental conditions such as temperature, and substrate interactions can lead to a change of the mechanical properties of graphene. The understanding of the rippling effect on the mechanical behavior of 2D materials is useful for strain-based ripple manipulation for their engineering applications.

  17. Effect of Intrinsic Ripples on Elasticity of the Graphene Monolayer

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun

    2015-10-01

    The effect of intrinsic ripples on the mechanical response of the graphene monolayer is investigated under uniaxial loading using molecular dynamics (MD) simulations with a focus on nonlinear behavior at a small strain. The calculated stress-strain response shows a nonlinear relation through the entire range without constant slopes as a result of the competition between ripple softening and bond stretching hardening. For a small strain, entropic contribution is dominant due to intrinsic ripples, leading to elasticity softening. As the ripples flatten at increasing strain, the energetic term due to C-C bonds stretching competes with the entropic contribution, followed by energetic dominant deformation. Elasticity softening is enhanced at increased temperature as the ripple amplitude increases. The study shows that the intrinsic ripple of graphene affects elasticity. This result suggests that a change of ripple amplitudes due to various environmental conditions such as temperature, and substrate interactions can lead to a change of the mechanical properties of graphene. The understanding of the rippling effect on the mechanical behavior of 2D materials is useful for strain-based ripple manipulation for their engineering applications.

  18. Nonlinear elastic behavior of phantom materials for elastography

    PubMed Central

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Carneiro, Antonio Adilton O.; Hall, Timothy J.

    2012-01-01

    The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda–Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6–2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 ± 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 ± 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target. PMID:20400811

  19. Development of elasticity sensors for instrumented socks and wearable devices

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Rajamani, Rajesh; Alexander, Lee; Sezen, Serdar A.

    2015-12-01

    Accumulation of fluid in the lower legs occurs due to acute decompensated heart failure, venous deficiency, lymphedema, and a number of other medical conditions. An instrumented sock using an elasticity sensor is developed for the purpose of monitoring lower leg fluid status. The design and sensing principles of the sock are introduced. Two generations of prototype elasticity sensors have been constructed to verify the sensing principles. Their performances are analyzed and compared. Both in vivo and in vitro tests using the fabricated sensor prototypes show promising results.

  20. Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites

    PubMed Central

    2015-01-01

    Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates. PMID:25491507

  1. Atomic picture of elastic deformation in a metallic glass

    DOE PAGES

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less

  2. Atomic picture of elastic deformation in a metallic glass

    SciTech Connect

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.

  3. Elastic Properties of Rolled Uranium -- 10 wt.% Molybdenum Nuclear Fuel Foils

    SciTech Connect

    D. W. Brown; D. J. Alexander; K. D. Clarke; B. Clausen; M. A. Okuniewski; T. A. Sisneros

    2013-11-01

    In situ neutron diffraction data was collected during elastic loading of rolled foils of uranium-10 wt.% molybdenum bonded to a thin layer of zirconium. Lattice parameters were ascertained from the diffraction patterns to determine the elastic strain and, subsequently, the elastic moduli and Poisson’s ratio in the rolling and transverse directions. The foil was found to be elastically isotropic in the rolling plane with an effective modulus of 86 + / - 3 GPa and a Poisson’s ratio 0.39 + / - 0.04.

  4. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.

    PubMed

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-01-01

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021

  5. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.

    PubMed

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-09-06

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  6. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    PubMed Central

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-01-01

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021

  7. Distribution of elastic fibres in the developing rabbit craniomandibular joint.

    PubMed

    Nagy, N B; Daniel, J C

    1991-01-01

    The biomechanical properties of the CMJ disc depend upon the composition and organization of the extracellular matrix. Elastic fibres are important elements of the matrix and may be in part responsible for the resilience of the disc during jaw movements. Elastic fibres first appeared after the establishment of a miniature CMJ at 23 days of prenatal development. The first elastic fibres appeared in the antero-inferior and postero-inferior attachment regions of the disc. In the newborn rabbit there were elastic fibres in the articulating surfaces of the joint and by one week fibres could be seen in the intermediate zone portion of the disc. At two weeks, when the animals were beginning to experiment with solid food, the disc band areas showed accumulations of elastic fibres and proteoglycans. The findings suggest that the elastic elements of the disc, squamosal and condylar articulations may have a resilience function which develops in response to functional loads placed upon the joint as the rabbit grows and changes diet.

