Science.gov

Sample records for accumulation rates mars

  1. Have graben wall scarps accumulated sand and dust on Mars?

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Davis, P. A.

    1991-01-01

    Grabens are linear fault bounded troughs that are extremely abundant on Mars (about 7000 cover the Western Hemisphere). Analysis of lunar and Martian grabens as well as analogous structures on Earth indicates that grabens form under extension when the crust is pulled apart. On Mars, topographic maps are not of sufficient resolution to measure graben wall slopes. Seismic shaking on Mars might be capable of reducing 60 deg fault scarps to an angle of repose. Some other process must be responsible for further reducing graben wall slopes. If the deposition of sand and dust along graben walls is responsible for their extremely low slopes, then a variety of implications are possible. Sand and/or dust movement and deposition is ubiquitous in grabens over most of Mars, as similar looking grabens are found over the entire Western Hemisphere and this requires a plentiful supply of sand or dust. If the material that accumulates is of low density and cohesion, attempts to traverse graben walls might be difficult. Rimless shallow depressions could be more effective sinks for sand and dust on Mars than has been realized.

  2. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  3. Evaporation Rates of Brine on Mars

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  4. Nontronite dissolution rates and implications for Mars

    NASA Astrophysics Data System (ADS)

    Gainey, S. R.; Hausrath, E. M.; Hurowitz, J. A.; Milliken, R. E.

    2014-02-01

    The Fe-rich smectite nontronite M+1.05[Si6.98Al1.02][Al0.29Fe3.68Mg0.04]O20(OH)4 has been detected using orbital data at multiple locations in ancient terrains on Mars, including Mawrth Vallis, Nilli Fossae, north of the Syrtis Major volcanic plateau, Terra Meridiani, and the landing site of the Mars Science Laboratory (MSL), Gale Crater. Given the antiquity of these sites (>3.0 Ga), it is likely that nontronite has been exposed to the martian environment for long periods of time and therefore provides an integrated record of processes in near surface environments including pedogenesis and diagenesis. In particular, nontronite detected at Mawrth Vallis is overlain by montmorillonite and kaolinite, and it has been previously suggested that this mineralogical sequence may be the result of surface weathering. In order to better understand clay mineral weathering on Mars, we measured dissolution rates of nontronite in column reactors at solution pH values of 0.9, 1.7, and 3.0, and two flow rates (0.16 ml/h and 0.32 ml/h). Solution chemistry indicates stoichiometric dissolution at pH = 0.9 and non-stoichiometric dissolution at pH = 1.7 and 3.0. Mineral dissolution rates based on elemental release rates at pH = 1.7 and 3.0 of Ca, Si and Fe follow the order interlayer > tetrahedral > octahedral sites, respectively. The behavior of all experiments suggests far from equilibrium conditions, with the exception of the experiment performed at pH 3.0 and flow rate 0.16 ml/h. A pH-dependent dissolution rate law was calculated through Si release from experiments that showed no dependence on saturation (far from equilibrium conditions) under both flow rates and is r = 10-12.06 (±0.123) · 10-0.297 (±0.058)·pH where r has the units mol mineral m-2 s-1. When compared to dissolution rates from the literature, our results indicate that nontronite dissolution is significantly slower than dissolution of the primary phases present in basalt under acidic conditions, suggesting that once

  5. Accumulation and erosion of Mars' south polar layered deposits.

    PubMed

    Seu, Roberto; Phillips, Roger J; Alberti, Giovanni; Biccari, Daniela; Bonaventura, Francesco; Bortone, Marco; Calabrese, Diego; Campbell, Bruce A; Cartacci, Marco; Carter, Lynn M; Catallo, Claudio; Croce, Anna; Croci, Renato; Cutigni, Marco; Di Placido, Antonio; Dinardo, Salvatore; Federico, Costanzo; Flamini, Enrico; Fois, Franco; Frigeri, Alessandro; Fuga, Oreste; Giacomoni, Emanuele; Gim, Yonggyu; Guelfi, Mauro; Holt, John W; Kofman, Wlodek; Leuschen, Carlton J; Marinangeli, Lucia; Marras, Paolo; Masdea, Arturo; Mattei, Stefania; Mecozzi, Riccardo; Milkovich, Sarah M; Morlupi, Antonio; Mouginot, Jérémie; Orosei, Roberto; Papa, Claudio; Paternò, Tobia; Persi del Marmo, Paolo; Pettinelli, Elena; Pica, Giulia; Picardi, Giovanni; Plaut, Jeffrey J; Provenziani, Marco; Putzig, Nathaniel E; Russo, Federica; Safaeinili, Ali; Salzillo, Giuseppe; Santovito, Maria Rosaria; Smrekar, Suzanne E; Tattarletti, Barbara; Vicari, Danilo

    2007-09-21

    Mars' polar regions are covered with ice-rich layered deposits that potentially contain a record of climate variations. The sounding radar SHARAD on the Mars Reconnaissance Orbiter mapped detailed subsurface stratigraphy in the Promethei Lingula region of the south polar plateau, Planum Australe. Radar reflections interpreted as layers are correlated across adjacent orbits and are continuous for up to 150 kilometers along spacecraft orbital tracks. The reflectors are often separated into discrete reflector sequences, and strong echoes are seen as deep as 1 kilometer. In some cases, the sequences are dipping with respect to each other, suggesting an interdepositional period of erosion. In Australe Sulci, layers are exhumed, indicating recent erosion.

  6. Climate Change on Mars Inferred from Erosion Rates at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Bridges, N. T.

    1999-01-01

    The observation that the Mars Pathfinder landing site probably looks very similar to when it was deposited by catastrophic floods some 1.8-3.5 Ga allows quantitative constraints to be placed on the rate of change at the landing site since that time. When combined with interpretations of data recently returned by the Mars Pathfinder and Global Surveyor missions and perspectives drawn from 20 years of analysis and interpretation of Viking data, these observations and inferences suggest an early warmer and wetter environment with vastly different erosion rates and a major climatic change on Mars. Additional information is contained in the original extended abstract.

  7. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  8. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  9. Exploring PV on the Red Planet: Mars Array Technology Experiment and Dust Accumulation and Removal Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Baraona, Cosmo; Brinker, David; Schelman, David

    2004-01-01

    The environment on the surface of Mars is different in several critical ways from the orbital environment in which space solar arrays normally operate. Some important differences are: 1) Low intensity, low temperature operation; 2) Spectrum modified by atmospheric dust, varies with time; 3) Indirect sunlight; 4) Possibility of dust atoms at some times of year; 5) Deposited dust; 6) Wind; 7) Peroxide-rich reactive soil. We are developing two experiments to test operation of solar arrays on the surface of Mars, to be flown on the 2001 Surveyor Lander mission. The Mars Array Technology Experiment (MATE) will test the operation of several types of solar cells under Mars conditions, and determine the direct and scattered solar spectrum at the surface. The Dust Accumulation and Removal Technology (DART) experiment will monitor the amount of dust deposition on a target solar cell, measure the characteristics of the dust, and test the feasibility of dust removal.

  10. Rates and controls on N accumulation in peatlands

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Wang, M.; Moore, T. R.; Loisel, J.

    2013-12-01

    Paleoecological studies on peat cores have focused mainly on carbon (C) accumulation rates, whereas nitrogen (N) accumulation rates and cycling have been largely overlooked. We use primary data from peat cores extracted from Mer Bleue bog, the Northwest Territories and eastern and western Canada to estimate long- and short-term N accumulation rates. Furthermore, we apply the mean C/N ratios from a wide range of peatland types in Ontario to estimate N accumulation rates where C accumulation rates are available. Rates of N accumulation range from 0.1 to 2.0 g m-2 yr-1. We examine the sources of N to peatlands and different peatland types (bogs, fens and swamps) depend on N from different sources. For example, ombrotrophic bogs depend on bulk atmospheric N deposition and biological N2 fixation as their only source of N. Oligo- and minerotrophic fens however receive additional N along with other nutrients from the surface and ground water. Prior to Industrial Revolution atmospheric N deposition in peatlands was minimal and likely constant (< 0.1 g m-2 yr-1). Although it is impossible to measure N2 fixation rates in the past, N accumulation rates represent an overall balance between N inputs and outputs in these ecosystems. In bogs, N outputs are small, thus N accumulation rates could be explained by N2 fixation rates that have been the main source of N for these ecosystems, and we compare N accumulation rates with current measurements of N2 fixation.

  11. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    NASA Technical Reports Server (NTRS)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  12. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  13. Enhanced erosion rates on Mars during Amazonian glaciation

    NASA Astrophysics Data System (ADS)

    Levy, Joseph S.; Fassett, Caleb I.; Head, James W.

    2016-01-01

    Observations of Mars from the surface and from orbit suggest that erosion rates over the last ∼3 Gyr (the Amazonian) have been as slow as 10-5 m/Myr and have been dominated by aeolian processes, while ancient (Noachian) erosion rates may have been orders of magnitude higher due to impact bombardment and fluvial activity. Amazonian-aged glacial deposits are widespread on Mars, but rates of erosion responsible for contributing debris to these remnant glacial deposits have not been constrained. Here, we calculate erosion rates during Amazonian glaciations using a catalog of mid-latitude glacial landforms coupled with observational and theoretical constraints on the duration of glaciation. These calculations suggest that erosion rates for scarps that contributed debris to glacial landforms are 4-7 orders of magnitude higher than average Amazonian rates in non-glaciated, low-slope regions. These erosion rates are similar to terrestrial cold-based glacier erosion and entrainment rates, consistent with cold-based glacier modification of parts of Mars.

  14. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  15. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  16. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska

    USGS Publications Warehouse

    Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E. Arthur

    2003-01-01

    A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35-50 ??m quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil's Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr-much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values. ?? 2003 Elsevier Science (USA). All rights reserved.

  17. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  18. MAVEN Measurements of the Ion Escape Rate from Mars

    NASA Astrophysics Data System (ADS)

    Brain, Dave; Dong, Yaxue; Fortier, Kier; Fang, Xiaohua; McFadden, James; Halekas, Jasper; Connerney, Jack; Eparvier, Frank; Dong, Chuanfei; Bougher, Stephen; Ma, Yingjuan; Modolo, Ronan; Lillis, Rob; Luhmann, Janet; Curry, Shannon; Seki, Kanako; Jakosky, Bruce

    2015-04-01

    The loss of atmospheric particles (neutral atoms, neutral molecules, ions) to space is thought to have played a role in the evolution of Martian climate over the past ~4 billion years. Due to the lack of a global magnetic field on Mars, the solar wind has direct access to the upper layers of the Martian atmosphere, and can drive non-thermal escape of charged particles (ions) from the atmosphere. Two spacecraft (Phobos 2 and Mars Express) have previously measured escaping ions at Mars. The recently arrived MAVEN spacecraft is equipped with instruments to measure escaping ions with high time cadence and high energy and mass resolution, as well as instruments to provide contextual information about what controls the variation in escape rates. We report on the total escape rate of heavy planetary ions from the Martian atmosphere measured by MAVEN. Heavy ions are identified in data from the SupraThermal And Thermal Ion Composition (STATIC) instrument. Rudimentary estimates of ion escape rate are obtained by summing the measured ion fluxes over a surface downstream from Mars with respect to the solar wind flow. This estimate can then be refined to account for the limited field of view of the instrument (investigation of measured particle distributions) and the limited spatial coverage of the spacecraft orbit trajectory. Variability in measured escape rates can also be grouped according to upstream conditions and the orientation of Mars (and its crustal magnetic fields) with respect to the solar wind. Important upstream drivers include the solar Extreme Ultraviolet (EUV) flux, solar wind pressure, and the interplanetary magnetic field strength and direction. These drivers are measured directly by MAVEN's EUV, SWIA, and MAG instruments. We will provide an initial estimate of ion escape rates based on the first several months of MAVEN data. We will then report on progress to refine these estimates to correct for instrument field of view and spacecraft coverage effects, as

  19. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1993-01-01

    A model of acid weathering is proposed for the iron-rich basalts on Mars. Aqueous oxidation of iron sulfides released SO4(2-) and H(+) ions that initiated the dissolution of basaltic ferromagnesian silicates and released Fe(2+) ions. The Fe(2+) ions eventually underwent ferrolysis reactions and produced insoluble hydrous ferric oxide phases. Measurements of the time-dependence of acid weathering reactions show that pyrrhotite is rapidly converted to pyrite plus dissolved ferrous iron, the rate of pyrite formation decreasing with rising pH and lower temperatures. On Mars, oxidation rates of dissolved Fe(2+) ions in equatorial melt-waters in contact with the atmosphere are estimated to lie in the range 0.3-3.0 ppb Fe/yr over the pH range 2 to 6. Oxidation of Fe(2+) ions is estimated to be extremely slow in brine eutectic solutions that might be present on Mars and to be negligible in the frozen regolith.

  20. Effects of dust accumulation and removal on radiator surfaces on Mars

    SciTech Connect

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.; Olle, R.

    1991-01-01

    Tests were carried out to assess the impact of wind blown dust accumulation and abrasion on radiator surfaces on Mars. High emittance arc-textured copper (Cu) and niobium-1%-zirconium (Nb-1%Zr) samples were subjected to basaltic dust laden wind at Martian pressure (1000 Pa) at speeds varying from 19 to 97 m/s in the Martian Surface Wind Tunnel at NASA Ames Research Center. The effect of accumulated dust was also observed by pre-dusting some of the samples before the test. Radiator degradation was determined by measuring the change in the emittance after dust was deposited and/or removed. The principal mode of degradation was abrasion. Arc-textured Nb-1%Zr proved to be more susceptible to degradation than Cu, and pre-dusting appeared to have lessened the abrasion.

  1. Alunite dissolution rates: Dissolution mechanisms and implications for Mars

    NASA Astrophysics Data System (ADS)

    Miller, J. L.; Elwood Madden, A. S.; Phillips-Lander, C. M.; Pritchett, B. N.; Elwood Madden, M. E.

    2016-01-01

    Alunite (KAl3(SO4)2(OH)6) is a hydrated aluminous sulfate mineral associated with acidic, oxidizing aqueous environments on Earth. Additionally, orbiting spacecraft and rovers on Mars have reported spectral data that indicate a range of mono- and polyhydrated sulfate phases and hydroxysulfate phases, suggesting such conditions also existed on Mars in the past. This study examines alunite dissolution rates in aqueous systems with varying pH, temperature, and solution chemistry conditions. Alunite dissolution rates in dilute solutions are 2-3 orders of magnitude slower than jarosite dissolution rates measured under analogous conditions. Similar to jarosite, alunite dissolution rates vary as a function of activity of H+ and OH- following the rate law log r (mol m-2 s-1) = -0.133(±0.02)pH - 10.65(±0.07) at pH < 5 and log r = 0.194(±0.04)pH - 12.53(±0.26) at pH > 5. However, minimum alunite dissolution rates are shifted to higher pH (5-5.5), likely due to differences in Fe and Al speciation. Alunite and jarosite rates converge in saturated NaCl and CaCl2 brines as the activity of water decreases, suggesting that differences in water exchange rates with Fe3+ and Al3+ control dissolution rates in dilute solutions, while metal-Cl- complexation occurs at similar rates within the brines. Particle lifetimes based on measured dissolution rates in dilute solutions show that alunite particles are expected to be preserved two orders of magnitude longer than jarosite particles over a range of pH and temperature conditions. In particular, alunite is more likely to be preserved in neutral to moderately alkaline systems compared to jarosite, which is expected to be preserved in more acidic conditions. Alunite dissolution produced amorphous Al-rich alteration products at moderate to high pH. Unlike jarosite, alunite dissolution does not show a clear trend as a function of temperature; alunite dissolution rates do not increase with increasing temperature, likely due to lower

  2. Mars

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)

    1992-01-01

    The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.

  3. Holocene and recent sediment accumulation rates in southern Lake Michigan

    USGS Publications Warehouse

    Colman, Steven M.; King, J.W.; Jones, Glenn A.; Reynolds, R.L.; Bothner, Michael H.

    2000-01-01

    Rates of sediment accumulation in Lake Michigan are a key component of its geologic history and provide important data related to societal concerns such as shoreline erosion and the fate of anthropogenic pollutants. Previous attempts to reconstruct Holocene rates of sediment accumulation in Lake Michigan, as well as in the other Laurentian Great Lakes, have been bedeviled by the effect of refractory terrestrial material on radiocarbon ages from total organic carbon samples of lake sediments. AMS radiocarbon ages on small samples of biogenic carbonate (ostracodes and mollusks) in Lake Michigan provide accurate Holocene ages. The present bicarbonate reservoir effect is estimated from shells of mollusks collected live before atmospheric nuclear testing to be 250 yr. From paired samples of biogenic carbonate and terrestrial macrofossils, the past reservoir effect is thought to be less than 500 yr. The radiocarbon ages indicate a distinct decrease in sediment accumulation rates throughout the southern basin of Lake Michigan at about 5 ka, about the time when lake level stabilized at the Nipissing level after rising rapidly for several thousand years. Average rates of sediment accumulation for the historic period (the last 150 yr) can be estimated from radioisotopes (210Pb and 137Cs), pollen stratigraphy, and changes in sediment properties associated with human activity. Multiple methods are necessary because at any given site, problems arise in the assumptions or applicability of one or more methods. In general, the mass accumulation calculations suggest that sediments were deposited 4 to 11 times faster in the historic period than before human settlement. The character of the sediment did not change in a dramatic way, but sediment magnetic properties suggest shifts in the sources of sediment. The data suggest that some of the changes in sources and (or) character of the sediment occurred just before human settlement and were probably related to climatic changes

  4. Mass accumulation rates in Asia during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Métivier, François; Gaudemer, Yves; Tapponnier, Paul; Klein, Michel

    1999-05-01

    This work establishes estimates of mass accumulation rates in 18 mostly offshore sedimentary basins in Asia since the beginning of the Cenozoic, ~ 66 Ma. The estimates were derived from isopach maps, cross-sections and drill holes or stratigraphic columns assuming regional similarity of the strata. Average solid phase volumes and accumulation rates were calculated for nine epochs approximately corresponding to geological periods: Palaeocene ( ~ 66-58 Ma), Eocene ( ~ 58-37 Ma), Oligocene( ~ 37-30 and 30-24 Ma), Miocene ( ~ 24-17, 17-11 and 11-5 Ma), Pliocene ( ~ 5-2 Ma) and Quaternary ( ~ 2-0 Ma). These rates shed new light on the geological history of Asia since the onset of the collision of India with Asia ( ~ 50 Ma). The overall average accumulation rates curve for Asian sedimentary basins since the beginning of the Tertiary shows an exponential form with slow accumulation rates (less than 0.5 x 10^6 km^3 Myr^- 1) until the beginning of the Oligocene, more than 15 Myr after the onset of the collision. From the Oligocene onwards rates increase quickly in an exponential manner, reaching their maximum values in the Quaternary (more than 1.5 x 10^6 km^3 Myr^- 1). From these observations we suggest that extrusion and crustal shortening are complementary processes that have been successively dominant throughout the India-Eurasia collision history. At smaller scales one may distinguish between independent histories at the subcontinental and basin scales. This permits a comparison of the relative importance of tectonic and climatic erosion processes affecting the different mountain belts of Asia during the Cenozoic.

  5. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  6. Death rates reflect accumulating brain damage in arthropods

    PubMed Central

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M.J; Sheehy, Matt R.J

    2005-01-01

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz–Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p<0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence. PMID:16191601

  7. Rate of accumulation of reproductive isolation by chromosome rearrangements

    SciTech Connect

    Walsh, J.B.

    1981-09-01

    The role of chromosome rearrangements as agents for rapid speciation has recently gained considerable support among evolutionary biologists, especially for the stasipatric model in which effective isolation is accomplished by fixation of a few strongly underdominant rearrangements. This support is, however, by no means universal, with critics citing the low probability of fixation of strongly underdominant rearrangements as a major problem of the stasipatric model. Population genetic considerations of the substitution rate of underdominant rearrangements in a finite population were examined by Lande, but as an estimator of long term effective deme size, rather than as a speciation model. The rate of accumulation of postzygotic isolation is analyzed for three models of underdominant rearrangements: strict underdominance; underdominance with the rearrangement homozygote being at a selective advantage; and underdominance with meiotic drive. It will be shown that reproductive isolation accumulates most rapidly in very small populations, but that strong homozygote advantage or drive can allow for fairly rapid speciation under certain conditions in large populations. Contrary to the stasipatric model, isolation usually proceeds most rapidly by fixation of a large number of weakly underdominant rearrangements even when moderate amounts of drive or homozygote advantage are allowed. Stasipatric speciation requires either the frequent occurrence of meiotically driven rearrangements or very small population sizes to operate in reasonable times.

  8. Death rates reflect accumulating brain damage in arthropods.

    PubMed

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M J; Sheehy, Matt R J

    2005-09-22

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz-Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p < 0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence.

  9. A flight experiment to determine GPS photochemical contamination accumulation rates

    NASA Technical Reports Server (NTRS)

    Tribble, A. C.; Haffner, J. W.

    1990-01-01

    It was recently suggested that photochemically deposited contamination, originating from volatiles outgassed by a spacecraft, may be responsible for the anomalous degradation in power seen on the GPS Block 1 vehicles. In an attempt to confirm, or deny, the photochemical deposition rates predicted, a study was undertaken to design a flight experiment to be incorporated on the GPS vehicles currently in production. The objective was to develop an inexpensive, light weight instrument package that would give information on the contamination levels within a few months of launch. Three types of apparatus were studied, Quartz Crystal Microbalances, (QCM's), modified solar cells, and calorimeters. A calorimeter was selected due primarily to its impact on the production schedule of the GPS vehicles. An analysis of the sensitivity of the final design is compared to the predicted contamination accumulation rates in order to determine how long after launch it will take the experiment to show the effects of photochemical contamination.

  10. 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Delbono, I.; Barsanti, M.; Schirone, A.; Conte, F.; Delfanti, R.

    2016-08-01

    Nine sediment cores were collected between 2009 and 2012 in the inner continental shelf (Mediterranean Sea, Italy) mainly influenced by the Magra River, at water depths ranging from 11 to 64 m. Mass Accumulation Rates (MARs) were calculated through 210Pb analysed by Gamma spectrometry. Three different dating models (single and two-layer CF-CS, CRS) were applied to clay normalised 210Pbxs profiles and 137Cs was used to validate the 210Pb geochronology. The maximum MAR values (>2 g cm-2 yr-1) were found in the region adjacent to the Magra River mouth and outside the Gulf of La Spezia (0.9±0.1 g cm-2 yr-1 at St. 3-C6 and 4-C4). Results from 137Cs/210Pbxs ratios calculated in Surface Mixed Layers (SMLs) evidenced the coastal boundaries of the Magra River depositional area, which is very limited towards south. Differently, in the north-west sector, fine sediments are generally driven by the Ligurian Current and move towards north-west: at the deepest and most distant station from the River mouth, the MAR value is the lowest one in the study area. Few major Magra River floods occurred during the sediment core sampling period. By using the short-lived radioisotope 7Be as a tracer of river floods, a clear 7Be signature of 2009 flood is present at St. 1-SA1C. Finally, by analyzing the clay normalised 210Pbxs profiles, a decrease of its activity dating the years 1999 and 2000 is observed in four cores, corresponding to two major Magra River floods occurring in those years.

  11. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation.

    PubMed

    Bark, David L; Para, Andrea N; Ku, David N

    2012-10-01

    Local hemodynamics may strongly influence atherothrombosis, which can lead to acute myocardial infarction and stroke. The relationship between hemodynamics and thrombosis during platelet accumulation was studied through an in vitro flow system consisting of a stenosis. Specifically, wall shear rates (WSR) ranging from 0 to 100,000 s(-1) were ascertained through computations and compared with thrombus growth rates found by image analysis for over 5,000 individual observation points per experiment. A positive correlation (P < 0.0001) was found between thrombus accumulation rates and WSR up to 6,000 s(-1), with a decrease in growth rates at WSR >6,000 s(-1) (P < 0.0001). Furthermore, growth rates at pathological shear rates were found to be two to four times greater than for physiological arterial shear rates below 400 s(-1). Platelets did not accumulate for the first minute of perfusion. The initial lag time, before discernible thrombus growth could be found, diminished with shear (P < 0.0001). These studies show the quantitative increase in thrombus growth rates with very high shear rates in stenoses onto a collagen substrate. PMID:22539078

  12. Present-day impact cratering rate and contemporary gully activity on Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S; Posiolova, Liliya V; McColley, Shawn M; Dobrea, Eldar Z Noe

    2006-12-01

    The Mars Global Surveyor Mars Orbiter Camera has acquired data that establish the present-day impact cratering rate and document new deposits formed by downslope movement of material in mid-latitude gullies on Mars. Twenty impacts created craters 2 to 150 meters in diameter within an area of 21.5 x 10(6) square kilometers between May 1999 and March 2006. The values predicted by models that scale the lunar cratering rate to Mars are close to the observed rate, implying that surfaces devoid of craters are truly young and that as yet unrecognized processes of denudation must be operating. The new gully deposits, formed since August 1999, are light toned and exhibit attributes expected from emplacement aided by a fluid with the properties of liquid water: relatively long, extended, digitate distal and marginal branches, diversion around obstacles, and low relief. The observations suggest that liquid water flowed on the surface of Mars during the past decade.

  13. Present-day impact cratering rate and contemporary gully activity on Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S; Posiolova, Liliya V; McColley, Shawn M; Dobrea, Eldar Z Noe

    2006-12-01

    The Mars Global Surveyor Mars Orbiter Camera has acquired data that establish the present-day impact cratering rate and document new deposits formed by downslope movement of material in mid-latitude gullies on Mars. Twenty impacts created craters 2 to 150 meters in diameter within an area of 21.5 x 10(6) square kilometers between May 1999 and March 2006. The values predicted by models that scale the lunar cratering rate to Mars are close to the observed rate, implying that surfaces devoid of craters are truly young and that as yet unrecognized processes of denudation must be operating. The new gully deposits, formed since August 1999, are light toned and exhibit attributes expected from emplacement aided by a fluid with the properties of liquid water: relatively long, extended, digitate distal and marginal branches, diversion around obstacles, and low relief. The observations suggest that liquid water flowed on the surface of Mars during the past decade. PMID:17158321

  14. Development and Validation of the User Version of the Mobile Application Rating Scale (uMARS)

    PubMed Central

    Stoyanov, Stoyan R; Kavanagh, David J; Wilson, Hollie

    2016-01-01

    Background The Mobile Application Rating Scale (MARS) provides a reliable method to assess the quality of mobile health (mHealth) apps. However, training and expertise in mHealth and the relevant health field is required to administer it. Objective This study describes the development and reliability testing of an end-user version of the MARS (uMARS). Methods The MARS was simplified and piloted with 13 young people to create the uMARS. The internal consistency and test-retest reliability of the uMARS was then examined in a second sample of 164 young people participating in a randomized controlled trial of a mHealth app. App ratings were collected using the uMARS at 1-, 3,- and 6-month follow up. Results The uMARS had excellent internal consistency (alpha = .90), with high individual alphas for all subscales. The total score and subscales had good test-retest reliability over both 1-2 months and 3 months. Conclusions The uMARS is a simple tool that can be reliably used by end-users to assess the quality of mHealth apps. PMID:27287964

  15. Lava Tube Flow Models at Alba Patera, Mars: Topographic Constraints on Eruption Rates

    NASA Technical Reports Server (NTRS)

    Riedel, S. J.; Sakimoto, S. E. H.; Bradley, B. A.; DeWet, A.

    2001-01-01

    Alba Patera has some of the longest lava tubes over some of the shallowest slopes on Mars. We use Mars Orbiter Laser Altimeter (MOLA) topography to model eruption rates for several Alba Patera lava tubes and compare them within Alba and with flows from other martian volcanic regions. Additional information is contained in the original extended abstract.

  16. Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami

    2014-08-01

    The 230Th method of determining mass accumulation rates (MARs) assumes that little to no fractionation occurs during sediment redistribution processes at the seafloor. We examine 230Th inventories in radiocarbon-dated multicore sediments from paired winnowed and focused sites at Cocos and Carnegie Ridges, Panama Basin. Radiocarbon-derived sand MARs, which likely represent the vertical rain of particles poorly transported by bottom currents, are similar at each of the paired sites but are different using 230Th normalization. 230Th-normalized MARs are about 60% lower at focused sites and likely underestimate vertical MARs, while the reverse is true for winnowed sites. We hypothesize that size fractionation occurs most frequently at lower current velocities, resulting in the coarse fraction being left behind and primarily the fine 230Th-rich grains being transported downslope. 230Th-normalization works well for recording fine-grained (detrital and opal), but not coarse-grained (carbonate), fluxes in regions that have undergone sediment redistribution.

  17. Amazonian Chemical Weathering Rate Derived from Stony Meteorite Finds at Meridiani Planum on Mars

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Bland, P. A.; Golombek, M. P.; Ashley, J. W.; Warner, N. H.; Grant, J. A.

    2016-08-01

    We used the ferric iron content in stony meteorite finds discovered with the MER Opportunity at Meridiani Planum and constrained their exposure age through related surface features to derive, we believe, the first chemical weathering rate for Mars.

  18. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  19. Rate of tree carbon accumulation increases continuously with tree size

    NASA Astrophysics Data System (ADS)

    Stephenson, N. L.; Das, A. J.; Condit, R.; Russo, S. E.; Baker, P. J.; Beckman, N. G.; Coomes, D. A.; Lines, E. R.; Morris, W. K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S. J.; Duque, Á.; Ewango, C. N.; Flores, O.; Franklin, J. F.; Grau, H. R.; Hao, Z.; Harmon, M. E.; Hubbell, S. P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L. R.; Pabst, R. J.; Pongpattananurak, N.; Su, S.-H.; Sun, I.-F.; Tan, S.; Thomas, D.; van Mantgem, P. J.; Wang, X.; Wiser, S. K.; Zavala, M. A.

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  20. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence. PMID:24429523

  1. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  2. Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian

    NASA Astrophysics Data System (ADS)

    Dickson, James L.; Head, James W.; Fassett, Caleb I.

    2012-06-01

    Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40-45°) cold, pole

  3. A large-scale validation study of the Medication Adherence Rating Scale (MARS).

    PubMed

    Fialko, Laura; Garety, Philippa A; Kuipers, Elizabeth; Dunn, Graham; Bebbington, Paul E; Fowler, David; Freeman, Daniel

    2008-03-01

    Adherence to medication is an important predictor of illness course and outcome in psychosis. The Medication Adherence Rating Scale (MARS) is a ten-item self-report measure of medication adherence in psychosis [Thompson, K., Kulkarni, J., Sergejew, A.A., 2000. Reliability and validity of a new Medication Adherence Rating Scale (MARS) for the psychoses. Schizophrenia Research. 42. 241-247]. Although initial results suggested that the scale has good reliability and validity, the development sample was small. The current study aimed to establish the psychometric properties of the MARS in a sample over four times larger. The scale was administered to 277 individuals with psychosis, along with measures of insight and psychopathology. Medication adherence was independently rated by each individual's keyworker. Results showed the internal consistency of the MARS to be lower than in the original sample, though adequate. MARS total score correlated weakly with keyworker-rated adherence, hence concurrent validity of the scale appeared only moderate to weak. The three factor structure of the MARS was replicated. Examination of the factor scores suggested that the factor 1 total score, which corresponds to the Medication Adherence Questionnaire [Morisky,D.E., Green,L.W. and Levine,D.M., 1986. Concurrent and predictive validity of a self-reported measure of medication adherence. Medical Care. 24, 67-74] may be a preferable measure of medication adherence behaviour to the total scale score.

  4. Solidification rate influence on orientation and mechanical properties of MAR-M-246+Hf

    NASA Technical Reports Server (NTRS)

    Hamilton, D.

    1983-01-01

    The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45 degrees of (001). Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation. Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.

  5. Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars

    NASA Astrophysics Data System (ADS)

    Albright Olsen, Amanda; Hausrath, Elisabeth M.; Rimstidt, J. Donald

    2015-03-01

    High salinity brines, although rare on Earth's surface, may have been important in the geologic history of Mars. Increasing evidence suggests the importance of liquid brines in multiple locations on Mars. In order to interpret the effect of high ionic strength brines on olivine dissolution, which is widely present on Mars, 47 new batch reactor experiments combined with 35 results from a previous study conducted at 25°C from 1 < pH < 4 in magnesium sulfate, sodium sulfate, magnesium nitrate, and potassium nitrate solutions with ionic strengths as high as 12 m show that very high ionic strength brines have an inhibitory effect of forsterite dissolution rates. Multiple linear regression analysis of the data suggests that the inhibition in dissolution rates is due to decreased water activity at high ionic strengths. Regression models also show that mMg up to 4 m and mSO4 up to 3 m have no effect on forsterite dissolution rates. The effect of decreasing dissolution rates with decreasing aH2O is consistent with the idea that water acts as a ligand that participates in the dissolution process. Less available water to participate in the dissolution reaction results in a slower dissolution rate. Multiple linear regression analysis of the data produces the rate equation log r = -6.81 - 0.52pH + 3.26log aH2O. Forsterite in dilute solutions with a water activity of one dissolves twice as fast as those in brines with a water activity of 0.8.

  6. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  7. Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.; McLennan, S. M.

    Of all the planets, Mars is the most Earthlike, inviting geochemical comparisons. Geochemical data for Mars are derived from spacecraft remote sensing, surface measurements and Martian meteorites. These analyses of exposed crustal materials enable estimates of bulk planet composition and inferences about its iron-rich mantle and core, as well as constraints on planetary differentiation and crust-mantle evolution. Mars probably had an early magma ocean, but there is no evidence for plate tectonics or crustal recycling any time in its history. The crust is basaltic in composition and lithologically heterogeneous, with radiometric crystallization ages ranging from ~4 billion years to within the last several hundred million years. Mantle sources for magmas vary considerably in incompatible element abundances. Although Mars is volatile element-rich, estimations of the amount of water delivered to the surface by volcanism are controversial. Low-temperature aqueous alteration affected the ancient Martian surface, producing clay minerals, sulfates, and other secondary minerals. Weathering and diagenetic trends are distinct from terrestrial chemical alteration, indicating different aqueous conditions. Organic matter has been found in Martian meteorites, but no geochemical signal of life has yet been discovered. Dynamic geochemical cycles for some volatile elements are revealed by stable isotope measurements. Long-term secular changes in chemical and mineralogical compositions of igneous rocks and sediments have been documented but are not well understood.

  8. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  9. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Astrophysics Data System (ADS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-02-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  10. Mars

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman; Sohl, Frank; Breuer, Doris

    Mars is the fourth planet out from the sun. It is a terrestrial planet with a density suggesting a composition roughly similar to that of the Earth. Its orbital period is 687 days, its orbital eccentricity is 0.093 and its rotational period is about 24 hours. Mars has two small moons of asteroidal shapes and sizes (about 11 and 6 km mean radius), the bigger of which, Phobos, orbits with decreasing semimajor orbit axis. The decrease of the orbit is caused by the dissipation of tidal energy in the Martian mantle. The other satellite, Deimos, orbits close to the synchronous position where the rotation period of a planet equals the orbital period of its satellite and has hardly evolved with time. Mars has a tenous atmosphere composed mostly of CO2 with strong winds and with large scale aeolian transport of surface material during dust storms and in sublimation-condensation cycles between the polar caps. The planet has a small magnetic field, probably not generated by dynamo action in the core but possibly due to remnant magnetization of crustal rock acquired earlier from a stronger magnetic field generated by a now dead core dynamo. A dynamo powered by thermal power alone would have ceased a few billions of years ago as the core cooled to an extent that it became stably stratified. Mars' topography and its gravity field are dominated by the Tharsis bulge, a huge dome of volcanic origin. Tharsis was the major center of volcanic activity, a second center is Elysium about 100° in longitude away. The Tharsis bulge is a major contributor to the non-hydrostaticity of the planet's figure. The moment of inertia factor together with the mass and the radius presently is the most useful constraint for geophysical models of the Martian interior. It has recently been determined by Doppler range measurements to the Mars Pathfinder Lander to be 0.3662 +/- 0.0017 (Folkner et al. 1997). In addition, models of the interior structure use the chemistry of the SNC meteorites which are

  11. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars

    USGS Publications Warehouse

    Head, J.W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; Van Gasselt, S.

    2005-01-01

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  12. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    The extended duration of the negative δ13C excursion observed in marine carbonates spanning the Cretaceous-Paleogene (K-Pg) mass extinction event has lead to two main hypothesized post-extinction models ("Strangelove" and "Living Ocean";[1, 2]) for the status of marine primary productivity and the global carbon cycle. However, these models are largely inconsistent with recent paleontological and geochemical evidence suggesting heterogeneous changes in marine productivity and carbon export [3, 4]. While the analysis of lipid biomarkers in the cosmopolitan boundary clay layer allows us to assess changes in primary production by non-calcifying organisms in the immediate aftermath of the mass extinction [4], our poor understanding of the deposition of the clay layer precludes a more detailed reconstruction of short-term variations in marine ecosystem resilience. Here, we present data on extraterrestrial 3He derived from interplanetary dust particles used as a constant flux proxy to constrain fluctuations in mass accumulation rates (MARs) [5] and the duration of the boundary clay deposition in three classic and expanded K-Pg boundary sections: El Kef (Tunisia), Caravaca (Spain), and Kulstirenden (Denmark). Our results from different depositional environments indicate average durations for the sedimentation of the clay layer that are comparable (~10 kyr) to other localities [5], thus confirming its globally brief deposition. Early Paleogene MARs vary among locations when compared to background Late Cretaceous values and do not strictly follow carbonate content as traditionally assumed, thus suggesting variable depositional conditions at different locations. Changes in sediment MARs across the K-Pg will be used to calculate MARs of algal- and bacterial-derived biomarkers, as well as benthic foraminifera, in order to assess the timing and global nature of the recovery of marine primary production and carbon export. 1. Hsu, K.J., He, Q., Mckenzie, J.A., Weissert, H

  13. Chemical weathering on Mars: Rate of oxidation of iron dissolved in brines

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1993-01-01

    Salts believed to occur in Martian regolith imply that brines occur on Mars, which may have facilitated the oxidation of dissolved Fe(2+) ions after they were released during chemical weathering of basaltic ferromagnesian silicate and iron sulfide minerals. Calculations show that the rate of oxidation of Fe(2+) ions at -35 C in a 6M chloride-sulfate brine that might exist on Mars is about 10(exp 6) times slower that the oxidation rate of iron in ice-cold terrestrial seawater.

  14. On laboratory simulation and the temperature dependence of the evaporation rate of brine on Mars

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.; Chittenden, Julie D.

    2005-12-01

    We have determined the evaporation rate of brine under simulated martian conditions at temperatures from 0°C to -26.0°C as part of our efforts to better understand the stability of water on Mars. Correcting for the effect of water build-up in the atmosphere and the lower gravity on Mars relative to Earth we observed a factor of almost 30 decrease in evaporation, from 0.88 mm/h at ~0°C to 0.04 mm/h at -25.0°C. The results are in excellent agreement with the predictions of Ingersoll's (1970) theoretical treatment, lending support to the theory and our procedures. Thus brine formation will increase the stability of water on Mars not only by extending the liquid temperature range, but also by considerably decreasing the evaporation rate.

  15. H Escape Rates Inferred from MAVEN/IUVS Observations of the Mars Hydrogen Corona

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael S.; Chaufray, Jean-Yves; Deighan, Justin; Schneider, Nicholas M.; McClintock, William; Stewart, A. Ian F.; Thiemann, E. M.; Clarke, John T.; Holsclaw, Gregory; Jain, Sonal Kumar; Crismani, Matteo; Stiepen, Arnaud; Montmessin, Franck; Eparvier, Francis; Jakosky, Bruce

    2016-10-01

    H escape oxidizes and dessicates the Mars atmosphere and surface, providing a key control on the present-day chemistry and long-term evolution of the planet. Recently, large variations in the escape rate of H as a function of season have been reported by several studies, making continued observation of the variation a high priority. We present escape rates derived from Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging UltraViolet Spectrograph (IUVS) observations of the extended atmosphere of Mars at H Lyman alpha (121.6 nm), which must be interpreted with a coupled density/radiative transfer model owing to the optically thick nature of the emission and the small fraction of H present in the corona on escaping trajectories. We recover densities, temperatures, and escape rates under the assumption of spherical symmetry for multiple periods across MAVEN's mission so far, beginning in December 2014 (escape rates ~4e8/cm2/s). We describe the observed variation and compare it with previously observed seasonal variation in retrieved H escape rates, providing a necessary input for future photochemical modeling studies and estimates of water loss from Mars over its history.