  8. Elastic emission polishing

    SciTech Connect

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  9. Polysoaps: Configurations and Elasticity

    NASA Astrophysics Data System (ADS)

    Halperin, A.

    1997-03-01

    Simple polymers are very long, flexible, linear molecules. Amphiphiles, soaps, are small molecules comprising of a part that prefers water over oil and a part that prefers oil over water. By combining the two we arrive at an interesting, little explored, class of materials: Polysoaps. These comprise of a water soluble backbone incorporating, at intervals, covalently bound amphiphilic monomers. In water, the polymerised amphiphiles aggregate into self assembled units known as micelles. This induces a dramatic modification of the spatial configurations of the polymers. What were featureless random coils now exhibit intramolecular, hierachial self organisation. Due to this self organisation it is necessary to modify the paradigms describing the large scale behaviour of these polymers: Their configurations, dimensions and elasticity. Understanding the behaviour of these polymers is of practical interest because of their wide range of industrial applications, ranging from cosmetics to paper coating. It is of fundamental interest because polysoaps are characterised by a rugged free energy landscape that is reminiscent of complex systems such as proteins and glasses. The talk concerns theoretical arguments regarding the following issues: (i) The design parameters that govern the spatial configurations of the polysoaps, (ii) The interaction between polysoaps and free amphiphiles, (iii) The effect of the intramolecular self organisation on the elasticity of the chains.

  10. Design guidance for elastic followup

    SciTech Connect

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed.

  11. Mathematical Models for Elastic Structures

    NASA Astrophysics Data System (ADS)

    Villaggio, Piero

    1997-10-01

    During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.

  12. Evaluation of Compressive Strength and Stiffness of Grouted Soils by Using Elastic Waves

    PubMed Central

    Lee, In-Mo; Kim, Jong-Sun; Yoon, Hyung-Koo; Lee, Jong-Sub

    2014-01-01

    Cement grouted soils, which consist of particulate soil media and cementation agents, have been widely used for the improvement of the strength and stiffness of weak ground and for the prevention of the leakage of ground water. The strength, elastic modulus, and Poisson's ratio of grouted soils have been determined by classical destructive methods. However, the performance of grouted soils depends on several parameters such as the distribution of particle size of the particulate soil media, grouting pressure, curing time, curing method, and ground water flow. In this study, elastic wave velocities are used to estimate the strength and elastic modulus, which are generally obtained by classical strength tests. Nondestructive tests by using elastic waves at small strain are conducted before and during classical strength tests at large strain. The test results are compared to identify correlations between the elastic wave velocity measured at small strain and strength and stiffness measured at large strain. The test results show that the strength and stiffness have exponential relationship with elastic wave velocities. This study demonstrates that nondestructive methods by using elastic waves may significantly improve the strength and stiffness evaluation processes of grouted soils. PMID:25025082

  13. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  14. Elasticity of fibrous networks under uniaxial prestress.

    PubMed

    Vahabi, Mahsa; Sharma, Abhinav; Licup, Albert James; van Oosten, Anne S G; Galie, Peter A; Janmey, Paul A; MacKintosh, Fred C

    2016-06-14

    We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels. PMID:27174568

  15. Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.; Fleitout, L.; Bollinger, L.; Scotti, O.

    2016-07-01

    The occurrence of large earthquakes in stable continental interiors challenges the applicability of the classical steady state "seismic cycle" model to such regions. Here we shed new light onto this issue using as a case study the cluster of large reverse faulting earthquakes that occurred in Fennoscandia at 11-9 ka, triggered by the removal of the ice load during the final phase of regional deglaciation. We show that these reverse-faulting earthquakes occurred at a time when the horizontal strain rate field was extensional, which implies that these events did not release horizontal strain that was building up at the time but compressional strain that had been accumulated and stored elastically in the lithosphere over timescales similar to or longer than a glacial cycle. We argue that the tectonically stable continental lithosphere can store elastic strain on long timescales, the release of which may be triggered by rapid, local transient stress changes caused by surface mass redistribution, resulting in the occurrence of intermittent intraplate earthquakes.

  16. Changes in strain and deposition of cuticle in developing sweet cherry fruit.

    PubMed

    Knoche, Moritz; Beyer, Marco; Peschel, Stefanie; Oparlakov, Boyko; Bukovac, Martin J.