  16. Accumulation rates from central North Greenland during the past 700 year

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna B.; Eisen, Olaf; Nielsen, Lisbeth T.; Kipfstuhl, Sepp; Freitag, Johannes; Paden, John D.; Dahl-Jensen, Dorthe; Winter, Anna; Wilhelms, Frank

    2016-04-01

    A key variable when interpreting the evolution and mass loss from polar ice sheets is the input from the surface mass balance. While ice core records contain information on past accumulation rates, they always only provide information for a single location. Here, we present spatially distributed accumulation rates from central northern Greenland, specifically the area between the NEEM (North Greenland Eemian Drilling) and NGRIP (North Greenland Ice Core Project) ice core drill sites. The accumulation rates have been reconstructed using ice-penetrating radar, firn core measurements and inverse methods, and we are able to retrieve both spatial and temporal changes in the accumulation over an area spanning 300 km by 300 km. We investigate the stability of the accumulation pattern over the past several hundred years, and we address the question of how well the measured accumulation rates at the ice core sites capture the regional variations in accumulation. We find that while the accumulation rates at NEEM have been stable for the past 700 years, the NGRIP site has experienced fluctuations in accumulation rate. We interpret this as an indication of shifts in the dominating weather pattern over the ice divide in central North Greenland.

  17. Solidification-Rate Effects In MAR-M-246+Hf Alloy

    NASA Technical Reports Server (NTRS)

    Hamilton, David

    1988-01-01

    Under slower solidification, primary-dendrite-arm spacing increases. Report discusses experiments on influence of solidification rates on crystallographic orientation and mechanical properties of superalloy MAR-M-246+Hf. Specimens grown in directional-solidification furnace, visually examined for microstructure, and stretched to failure in tensile-testing machine. Back-reflection Laue x-ray photographs taken to determine growth orientations.

  18. Discharge rates in Ma'adim Vallis, Mars

    NASA Technical Reports Server (NTRS)

    Thornhill, G. D.; Rothery, D. A.; Murray, J. B.; Day, T.; Cook, A. C.; Muller, J-P.; Iliffe, J. C.

    1993-01-01

    A digital elevation model (DEM) of a small part of the Martian channel Ma'adim Vallis was produced using the Frankot and Chellappa shape-from-shading algorithm. Software developed by the Dept. of Photogrammetry and Surveying at University College London uses this technique to extract slope information from the grey levels of image pixels. This technique was applied to a Viking Orbiter image of part of Ma'adim Vallis, and measurements of the channel depth and bed-slope of a channel incised into the floor of Ma'adim Vallis were made. These results were used to calculate order of magnitude estimates for discharge rates through the channel. The maximum values calculated are three orders of magnitude less than those for N. Kasei Vallis and are similar to values cited for the Missoula floods. However, when more realistic values of the water depth are used, discharge rates comparable with those for the Mississippi River result.

  19. Rates of fluvio-thermal erosion on Mars

    NASA Technical Reports Server (NTRS)

    Aguirre-Puente, J.; Costard, Francois M.; Posado-Cano, R.

    1993-01-01

    In order to get some ideas about the order of magnitude of fluvio-thermal recession rate, a mathematical thermal model for Martian outflow channels is proposed. This model corresponds to a system undergoing a permanent thermal regime where the surface temperature is constant and equal to the phase change temperature (due to the immediate removal of melted materials). This is an ablation model. For its application, estimations of the heat transfer coefficient h and thermal flux q are necessary. Determination of these coefficients needs the calculation of dimensionless numbers (Reynolds, Prandtl, and Nusselt), and the consideration of turbulent regime of the flow.

  20. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    SciTech Connect

    Ohlson, M.; Oekland, R.H.

    1998-12-01

    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  1. A New Hypothesis for Relative High Rate of Volcanism in the Hesperian on Mars

    NASA Astrophysics Data System (ADS)

    Huang, J.; Li, M.; Xiao, L.; Wang, F.

    2013-12-01

    The rates of impact, weathering, erosion and valley formation on Mars all decreased greatly at the end of the Noachian. However, the average rate of volcanism stayed at a relatively high level throughout the Hesperian. The reason for extensive lava plains in the Hesperian is intriguing, since the rate of volcanism in the later time should have decreased dramatically than earlier time due to decreasing of internal thermal energy. Recent modeling results brought up 'cold and icy' against the prevalent 'warm and wet' for the early Mars, which showed tens to hundreds meters thick ice covered the Noachian highlands at a very limited total water inventory in 40 martian years. However, the thickness of ice could be much larger considering the enormous amount of water which created the channels and valleys on martian surface. In Iceland of Earth, both observation and numerical modeling results show that the great increase of rate of volcanism in the 1000-year time scale could be a result of ice sheet melting. Inspired from what has happened in Iceland, in this study, we are going to investigate the possibility of increasing the rates of volcanism by deglaciation in the Hesperian time. Our hypothesis is that the high rates of volcanism in Hesperian of Mars could also be the result of deglaciation.

  2. Identification of accumulation, density and grain size bias in the regional climate model MAR over the Greenland ice sheet using in-situ and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Alexander, P. M.; Tedesco, M.; Steiner, N.; Marshall, H.; Luthcke, S. B.; Fettweis, X.

    2011-12-01

    The Modèle Atmosphérique Regional (MAR) has been used in multiple studies to investigate recent and long-term changes to the Surface Mass Balance (SMB) of the Greenland ice sheet. Quantifying the magnitude of changes in ice sheet SMB is important for understanding the magnitude of reported recent ice sheet mass loss, and predicting future changes that can contribute to sea level rise. Regional climate models such as MAR have provided estimates of the SMB. Due to sparse observational data, there are large uncertainties in quantities important for accurate SMB estimates, such as accumulation, bare ice extent, and surface albedo, for example. An ongoing analysis of MAR grain size, density, and accumulation bias is being undertaken as part of a broader effort to assimilate satellite data within MAR. The ultimate goal of this project is to improve the accuracy of SMB estimates. Here we report results from an initial comparison between MAR data and in-situ profiles and meteorological data collected at the Summit station in Greenland. Results suggest that the model underestimates grain size and density in the upper portion of the snowpack. We also compare MAR estimates of accumulation with trends of mass change derived from the GRACE satellites and with elevation changes estimated from spaceborne and airborne missions, such as CRYOSAT, ICESAT and ICEBRIDGE. An investigation of MAR parameterizations reveals potential solutions for improving the albedo and grain size schemes. Further investigation of satellite-derived grain size and albedo is planned, which will reveal whether locally observed bias is indeed present on a larger scale.

  3. Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Adcock, C. T.; Hausrath, E.

    2011-12-01

    The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in

  4. Greenland Ice Sheet Annually-resolved Accumulation Rates (1958-2007), a Spatially Calibrated Model

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Box, J. W.; Smith, L. C.; Bromwich, D. H.

    2008-12-01

    The Greenland Ice Sheet (GIS) has responded dramatically to recent temperature increases, making it an important contributor to sea level rise. Accurate predictions of Greenland's future contribution to sea level will require a scrupulous understanding of the GIS system and refining our understanding of accumulation is a critical step towards this goal. The most accurate existing estimates of Greenland accumulation rates are multi-year averages; existing annual estimates contain poorly quantified uncertainties. This project developed a superior Greenland accumulation dataset that is spatially comprehensive, has annual resolution, is calibrated to field observations and contains sound uncertainty estimates. Accumulation output from a 1958- 2007 run of the Fifth Generation Mesoscale Model modified for polar climates (PMM5) was calibrated against 133 firn cores and coastal meteorological stations. PMM5 accumulation rate estimates contained spatially dependent systematic biases that were modeled and removed using spatial interpolation of zonally derived regressions. The calibrated accumulation dataset contains residual uncertainties exhibiting a strong spatial pattern that was modeled to estimate ice-sheet wide uncertainty. No significant 1958-2007 trends in Greenland accumulation are evident. Average annual accumulation rate is estimated at 0.339m.w.e. or 593km3 with an RMSE uncertainty of +/-83 km3 or +/-14%. The accumulation dataset will be made publicly available.

  5. Comparison of elemental accumulation rates between ferromanganese deposits and sediments in the South Pacific Ocean

    USGS Publications Warehouse

    Kraemer, T.; Schornick, J.C.

    1974-01-01

    Rates of accumulation of Fe and Mn, as well as Cu, Ni, Co, Pb, Zn, Hg, U and Th have been determined for five ferromanganese deposits from four localities in the South Pacific Ocean. Manganese is accumulating in nodules and crusts at a rate roughly equivalent to that found to be accumulating in sediments in the same area. Iron shows a deficiency in accumulation in nodules and crusts with respect to sediments, especially near the continents, but also in the central and south-central Pacific. Copper is accumulating in nodules and crusts at a rate one order of magnitude less than the surrounding sediments. This is interpreted as meaning that most of the Mn is supplied as an authigenic phase to both sediments and nodules while Fe is supplied mostly by ferromanganese micro-nodules and by detrital and adsorbed components of sediments; and Cu is enriched in sediments relative to nodules and crusts most probably through biological activity. ?? 1974.

  6. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  7. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Plaut, J.J.

    2000-01-01

    Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.

  8. Using transplants to measure accumulation rates of epiphytic bryophytes in forests of western Oregon

    USGS Publications Warehouse

    Rosso, A.L.; Muir, Patricia S.; Rambo, T.

    2001-01-01

    We sought a simple and effective transplant method that could be used to measure biomass accumulation rates of epiphytic bryophytes. Trials were carried out in the Pseudotsuga menziesii-dominated forests of western Oregon. We tested multiple transplant methods over a 13-month period while comparing accumulation rates of Antitrichia curtipendula (Hedw.) Brid. and Isothecium myosuroides Brid. among an old-growth stand, a young stand, and a recent clearcut. In our study area, Antitrichia is considered to be an old-growth associate while Isothecium is a more ubiquitous species. Methods tested included containment in net bags, containment in hairnets, and directly tying mats to substrates. Three sizes of transplants were tested with both natural and inert artificial substrates. Transplants of approximately five g enclosed in plastic net bags and tied to either natural or artificial substrates worked well for our purposes. Only minor differences were found in mean accumulation rates between the old growth and young stand, though variation in accumulation rates was higher in the old growth. Neither species appeared capable of surviving in the clearcut. Antitrichia accumulated biomass 60% faster in the canopy than in the understory on average. Antitrichia also accumulated at a faster rate than Isothecium, with mean 13-month biomass increases of 11.8 and 3.7% respectively for 5 g transplants in the understory. Our results suggest that Antitrichia's association with old growth may be due more to dispersal or establishment limitations than to a decreased ability to grow in young stands.

  9. Accumulation rates in Northwest Greenland from continuous GPR profiling along the Greenland Inland Traverse

    NASA Astrophysics Data System (ADS)

    Hawley, R. L.; Courville, Z.; Kehrl, L. M.; Lutz, E.; Osterberg, E. C.; Overly, T. B.; Wong, G. J.

    2012-12-01

    Snow accumulation is one of the fundamental parameters governing the mass balance of the Greenland Ice Sheet. While many point measurements of accumulation exist from shallow and deep ice cores, there are few spatially extensive and continuous records of accumulation in Greenland, particularly in the northwest quadrant. In April and May 2011, the Greenland Inland Traverse traveled via tractor train from Thule Air Base in northwest Greenland to Summit Station, at the center of the ice sheet. The science team on the traverse collected both point and profile measurements along the route. Kinematic GPS and 400 MHz GPR profiles provide geolocated subsurface stratigraphy. Density measurements from snowpits and shallow cores on the profile allow us to determine the true depth of radar reflecting horizons, commonly interpreted to be isochrons. We use three ice cores collected at the beginning, the end, and roughly the middle of the route to date horizons. We traced strong reflecting horizons along the entire route. From the combination of dated, traced horizons, density measurements, and position measurements, we determine accumulation rates continuously along the traverse route. We find our traverse route begins in a high-accumulation area, and accumulation decreases as we cross to the east side of the summit ridge. Accumulation then climbs again as we approach summit (directly on the summit ridge). We compare our accumulation rates with previous studies, both measurements (traverse and point measurements) and models.

  10. Effects of Atmospheric and Surface Dust on the Sublimation Rates of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Bonev, B. P.; James, P. B.; Bjorkman, J. E.; Hansen, G. B.; Wolff, M. J.

    2003-01-01

    We present an overview of our modeling work dedicated to study the effects of atmospheric dust on the sublimation of CO2 on Mars. The purpose of this study is to better understand the extent to which dust storm activity can be a root cause for interannual variability in the planetary CO2 seasonal cycle, through modifying the springtime regression rates of the south polar cap. We obtain calculations of the sublimation fluxes for various types of polar surfaces and different amounts of atmospheric dust. These calculations have been compared qualitatively with the regression patterns observed by Mars Global Surveyor (MGS) in both visible and infrared wavelengths, for two years of very different dust histories (1999, and 2001).

  11. Magma generation on Mars - Amounts, rates, and comparisons with earth, moon, and Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Schneid, Byron D.

    1991-01-01

    Total extrusive and intrusive magma generated on Mars over the last approximately 3.8 billion years is estimated at 654 x 10 exp 6 cubic kilometers, or 0.17 cubic kilometers per year, substantially less than rates for earth (26 to 34 cu/km yr) and Venus (less than 20 cu/km yr) but much more than for the moon (0.025 cu/km yr). When scaled to earth's mass the Martian rate is much smaller than that for earth or Venus and slightly smaller than for the moon.

  12. Topographic control and accumulation rate of some Holocene coral reefs: south Florida and Dry Tortugas

    USGS Publications Warehouse

    Shinn, E.A.; Hudson, J.H.; Halley, R.B.; Lidz, B.H.; Taylor, D.L.

    1977-01-01

    Core drilling and examination of underwater excavation on 6 reef sites in south Florida and Dry Tortugas revealed that underlying topography is the major factor controlling reef morphology. Carbon-14 dating on coral recovered from cores enables calculation of accumulation rates. Accumulation rates were found to range from 0.38 m/1000 years in thin Holocene reefs to as much as 4.85 m/1000 years in thicker buildups. Cementation and alteration of corals were found to be more pronounced in areas of low buildup rates than in areas of rapid accumulation rates. Acropora palmata, generally considered the major reef builder in Florida, was found to be absent in most reefs drilled. At Dry Tortugas, the more than 13-meter thick Holocene reef did not contain A. palmata. The principal reef builders in this outer reef are the same as those which built the Pleistocene Key Largo formation, long considered to be fossilized patch reef complex.

  13. Mars, Always Cold, Sometimes Wet: New Constraints on Mars Denudation Rates and Climate Evolution from Analog Studies at Haughton Crater, Devon Island, High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Boucher, M.; Desportes, C.; Glass, B. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Parnell, J.; Schutt, J. W.

    2005-01-01

    Analysis of crater modification on Mars and at Haughton Crater, Devon Island, High Arctic, which was recently shown to be significantly older than previously believed (Eocene age instead of Miocene) [1], suggest that Mars may have never been climatically wet and warm for geological lengths of time during and since the Late Noachian. Impact structures offer particularly valuable records of the evolution of a planet s climate and landscape through time. The state of exposure and preservation of impact structures and their intracrater fill provide clues to the nature, timing, and intensity of the processes that have modified the craters since their formation. Modifying processes include weathering, erosion, mantling, and infilling. In this study, we compare the modification of Haughton through time with that of impact craters in the same size class on Mars. We derive upper limits for time-integrated denudation rates on Mars during and since the Late Noachian. These rates are significantly lower than previously published and provide important constraints for Mars climate evolution.

  14. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  15. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    SciTech Connect

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.; Owen, A. T.; Jansik, D. P.; Lang, J. B.

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  16. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Plaut, J. J.

    1999-01-01

    The martian polar layered deposits (PLD) are probably the best source of information about the recent climate history of Mars, but their origin and the mechanisms of accumulation are still a mystery. The polar layers are sedimentary deposits that most planetary scientists believe are composed of water ice and varying amounts of wind-blown dust, but their composition is poorly constrained. Interpretation of the observed polar stratigraphy in terms of global climate changes is complicated by the significant difference in surface ages between the north and south PLD inferred from crater statistics. While no craters have been found in the north PLD, the surface of the south PLD appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. Using medium-resolution Viking imagery, Plaut et al. found at least 15 impact craters in the southern layered deposits and concluded that their surface is 120 +/- 40 million years old. In contrast, Cutts et al. found no fresh impact craters larger than about 300 meters in summertime images of the north polar layered deposits. Additional information is contained in the original extended abstract.

  17. Radon exhalation rates from building materials using electret ion chamber radon monitors in accumulators.

    PubMed

    Kotrappa, Payasada; Stieff, Frederick

    2009-08-01

    An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.

  18. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data). PMID:20545344

  19. Patterns and rates of organic carbon accumulation in recent pelagic and hemipelagic marine environments

    SciTech Connect

    Cwienk, D.; Leinen, M.S.; Arthur, M.A.

    1987-05-01

    Maps were constructed for the global distribution of percent organic carbon, sedimentation rates, bulk sediment accumulation rates, and organic carbon accumulation rates (OCARs), exclusive of the continental shelves, on the basis of both published and some new data from sediment cores. The OCAR data base uses only cores in which stratigraphic resolution is sufficient to define a mean sedimentation rate for the last 12,000 years and from which bulk density measurements are available or can be calculated using established relationships to carbonate content. Data coverage was adequate for much of the Pacific Ocean basin but was somewhat sparse for the Atlantic, Indian, and Southern oceans. Nonetheless, basic patterns of organic carbon accumulation can be observed from the maps. As expected, the OCARs are highest in the equatorial Pacific, where surface-water productivity is highest, and low under the central gyre regions where surface organic carbon flux and total sediment flux are both low. Higher OCARs also occur in more rapidly accumulating sediments near the continental margins, partly as a function of the enhanced preservation of labile carbon that results from higher sedimentation rates and, in some cases, from higher productivity in surface water masses or increased flux of terrigenous organic matter. The patterns of OCAR are similar, in general, to patterns of accumulation of biogenic opal, thereby reinforcing the link between biological productivity and OCARs. An analysis of the global impact of pelagic-hemipelagic OCARs, using this data base, suggests that no more than 0.21 x 10/sup 14/ gOC/year accumulate over the deep-sea floor at present - only about 16% of the estimated global annual organic carbon burial. However, the deep-sea organic carbon sink may have been more important in the past.

  20. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates.

    PubMed

    Hansson, Sophia V; Kaste, James M; Olid, Carolina; Bindler, Richard

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides (210)Pb, (137)Cs, (241)Am, and (7)Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of (7)Be down to 18-20 cm for some cores, and the broad vertical distribution of (241)Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age-depth model leads to unrealistic peat mass accumulation rates (400-600 g m(-2) yr(-1)), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of (210)Pb through the uppermost peat layers, recent peat accumulation rates (200-300 g m(-2) yr(-1)) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using (7)Be, and if this information is incorporated into age-depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years.

  1. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  2. Cerberus Fossae and Elysium Planitia Lavas, Mars: Source Vents, Flow Rates, Edifice Styles and Water Interactions

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Gregg, T. K. P.

    2004-01-01

    The Cerberus Fossae and Elysium Planitia regions have been suggested as some of the youngest martian surfaces since the Viking mission, although there was doubt whether the origins were predominantly volcanic or fluvial. The Mars Global Surveyor and Mars Odyssey Missions have shown that the region is certainly young in terms of the topographic preservation and the youthful crater counts (e.g. in the tens to a few hundred million yrs.). Numerous authors have shown that fluvial and volcanic features share common flow paths and vent systems, and that there is evidence for some interaction between the lava flows and underlying volatiles as well as the use by lavas and water of the same vent system. Given the youthful age and possible water-volcanism interaction environment, we'd like constraints on water and volcanic flux rates and interactions. Here, we model ranges of volcanic flow rates where we can well-constrain them, and consider the modest flow rate results results in context with local eruption styles, and track vent locations, edifice volumes, and flow sources and data.

  3. High Rates of Species Accumulation in Animals with Bioluminescent Courtship Displays.

    PubMed

    Ellis, Emily A; Oakley, Todd H

    2016-07-25

    One of the great mysteries of evolutionary biology is why closely related lineages accumulate species at different rates. Theory predicts that populations undergoing strong sexual selection will more quickly differentiate because of increased potential for genetic isolation [1-6]. Whether or not these population genetic processes translate to more species at macroevolutionary scales remains contentious [7]. Here we show that lineages with bioluminescent courtship, almost certainly a sexually selected trait, have more species and faster rates of species accumulation than their non-luminous relatives. In each of ten distantly related animal lineages from insects, crustaceans, annelid worms, and fishes, we find more species in lineages with bioluminescent courtship compared to their sister groups. Furthermore, we find under a Yule model that lineages with bioluminescent courtship displays have significantly higher rates of species accumulation compared to a larger clade that includes them plus non-luminous relatives. In contrast, we do not find more species or higher rates in lineages that use bioluminescence for defense, a function presumably not under sexual selection. These results document an association between the origin of bioluminescent courtship and increased accumulation of species, supporting theory predicting sexual selection increases rates of speciation at macroevolutionary scales to influence global patterns of biodiversity. PMID:27345160

  4. Nutritive Value and Herbage Accumulation Rates of Pasture Sown to Grass, Legume, and Chicory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting pastures to mixtures of forages may benefit herbage production; however, wide fluctuations in botanical composition could cause unstable nutritive value. A grazing study was conducted to examine how forage mixture complexity influenced nutritive value and accumulation rate during spring, su...