    2004-04-01

    Changes in surface area, deposition and elastic strain of the cuticular membrane (CM) were monitored during development of sweet cherry (Prunus avium L.) fruit. Fruit mass and surface area ('Sam') increased in a sigmoidal pattern between 16 and 85 days after full bloom (DAFB) with maximum rates of 0.35 g day(-1) and 0.62 cm(2) day(-1), respectively. Rates of total area strain, namely the sum of elastic plus plastic strain, were highest in cheek and stem cavity regions followed by stylar and suture regions. Rates of total uniaxial strain were higher in transverse, namely perpendicular to the stem/stylar axis, than in longitudinal direction, namely parallel to the stem/stylar axis. On a whole fruit basis CM mass remained essentially constant during fruit development. Mass of CM, dewaxed CM and wax per unit surface area decreased during development, particularly between 43 and 71 DAFB. There was no change in wax content of isolated CM. Up to 43 DAFB the surface area of isolated CM was similar to the area prior to excision indicating little elastic strain, but markedly decreased thereafter. Calculating elastic and plastic components of total strain of the CM revealed, that initial deformation up to 22 to 43 DAFB was mostly plastic. Thereafter, elastic strain was evident and both, elastic and plastic deformation, increased linearly with an increase in total strain. There was no consistent difference in the relative contribution of elastic strain to total strain between transverse and longitudinal directions, but both total and elastic strain were larger in the transverse direction. Abrading the CM had only little effect on fruit turgor. However, turgor decreased when the exocarp was cut indicating that the exocarp provided a significant structural shell of a mature sweet cherry fruit ('Regina'). Our data demonstrate, that (1) surface area expansion in sweet cherry fruit causes elastic and plastic strain of the CM, and (2) the onset of elastic strain coincided with the

  17. Nonlinear and heterogeneous elasticity of multiply-crosslinked biopolymer networks

    NASA Astrophysics Data System (ADS)

    Amuasi, H. E.; Heussinger, C.; Vink, R. L. C.; Zippelius, A.

    2015-08-01

    We simulate randomly crosslinked networks of biopolymers, characterizing linear and nonlinear elasticity under different loading conditions (uniaxial extension, simple shear, and pure shear). Under uniaxial extension, and upon entering the nonlinear regime, the network switches from a dilatant to contractile response. Analogously, under isochoric conditions (pure shear), the normal stresses change their sign. Both effects are readily explained with a generic weakly nonlinear elasticity theory. The elastic moduli display an intermediate super-stiffening regime, where moduli increase much stronger with applied stress σ than predicted by the force-extension relation of a single wormlike-chain ({G}{wlc}∼ {σ }3/2). We interpret this super-stiffening regime in terms of the reorientation of filaments with the maximum tensile direction of the deformation field. A simple model for the reorientation response gives an exponential stiffening, G∼ {{{e}}}σ , in qualitative agreement with our data. The heterogeneous, anisotropic structure of the network is reflected in correspondingly heterogeneous and anisotropic elastic properties. We provide a coarse-graining scheme to quantify the local anisotropy, the fluctuations of the elastic moduli, and the local stresses as a function of coarse-graining length. Heterogeneities of the elastic moduli are strongly correlated with the local density and increase with applied strain.

  18. Measurement of Elastic Modulus of Collagen Type I Single Fiber.

    PubMed

    Dutov, Pavel; Antipova, Olga; Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-01-01

    Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.

  19. Scaling, elasticity, and CLPT

    NASA Technical Reports Server (NTRS)

    Brunelle, Eugene J.

    1994-01-01

    The first few viewgraphs describe the general solution properties of linear elasticity theory which are given by the following two statements: (1) for stress B.C. on S(sub sigma) and zero displacement B.C. on S(sub u) the altered displacements u(sub i)(*) and the actual stresses tau(sub ij) are elastically dependent on Poisson's ratio nu alone: thus the actual displacements are given by u(sub i) = mu(exp -1)u(sub i)(*); and (2) for zero stress B.C. on S(sub sigma) and displacement B.C. on S(sub u) the actual displacements u(sub i) and the altered stresses tau(sub ij)(*) are elastically dependent on Poisson's ratio nu alone: thus the actual stresses are given by tau(sub ij) = E tau(sub ij)(*). The remaining viewgraphs describe the minimum parameter formulation of the general classical laminate theory plate problem as follows: The general CLT plate problem is expressed as a 3 x 3 system of differential equations in the displacements u, v, and w. The eighteen (six each) A(sub ij), B(sub ij), and D(sub ij) system coefficients are ply-weighted sums of the transformed reduced stiffnesses (bar-Q(sub ij))(sub k); the (bar-Q(sub ij))(sub k) in turn depend on six reduced stiffnesses (Q(sub ij))(sub k) and the material and geometry properties of the k(sup th) layer. This paper develops a method for redefining the system coefficients, the displacement components (u,v,w), and the position components (x,y) such that a minimum parameter formulation is possible. The pivotal steps in this method are (1) the reduction of (bar-Q(sub ij))(sub k) dependencies to just two constants Q(*) = (Q(12) + 2Q(66))/(Q(11)Q(22))(exp 1/2) and F(*) - (Q(22)/Q(11))(exp 1/2) in terms of ply-independent reference values Q(sub ij); (2) the reduction of the remaining portions of the A, B, and D coefficients to nondimensional ply-weighted sums (with 0 to 1 ranges) that are independent of Q(*) and F(*); and (3) the introduction of simple coordinate stretchings for u, v, w and x,y such that the process is

  20. Elastically Driven Ferromagnetic Resonance in Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Weiler, M.; Dreher, L.; Heeg, C.; Huebl, H.; Gross, R.; Brandt, M. S.; Goennenwein, S. T. B.

    2011-03-01

    Surface acoustic waves (SAWs) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic-ferroelectric (Ni/LiNbO3) hybrid device. We measure the SAW magnetotransmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment.

  1. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.

    PubMed

    Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J

    2012-10-01

    We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.

  2. Elasticity of ``Fuzzy'' Biomembranes

    NASA Astrophysics Data System (ADS)

    Evans, E.; Rawicz, W.

    1997-09-01

    Sensitive micropipet methods have been used to measure the elastic stretch modulus and bending rigidity of biomembranes studded with water-soluble polymers. The fully extended lengths of the chemically grafted chains ranged from 10-50× the length of the embedding membrane lipid. Concentrations of the polymer were varied from 1-10× the surface density needed for isolated chains to touch, nominally satisfying the scaling theory requirement for semidilute brushes. Over this range, the membrane stretch modulus was unchanged by the polymer layers, but the bending rigidity increased by as much as 10kBT. Surprisingly, the increase in rigidity deviated significantly from scaling theory predictions, revealing a large marginal brush regime between dilute mushrooms and a semidilute brush.

  3. Elastic recoil detection

    NASA Astrophysics Data System (ADS)

    Bik, W. M. A.; Habraken, F. H. P. M.

    1993-07-01

    In elastic recoil detection (ERD) one determines the yield and energy of particles ejected out of the surface region of samples under MeV ion bombardment. By application of this surface and thin film analysis technique one can obtain quantitative information concerning the depth distribution of light elements in a sample to be analysed. The quantitativity and the depth resolving power are based on knowledge of the recoil cross section and the stopping power of high-energy ions in matter. This paper reviews the fundamentals of this technique and the various experimental methods for recoil identification. Furthermore, important features for material analysis, such as detection limits, depth resolution and elemental range are discussed. Some emphasis is put on the conversion of the spectral contribution of the elements to atomic concentrations in the films for several representative cases. Throughout the review numerous examples are given to illustrate the features of ERD and to demonstrate empirically the accuracy of the quantification method.

  4. The optimal elastic flagellum

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.; Lauga, Eric

    2010-03-01

    Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal low-Reynolds number locomotion when the angle between its local tangent and the swimming direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in three dimensions (smooth) and that of a sawtooth in two dimensions (nonsmooth). Physically, biological organisms (or engineered microswimmers) must expend internal energy in order to produce the waves of deformation responsible for the motion. Here we propose a physically motivated derivation of the optimal flagellum shape. We determine analytically and numerically the shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined energetic expenditure. Our novel approach is to define an energy which includes not only the work against the surrounding fluid, but also (1) the energy stored elastically in the bending of the flagellum, (2) the energy stored elastically in the internal sliding of the polymeric filaments which are responsible for the generation of the bending waves (microtubules), and (3) the viscous dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency. The optimal waveforms of finite-size flagella are shown to depend on a competition between rotational motions and bending costs, and we observe a surprising bias toward half-integer wave numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of swimming cells, therefore indicating available room for further biological tuning.