  5. System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2006-01-01

    System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.

  6. Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Haider, S. A.; Kim, J.; Nagy, A. F.; Keller, C. N.; Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Szego, K.; Kiraly, P.

    1992-01-01

    The calculations presented in this paper clearly establish that the electron fluxes measured by the HARP instrument, carried on board Phobos 2, could cause significant electron impact ionization and excitation in the nightside atmosphere of Mars, if these electrons actually do precipitate. The calculated peak electron densities were found to be about a factor of 2 larger than the mean observed nightside densities, indicating that if a significant fraction of the measured electrons actually precipitate, they could be the dominant mechanism responsible for maintaining the nightside ionosphere. The calculated zenith column emission rates of the O I 5577-A and 6300-A and CO Cameron band emissions, due to electron impact and dissociative recombination mechanisms, were found to be significant.

  7. Hydroacoustic and spatial analysis of sediment fluxes and accumulation rates in two Virginia reservoirs, USA.

    PubMed

    Clark, E V; Odhiambo, B K; Yoon, S; Pilati, L

    2015-06-01

    Watershed sediment fluxes and reservoir sediment accumulation rates were analyzed in two contrasting reservoir systems in central and western Virginia. Lake Pelham, located in the Piedmont geologic province, is a human-impacted reservoir with a watershed dominated by agricultural, residential and industrial land uses. Conversely, Lake Moomaw has a largely undeveloped watershed characterized by very steep slopes and forested land use located in the Valley and Ridge province. The Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratios (SDRs) were used to estimate soil losses in the two watersheds. Bathymetric and sediment accumulation surveys of the two reservoirs were also conducted using a multi-frequency hydroacoustic surveying system. The RUSLE/SDR erosion model estimates 2150 kg ha(-1) year(-1) for Lake Pelham and 2720 kg ha(-1) year(-1) for Lake Moomaw, a 410 and 13 % increase from assumed pristine (100 % forested) land use for the respective basins. Mean sediment accumulation rates of 1.51 and 0.60 cm year(-1) were estimated from the hydroacoustic survey of Lake Pelham and Lake Moomaw, respectively. Overall, Lake Moomaw has relatively low sediment accumulation rates; however, the reservoir is vulnerable to increases in sediment fluxes with further human development due to the steep slopes and highly erodible colluvial soils that characterize the basin. Higher erosion and sediment accumulation rates in Lake Pelham are most likely reflecting the impact of human development on sedimentation processes, where the loss of vegetal buffers and increase in impervious surfaces exacerbates both the surficial soil losses as well as intrinsic stream sediment production leading to the current annual reservoir capacity loss of 0.4 %.

  8. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  9. Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully alcoves

    NASA Astrophysics Data System (ADS)

    Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-12-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from the alcoves of 10 young equatorial and midlatitude craters. The enhanced Late Amazonian Martian backweathering rates (10-4-10-1 mm yr-1) are approximately 1 order of magnitude higher than previously reported erosion rates and are similar to terrestrial rates inferred from Meteor crater and various Arctic and Alpine rock faces. Alcoves on initially highly fractured and oversteepened crater rims following impact show enhanced backweathering rates that decline over at least 101-102 Myr as the crater wall stabilizes. This "paracratering" backweathering decline with time is analogous to the paraglacial effect observed in rock slopes after deglaciation, but the relaxation timescale of 101-102 Myr compared to 10 kyr of the Milankovitch-controlled interglacial duration questions whether a paraglacial steady state is reached on Earth. The backweathering rates on the gullied pole-facing alcoves of the studied midlatitude craters are much higher (˜2-60 times) than those on slopes with other azimuths and those in equatorial craters. The enhanced backweathering rates on gullied crater slopes may result from liquid water acting as a catalyst for backweathering. The decrease in backweathering rates over time might explain the similar size of gullies in young (<1 Ma) and much older craters, as alcove growth and sediment supply decrease to low-background rates over time.

  10. Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully alcoves

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Conway, Susan; Krautblatter, Michael

    2016-04-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian period (˜4.1 - 3.7 Ga). However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from the alcoves of 10 young equatorial and mid-latitude craters, ranging in age from 0.2 to 45 Ma. The enhanced Late Amazonian Martian backweathering rates (10-4 - 10-1 mm yr-1) are approximately one order of magnitude higher than previously reported erosion rates, and are similar to terrestrial rates inferred from Meteor crater and various Arctic and Alpine rock faces, when corrected for age. Alcoves on initially highly fractured and oversteepened crater rims following impact show enhanced backweathering rates that decline over at least 101 - 102 Myr as the crater wall stabilizes. This 'paracratering' backweathering decline with time is analogous to the paraglacial effect observed in rock slopes after deglaciation, but the relaxation time scale of 101 - 102 Myr compared to 10 kyr of the Milankovitch-controlled interglacial duration questions whether a paraglacial steady state is reached on Earth. The backweathering rates on the gullied pole-facing alcoves of the studied mid-latitude craters are much higher (˜2 - 60 times) than those on slopes with other azimuths and those in equatorial craters. The enhanced backweathering rates on gullied crater slopes may result from liquid water acting as a catalyst for backweathering. The decrease in backweathering rates over time might explain the similar size of gullies in young (<1 Ma) and much older craters, as alcove growth and sediment supply decrease to low background rates over time.

  11. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  12. Comparison of Current and Historical Rates of Ecosystem Carbon Accumulation in a Northern Alberta Peatland

    NASA Astrophysics Data System (ADS)

    Syed, K. H.; Flanagan, L. B.; Carlson, P. J.; Glenn, A. J.; Ponton, S.

    2005-12-01

    As part of Fluxnet-Canada, we have been investigating the environmental controls on net ecosystem carbon dioxide exchange using the eddy covariance technique in a moderately rich (treed) fen in northern Alberta, Canada. In addition, integrated CO2 fluxes were compared to carbon stock measurements and rates of peat accumulation. The total ecosystem carbon stock was 52,669 g C m-2 with the vast majority (52,129) accumulated in peat over a 2 meter depth. The basal age for the peat was 2210 ± 50 years before present. The above-ground carbon stock in the two tree species was 226 g C m-2. The oldest Picea mariana trees were aged at 135 years, and they showed a rapid increase in basal area increment starting about 65 years ago that peaked at rates of 2 cm2 yr-1 about 40 years ago. The Larix laricina trees became established approximately 45 years ago and currently have a basal area increment of 3 to 4 cm2 yr-1, much higher than the current rates (0.5 cm2 yr-1) observed for Picea mariana. The rates of peat accumulation were determined on 210Pb-dated cores. Over the last 70 years the peat gained an average of 113 ± 12 g C m-2 yr-1. This was similar to net ecosystem production measured by eddy covariance (95 and 210 g C m-2 yr-1) over the last two years. Variation in annual net ecosystem production was associated with shifts in weather and growing season length. Current and recent historical rates of carbon accumulation were quite consistent despite significant variation in tree species growth and successional changes in this peatland over the last 70 years.

  13. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  14. Synthesis of passive microwave and radar altimeter data for estimating accumulation rates of polar snow

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1993-01-01

    In this paper, we compare dry-snow extinction coefficients derived from radar altimeter data with brightness temperature data from passive microwave measurements over a portion of the East Antarctic plateau. The comparison between the extinction coefficients and the brightness temperatures shows a strong negative correlation, where the correlation coefficients ranged from -0.87 to -0.95. The extinction coefficient of the dry polar snow decreases with increasing surface elevation, while the average brightness temperature increases with surface elevation. Our analysis shows that the observed trends are related to geographic variations in scattering coefficient of snow, which in turn are controlled by variations in surface temperature and snow accumulation rate. By combining information present in the extinction coefficient and brightness temperature data sets, we develop a model that can be used to obtain quantitative estimates of the accumulation rate of dry polar snow.

  15. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  16. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  17. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates.

  18. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates. PMID:25454561

  19. The Sublimation Rate of CO2 Under Simulated Mars Conditions and the Possible Climatic Implications

    NASA Astrophysics Data System (ADS)

    Bryson, Kathryn; Chevrier, V.; Roe, L.; White, K.; Blackburn, D.

    2008-09-01

    In order to understand the behavior of CO2 on Mars, we have studied the sublimation of dry ice under simulated martian conditions. Our experiments resulted in an average sublimation rate for CO2 ice of 1.20 ± 0.27 mm h-1. These results are very close to those observed of the martian polar caps retreat, and suggest a common process for the sublimation mechanism on Mars and in our chamber. Based on these results we created a model where irradiance from the sun is the primary source of heat on the martian polar surface. Our model predicts a 32 cm offset between the amount of CO2 ice sublimated and deposited in the southern polar region. The eccentricity of the martian orbit causes the southern hemisphere to sublimate more then it deposits back during one martian year. We have compared MOC and HiRISE images from approximately the same season (Ls 285.57º and 289.5º, respectively) from three martian years apart. These images indicate an average sublimation rate of 0.43 ± 0.04 m y-1, very close to the 0.32 m y-1 predicted by our model. Due to the length of Mars’ precession cycle, 93,000 martian years, it will take an extensive amount of time for the equinoxes to change. Therefore, we predict that the CO2 of the south polar cap will migrate entirely to the northern polar cap before such changes could occur. If the CO2 ice is only a thin layer above a much thicker water ice layer, this could expose large amounts of water ice, having a drastic climactic affect.

  20. The amount and accumulation rate of plastic debris on marshes and beaches on the Georgia coast.

    PubMed

    Lee, Richard F; Sanders, Dorothea P

    2015-02-15

    The amount and accumulation rate of plastic debris at 20 sites along the Georgia coast were prepared using data reported by a number of volunteer organizations. The amount of plastic debris at highly visited barrier island beaches and estuarine marshes ranged from 300 to >1000 kg. Relatively large amount of plastics (180-500 kg) were found on less visited barrier island beaches, i.e. Blackbeard, Ossabaw and Cumberland Islands. A follow up monthly or quarterly collection study was carried out on two of the sites, a barrier beach and estuarine marsh, to determine accumulation rate in 8000 m(2) areas. Accumulation rates ranged from 0.18 to 1.28 kg/30 days-8000 m(2) on the barrier island beach and from 0.6 to 1.61 kg/30 days-8000 m(2) at the estuarine marsh site. The major type of plastics, e.g. bottles, food wrappers, plastic fragments, was highly variable at different seasons and sites. The authors recommend consideration of a standardization in reporting plastic debris, with respect to quantitation of debris and sample area.

  1. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise

    USGS Publications Warehouse

    Bacon, M.P.; Rosholt, J.N.

    1982-01-01

    Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33??41.2???N, 57??36.9???W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex 230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in ??g/cm2-1000 y, are: 4300 ?? 1100 for Mn, 46 ?? 16 for Ni and 76 ?? 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater. ?? 1982.

  2. Accumulation rate and mixing of shelf sediments in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lewis, R.C.; Coale, K.H.; Edwards, B.D.; Marot, M.; Douglas, J.N.; Burton, E.J.

    2002-01-01

    The distribution of excess 210Pb in 31 sediment cores was used to determine modern (last 100 yr) mass accumulation rates and the depth of sediment mixing on the continental shelf between Pacifica and Monterey, California, USA. Apparent mass accumulation rates average 0.27 g cm-2 yr-1 and range from 0.42 g cm-2 yr-1 to 0.12 g cm-2 yr-1. Accumulation rates were highest at mid-shelf water depths (60-100 m) adjacent to major rivers and near the head of the Ascension submarine canyon. Cores from water depths of less than 65 m had low, uniform 210Pb activity profiles and sandy textures. The uppermost 5-13 cm of 15 cores had uniform 210Pb activity profiles above a region of steadily decreasing 210Pb activity. This phenomenon was attributed to sediment mixing. The thickness of this upper layer of uniform 210Pb activity decreased southward from 13 cm, west of Pacifica, to less than 5 cm, near Monterey Canyon. This southward decrease may be attributed to shallower bioturbation in the southern study area. Integrated excess 210Pb activities were generally higher where sedimentation rates were high. They were also higher with increasing distance from major rivers. Thus, sedimentation rate alone does not explain the distribution of integrated excess 210Pb in this study area. Excess 210Pb in the seafloor is controlled by other factors such as sediment texture, the atmospheric deposition rate of 210Pb, and the residence time of sediment particles in the water column. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars

    USGS Publications Warehouse

    Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, Robin L.; Sullivan, R.

    2014-01-01

    A morphometric and morphologic catalog of ~100 small craters imaged by the Opportunity rover over the 33.5 km traverse between Eagle and Endeavour craters on Meridiani Planum shows craters in six stages of degradation that range from fresh and blocky to eroded and shallow depressions ringed by planed off rim blocks. The age of each morphologic class from <50–200 ka to ~20 Ma has been determined from the size-frequency distribution of craters in the catalog, the retention age of small craters on Meridiani Planum, and the age of the latest phase of ripple migration. The rate of degradation of the craters has been determined from crater depth, rim height, and ejecta removal over the class age. These rates show a rapid decrease from ~1 m/Myr for craters <1 Ma to ~ <0.1 m/Myr for craters 10–20 Ma, which can be explained by topographic diffusion with modeled diffusivities of ~10−6 m2/yr. In contrast to these relatively fast, short-term erosion rates, previously estimated average erosion rates on Mars over ~100 Myr and 3 Gyr timescales from the Amazonian and Hesperian are of order <0.01 m/Myr, which is 3–4 orders of magnitude slower than typical terrestrial rates. Erosion rates during the Middle-Late Noachian averaged over ~250 Myr, and ~700 Myr intervals are around 1 m/Myr, comparable to slow terrestrial erosion rates calculated over similar timescales. This argues for a wet climate before ~3 Ga in which liquid water was the erosional agent, followed by a dry environment dominated by slow eolian erosion.

  4. The forest floor characteristics and C accumulation rate of black spruce forests across a climate gradient

    NASA Astrophysics Data System (ADS)

    Vogel, J. G.; Schuur, E. A. G.

    2014-12-01

    In the North American boreal forest, black spruce forests accumulate a C pool in the FF that is often greater than the vegetation C pool. In addition, the FF's insulating properties help maintain colder soil temperatures and inhibit the microbial decomposition of 'deep' soil C. To estimate how climate change might alter the FF of black spruce forests, we examined the C accumulation rate and characteristics (percent wood, fine roots, moss, and needles; and bulk density) of the FF for three stands in four climatic regions of Alaska. Mean annual temperature ranged from -2.9 °C to 2.3 °C and precipitation from 263 mm to 716 mm and the two climatic variables correlated with one another. Both climatic factors were unrelated with the total C stored in the FF or its rate of C accumulation, despite trees growing faster with warmer and wetter average conditions. Although FF mass was similar across regions, its thickness decreased with temperature and precipitation, reflecting a significant increase in bulk density. The change in bulk density could have been from a shift in constituents because the warmer and wetter regions accumulated more wood and less fine root material. The shift between these two constituents may have also been the reason that the FF mass remained unchanged across the climate gradient because wood has a decomposition rate that is ~10% of fine roots. Although these results suggest that there will be little change in FF mass under warmer and wetter conditions, the increase in FF bulk density will amplify the warming of the mineral soil because of the increase in FF thermal conductivity.

  5. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    NASA Astrophysics Data System (ADS)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  6. Calibrating a long-term meteoric 10Be accumulation rate in soil

    NASA Astrophysics Data System (ADS)

    Reusser, Lucas; Graly, Joseph; Bierman, Paul; Rood, Dylan

    2010-10-01

    Using 13 samples collected from a 4.1 meter profile in a well-dated and stable New Zealand fluvial terrace, we present the first long-term accumulation rate for meteoric 10Be in soil (1.68 to 1.72 × 106 at/(cm2·yr)) integrated over the past ˜18 ka. Site-specific accumulation data, such as these, are prerequisite to the application of meteoric 10Be in surface process studies. Our data begin the process of calibrating long-term meteoric 10Be delivery rates across latitude and precipitation gradients. Our integrated rate is lower than contemporary meteoric 10Be fluxes measured in New Zealand rainfall, suggesting that long-term average precipitation, dust flux, or both, at this site were less than modern values. With accurately calibrated long-term delivery rates, such as this, meteoric 10Be will be a powerful tool for studying rates of landscape change in environments where other cosmogenic nuclides, such as in situ 10Be, cannot be used.

  7. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.H.; Bopp, R.F.; Trier, R.M.

    1981-11-01

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239,240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, where fine-particle accumulation rates are generally 3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation. 10 figures.

  8. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-11-20

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation.

  9. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nakatsubo, Takayuki; Uchida, Masaki; Sasaki, Akiko; Kondo, Miyuki; Yoshitake, Shinpei; Kanda, Hiroshi

    2015-06-01

    Moss tundra that accumulates a thick peat layer is one of the most important ecosystems in the High Arctic, Svalbard. The importance of this ecosystem for carbon sequestration was estimated from the apparent rates of carbon accumulation based on the 14C age and amount of peat in the active layer. The study site at Stuphallet, Brøgger Peninsula, northwestern Svalbard was covered with a thick peat layer dominated by moss species such as Calliergon richardsonii, Paludella squarrosa, Tomenthypnum nitens, and Warnstorfia exannulata. The average thickness of the active layer (brown moss and peat) was approximately 28 cm in 1 August 2011. The calibrated (cal) age of peat from the bottom of the active layer (20-30 cm below the peatland surface) ranged from 81 to 701 cal yr BP (median value of 2σ range). Based on the total carbon (4.5-9.2 kg C m-2), the apparent rate of carbon accumulation in the active layer was 9.0-19.2 (g C m-2 yr-1), which is similar to or greater than the net ecosystem production or net primary production reported for other vegetation types in this area. Our data suggest that moss tundra plays an important role in carbon sequestration in this area.

  10. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  11. LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2004-05-01

    Accumulation rates of terrestrial sediment have increased in the past few million years both on and adjacent to continents, although not everywhere. Apparently, erosion has increased in elevated terrain regardless of when last tectonically active or what the present-day climate. In many regions, sediment coarsened abruptly in late Pliocene time. Sparser data suggest increased sedimentation rates at 15 Ma, approximately when oxygen isotopes in benthic foraminifera imply high-latitude cooling. If climate change effected accelerated erosion, understanding how it did so remains the challenge. Some obvious candidates, such as lowered sea level leading to erosion of continental shelves or increased glaciation, account for increased sedimentation in some, but not all, areas. Perhaps stable climates that varied slowly allowed geomorphic processes to maintain a state of equilibrium with little erosion until 34 Ma, when large oscillations in climate with periods of 20,00040,000 years developed and denied the landscape the chance to reach equilibrium.

  12. [Dynamics simulation on plant growth, N accumulation and utilization of processing tomato at different N fertilization rates].

    PubMed

    Wang, Xin; Ma, Fu-Yu; Diao, Ming; Fan, Huam; Cui, Jing; Jia, Biao; He, Hai-Bing; Liu, Qi

    2014-04-01

    Three field experiments were conducted to simulate the dynamics of aboveground biomass, N accumulation and utilization of drip-irrigated processing tomatoes at different N fertilization rates (0, 75, 150, 300, 450, or 600 kg x hm(-2)). The results showed that Logistic models best described the changes in aboveground biomass, N accumulation, and utilization of accumulated N efficiency with the physiological development time (PDT). Rapid accumulation of N began about 4-6 d (PDT) earlier than the rapid accumulation of aboveground biomass. The momentary utilization rate of N (NMUR) increased after emergence, reached a single peak, and then decreased. The N accumulation, aboveground biomass and yield were highest in the 300 kg x hm(-2) treatment. The quadratic model indicated that application rate of 349 to 382 kg N x hm(-2) was optimum for drip-irrigated processing tomatoes in northern Xinjiang. PMID:25011297

  13. A Spanish Version of the Short Mathematics Anxiety Rating Scale (sMARS)

    ERIC Educational Resources Information Center

    Nunez-Pena, M. Isabel; Suarez-Pellicioni, Macarena; Guilera, Georgina; Mercade-Carranza, Clara

    2013-01-01

    The aim of this study was to adapt and assess the psychometric properties of the Spanish version of the sMARS in terms of evidence of validity and reliability of scores. The sMARS was administered to 342 students and, in order to assess convergent and discriminant validity, several subsamples completed a series of related tests. The factorial…

  14. An integral method to estimate the moment accumulation rate on the Creeping Section of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Tong, Xiaopeng; Sandwell, David T.; Smith-Konter, Bridget

    2015-10-01

    Moment accumulation rate (also referred to as moment deficit rate) is a fundamental quantity for evaluating seismic hazard. The conventional approach for evaluating moment accumulation rate of creeping faults is to invert for the slip distribution from geodetic measurements, although even with perfect data these slip-rate inversions are non-unique. In this study, we show that the slip-rate versus depth inversion is not needed because moment accumulation rate can be estimated directly from surface geodetic data. We propose an integral approach that uses dense geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) to constrain the moment accumulation rate. The moment accumulation rate is related to the integral of the product of the along-strike velocity and the distance from the fault. We demonstrate our methods by studying the Creeping Section of the San Andreas fault observed by GPS and radar interferometry onboard the ERS and ALOS satellites. Along-strike variation of the moment accumulation rate is derived in order to investigate the degree of partial locking of the Creeping Section. The central Creeping Segment has a moment accumulation rate of 0.25-3.1 × 1015 Nm yr-1 km-1. The upper and lower bounds of the moment accumulation rates are derived based on the statistics of the noise. Our best-fitting model indicates that the central portion of the Creeping Section is accumulating seismic moment at rates that are about 5 per cent to 23 per cent of the fully locked Carrizo segment that will eventually be released seismically. A cumulative moment budget calculation with the historical earthquake catalogue (M > 5.5) since 1857 shows that the net moment deficit at present is equivalent to a Mw 6.3 earthquake.

  15. Accumulation rates of biogenous silica and terrigenous detritus in late Miocene-early Pliocene Santa Maria basin, California

    SciTech Connect

    Ramiriz, P.C.

    1988-03-01

    The upper-Miocene-lower Pliocene laminated to massive diatomaceous strata of the Santa Maria basin encompass portions of the Monterey and overlying conformable to nonconformable Sisquoc Formations and record the continued accumulation of admixed siliceous (mostly diatoms) and terrigenous (silt and clay) components in a Neogene borderland basin. Lithologies, which vary from diatomite to diatomaceous mudstone, are the result of fluctuations in slope-accumulating silica and terrigenous debris. Bulk accumulation rates, as well as silica and terrigenous component accumulation rates, were calculated for four measured sections using accurate stratal thicknesses, absolute ages, rock compositions, and bulk densities. Bulk accumulation rates range from less than 20 to greater than 70 mg/cm/sup 2//year and are comparable to bulk accumulation rates in the present-day Santa Barbara basin and Gulf o f California. Silica accumulation rates (20-30 mg/cm/sup 2//year) suggest that sedimentation took place beneath productive waters and they exceed those encountered in other high-productivity oceanic areas, such as the Bering Sea and Peruvian coastal waters. Relatively high terrigenous accumulation rates (18-35 mg/cm/sup 2//year) reflect the dilution of these high-productivity waters by continentally derived detritus. Comparison of calculated accumulation rates with rates determined for similarly aged strata of the Santa Barbara basin reveals that silica and terrigenous debris were accumulating at higher rates within the Santa Maria basin. These differences are due to the complex interplay of tectonics and oceanographics and to the proximity of the basins relative to the strandline.

  16. A Survey of Sinuous Ridges and Inferred Fluvial Discharge Rates in Northwest Hellas, Mars

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Herkenhoff, K. E.

    2012-12-01

    Sinuous ridges are a widespread class of geomorphic feature on Mars, and in many cases are interpreted to be inverted fluvial channels. Although negative-relief valley networks thought to be related to fluvial activity have been mapped in detail over the entire planet (e.g. Carr, 1995; Hynek et al., 2010), few regional- to global-scale surveys of sinuous ridges have been conducted (e.g. Williams, 2007; Jacobsen and Burr, 2012). With the availability of Context Camera (CTX ) images from the Mars Reconnaissance Orbiter (MRO) covering a significant fraction of the martian surface at 6 meters per pixel, such studies are now feasible. In addition, Williams et al. (2009) have demonstrated that paleodischarge can be calculated based on the width, meander wavelength, and meander radius of sinuous ridges interpreted to be inverted channels. This method has been used successfully on the sinuous ridges in the Aeolis/Zephyria plana region (Burr et al., 2010). We have begun a survey of sinuous ridges in the northwest Hellas region (-15 N to -45 N, 30 E to 75 E) using 1156 radiometrically calibrated and map projected CTX images. This region includes the northwestern portion of the Hellas basin floor and rim, as well as a significant expanse of the cratered highlands to the north and west of the basin. This region was chosen because it includes terrain of varying age (primarily Noachian to Hesperian; Leonard and Tanaka, 2001) and includes "raised curvilinear features" identified by Williams (2007) on the western basin floor, northern rim, and in the highlands northwest of Hellas . By mapping the distribution of sinuous ridges in terrain of varying age and estimating their paleodischarge rates, we will be able to determine how the discharge rate varied over martian history. Carr, M. H. (1995), J. Geophys. Res., 100, 7479-7507, doi:10.1029/95JE00260. Hynek, B. M., M. Beach, and M. R. T. Hoke (2010), J. Geophys. Res., 115, E09008, doi:10.1029/2009JE003548. Williams, R.M.E. (2007

  17. Measurements of the Coefficient of Restitution of Quartz Sand on Basalt: Implications for Abrasion Rates on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Banks, M.; Bridges, N. T.; Benzit, M.

    2005-01-01

    Knowledge of the rates at which rocks abrade from the impact of saltating sand provides important input into estimating the age and degree of modification of arid surfaces on Earth and Mars. Previous work has relied on measuring mass loss rates in the field and the laboratory. The susceptibility of rocks and other natural materials has been quantified on a relative scale from laboratory studies.

  18. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments.

    PubMed

    Adhikari, Puspa L; Maiti, Kanchan; Overton, Edward B; Rosenheim, Brad E; Marx, Brian D

    2016-05-01

    Sediment samples collected from shelf, slope and interior basin of the northern Gulf of Mexico during 2011-2013, 1-3 years after the Deepwater Horizon (DWH) oil spill, were utilized to characterize PAH pollution history, in this region. Results indicate that the concentrations of surface ΣPAH43 and their accumulation rates vary between 44 and 160 ng g(-1) and 6-55 ng cm(-2) y(-1), respectively. ΣPAH43 concentration profiles, accumulation rates and Δ(14)C values are significantly altered only for the sediments in the immediate vicinity of the DWH wellhead. This shows that the impact of DWH oil input on deep-sea sediments was generally limited to the area close to the spill site. Further, the PAHs source diagnostic analyses suggest a noticeable change in PAHs composition from higher to lower molecular weight dominance which reflects a change in source of PAHs in the past three years, back to the background composition. Results indicate low to moderate levels of PAH pollution in this region at present, which are unlikely to cause adverse effects on benthic communities. PMID:26895564

  19. Field studies using the oyster Crassostrea virginica to determine mercury accumulation and depuration rates

    SciTech Connect

    Palmer, S.J.; Presley, B.J.; Powell, E.N. ); Taylor, R.J. )

    1993-09-01

    Mercury as an environmental hazard, especially with regard to human health, has been of concern since the Minamata disaster. From 1966 to 1970 a chlor-alkali plant in Point Comfort, Texas released mercury-enriched wastewater (up to 29.9 kgHg/day) into Lavaca Bay (TWQB 1977). Since 1970 the Texas Department of Health (TDH) has periodically closed and then re-opened portions of Lavaca Bay to the harvesting of crabs and finfish based on their levels (<>0.5 ppm Hg wet weight) of mercury. A 1988 closure remains in effect as of this writing. Mercury contamination in Lavaca Bay organisms thus continues to be a problem 22 years after the chlor-alkali plant ceased releasing mercury into the bay. The goal of the following research was to better understand the behavior of mercury in Lavaca Bay. Oysters have been widely used as indicator species in metal pollution studies. Most such programs have focused on the concentrations of metals in oysters from different geographic areas. This study, however, investigated the rate and amount of mercury a [open quotes]clean[close quotes] oyster would accumulate when transplanted to a contaminated estuary and the rate of mercury depuration by contaminated oysters placed in a clean environment. The oysters were additionally analyzed for Ba, Cu, Fe, P, and Zn to test for the possible involvement of these metals in mercury accumulation and depuration. 17 refs., 3 figs., 2 tabs.

  20. Complex Wind-Induced Variations of Surface Snow Accumulation Rates over East Antarctica

    NASA Astrophysics Data System (ADS)

    Das, I.; Scambos, T. A.; Koenig, L.; van den Broeke, M.; Lenaerts, J.

    2015-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. Using airborne radar, lidar and thresholds of surface slope, modeled surface mass balance (SMB) and wind fields, we have predicted continent-wide distribution of wind-scour zones over Antarctica. These zones are located over relatively steep ice surfaces formed by ice flow over bedrock topography. Near-surface winds accelerate over these steeper slopes and erode and sublimate the snow. This results in numerous localized regions (typically ≤ 200 km2) with reduced or negative surface accumulation. Although small zones of re-deposition occur at the base of the steeper slope areas, the redeposited mass is small relative to the ablation loss. Total losses from wind-scour and wind-glaze areas amounts to tens of gigatons annually. Near the coast, winds often blow significant amounts of surface snow from these zones into the ocean. Large uncertainties remain in SMB estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss or redistribution over the wind-scour zones. In this study, we also use Operation IceBridge's snow radar data to provide evidence for a gradual ablation of ~16-18 m of firn (~200 years of accumulation) from wind-scour zones over the upper Recovery Ice Stream catchment. The maximum ablation rates observed in this region are ~ -54 kg m-2 a-1 (-54 mm water equivalent a-1). Our airborne radio echo-sounding analysis show snow redeposition downslope of the wind-scour zones is <10% of the cumulative mass loss. Our study shows that the local mass loss is dominated by sublimation to water vapor rather than wind-transport of snow.

  1. A comparison of recent, short-, and long-term carbon accumulation rates for a vegetation gradient in central Alaska

    NASA Astrophysics Data System (ADS)

    Manies, K.; Harden, J. W.; Turetsky, M.; Fuller, C.

    2013-12-01

    Information regarding historical rates of carbon (C) accumulation will aid scientists in understanding how climate change may affect biogeochemical cycles in the future. We examined rates of C accumulation for the following three time periods: the last two thousand years (long-term rates), the last 30 years (short-term rates), and the last several years (recent rates). We compared C accumulation rates among these time periods for five different ecosystems found along a ~300-m transect within the Bonanza Creek Long-term Ecological Research (LTER) site. These sites were dominated by black spruce, low shrubs, tussock grass, Carex sp., or brown moss. The black spruce and shrub site are the only ecosystems currently underlain by permafrost. Three soil cores were taken at each site and analyzed for C content. In order to gain a robust understanding of C accumulation rates at each site, 14C measurements and 210Pb chronologies were also obtained, and flux measurements were taken at each site. 14C dates were acquired for the basal horizon of one profile for each ecosystem type, providing estimations of C accumulation rates since organic matter began to form. 210Pb chronologies for each soil profile allowed us to estimate C accumulation rates for the last several decades. Finally, CO2 flux measurements were taken at each site from May - September for five years (2007 - 2011), capturing recent C losses and gains. Although short-term C accumulation rates were lowest in the black spruce ecosystem, rates among ecosystems were not significantly different, due to large variability among soil profiles within each site (coefficient of variations of up to 50%). The long-term C accumulation rate at the black spruce site corresponds well to values measured in an adjacent black spruce forest using eddy covariance. The brown moss site had the highest long-term rates of C accumulation among the five ecosystems. Short-term C accumulation rates were always higher than long-term rates (40

  2. Erosion Rates at the Mars Exploration Rover Landing Sites and Long-Term Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Grant, J. A.; Crumpler, L. S.; Greeley, R.; Arvidson, R. E.; Bell, J. F., III; Weitz, C. M.; Sullivan, R.; Christensen, P. R.; Soderblom, L. A.; Squyres, S. W.

    2006-01-01

    Erosion rates derived from the Gusev cratered plains and the erosion of weak sulfates by saltating sand at Meridiani Planum are so slow that they argue that the present dry and desiccating environment has persisted since the Early Hesperian. In contrast, sedimentary rocks at Meridiani formed in the presence of groundwater and occasional surface water, and many Columbia Hills rocks at Gusev underwent aqueous alteration during the Late Noachian, approximately coeval with a wide variety of geomorphic indicators that indicate a wetter and likely warmer environment. Two-toned rocks, elevated ventifacts, and perched and undercut rocks indicate localized deflation of the Gusev plains and deposition of an equivalent amount of sediment into craters to form hollows, suggesting average erosion rates of approx.0.03 nm/yr. Erosion of Hesperian craters, modification of Late Amazonian craters, and the concentration of hematite concretions in the soils of Meridiani yield slightly higher average erosion rates of 1-10 nm/yr in the Amazonian. These erosion rates are 2-5 orders of magnitude lower than the slowest continental denudation rates on Earth, indicating that liquid water was not an active erosional agent. Erosion rates for Meridiani just before deposition of the sulfate-rich sediments and other eroded Noachian areas are comparable with slow denudation rates on Earth that are dominated by liquid water. Available data suggest the climate change at the landing sites from wet and likely warm to dry and desiccating occurred sometime between the Late Noachian and the beginning of the Late Hesperian (3.7-3.5 Ga).

  3. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars

    USGS Publications Warehouse

    Golombek, M.P.; Grant, J. A.; Crumpler, L.S.; Greeley, R.; Arvidson, R. E.; Bell, J.F.; Weitz, C.M.; Sullivan, R.J.; Christensen, P.R.; Soderblom, L.A.; Squyres, S. W.

    2006-01-01

    Erosion rates derived from the Gusev cratered plains and the erosion of weak sulfates by saltating sand at Meridiani Planum are so slow that they argue that the present dry and desiccating environment has persisted since the Early Hesperian. In contrast, sedimentary rocks at Meridiani formed in the presence of groundwater and occasional surface water, and many Columbia Hills rocks at Gusev underwent aqueous alteration during the Late Noachian, approximately coeval with a wide variety of geomorphic indicators that indicate a wetter and likely warmer environment. Two-toned rocks, elevated ventifacts, and perched and undercut rocks indicate localized deflation of the Gusev plains and deposition of an equivalent amount of sediment into craters to form hollows, suggesting average erosion rates of ???0.03 nm/yr. Erosion of Hesperian craters, modification of Late Amazonian craters, and the concentration of hematite concretions in the soils of Meridiani yield slightly higher average erosion rates of 1-10 nm/yr in the Amazonian. These erosion rates are 2-5 orders of magnitude lower than the slowest continental denudation rates on Earth, indicating that liquid water was not an active erosional agent. Erosion rates for Meridiani just before deposition of the sulfate-rich sediments and other eroded Noachian areas are comparable with slow denudation rates on Earth that are dominated by liquid water. Available data suggest the climate change at the landing sites from wet and likely warm to dry and desiccating occurred sometime between the Late Noachian and the beginning of the Late Hesperian (3.7-3.5 Ga). Copyright 2006 by the American Geophysical Union.

  4. A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Papenfuss, Theodore J; Macey, J Robert; Litvinchuk, Spartak N; Polymeni, Rosa; Ugurtas, Ismail H; Zhao, Ermi; Jowkar, Houman; Larson, Allan

    2006-11-01

    We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of

  5. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  6. The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    NASA Technical Reports Server (NTRS)

    Schmidt, D. D.; Alter, W. S.; Hamilton, W. D.; Parr, R. A.

    1989-01-01

    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.

  7. The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    SciTech Connect

    Schmidt, D.D.; Alter, W.S.; Hamilton, W.D.; Parr, R.A.

    1989-08-01

    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.

  8. Comparisons of 210Pb and pollen methods for determining rates of estuarine sediment accumulation

    USGS Publications Warehouse

    Brush, G.S.; Martin, E.A.; DeFries, R.S.; Rice, C.A.

    1982-01-01

    Comparisons of sedimentation rates obtained by 210Pb and pollen analyses of 1-m cores collected throughout the Potomac Estuary show good agreement in the majority of cores that can be analyzed by both methods. Most of the discrepancy between the methods can be explained by the analytical precision of the 210Pb method and by the exactness with which time horizons can be identified and dated for the pollen method. X-radiographs of the cores and the distinctness of the pollen horizons preclude significant displacement by reworking and/or mixing of sediments. Differences between the methods are greatest where uncertainties exist in assigning a rate by one or both methods (i.e., 210Pb trends and/or "possible" horizon assignments). Both methods show the same relative rates, with greater sediment accumulation more common in the upper and middle estuary and less toward the mouth. The results indicate that geochronologic studies of estuarine sediments should be preceded by careful observation of sedimentary structures, preferably by X-radiography, to evaluate the extent of mixing of the sediments. Time horizons, whether paleontologic or isotopic, are generally blurred where mixing has occurred, precluding precise identification. Whenever possible, two methods should be used for dating sediments because a rate, albeit erroneous, can be obtained isotopically in sediments that are mixed; accurate sedimentation rates are also difficult to determine where the time boundary is a zone rather than a horizon, where the historical record does not provide a precise date for the pollen horizon, or where scouring has removed some of the sediment above a dated pollen horizon. ?? 1982.

  9. Calculation of Zonal Winds using Accelerometer and Rate Data from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Baird, Darren T.; Tolson, Robert; Bougher, Stephen; Steers, Brian

    2006-01-01

    The Mars Global Surveyor spacecraft was initially placed into a high eccentricity, nearly polar orbit about Mars with a 45-hour period. To accomplish the science objectives of the mission, a 2-hour, circular orbit was required. Using a method known as aerobraking, numerous passes through the upper atmosphere slowed the spacecraft, thereby reducing the orbital period and eccentricity. To successfully perform aerobraking, the spacecraft was designed to be longitudinally, aerodynamically stable in pitch and yaw. Since the orbit is nearly polar, the yaw orientation of the spacecraft was sensitive to disturbances caused by the zonal components of wind (east-to-west or west-to-east) acting on the spacecraft at aerobraking altitudes. Zonal wind velocities were computed by equating the aerodynamic and inertia-related torques acting on the spacecraft. Comparisons of calculated zonal winds with those computed from the Mars Thermospheric Global Circulation Model are discussed.

  10. Constraints on the Recent Rate of Lunar Regolith Accumulation from Diviner Observations

    NASA Technical Reports Server (NTRS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.

    2012-01-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances pre dicted to be covered by continuous ejecta. However, most of these sur faces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrar ed observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperat ures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highla nds), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth . Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differen ces in the thickness of accumulated regolith. However, away from youn g craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculat ed H values for young craters show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42, abstract 2437). This method could, in principle, be extended to other

  11. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  12. Decadal sediment accumulation rates on the floodplain of the Strickland River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Swanson, K. M.; Watson, E.; Aalto, R.; Lauer, J. W.; Bera, M. T.; Marshall, A.; Taylor, M.; Apte, S. C.; Dietrich, W. E.

    2006-12-01

    Rate of aggradation and infilling of accommodation space along lowland channels in response to post-glacial sea level rise should depend on sediment supply. The Strickland and Fly Rivers join at just 6 m above sea level, and the Strickland has historically carried about 7 times the sediment load and twice the river discharge as the Fly. Here we test the hypothesis that the lowland Strickland River floodplain should now have a lower sediment trap efficiency (due to more fully developed floodplains) than the middle Fly River, which currently losses about 40% of its load to the floodplain annually. We use mine-derived elevated Pb and Ag in floodplain core samples to determine the rates of sedimentation across the lower Strickland floodplain. Field sampling campaigns were conducted in 1997 and 2003, collecting shallow (less than 1 m) core samples at 5 relatively straight reaches up to 2 km from channel banks (in 1997 and 2003) and from 3 strongly curved sections, as well as from other sites of interest (2003). Various observations indicate that the concentration of particulate metals in overbank floods varies with stage, drought-flood cycles, and through the life of the mine. Sediment accumulation declines across the floodplain from the channel bank with an average rate of about 1.4 cm/yr over the first 1 km. Some sedimentation farther out did occur but is not well defined by our data. Overbank deposition is about 13% of the total load. Sedimentation rate per unit area is perhaps 10 times that measured on the Fly, but lateral migration on the Strickland is sufficiently high (average 5 m/yr) that overbank deposits are returned to the channel, significantly reducing potential net deposition to the floodplain. We conclude that the Strickland, which is nearly 10 times steeper than the Fly, and has much higher overbank deposition rates, nonetheless has less net deposition than the Fly because of the more vigorous lateral migration (which apparently results from the higher

  13. Recent Carbon Accumulation Rates in Ombrotrophic Peatlands on the North Shore of the Gulf of the St. Lawrence, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Sanderson, N. K.; Charman, D.; Garneau, M.; Hartley, I. P.