  5. Elastic response of DNA molecules under the action of interfacial traction and stretching: An elastic thin rod model

    NASA Astrophysics Data System (ADS)

    Xiao, Ye; Huang, Zaixing; Qiang, Lei; Gao, Jun

    2015-11-01

    In a multivalent salt solution, a segment of DNA is modeled as an elastic rod subjected to the interfacial traction. The shooting method is used to calculate the equilibrium configurations of condensed DNA under the action of the longitudinal end-force and interfacial traction simultaneously. The results show that the shapes of DNA are mainly determined by the competition between the interfacial energy and elastic strain energy of stretching. The change of end-to-end distance with the longitudinal end-force is consistent with the worm-like chain (WLC) model. The higher the concentration is, the stronger the condensation of DNA.

  6. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  7. Elastic model of dry friction

    SciTech Connect

    Larkin, A. I.; Khmelnitskii, D. E.

    2013-09-15

    Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.

  8. Elastic energy release in great earthquakes and eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2014-05-01

    The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed) elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy) associated with magma chamber rupture and contraction (shrinkage) during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1) the strain energy stored in the volcano/fault zone before rupture, and (2) the external applied load (force, pressure, stress, displacement) on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU) during an eruption is directly proportional to the excess pressure (pe) in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc) of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3), the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago) and largest single (effusive) Colombia River basalt lava flows (15-16 million years ago), both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  9. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  10. Elasticity theory of smectic and canonic mesophases

    SciTech Connect

    Stallinga, S.; Vertogen, G. )

    1995-01-01

    The general theory of elasticity for smectic and canonic mesophases is formulated, starting from the assumption that the equilibrium state is spatially periodic. The various surface terms appearing in the deformation free energy density are considered as well. The effective description of the elastic behavior of a general nonchiral smectic mesophase involves one positional elastic constant, 16 bulk orientational elastic constants, and six surface orientational elastic constants. One additional bulk orientational elastic constant is required for the description of a general chiral smectic mesophase. The effective description of the elastic behavior of a general nonchiral canonic mesophase involves six positional elastic constants and three bulk orientational elastic constants. In this case the property of chirality does not introduce additional orientational elastic constants. The elastic constants for some relevant smectic and canonic mesophases are given, including the elastic constants for the antiferroelectric Sm-[ital C][sub [ital A

  11. Finite-element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  12. Nonlinear Eulerian Elasticity with Application to Shock Compression of Ceramic and Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Clayton, John

    2013-06-01

    Thermodynamic potentials of conventional Lagrangian nonlinear elasticity incorporate the right Cauchy-Green strain, itself a function of the deformation gradient. In this work, an alternative theory is advanced for anisotropic solids incorporating an Eulerian strain, in material coordinates, that is a function of the inverse deformation gradient. This strain, which has historically shown promise for hydrostatic compression, is applied to problems with both volume change and shear, e.g. shock compression. A general theory accounting for elastic and plastic deformations is formulated, extending a purely elastic theory developed recently. A solution for the anisotropic shock response is derived for solids with an internal energy function quartic in strain and linear in entropy. Predictions of Eulerian and Lagrangian theories for single crystal ceramics-quartz, sapphire, and diamond-and metals-aluminum, copper, and magnesium-are compared, with Eulerian solutions demonstrating key advantages in some cases.

  13. The influence of climatically-driven surface loading variations on continental strain and seismicity

    NASA Astrophysics Data System (ADS)