    2013-12-01

    In Eastern Canada, permafrost reached its southernmost extent for the Holocene during the Little Ice Age. Recent warming and degradation along the southern limit of the discontinuous permafrost zone is altering the microtopography, hydrology and carbon cycling in ombrotrophic peatlands; this trend is projected to continue. However, the understanding of multi-decadal and centennial scale change in peatlands is limited. This study aims to quantify changes in carbon accumulation rates for the last millennium in ombrotrophic peatlands from three regions along the North Shore of the Gulf of the St Lawrence, Canada. In each region, three peatlands were cored and 3-4 microforms were sampled per peatland. This replication allows changes in accumulation rates to be examined on two scales: 1) between regions along a N-S climatic gradient, and 2) within peatlands in the same region along a microtopography gradient. Recent carbon accumulation rates for last 150-200 years were calculated with lead-210 dates. Some initial estimates are also available for the last millennium using radiocarbon dates. Carbon accumulation rates were higher for all sites in the southernmost region, with sphagnum hummocks having the recent highest accumulation rates overall. In more northern peatlands, rates were found to differ between microforms, and between sites. This variability may be due to local differences in wind exposure and winter snow cover between sites. A high-resolution (0.5 cm) multi-proxy analysis using testate amoebae and plant macrofossils will be performed around key periods of accumulation change to evaluate peatland sensitivity and carbon accumulation to hydrological change.

  14. Impacts of timber harvesting on historic sediment accumulation rates in the Coos Bay estuary, Oregon

    NASA Astrophysics Data System (ADS)

    Mathabane, N.; Roering, J. J.

    2014-12-01

    The expansion and development of human infrastructure along the coastline of the Pacific Northwest has profound consequences for the habitability and general ecological health of coastal ecosystems. Coos County, one of the most economically critical regions of the Oregon Coast, experienced vigorous timber harvest activity in the aftermath of WWII that declined in the last several decades. This period of extractive land use may have drastically altered the sediment supply in the major catchments of the Coos and Millicoma Rivers and lead to variations in sediment flux into the Coos Bay estuary. Accurate sediment flux histories are critical data for deciphering the relative importance of climate and land use factors such as logging and road construction on sediment production. Reduction of root reinforcement following timber harvest increases the likelihood of shallow landsliding and debris flows. In addition, forest roads increase sediment production due to overland flow and entrainment of fine sediments on hydrologically connected roads. Although these processes have been documented in small watersheds, their compounded effect on estuaries and coastal settings has not been well documented. We use Pb-210 activities derived from sediment cores taken at various locations in the Coos Bay estuary to establish temporal variations in sediment accumulation rates (SARs). Our cores will also be analyzed to assess dissolved oxygen and other proxies for ecosystem functioning. By correlating these SARs with quantitative metrics for timber extraction rate such as board feet per year and qualitative evaluations from historical photos, we propose to document the cumulative effect of historic forest practices. The temporal resolution provided by this technique should allow us to link changes in estuarine sedimentation to changes in land use as well as climatic triggers such as storms. The conclusions of this study will add valuable information regarding the ultimate impact of

  15. Constraints on the recent rate of lunar regolith accumulation from Diviner observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.; Allen, C.; Paige, D. A.

    2012-12-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances predicted to be covered by continuous ejecta. However, most of these surfaces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrared observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highlands), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth. Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differences in the thickness of accumulated regolith. However, away from young craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculated H values for young craters (Giordano Bruno, Moore F, Byrgius A, Necho, Tycho, Jackson, King, and Copernicus) show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42

  16. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  17. Sediment accumulation rates in time and space: Paleogene genetic stratigraphic sequences of the northwestern Gulf of Mexico basin

    NASA Astrophysics Data System (ADS)

    Galloway, William E.; Williams, Thomas A.

    1991-10-01

    The Paleogene fill of the northwestern Gulf of Mexico basin consists of eight genetic stratigraphic, sequences bounded by regional marine flooding surfaces. Calculation of sediment accumulation rates along dip profiles through four subbasins shows that regional changes in accumulation rate—and by inference, rate of sediment supply—of fivefold to tenfold repeatedly occurred over time spans of 1 to 3 m.y. Major sequences record episodes of high supply and accommodation-limited accumulation. Periods of declining and low supply were characterized by short-term over-accommodation and consequent transgressive flooding of the basin margin. Within sequences, depositional rates varied with position relative to the contemporaneous shelf margin, with type of depositional system, and between subbasins. Normal patterns of load-induced basin-margin subsidence and creation of accommodation space were modified by perturbation of the crustal stress regime.

  18. Evaluation of C accumulation rates, as determined by 137Cs and 210Pb, for a vegetation gradient in central Alaska

    NASA Astrophysics Data System (ADS)

    Manies, K.; Harden, J. W.; Fuller, C. C.; Turetsky, M. R.

    2012-12-01

    Boreal ecosystems comprise a large portion of the world's soil carbon (C) in large part because the rate of biomass production is greater than the rate of decomposition. To aid in our understanding in the C balance of these systems we need to determine soil C accumulation rates in different ecosystems. Here we use 137Cs and 210Pb chronologies to examine the C accumulation rates of a natural vegetation gradient found within the Bonanza Creek LTER of central Alaska. Five ecosystems, located along a ~300-m transect, were dominated by black spruce, low shrubs, tussock grass, Carex sp., or brown moss. Only the black spruce and shrub site are underlain by permafrost. Three soil cores were taken from each site and analyzed for C content. Depth profiles were also measured for 137Cs and 210Pb, dating the soil horizons, allowing us to estimate C accumulation rates. Average unsupported 210Pb inventories (dpm/cm^2) for each ecosystem type were similar. However, unsupported 210Pb activity was found in the mineral soil horizons for the tussock grass site, suggesting that Pb may be mobile in this system. Estimated dates of formation for each horizon, calculated using both the Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) methods, were usually within +/- 5 years for the past 50 years, but deviated more for older, deeper horizons, likely due to uncertainty in defining the unsupported 210Pb inventory. Recent C accumulation rates varied among ecosystem type, with the black spruce sites having the lowest rate of C accumulation and the other ecosystems (not including the tussock grass site) having approximately the same C accumulation rates. Variability within each ecosystem type, however, was high. The short-term accumulation rates found for these ecosystems (44 - 100 gC/m^2/yr) are within the range of values found in some northern studies (i.e., 40-117 gC/m^2/yr; Turunen et. al, 2004), but higher than those reported by others (i.e., 20-30 gC/m^2/yr

  19. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows

    NASA Astrophysics Data System (ADS)

    Miyajima, Toshihiro; Hori, Masakazu; Hamaguchi, Masami; Shimabukuro, Hiromori; Adachi, Hiroshi; Yamano, Hiroya; Nakaoka, Masahiro

    2015-04-01

    Organic carbon (OC) stored in the sediments of seagrass meadows has been considered a globally significant OC reservoir. However, the sparsity and regional bias of studies on long-term OC accumulation in coastal sediments have limited reliable estimation of the capacity of seagrass meadows as a global OC sink. We evaluated the amount and accumulation rate of OC in sediment of seagrass meadows and adjacent areas in East and Southeast Asia. In temperate sites, the average OC concentration in the top 30 cm of sediment was higher in seagrass meadows (780-1080 mmol g-1) than in sediments without seagrass cover (52-430 mmol g-1). The average OC in the top 30 cm of subtropical and tropical seagrass meadow sediments ranged from 140 to 440 mmol g-1. Carbon isotope mass balancing suggested that the contribution of seagrass-derived carbon to OC stored in sediments was often relatively minor (temperate: 10-40%; subtropical: 35-82%; tropical: 4-34%) and correlated to the habitat type, being particularly low in estuarine habitats. Stock of OC in the top meter of sediment of all the studied meadows ranged from 38 to 120 Mg ha-1. The sediment accumulation rates were estimated by radiocarbon dating of six selected cores (0.32-1.34 mm yr-1). The long-term OC accumulation rates calculated from the sediment accumulation rate and the top 30 cm average OC concentration for the seagrass meadows (24-101 kg ha-1 yr-1) were considerably lower than the OC accumulation rates previously reported for Mediterranean Posidonia oceanica meadows (580 kg ha-1 yr-1 on average). Current estimates for the global carbon sink capacity of seagrass meadows, which rely largely on Mediterranean studies, may be considerable overestimations.

  20. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  1. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    PubMed

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total. PMID:17217968

  2. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  3. Abundance of Cosmogenic Noble Gases as a Marker of the Organic Degradation by Cosmic Rays in the Surface Martian Rocks. Implications to MSL and Mars 2020

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vasilyev, G. I.; Ostryakov, V. M.; Pavlov, A. K.; Mahaffy, P.

    2014-07-01

    We conducted a modeling study which links the rates of cosmogenic isotopes production with the radiation accumulation rates on Mars. We calculated the degradation level of the organic molecules at Cumberland based on the observed cosmogenic isotopes.

  4. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be

  5. [Estimating of decadal accumulation rates of heavy metals in surface rice soils in the Tai Lake region of China].

    PubMed

    Li, Lianqing; Pan, Genxing; Zhang, Pingjiu; Cheng, Jiemin; Zhu, Qiuhua; Qiu, Duosheng

    2002-05-01

    Estimation of decadal accumulation of some heavy metals in surface rice soils from the Tai Lake region, southern Jiangsu Province, China was made by means of calculating the monitoring data and/or analysis data of the archived soil samples. For the last decade, the estimated annual accumulation rate for Cu or Zn, Pb and Cd was 0.3-1 mg.(kg.a)-1, 0.2-1 mg.(kg.a)-1 and 0.3-3 micrograms.(kg.a)-1 respectively, the apparent pollution loading was, therefore, respectively 0.5-1 kg.(hm2.a)-1, 0.5-1.0 kg.(hm2.a)-1, 0.5-3.0 kg.(hm2.a)-1 [symbol: see text] 0.8-10 x 10(-3) kg.(hm2.a)-1. The accumulation rate for the content of available form was shown to be greater than that of total content. The non-point source pollution marked bigger contribution to the total annual loading for the Pb and Cd than the other source pollutions, while the Cd loading was prominently higher than those reported in Europe. These results may indicate that the food safety in this region may be constrained by the soil pollution of these heavy metals at high accumulation rates.

  6. Laboratory Determination of Molybdenum Accumulation Rates as a Measure of Hypoxic Conditions

    EPA Science Inventory

    Redox sensitive metals, such as molybdenum (Mo), are enriched in reducing sediments due to authigenic fixation in anoxic interstitial waters of sediments. This study tested whether the process of fixation and accumulation of Mo in sediments could provide a geochemical indicator o...

  7. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal

  8. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error

    USGS Publications Warehouse

    Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.

    2012-01-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.

  9. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    SciTech Connect

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Steefel, C.; Brantley, S.L.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

  10. T1 Relaxation Rate (R1) Indicates Nonlinear Mn Accumulation in Brain Tissue of Welders With Low-Level Exposure

    PubMed Central

    Lee, Eun-Young; Flynn, Michael R.; Du, Guangwei; Lewis, Mechelle M.; Fry, Rebecca; Herring, Amy H.; Van Buren, Eric; Van Buren, Scott; Smeester, Lisa; Kong, Lan; Yang, Qing; Mailman, Richard B.; Huang, Xuemei

    2015-01-01

    Although the essential element manganese (Mn) is neurotoxic at high doses, the effects of lower exposure are unclear. MRI T1-weighted (TIW) imaging has been used to estimate brain Mn exposure via the pallidal index (PI), defined as the T1W intensity ratio in the globus pallidus (GP) versus frontal white matter (FWM). PI may not, however, be sensitive to Mn in GP because Mn also may accumulate in FWM. This study explored: (1) whether T1 relaxation rate (R1) could quantify brain Mn accumulation more sensitively; and (2) the dose-response relationship between estimated Mn exposure and T1 relaxation rate (R1). Thirty-five active welders and 30 controls were studied. Occupational questionnaires were used to estimate hours welding in the past 90 days (HrsW) and lifetime measures of Mn exposure. T1W imaging and T1-measurement were utilized to generate PI and R1 values in brain regions of interest (ROIs). PI did not show a significant association with any measure of Mn and/or welding-related exposure. Conversely, in several ROIs, R1 showed a nonlinear relationship to HrsW, with R1 signal increasing only after a critical exposure was reached. The GP had the greatest rate of Mn accumulation. Welders with higher exposure showed significantly higher R1 compared either with controls or with welders with lower exposure. Our data are additional evidence that Mn accumulation can be assessed more sensitively by R1 than by PI. Moreover, the nonlinear relationship between welding exposure and Mn brain accumulation should be considered in future studies and policies. PMID:25953701

  11. The accumulation rate of meteorite falls at the earth's surface - The view from Roosevelt County, New Mexico

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wells, Gordon L.; Rendell, Helen M.

    1990-01-01

    The discovery of 154 meteorite fragments within an 11-sq km area of wind-excavated basins in Roosevelt County, New Mexico, permits a new calculation of the accumulation rate of meteorite falls at the earth's surface. Thermoluminescence dating of the coversand unit comprising the prime recovery surface suggests the maximum terrestrial age of the meteorites to be about 16.0 ka. The 68 meteorite fragments subjected to petrological analyses represent a minimum of 49 individual falls. Collection bias has largely excluded carbonaceous chondrites and achondrites, requiring the accumulation rate derived from the recovered samples to be increased by a factor of 1.25. Terrestrial weathering destroying ordinary chondrites can be modeled as a first-order decay process with an estimated half-life of 3.5 + or - 1.9 ka on the semiarid American High Plains. Having accounted for the age of the recovery surface, area of field searches, pairing of finds, collection bias and weathering half-life, an accumulation rate of 940 falls/a per 10 to the 6th sq km is calculated for falls greater than 10 g total mass. This figure exceeds the best-constrained previous estimate by more than an order of magnitude. One possible reason for this disparity may be the extraordinary length of the fall record preserved in the surficial geology of Roosevelt County. The high accumulation rate determined for the past 16 ka may point to the existence of periods when the meteorite fall rate was significantly greater than at present.

  12. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal

  13. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such

  14. On the Effect of Ramp Rate in Damage Accumulation of the CPV Die-Attach: Preprint

    SciTech Connect

    Bosco, N. S.; Silverman, T. J.; Kurtz, S. R.

    2012-06-01

    It is commonly understood that thermal cycling at high temperature ramp rates may activate unrepresentative failure mechanisms. Increasing the temperature ramp rate of thermal cycling, however, could dramatically reduce the test time required to achieve an equivalent amount of thermal fatigue damage, thereby reducing overall test time. Therefore, the effect of temperature ramp rate on physical damage in the CPV die-attach is investigated. Finite Element Model (FEM) simulations of thermal fatigue and thermal cycling experiments are made to determine if the amount of damage calculated results in a corresponding amount of physical damage measured to the die-attach for a variety of fast temperature ramp rates. Preliminary experimental results are in good agreement with simulations and reinforce the potential of increasing temperature ramp rates. Characterization of the microstructure and resulting fatigue crack in the die-attach suggest a similar failure mechanism across all ramp rates tested.

  15. Saltation transport on Mars.

    PubMed

    Parteli, Eric J R; Herrmann, Hans J

    2007-05-11

    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is 1 order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.

  16. Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2015-02-01

    Geological evidence for extensive non-polar ice deposits of Amazonian age indicates that the current cold and dry climate of Mars has persisted for several billion years. The geological record and climate history of the Noachian, the earliest period of Mars history, is less certain, but abundant evidence for fluvial channels (valley networks) and lacustrine environments (open-basin lakes) has been interpreted to represent warm and wet conditions, including rainfall and runoff. Alternatively, recent atmospheric modeling results predict a "cold and icy" Late Noachian Mars in which moderate atmospheric pressure accompanied by a full water cycle produce an atmosphere where temperature declines with elevation following an adiabatic lapse rate, in contrast to the current situation on Mars, where temperature is almost completely determined by latitude. These results are formulated in the Late Noachian Icy Highlands (LNIH) model, in which these cold and icy conditions lead to the preferential deposition of snow and ice at high elevations, such as the southern uplands. What is the fate of this snow and ice and the nature of glaciation in such an environment? What are the prospects of melting of these deposits contributing to the observed fluvial and lacustrine deposits? To address these questions, we report on a glacial flow-modeling analysis using a Mars-adapted ice sheet model with LNIH climate conditions. The total surface/near-surface water inventory is poorly known for the Late Noachian, so we explore the LNIH model in a "supply-limited" scenario for a range of available water abundances and a range of Late Noachian geothermal fluxes. Our results predict that the Late Noachian icy highlands (above an equilibrium line altitude of approximately +1 km) were characterized by extensive ice sheets of the order of hundreds of meters thick. Due to extremely cold conditions, the ice-flow velocities in general were very low, less than a few mm/yr, and the regional ice

  17. Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats

    SciTech Connect

    Youn, J.H.; Ader, M.; Bergman, R.N.

    1989-01-05

    Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using (6-3H)Glc and (U-14C)Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway.

  18. Dust on Mars: Materials Adherence Experiment results from Mars Pathfinder

    SciTech Connect

    Landis, G.A.; Jenkins, P.P.

    1997-12-31

    Mars Pathfinder is the first solar-powered probe to operate on the surface of Mars. Pathfinder consists of a lander and a small, autonomous, six-wheel solar-powered rover, Sojourner. The Pathfinder spacecraft reflects NASA`s new philosophy of exploiting new technologies to reduce mission cost. The Materials Adherence Experiment on Pathfinder was designed to measure the degradation of solar arrays due to dust settling out of the atmosphere and blocking light to the solar array, lowering the array power output. The MAE measurements indicate steady dust accumulation at a rate of about 0.28% per day. This value is consistent with the performance of the solar arrays, which have decreased in power at an estimated rate of 0.29% per day.

  19. The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers.

    PubMed

    Meighan, Michelle M; Fenus, Taressa; Karey, Emma; MacNeil, Joseph

    2011-06-01

    In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd(2+) in hydroponic solution had initial translocation rates of at least 0.12 mmol kg(-1)h(-1) and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g(-1) and extracting 1400 μg plant(-1). When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g(-1)min(-1). The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.

  20. Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield

    NASA Astrophysics Data System (ADS)

    Schwikowski, M.; Schläppi, M.; Santibañez, P.; Rivera, A.; Casassa, G.

    2012-12-01

    Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

  1. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  2. Spatial and temporal variability of snow chemical composition and accumulation rate at Talos Dome site (East Antarctica).

    PubMed

    Caiazzo, Laura; Becagli, Silvia; Frosini, Daniele; Giardi, Fabio; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-15

    Five snow pits and five firn cores were sampled during the 2003-2004 Italian Antarctic Campaign at Talos Dome (East Antarctica), where a deep ice core (TALDICE, TALos Dome Ice CorE, 1650m depth) was drilled in 2005-2008 and analyzed for ionic content. Particular attention is spent in applying decontamination procedures to the firn cores, as core sections were stored for approximately 10years before analysis. By considering the snow pit samples to be unperturbed, the comparison with firn core samples from the same location shows that ammonium, nitrate and MSA are affected by storage post-depositional losses. All the other measured ions are confirmed to be irreversibly deposited in the snow layer. The removal of the most external layers (few centimeters) from the firn core sections is proved to be an effective decontamination procedure. High-resolution profiles of seasonal markers (nitrate, sulfate and MSA) allow a reliable stratigraphic dating and a seasonal characterization of the samples. The calculated mean accumulation-rate values range from 70 to 85mmw.e.year(-1), in the period 2003-1973 with small differences between two sectors: 70-74mmw.e.year(-1) in the NNE sector (spanning 2003-1996years) and 81-92mmw.e.year(-1) in the SSW sector (spanning 2003-1980years). This evidence is interpreted as a coupled effect of wind-driven redistribution processes in accumulation/ablation areas. Statistical treatment applied to the concentration values of the snow pits and firn cores samples collected in different points reveals a larger temporal variability than spatial one both in terms of concentration of chemical markers and annual accumulation. The low spatial variability of the accumulation rate and chemical composition measured in the five sites demonstrates that the TALDICE ice core paleo-environmental and paleo-climatic stratigraphies can be considered as reliably representative for the Talos Dome area.