    Craig, Tim; Calais, Eric; Fleitout, Luce; Bollinger, Laurent; Scotti, Oona

    2016-04-01

    In slowly deforming regions of plate interiors, secondary sources of stress and strain can result in transient deformation rates comparable to, or greater than, the background tectonic rates. Highly variable in space and time, these transients have the potential to influence the spatio-temporal distribution of seismicity, interfering with any background tectonic effects to either promote or inhibit the failure of pre-existing faults, and potentially leading to a clustered, or 'pulse-like', seismic history. Here, we investigate the ways in which the large-scale deformation field resulting from climatically-controlled changes in surface ice mass over the Pleistocene and Holocene may have influenced not only the seismicity of glaciated regions, but also the wider seismicity around the ice periphery. We first use a set of geodynamic models to demonstrate that a major pulse of seismic activity occurring in Fennoscandia, coincident with the time of end-glaciation, occurred in a setting where the contemporaneous horizontal strain-rate resulting from the changing ice mass, was extensional - opposite to the reverse sense of coseismic displacement accommodated on these faults. Therefore, faulting did not release extensional elastic strain that was building up at the time of failure, but compressional elastic strain that had accumulated in the lithosphere on timescales longer than the glacial cycle, illustrating the potential for a non-tectonic trigger to tap in to the background tectonic stress-state. We then move on to investigate the more distal influence that changing ice (and ocean) volumes may have had on the evolving strain field across intraplate Europe, how this is reflected in the seismicity across intraplate Europe, and what impact this might have on the paleoseismic record.

  14. T-cell clones expressing different T-cell receptors accumulate in the brains of dying and surviving mice after peripheral infection with far eastern strain of tick-borne encephalitis virus.

    PubMed

    Fujii, Yoshiki; Hayasaka, Daisuke; Kitaura, Kazutaka; Takasaki, Tomohiko; Suzuki, Ryuji; Kurane, Ichiro

    2011-08-01

    Tick-borne encephalitis virus (TBEV), a representative acute central nervous system disease-inducible virus, is known to elicit dose-independent mortality in a mouse model. We previously reported that subcutaneous infection with a wide range of TBEV Oshima strain challenge doses (10(2)-10(6) PFU) produced an approximately 50% mortality rate. However, the factors playing critical roles in mortality and severity remain unclear. In this study, we distinguished surviving and dying mice by their degree of weight loss after TBEV infection, and investigated qualitative differences in brain-infiltrating T cells between each group by analyzing T-cell receptor (TCR) repertoire and complementary determining region 3 (CDR3) sequences. TCR repertoire analysis revealed that the expression levels of VA8-1, VA15-1, and VB8-2 families were increased in brains derived from both surviving and dying mice. CDR3 amino acid sequence characteristics differed between each group. In dying mice, high frequencies of VA15-1/AJ12 and VB8-2/BJ1.1 gene usage were observed. While in surviving mice, high frequencies of VA8-1/AJ15 or VA8-1/AJ23 gene usage were observed. VB8-2/BJ2.7 gene usage and short CDR3 were observed frequently in both surviving and dying mice. However, no differences in T-cell activation markers and apoptosis-related genes were observed between these groups using quantitative real-time PCR analysis. These results suggest that TBEV-infection severity may be involved in antigen specificity, but not in the number or activation level of brain-infiltrating T cells.

  15. Elastic Stability of Concentric Tube Robots Subject to External Loads.

    PubMed

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E

    2016-06-01

    Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released. External loads on the robot also influence elastic stability. In this paper, we provide a second-order sufficient condition, and also a separate necessary condition, for elastic stability. Using methods of optimal control theory, we show that these conditions apply to general concentric tube robot designs subject to arbitrary conservative external loads. They can be used to assess the stability of candidate robot configurations. Our results are validated via comparison with other known stability criteria, and their utility is demonstrated by an application to stable path planning.

  16. Damage of Collagen and Elastic Fibres by Borrelia Burgdorferi – Known and New Clinical and Histopathological Aspects

    PubMed Central

    Müller, Kurt E

    2012-01-01

    Lyme Borreliosis, or Lyme’s disease, manifests itself in numerous skin conditions. Therapeutic intervention should be initiated as soon as a clinical diagnosis of erythema migrans is made. The histopathology of some of the skin conditions associated with Lyme Borreliosis is characterised by structural changes to collagen, and sometimes also elastic fibres. These conditions include morphea, lichen sclerosus et atrophicus and acrodermatitis chronica atrophicans. More recently, further skin conditions have been identified by the new microscopic investigation technique of focus floating microscopy: granuloma annulare, necrobiosis lipoidica, necrobiotic xanthogranuloma, erythema annulare centrifugum, interstitial granulomatous dermatitis, cutaneous sarcoidosis and lymphocytic infiltration; these conditions also sometimes cause changes in the connective tissue. In the case of ligaments and tendons, collagen and elastic fibres predominate structurally. They are also the structures that are targeted by Borrelia. The resultant functional disorders have previously only rarely been associated with Borreliosis in clinical practice. Ligamentopathies and tendinopathies, spontaneous ruptures of tendons after slight strain, dislocation of vertebrae and an accumulation of prolapsed intervertebral discs as well as ossification of tendon insertions can be viewed in this light. PMID:23986790

  17. Ectoine accumulation in Brevibacterium epidermis.

    PubMed

    Onraedt, Annelies; De Muynck, Cassandra; Walcarius, Bart; Soetaert, Wim; Vandamme, Erick

    2004-10-01

    As a halotolerant bacterial species, Brevibacterium epidermis DSM 20659 can grow at relatively high salinity, tolerating up to 2 M NaCl. It synthesizes ectoine and the intracellular content increases with the medium salinity, with a maximum of 0.14 g ectoine/g CDW at 1 M NaCl. Sugar-stressed cells do not synthesize ectoine. Ectoine synthesis is also affected by the presence of external osmolytes. Added betaine is taken up and completely replaced ectoine, while L-proline is only temporarily accumulated after which ectoine is synthesized. The strain can metabolize ectoine; L-glutamate is a better carbon source for ectoine synthesis than L-aspartate.

  18. Calcification of medial elastic fibers and aortic elasticity.

    PubMed

    Niederhoffer, N; Lartaud-Idjouadiene, I; Giummelly, P; Duvivier, C; Peslin, R; Atkinson, J

    1997-04-01

    We tested the hypothesis that a simple change in wall composition (medial calcium overload of elastic fibers) can decrease aortic elasticity. Calcium overload was produced by hypervitaminosis D plus nicotine (VDN) in the young rat. Two months later, measurement of central aortic mean blood pressure in the unanesthetized, unrestrained rat showed that the VDN rat suffered from isolated systolic hypertension but that mean blood pressure was normal. Wall thickness and internal diameter determined after in situ pressurized fixation were unchanged, as was calculated wall stress. Wall stiffness was estimated from (1) elastic modulus (determined with the Moens-Korteweg equation and values for aortic pulse wave velocity in the unanesthetized, unrestrained rat and arterial dimensions) and (2) isobaric elasticity (= slope relating pulse wave velocity to mean intraluminal pressure in the phenylephrine-infused, pithed rat preparation). Both increased after VDN, and both were significantly correlated to the wall content of calcium and the elastin-specific amino acids desmosine and isodesmosine. Left ventricular hypertrophy occurred in the VDN model, and left ventricular mass was related to isobaric elasticity. In conclusion, elastocalcinosis induces destruction of elastic fibers, which leads to arterial stiffness, and the latter may be involved in the development of left ventricular hypertrophy in a normotensive model.

  19. Phase transition induced strain in ZnO under high pressure.

    PubMed

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-01-01

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.

  20. Phase transition induced strain in ZnO under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-05-01

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.

  1. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  2. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  3. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    PubMed

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  4. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  5. Measuring How Elastic Arteries Function.

    ERIC Educational Resources Information Center

    DeMont, M. Edwin; MacGillivray, Patrick S.; Davison, Ian G.; McConnell, Colin J.

    1997-01-01

    Describes a procedure used to measure force and pressure in elastic arteries. Discusses the physics of the procedure and recommends the use of bovine arteries. Explains the preparation of the arteries for the procedure. (DDR)

  6. Elasticity of crystalline molecular explosives

    SciTech Connect

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.

  7. Elasticity of crystalline molecular explosives

    DOE PAGES

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  8. Elastic protectors for ultrasound injection

    SciTech Connect

    Barkhatov, V.A.; Nesterova, L.A.

    1995-07-01

    A new material has been developed for elastic protectors on ultrasonic probes: sonar rubber. This combines low ultrasonic absorption, high strength, and wear resistance, and so the rubber can be used in sensor designs.

  9. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  10. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  11. Elasticity of smectic-A elastomers

    SciTech Connect

    Adams, J.M.; Warner, M.