  3. An Investigation of the Validity and Reliability of the Adapted Mathematics Anxiety Rating Scale-Short Version (MARS-SV) among Turkish Students

    ERIC Educational Resources Information Center

    Baloglu, Mustafa

    2010-01-01

    This study adapted the Mathematics Anxiety Rating Scale-Short Version (MARS-SV) into Turkish and investigated the validity and reliability of the adapted instrument. Twenty-five bilingual experts agreed on the language validity, and 49 Turkish language experts agreed on the conformity and understandability of the scale's items. Thirty-two subject…

  4. A closer look at the Neogene erosion and accumulation rate increase

    NASA Astrophysics Data System (ADS)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  5. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  6. Rates of plant succession, carbon and nitrogen accumulation in small-scale tundra chronosequences; an implication for climate change

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Klaminder, J.

    2011-12-01

    The rate in which plants are able to colonize and build up soil organic carbon (SOC) and nitrogen (N) in soil are crucial in understanding the effect of environmental changes on high latitude ecosystems via plant community. In this presentation we present high-spatial-resolution data of plant colonization and SOC and N accumulation rates occurring on frost boils that are common in many periglacial landscapes. The diameters of each frost boil ranges from 1 to 3 meters. The distribution of plant community across a frost boil can be identified as a gradient of ongoing primary succession. The primary succession is initiated in the centre of the frost boil every time up-frozen soil is deposited on top of the surface. A subsequent lateral mass-movement of newly deposited soil from the centre of the frost boil towards the rim over time causes the surface soil and plant community to become progressively "older" from the centre towards the rim of the frost boil. In the presented work we constrain the age of the soil surface as a function of distance from the centre of the frost boil towards the rim by using lichenometry dating. With this investigation, we achieve soil age gradients (chronosequences) ranging from approximately from 0 to 300 years for meters-scale. We present data from northern Sweden where we have utilized this small-scale variation in soil age to understand how the accumulation rate of SOC and N varies over time in the upper 10 cm of the arctic soil and how the accumulation rates is affected by other ecosystem properties such as temperature, plant diversity, dominant plant functional groups and litter quality. Our key conclusions is that reduced soil frost actions, which is likely to accompany the predicted warming of the Scandinavian arctic, are likely to accelerate the colonization rate of vegetation that will enhance the accumulation of SOC and N. However, one likely side effect of this colonization into previously frost-disturbed system is the decline

  7. Sediment accumulation rates in Conowingo Reservoir as determined by man-made and natural radionuclides

    SciTech Connect

    McLean, R.I.; Domotor, S.L. ); Summers, J.K.; Wilson, H. ); Olsen, C.R.; Larsen, I.L. )

    1991-05-01

    The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-210 were used to estimate rates of sediment accretion in the Conowingo Reservoir,an impoundmment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr{sup {minus}1} downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr{sup {minus}1} at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load retained by the reservoir is estimated to be 0.4 {times} 10{sup 6} to 1.5 {times} 10{sup 6} metric tons yr{sup {minus}1}. The retained sediment load represents about 8-23% of the long-time average sediment input to the reservoir.

  8. MarsSat: assured communication with Mars.

    PubMed

    Gangale, Thomas

    2005-12-01

    The author developed the MarsSat concept during the 1990s. For this task, he designed a class of orbits to solve the problem of communicating with crews on Mars when the planet is in solar conjunction as seen from Earth, a planetary configuration that occurs near the midpoint of a conjunction class mission to Mars. This type of orbit minimizes the distance between Mars and the communications satellite; thus, minimizing the size, weight, and power requirements, while providing a simultaneous line-of-sight to both Earth and Mars. The MarsSat orbits are solar orbits that have the same period as Mars, but are inclined a few degrees out of the plane of the Mars orbit and also differ in eccentricity from the orbit of Mars. These differences cause a spacecraft in this orbit to rise North of Mars, then fall behind Mars, then drop South of Mars, and then pull ahead of Mars, by some desired distance in each case-typically about 20 million kilometers-in order to maintain an angular separation of a couple of degrees as seen from a point in the orbit of Earth on the opposite side of the Sun. A satellite in this type of orbit would relay communications between Earth and Mars during the period of up to several weeks, when direct communication is blocked by the Sun. These orbits are far superior for this purpose when compared to stationing a satellite at one of the Sun-Mars equilateral Lagrangian points, L(4) or L(5), for two reasons. First, L(4) and L(5) are 228 million kilometers from Mars, about 10 times the distance of a spacecraft in one of the MarsSat orbits, and by virtue of the inverse-square law, all other things being equal, the signal strength received at L(4) or L(5) would be one percent of the signal strength received by a spacecraft in one of the MarsSat orbits. Thus, a relay satellite stationed at L(4) or L(5) would have to be that much more powerful to receive data at the same rate, with concomitant increases in spacecraft size and weight. Second, a number of

  9. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater. PMID:26595097

  10. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater.

  11. Rate of denitrification and the accumulation of intermediates in a denitrifying bioreactor

    NASA Astrophysics Data System (ADS)

    Parsignault, D. R.; Gursky, H.; Kellogg, E. M.; Matilsky, T.; Murray, S.; Schreier, E.; Tananbaum, H.; Giacconi, R.; Brinkman, A. C.

    2012-12-01

    Denitrifying bioreactors (DNBRs) are an emerging mechanism to mitigate the impact of excess reactive nitrogen by harnessing the activity of ubiquitous denitrifying soil microbes. DNBRs fundamentally consist of an organic carbon energy source sufficiently saturated to develop anaerobic conditions and support heterotrophic reduction of nitrate to dinitrogen. Although recent research has well established achievable nitrate removal in DNBRs upwards of 90%, few studies experimentally determine the fate of nitrogen in these systems. This study differentiates between denitrification to inert nitrogen gas, which permanently removes reactive nitrogen from an enriched ecosystem, and transformation of nitrate to another bioavailable form (such as N2O or NOX, powerful greenhouse gases). Previous research has failed to make this distinction and as both are perceived as a reduction in nitrate concentration at the outlet, the utility of DNBRs in reducing downstream reactive nitrogen has not been sufficiently established. In order to quantify the rate of nitrate removal and the products produced, dissolved gas samples are collected from the DNBR with passive diffusion gas samplers while the influent and effluent nitrate concentration and chemical oxygen demand are monitored in real time with spectrometer probes. Nitrate removal is compared with the denitrification rate and the ratio of dinitrogen to nitrous oxide is reported. Denitrification is quantified from the proportion of nitrogen gas products produced from the nitrate pool, indicated by the negative congruence of the regression of 15N enrichment in the nitrate pool and temporal depletion in the gaseous products. The proportion of nitrous oxide to dinitrogen is examined with respect to saturation and redox potential. This research informs the interpretation of previous studies as well as advises the focus of long-term system level monitoring that will provide further information on the design and application of DNBRs to

  12. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates.

    PubMed

    Singh, R P; Agrawal, M

    2010-05-01

    Use of sewage sludge in agriculture is an alternative disposal technique for this waste. The present field study was conducted to assess the suitability of sewage sludge amendment in soil for rice (Oryza sativa L. cv. Pusa sugandha 3) by evaluating the heavy metal accumulation, growth, biomass and yield responses of plants grown at 0, 3, 4.5, 6, 9, 12 kgm(-2) sewage sludge amendment (SSA) rate. Sewage sludge amendment modified the physico-chemical properties of soil, thus increasing the availability of heavy metals in soil and consequently with higher accumulation in plant parts. Root length decreased, whereas shoot length, number of leaves, leaf area and total biomass increased significantly when grown under various SSA rates. Yield of rice increased by 60%, 111%, 125%, 134% and 137% at 3, 4.5, 6, 9 and 12 kgm(-2) SSA, respectively, as compared to those grown in unamended soil. Sewage sludge amendment rates above 4.5 kgm(-2) though increased the yield of rice, but caused risk of food chain contamination as concentrations of Ni and Cd in rice grains were found to be above the Indian safe limits (1.5 mgkg(-1)) of human consumption above 4.5 kgm(-2) SSA and of Pb (2.5 mgkg(-1)) above 6 kgm(-2) SSA. Since aboveground parts of the rice also showed higher concentration than the permissible levels of Ni, Cd and Pb at 4.5 kgm(-2) SSA rate, it cannot be used as fodder. The rice husk may be used as bioresource for energy production. Efforts should be made to treat the effluents from small scale industries before discharge into the sewerage system.

  13. Biogenic silica fluxes and accumulation rates in the Gulf of California

    SciTech Connect

    Thunell, R.C.; Pride, C.J.; Tappa, E. ); Muller-Karger, F.E. )

    1994-04-01

    The Gulf of California, though small in size, plays an important role in the global silica cycle. The seasonal pattern of biogenic silica flux in the gulf is closely related to that of phytoplankton biomass levels and is controlled by changes in weather and hydrographic conditions. The highest opal fluxes ([approximately] 0.35 g[center dot]m[sup [minus]2][center dot]d[sup [minus]1]) occur during winter and spring, and they are comparable to those measured in some of the most productive ecosystems of the world. Approximately 15%-25% of the biogenic silica produced in surface waters is preserved in gulf sediments, a figure significantly higher than the average global ocean preservation rate. However, the flux of opal at 500 m water depth is less than 25% of that being produced at the surface, suggesting that most of the recycling of biogenic silica in the Gulf of California occurs in the upper water column. 28 refs., 3 figs.

  14. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum.

    PubMed

    Saxer, Gerda; Havlak, Paul; Fox, Sara A; Quance, Michael A; Gupta, Sharu; Fofanov, Yuriy; Strassmann, Joan E; Queller, David C

    2012-01-01

    Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9), with a Poisson confidence interval of 4.1×10(-9) - 9.5×10(-9), per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11), with a Poisson confidence interval ranging from 7.4×10(-13) to 1.6×10(-10), is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes. PMID:23056439

  15. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  16. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  17. Accumulation of Cd by the marine sponge Halichondria panicea pallas: Effects upon filtration rate and its relevance for biomonitoring

    SciTech Connect

    Olesen, T.M.E.; Weeks, J.M. )

    1994-05-01

    The marine demosponge Halichondria panicea Pallas, is a cosmopolitan species occurring in coastal waters with varied conditions of light, current, salinity and turbidity. H. panicea has a leuconoid structure and is composed of siliceous spicules and spongin fibers. Sponges are important members of many shallow water marine benthic communities, but comparatively little is known of their trace metal biology. Sponge architecture is constructed around a system of water canals and the physiology of the sponge is largely dependent on the currents of water flowing through their bodies. The volume of water pumped by a sponge is remarkable, ca. 100-1200 ml h[sup [minus]1] g[sup [minus]1]. This large volume of water passing through the body of a sponge means that most cells are in direct contact with the external medium. Many sponges are able to accumulate trace metals and are highly tolerant of such pollutants. This has led to the proposal that a [open quotes]sponge watch[close quotes] program be initiated supplementary to the existing [open quotes]mussel watch[close quotes] program. In view of the large volume of water passing through the bodies of sponges such as H. panicea, the suitability of this species as a biomonitoring organism was further investigated. This study describes the accumulation strategy of the demosponge H. panicea exposed to dissolved cadmium (Cd) and the effect of Cd upon sponge filtration rate.

  18. [Effects of nitrogen application rate on soil nitrate nitrogen accumulation under vegetable-paddy rice rotation system].

    PubMed

    Li, Juan; Zhang, Ming-Qing; Kong, Qing-Bo; Yao, Bao-Quan

    2013-12-01

    A 2-year field experiment of mustard-cabbage-early rice rotation was conducted to investigate the effects of nitrogen application on yield and accumulation of nitrate nitrogen in the soil. The results showed that the applications of 150 kg N x hm(-2) for mustard and cabbage respectively and 90 kg N x hm(-2) for early rice were the best economic application mode, which could increase the net profit by 0.2%-75.6% compared with other application modes. Nitrogen application rates were positively correlated with NO3(-)-N concentration in the soil and in the percolating water. The vegetable-paddy rice rotation decreased the surplus of nitrogen in the soil. The average soil NO3(-)-N concentration was 29.7 mg x kg(-1) under the rotation of mustard-cabbage-early rice, which was only 84.4% of that under the continuous cropping of mustard-cabbage. The average NO3(-)-N concentration in the percolating water under mustard-cabbage-early rice rotation was little different from that in basal soil. Therefore, with the optimum nitrogen application mode, the vegetable-paddy rice rotation could gain the best economic benefit while significantly decrease the accumulation of nitrate nitrogen in the soil to effectively control non-point source pollution of nitrogen from vegetable fields.

  19. Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla).

    PubMed

    Tsurim, Ido; Sapir, Nir; Belmaker, Jonathan; Shanni, Itai; Izhaki, Ido; Wojciechowski, Michał S; Karasov, William H; Pinshow, Berry

    2008-05-01

    Fat accumulation by blackcaps (Sylvia atricapilla) is a prerequisite for successful migratory flight in the autumn and has recently been determined to be constrained by availability of drinking water. Birds staging in a fruit-rich Pistacia atlantica plantation that had access to water increased their body mass and fat reserves both faster and to a greater extent than birds deprived of water. We conducted a series of laboratory experiments on birds captured during the autumn migration period in which we tested the hypotheses that drinking water increases food use by easing limitations on the birds' dietary choices and, consequently, feeding and food processing rates, and that the availability of drinking water leads to improved digestion and, therefore, to higher apparent metabolizable energy. Blackcaps were trapped in autumn in the Northern Negev Desert, Israel and transferred to individual cages in the laboratory. Birds were provided with P. atlantica fruit and mealworms, and had either free access to water (controls) or were water-deprived. In experiment 1, in which mealworm availability was restricted, water-deprived birds had a fourfold lower fruit and energy intake rates and, consequently, gained less fat and total mass than control birds. Water availability did not affect food metabolizability. In experiment 2, in which mealworms were provided ad libitum, water availability influenced the birds' diet: water-restricted birds ate more mealworms, while control birds consumed mainly P. atlantica fruit. Further, in experiment 2, fat and mass gain did not differ between the two treatment groups. We conclude that water availability may have important consequences for fat accumulation in migrating birds while they fatten at stopover sites, especially when water-rich food is scarce. Restricted water availability may also impede the blackcap's dietary shift from insectivory to frugivory, a shift probably necessary for successful pre-migratory fattening.

  20. Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest

    USGS Publications Warehouse

    Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing

    2006-01-01

    The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem - monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration - coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ?? 2538 g ?? m-2, 16889 ?? 1936 g ?? m-2 and 12680 ?? 1854 g ?? m-2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ?? 97 g ?? m-2 ?? a-1, 193 ?? 85 g ?? m-2 ?? a-1 and 213 ?? 86 g ?? m-2 ?? a-1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March. ?? Science in China Press 2006.

  1. Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.

    2015-08-01

    In 2016 NASA will launch the InSight discovery-class mission, which aims to study the detailed internal structure of Mars for the first time. Short- and long-period seismometers form a major component of InSight's payload and have the potential to detect seismic waves generated by meteorite impacts. Large globally detectable impact events producing craters with diameters of ∼ 100 m have been investigated previously and are likely to be rare (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80), but smaller impacts producing craters in the 0.5-20 m range are more numerous and potentially occur sufficiently often to be detectable on regional scales (≲1000 km). At these distances, seismic waves will have significant high frequency content and will be suited to detection with InSight's short-period seismometer SEIS-SP. In this paper I estimate the current martian crater production function from observations of new craters (Malin, M.C. et al. [2006]. Science 314, 1573-1577; Daubar, I.J. et al. [2013]. Icarus 225, 506-516), model results (Williams, J.P., Pathare, A.V., Aharonson, O. [2014]. Icarus 235, 23-36), and standard isochrons (Hartmann, W.K. [2005]. Icarus 174, 294-320). These impact rates are combined with an empirical relation between impact energy, source-receiver distance, and peak seismogram amplitude, derived from a compilation of seismic recordings of terrestrial and lunar impacts, chemical explosions, and nuclear tests. The resulting peak seismogram amplitude scaling law contains significant uncertainty, but can be used to predict impact detection rates. I estimate that for a short-period instrument, with a noise spectral density of 10-8 ms-2 Hz-1/2 in the 1-16 Hz frequency band, approximately 0.1-30 regional impacts per year should be detectable with a nominal value of 1-3 impacts per year. Therefore, small regional impacts are likely to be a viable source of seismic energy for probing Mars' crustal and upper mantle structure. This is

  2. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    PubMed

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non

  3. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids

    PubMed Central

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    1. Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. 2. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. 3. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. 4. All 55 species studied had earlier first flight trends at rate of β = −0·611 ± SE 0·015 days year−1. Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = −0·010 ± SE 0·022 days year−1). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year−1), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year−1). 5. The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were

  4. Wet Mars, Dry Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  5. Wet Mars, Dry Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, Matthew; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

    2012-10-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our "lessons learned" from formative evaluation, and show (pictures of) our hands-on activities and 3D models.

  6. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  7. Lunar and Planetary Science XXXV: Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session, "Mars Polar Science and Exploration" included the following reports: Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos; Stability and Exchange of Subsurface Ice on Mars; Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions; Seasonal Cycle of Carbon Dioxide and Atmospheric Circulation in Mars Southern Hemisphere as Observed by Neutron Spectroscopy; Imaging Polarimetry of Mars with Hubble Space Telescope in 2003 Opposition; GCM Simulations of Tropical Ice Accumulations: Implications for Cold-based Glaciers; Numerical Modeling of Glaciers in Martian Paleoclimates; Valley Glaciers on Mars: Calculation of Flow Rate and Thickness; Internal Structure of the Southern Polar Cap of Mars and Formation Implications; Sublimation at the Base of a Seasonal CO2 Slab on Mars; Impact Crater Abundance of the Martian South Polar Layered Deposits from THEMIS Visible Imaging; Recent Changes in South-Polar-Polygonal Terrain During One Martian Year: Implications for Subsurface Ice-Wedges; and An Historical Search for Unfrozen Water at the Phoenix Landing Site.

  8. Adherence styles of schizophrenia patients identified by a latent class analysis of the Medication Adherence Rating Scale (MARS): a six-month follow-up study.

    PubMed

    Jaeger, Susanne; Pfiffner, Carmen; Weiser, Prisca; Kilian, Reinhold; Becker, Thomas; Längle, Gerhard; Eschweiler, Gerhard Wilhelm; Croissant, Daniela; Schepp, Wiltrud; Steinert, Tilman

    2012-12-30

    The purpose of this study was to examine patients' response profiles to the Medication Adherence Rating Scale (MARS) and to evaluate the potential of response styles as predictors of the future course of psychotic disorders in terms of rehospitalisation and maintenance of medication. A total of 371 psychiatric in-patients with schizophrenia or schizoaffective disorder who were taking part in a naturalistic long-term study completed a German version of the MARS. A Latent Class Analysis (LCA) was performed. Five latent classes of response styles could be identified: "moderately adherent", "critical discontinuers", "good compliers", "careless and forgetful", and "compliant sceptics". Class membership was found to be related to the severity of symptoms, level of functioning, insight into illness, insight into necessity of treatment, treatment satisfaction and medication side effects. At a six-month follow-up appointment, significant differences between the classes persisted. Participants showing a "good compliers" response pattern had a significantly better prognosis in terms of rehospitalisation rate and maintenance of the original medication than "critical discontinuers". Evaluation of the MARS by studying response profiles provides informative results that reach beyond the results obtained by an evaluation by scores. Patients can be classified into adherence groups that are of predictive value for long-term patient outcome.

  9. Modern rates of glacial sediment accumulation along a 15° S-N transect in fjords from the Antarctic Peninsula to southern Chile

    NASA Astrophysics Data System (ADS)

    Boldt, Katherine V.; Nittrouer, Charles A.; Hallet, Bernard; Koppes, Michele N.; Forrest, Brittany K.; Wellner, Julia S.; Anderson, John B.

    2013-12-01

    of glacial erosion in temperate climates rank among the highest worldwide, and the sedimentary products of such erosion record climatic and tectonic signals in many glaciated settings, as well as temporal changes in glacier behavior. Glacial sediment yields are expected to decrease with increasing latitude because decreased temperature and meltwater production reduce glacial sliding, erosion, and sediment transfer; however, this expectation lacks a solid supportive database. Herein we present modern 210Pb-derived sediment accumulation rates on decadal to century time scales for 12 fjords spanning 15° of latitude from the Antarctic Peninsula to southern Chile and interpret the results in light of glacimarine sediment accumulation worldwide. 210Pb records from the Antarctic Peninsula show surprisingly steady sediment accumulation throughout the past century at rates of 1-7 mm yr-1, despite rapid warming and glacial retreat. Cores from the South Shetland Islands reveal accelerated sediment accumulation over the past few decades, likely due to changes in the thermal state of the glaciers in this region, which straddles the boundary between subpolar and temperate conditions. In Patagonia and Tierra del Fuego, sediment accumulates faster (11-24 mm yr-1), and previously collected seismic profiles show that rates reach meters per year close to the glacier termini. This increase in sediment accumulation rates with decreasing latitude reflects the gradient from subpolar to temperate climates and is consistent with glacial erosion being much faster in the temperate climate of southern Chile than in the polar climate of the Antarctic Peninsula.