    2005-02-01

    We present a fully nonlinear model of the elasticity smectic-A elastomers, and compare our results with a wide range of experimental observations: extreme Poisson ratios, the in-plane modulus, the modulus before and after threshold to layer rotation in response to stretches along the layer normal, the threshold strain, the characteristic, and singular rotation of layers after the threshold. We calculate the x-ray scattering from rotating layers and compare with available data. The model is derived in two ways: from geometrical constraints imposed by layers on a nematic elastomer, and from application of statistical mechanics to a microscopic model of the effect of crosslink points confined in a corrugated potential.

  12. Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue

    SciTech Connect

    Tsap, L V; Zhang, Y; Kundu, S J; Goldgof, D B; Sarkar, S

    2004-03-29

    This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.

  13. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  14. Elastic properties of Thiel-embalmed human ankle tendon and ligament.

    PubMed

    Liao, Xiaochun; Kemp, Sandy; Corner, George; Eisma, Roos; Huang, Zhihong

    2015-10-01

    Thiel embalming is recommended as an alternative to formalin-based embalming because it preserves tissue elasticity, color, and flexibility in the long term, with low infection and toxicity risk. The degree to which Thiel embalming preserves elasticity has so far been assessed mainly by subjective scoring, with little quantitative verification. The aim of this study is to quantify the effect of Thiel embalming on the elastic properties of human ankle tendons and ligament. Biomechanical tensile tests were carried out on six Thiel-embalmed samples each of the peroneus longus, peroneus brevis, and calcaneal tendons, and the calcaneofibular ligament, with strain rates of 0.25%s(-1), 2%s(-1), and 8%s(-1). The stress-strain relationship was calculated from the force-extension response with cross-sectional area and gauge length. Young's modulus was determined from the stress-strain curve. The results showed that the tendon and ligament elasticity were lower after Thiel embalming than the literature values for fresh nonembalmed tendons and ligament. The biomechanical tensile test showed that the measured elasticity of Thiel-embalmed tendons and ligaments increased with the strain rate. The Thiel embalming method is useful for preserving human ankle tendons and ligaments for anatomy and surgery teaching and research, but users need to be aware of its softening effects. The method retains the mechanical strain rate effect on tendons and ligament.

  15. Elastic Properties of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic

  16. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  17. Buckling of Microtubules on a 2D Elastic Medium

    PubMed Central

    Kabir, Arif Md. Rashedul; Inoue, Daisuke; Afrin, Tanjina; Mayama, Hiroyuki; Sada, Kazuki; Kakugo, Akira

    2015-01-01

    We have demonstrated compression stress induced mechanical deformation of microtubules (MTs) on a two-dimensional elastic medium and investigated the role of compression strain, strain rate, and a MT-associated protein in the deformation of MTs. We show that MTs, supported on a two-dimensional substrate by a MT-associated protein kinesin, undergo buckling when they are subjected to compression stress. Compression strain strongly affects the extent of buckling, although compression rate has no substantial effect on the buckling of MTs. Most importantly, the density of kinesin is found to play the key role in determining the buckling mode of MTs. We have made a comparison between our experimental results and the ‘elastic foundation model’ that theoretically predicts the buckling behavior of MTs and its connection to MT-associated proteins. Taking into consideration the role of kinesin in altering the mechanical property of MTs, we are able to explain the buckling behavior of MTs by the elastic foundation model. This work will help understand the buckling mechanism of MTs and its connection to MT-associated proteins or surrounding medium, and consequently will aid in obtaining a meticulous scenario of the compression stress induced deformation of MTs in cells. PMID:26596905

  18. Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics

    NASA Astrophysics Data System (ADS)

    Shokef, Yair; Safran, Samuel A.

    2012-04-01

    We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.

  19. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  20. Studies on Dynamic Damage Evolution for Pp/pa Polymer Blends Under High Strain Rates

    NASA Astrophysics Data System (ADS)

    Sun, Zi-Jian; Wang, Li-Li

    The dynamic damage evolution for PP/PA blends with different compatibilizers is studied in high strain rates from two different approaches, namely by determining the unloading elastic modulus of specimen experienced impact deformation and by combining the split Hopkinson pressure bar (SHPB) experimental technique with the back-propagation (BP) neural network. The results obtained by both approaches consistently show that a threshold strain ɛth exists for dynamic damage evolution, and both the damage evolution and ɛth are dependent on strain and strain rate. For non-linear visco-elastic materials, the damage evolution determined by the unloading elastic modulus provides an underestimation of real damage evolution.