  10. Mars ice caps.

    PubMed

    Leovy, C

    1966-12-01

    Minimum atmospheric temperatures required to prevent CO(2) condensatio in the Mars polar caps are higher than those obtained in a computer experiment to simulate the general circulation of the Mars atmosphere. This observation supports the view that the polar caps are predominantly solid CO(2). However, thin clouds of H(2)0 ice could substantially reduce the surface condensation rate.

  11. Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques.

    PubMed

    Ali, Adam A; Ghaleb, Bassam; Garneau, Michelle; Asnong, Hans; Loisel, Julie

    2008-10-01

    (210)Pb and (137)Cs dating techniques are used to characterise recent peat accumulation rates of two minerotrophic peatlands located in the La Grande Rivière hydrological watershed, in the James Bay region (Canada). Several cores were collected during the summer 2005 in different parts of the two selected peatlands. These minerotrophic patterned peatlands are presently affected by erosion processes, expressed by progressive mechanical destruction of their pools borders. This erosion process is related to a water table rise induced by a regional increase of humidity since the last century. The main objective of the present paper is to (1) evaluate if (210)Pb and (137)Cs dating techniques can be applied to build accurate chronologies in these environments and (2) detect changes in the peat accumulation rates in regard to this amplification of humidity. In both sites, unsupported (210)Pb shows an exponential decreasing according to the depth. Chronologies inferred from (210)Pb allow to reconstruct peat accumulation rates since ca. 1855 AD. The (137)Cs data displayed evident mobility and diffusion, preventing the establishment of any sustained chronology based on these measurements. In the two sites, peat accumulation rates inferred from (210)Pb chronologies fluctuate between 0.005 and 0.038 g cm(-2) yr(-1). As a result, the rise of the water table during the last decade has not yet affected peat accumulation rates.

  12. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  13. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  14. Stability of Mg-sulfates at-10C and the rates of dehydration/rehydration processes under conditions relevant to Mars

    USGS Publications Warehouse

    Wang, A.; Freeman, J.J.; Chou, I.-Ming; Jolliff, B.L.

    2011-01-01

    We report the results of low temperature (-10??C) experiments on the stability fields and phase transition pathways of five hydrous Mg-sulfates. A low temperature form of MgSO 47H 2O (LT-7w) was found to have a wide stability field that extends to low relative humidity (???13% RH at-10??C). Using information on the timing of phase transitions, we extracted information on the reaction rates of five important dehydration and rehydration processes. We found that the temperature dependencies of rate constants for dehydration processes differ from those of rehydration, which reflect differences in reaction mechanisms. By extrapolating these rate constants versus T correlations into the T range relevant to Mars, we can evaluate the possibility of occurrence of specific processes and the presence of common Mg-sulfate species present on Mars in different periods and locations. We anticipate in a moderate obliquity period, starkeyite and LH-MgSO 4H 2O should be two common Mg-sulfates at the surface, another polymorph MH-MgSO 4H 2O can exist at the locations where hydrothermal processes may have occurred. In polar regions or within the subsurface of other regions, meridianiite (coexisting with water ice, near 100% RH) and LT-7w (over a large RH range) are the stable phases. During a high obliquity period, meridianiite and LT-7w should exhibit widespread occurrence. The correlations of reaction rates versus temperature found in this study imply that dehydration and rehydration of hydrous Mg-sulfates would always be slower than the sublimation and crystallization of water ice, which would be supported by mission observations from Odyssey and by Mars Exploration Rovers. Copyright 2011 by the American Geophysical Union.

  15. Mars Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Haberle, Robert; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The Martian atmosphere is dynamically similar to the Earth's. Its spin-axis rotation rate is only minutes longer than Earth's so the Coriolois force is nearly identical to Earth's. The inclination of its spin axis is also similar to Earth's giving it similarity in seasonal change. And the Martian atmosphere is nearly transparent to solar radiation (except during dust periods) such that it is heated primarily by upwelling infrared radiation from the surface. These characteristics make Mars an ideal laboratory for studying the dynamics of rapidly rotating differentially heated atmospheres. This talk reviews what we have learned about Mars atmospheric dynamics and how if compares with Earth. The source of information to make such a comparison comes from observations and models. The former are sparse and that the latter have played a major role in shaping our thinking about the general circulation on Mars. However, the models need validation. Fortunately, the first two orbiters in NASA's Mars Surveyor Program have instrumentation to address many of the issues related to the general circulation and climate of Mars. The first, Mars Global Surveyor, is already at Mars gathering data. The second, the Mars 98 Orbiter to be launched later this year, carries a dedicated atmospheric sounder. Thus, much will be learned about Mars' atmosphere in the next few years.

  16. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  17. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia)

    NASA Astrophysics Data System (ADS)

    Dommain, René; Cobb, Alexander R.; Joosten, Hans; Glaser, Paul H.; Chua, Amy F. L.; Gandois, Laure; Kai, Fuu-Ming; Noren, Anders; Salim, Kamariah A.; Su'ut, N. Salihah H.; Harvey, Charles F.

    2015-04-01

    Peatlands of Southeast Asia store large pools of carbon but the mechanisms of peat accumulation in tropical forests remain to be resolved. Patch dynamics and forest disturbance have seldom been considered as drivers that can amplify or dampen rates of peat accumulation. Here we used a modified piston corer, noninvasive geophysical measurements, and geochemical and paleobotanical techniques to establish the effect of tree fall on carbon accumulation rates in a peat swamp forest dominated by Shorea albida in Brunei (Borneo). Carbon initially accumulated in a mangrove forest at over 300 g C m-2 yr-1 but declined to less than 50 g C m-2 yr-1 with the establishment of a peat swamp forest. A rapid accumulation pulse of 720-960 g C m-2 yr-1 occurred around 1080 years ago as a tip-up pool infilled. Tip-up pools are common in the peatlands of northwest Borneo where windthrow and lightning strikes produce tree falls at a rate of 4 trees ha-1 every decade. A simulation model indicates that tip-up pools, which are formed across the entire forested peat dome, produce local discontinuities in the peat deposit, when peat is removed to create a pool that is rapidly filled with younger material. The resulting discontinuities in peat age at the base and sides of pool deposits obscure linkages between carbon accumulation rates and climate and require new approaches for paleoenvironmental reconstructions. Our results suggest that carbon accumulation in tropical peat swamps may be based on fundamentally different peat-forming processes than those of northern peatlands.

  18. Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    NASA Technical Reports Server (NTRS)

    Anschuetz, H.; Sinisalo, A.; Isaksson, E.; McConnell, J. R.; Hamran, S.-E.; Bisiaux, M. M.; Pasteris, D.; Neumann, T. A.; Winther, J.-G.

    2011-01-01

    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

  19. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    PubMed

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  20. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation".

    PubMed

    Nagodawithana, T W; Steinkraus, K H

    1976-02-01

    Whereas "rapid fermentation" of diluted clover honey (25 degrees Brix) fortified with yeast nutrients using 8 X 10(8) brewers' yeast cells per ml resulted in an ethanol content of 9.5% (wt/vol; 12% vol/vol) in 3 h at 30 C, death rate of the yeast cells during this period was essentially logarithmic. Whereas 6 h was required to reach the same ethanol content at 15 C, the yeast cells retained their viability. Using a lower cell population (6 X 10(7) cells/ml), a level at which the fermentation was no longer "rapid," the yeast cells also retained their viability at 30 C. Ethanol added to the medium was much less lethal than the same or less quantities of ethanol produced by the cell in "rapid fermentation." It was considered possible that ethanol was produced so rapidly at 30 C that it could not diffuse out of the cell as rapidly as it was formed. The hypothesis was postulated that ethanol accumulating in the cell was contributing to the high death rate at 30 C. It was found that the intracellular ethanol concentration reached a level of approximately 2 X 10(11) ethanol molecules/cell in the first 30 min of fermentation at 30 C. At 15 C, with the same cell count, intracellular ethanol concentration reached a level of approximately 4 X 10(10) ethanol molecules/cell and viability remained high. Also, at 30 C with a lower cell population (6 X 10(7) cells/ml), under which conditions fermentation was no longer "rapid," intracellular ethanol concentration reached a similar level (4 X 10(10) molecules ethanol/cell) and the cells retained their viability. Alcohol dehydrogenase (ADH) lost its activity in brewers' yeast under conditions of "rapid fermentation" at 30 C but retained its activity in cells under similar conditions at 15 C. ADH activity was also retained in fermentations at 30 C with cell populations of 6 X 10(7)/ml. It would appear that an intracellular level of about 5 X 10(10) ethanol molecules/cell is normal and that this level does not damage either cell

  1. Dust Accumulation and Cleaning of the MER Opportunity Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J.

    2015-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Opportunity was expected to accumulate a sufficient quantity of dust after ninety Martian days (sols) such that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Opportunity continues to operate on the Martian surface for over 4000 sols (over six Mars years). During this time period, the rover experienced six Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a method to scientifically estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Meridiani Planum over the course of the entire mission to date.

  2. Dust Accumulation and Cleaning of the MER Spirit Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Johnson, J. R.; Cantor, B. A.; Stella, P. M.; Chin, K. B.; Wood, E. G.

    2012-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Spirit was expected to accumulate so much dust after ninety Martian days (sols) that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Spirit carried out surface operations for over 2200 sols (over three Mars years). During this time period, the rover experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to quantitatively estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Gusev Crater over the course of the entire mission.

  3. The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations

    NASA Astrophysics Data System (ADS)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Nilsson, Hans; Wang, Xiao-Dong; Holmström, Mats

    2015-07-01

    More than 7 years of ion flux measurements in the energy range 10 eV-15 keV have allowed the ASPERA-3/IMA (Analyzer of Space Plasmas and Energetic Ions/Ion Mass Analyzer) instrument on Mars Express to collect a large database of ion measurements in the Mars environment, over a wide range of upstream solar wind (density and velocity) and radiation (solar EUV intensity) conditions. We investigate the influence of these parameters on the Martian atmospheric ion escape rate by integrating IMA heavy ion flux measurements taken in the Martian tail at similar (binned) solar wind density (nsw), velocity (vsw), and solar EUV intensity (IEUV) conditions. For the same solar wind velocity and EUV intensity ranges (vsw and Is constrained), we find a statistically significant decrease of up to a factor of 3 in the atmospheric ion escape rate with increased average solar wind density (5.6 × 1024s-1 to 1.9 × 1024s-1 for 0.4 cm-3 and 1.4 cm-3, respectively). For low solar wind density (0.1-0.5 cm-3) and low EUV intensity, the escape rate increases with increasing solar wind velocity from 2.4 × 1024s-1 to 5.6 × 1024s-1. During high solar EUV intensities the escape fluxes are highly variable, leading to large uncertainties in the estimated escape rates; however, a statistically significant increase in the escape rate is found between low/high EUV for similar solar wind conditions. Empirical-analytical models for atmospheric escape are developed by fitting calculated escape rates to all sufficiently sampled upstream conditions.

  4. Rates of post-fire vegetation recovery and fuel accumulation as a function of burn severity and time-since-burn in four western U.S. ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation recovery and fuel accumulation rates following wildfire are useful measures of ecosystem resilience, yet few studies have quantified these variables over 10 years post-fire. Conventional wisdom is that recovery time to pre-fire condition will be slower as a function of burn severity, as i...

  5. Mars Landscapes

    NASA Video Gallery

    Spacecraft have studied the Martian surface for decades, giving Earthlings insights into the history, climate and geology of our nearest neighbor, Mars. These images are from "Mars Landscapes," a v...

  6. Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Dubov, D.

    1995-01-01

    Mars Pathfinder, launching in December 1996 and landing on Mars on July 4, 1997, will demonstrate a low-cost delivery system to the surface of Mars for follow-on landers. Objectives are the return of engineering data, panoramic images of the Martian surface, microrover experiments, etc. A technical mission description is included.

  7. A 9000 year perspective on carbon accumulation rates under changing hydro-climate and vegetation conditions in a mountain peatland, northern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Panait, Andrei; Gałka, Mariusz; Diaconu, Andrei; Hutchinson, Simon; Mulch, Andreas; Tantau, Ioan; Hickler, Thomas

    2016-04-01

    Peatlands, in particular ombrogenous bogs, which entirely depend on water from precipitation, are sensitive to changes in the balance between precipitation and evapotranspiration; and therefore highly suitable for hydro-climatological reconstruction. Peatlands also represent a large carbon pool in the terrestrial biosphere. However, little is known about the C sequestration processes in mountain peatlands under various competing drivers of change (climate, vegetation, fire). We applied a multi-proxy approach (bulk density, loss on ignition, total organic carbon, testate amoebae, δ13C in Sphagnum, plant macrofossils, pollen and charcoal) to a peat sequence from a mountain ombrogenous bog (Tǎul Muced) to explore how changes in hydro-climate conditions, peat plant composition and fire have affected long-term physical peat properties and the rate of carbon accumulation over the last 9000 years. Carbon accumulation at this site ranged from 7 to 105 g C cm2 yr1 (mean 23 ± 14 g C cm2 yr_1). We found that high moisture availability (P-E) as inferred from testate amoebae and δ13C values in Sphagnum increased the carbon sink capacity of peatland. The strength of the relationship between the rate of carbon accumulation and climate appears particularly evident over the last millennium when high C accumulation rates correlated with the warm and wet conditions of the Medieval Climate Anomaly and lower C accumulation rates with the dry conditions of the Little Ice Age. We also found a significant positive correlation between the rate of C accumulation and changes in vegetation; rates were lowest (17 g C cm2 yr_1), during periods of mixed Sphagnum (primarily S. magellanicum and S. angustifolium) and vascular plant (Cyperaceae, Eriophorum vaginatum) growth and increased (31 g C cm2 yr_1) during the accumulation of Sphagnum peat, regardless the dominant Sphagnum species. We did not find indication of peatland fire during the investigated interval. Our study represents one of the

  8. Elucidating effects of atmospheric deposition and peat decomposition processes on mercury accumulation rates in a northern Minnesota peatland over last 10,000 cal years

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.

    2014-12-01

    Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.

  9. Predominant anthropogenic sources and rates of atmospheric mercury accumulation in southern Ontario recorded by peat cores from three bogs: comparison with natural "background" values (past 8000 years).

    PubMed

    Givelet, Nicolas; Roos-Barraclough, Fiona; Shotyk, William

    2003-12-01

    Peat cores from three bogs in southern Ontario provide a complete, quantitative record of net rates of atmospheric Hg accumulation since pre-industrial times. For comparison with modern values, a peat core extending back 8000 years was used to quantify the natural variations in Hg fluxes for this region, and their dependence on climatic change and land use history. The net mercury accumulation rates were separated into "natural" and "excess" components by comparing the Hg/Br ratios of modern samples with the long-term, pre-anthropogenic average Hg/Br. The average background mercury accumulation rate during the pre-anthropogenic period (from 5700 years BC to 1470 AD) was 1.4 +/- 1.0 microg m(-2) per year (n = 197). The beginning of Hg contamination from anthropogenic sources dates from AD 1475 at the Luther Bog, corresponding to biomass burning for agricultural activities by Native North Americans. During the late 17th and 18th centuries, deposition of anthropogenic Hg was at least equal to that of Hg from natural sources. Anthropogenic inputs of Hg to the bogs have dominated continuously since the beginning of the 19th century. The maximum Hg accumulation rates decrease in the order Sifton Bog, in the City of London, Ontario (141 microg Hg m(-2) per year), Luther Bog in an agricultural region (89 microg Hg m(-2) per year), and Spruce Bog which is in a comparatively remote, forested region (54 microg Hg m(-2) per year). Accurate age dating of recent peat samples using the bomb pulse curve of 14C shows that the maximum rate of atmospheric Hg accumulation occurred during AD 1956 and 1959 at all sites. In these (modern) samples, the Hg concentration profiles resemble those of Pb, an element which is known to be immobile in peat bogs. The correlation between these two metals, together with sulfur, suggests that the predominant anthropogenic source of Hg (and Pb) was coal burning. While Hg accumulation rates have gone into strong decline since the late 1950's, Hg

  10. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. PMID:25842318

  11. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment.

  12. Review and Analysis of Existing Mobile Phone Apps to Support Heart Failure Symptom Monitoring and Self-Care Management Using the Mobile Application Rating Scale (MARS)

    PubMed Central

    Maurer, Mathew S; Reading, Meghan; Hiraldo, Grenny; Hickey, Kathleen T; Iribarren, Sarah

    2016-01-01

    Background Heart failure is the most common cause of hospital readmissions among Medicare beneficiaries and these hospitalizations are often driven by exacerbations in common heart failure symptoms. Patient collaboration with health care providers and decision making is a core component of increasing symptom monitoring and decreasing hospital use. Mobile phone apps offer a potentially cost-effective solution for symptom monitoring and self-care management at the point of need. Objective The purpose of this review of commercially available apps was to identify and assess the functionalities of patient-facing mobile health apps targeted toward supporting heart failure symptom monitoring and self-care management. Methods We searched 3 Web-based mobile app stores using multiple terms and combinations (eg, “heart failure,” “cardiology,” “heart failure and self-management”). Apps meeting inclusion criteria were evaluated using the Mobile Application Rating Scale (MARS), IMS Institute for Healthcare Informatics functionality scores, and Heart Failure Society of America (HFSA) guidelines for nonpharmacologic management. Apps were downloaded and assessed independently by 2-4 reviewers, interclass correlations between reviewers were calculated, and consensus was met by discussion. Results Of 3636 potentially relevant apps searched, 34 met inclusion criteria. Most apps were excluded because they were unrelated to heart failure, not in English or Spanish, or were games. Interrater reliability between reviewers was high. AskMD app had the highest average MARS total (4.9/5). More than half of the apps (23/34, 68%) had acceptable MARS scores (>3.0). Heart Failure Health Storylines (4.6) and AskMD (4.5) had the highest scores for behavior change. Factoring MARS, functionality, and HFSA guideline scores, the highest performing apps included Heart Failure Health Storylines, Symple, ContinuousCare Health App, WebMD, and AskMD. Peer-reviewed publications were identified

  13. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.

  14. Mars' core and magnetism.

    PubMed

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  15. OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida

    NASA Astrophysics Data System (ADS)

    Rink, W. J.; López, G. I.

    2010-11-01

    Vertical sediment cores in five separate beach ridge complexes along the north-east Gulf of Mexico Coast were recovered and dated using optically stimulated luminescence (OSL) dating of quartz: these are located on Cape San Blas (CSB), Little St. George Island (LSGI), Richardson's Hammock (RH), St. Joseph Peninsula (SJP) and Saint Vincent Island (SVI). All of these landforms are coastal barrier systems situated along a 100 km stretch of the Florida Panhandle, U.S.A. Two samples were collected for dating from each core. Ridge accumulation rates (RAR) associated with lateral progradation were calculated from the dated samples. We also determined average sediment accumulation rates (ASAR) for two intervals within each sediment core. All OSL ages within the sediment cores were found to be in stratigraphic order or in a few cases statistically indistinguishable. Moreover, all dated ridges were found to be in correct temporal sequence based on their geomorphic positions. Rapidly accreted sequences were found to be backed by St. Joseph Bay in the western region of the study area. More slowly accreted sequences were associated with the more eastern stretches of the study area backed by St. Vincent Sound and Apalachicola Bay. Our ASAR results are in accord with an Australian study of modern dune accumulation. Perhaps our most important finding is that in the barrier island environments of this north-eastern Gulf Coast region, aeolian sedimentation continues well after full vegetative cover develops and stranding of landward ridges takes place. This confirms our similar earlier observation on SVI (López and Rink, 2008). We find that up to approximately one order of magnitude lower sedimentation rates occur after an initial period of more rapid aeolian accumulation for the vertical intervals studied in foredune ridges. Lateral progradation rates of ridge sequences were highly variable within the study area, ranging from 92 to 848 m/100 years, but we did find agreement

  16. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice.

    PubMed

    Uchimura, Arikuni; Higuchi, Mayumi; Minakuchi, Yohei; Ohno, Mizuki; Toyoda, Atsushi; Fujiyama, Asao; Miura, Ikuo; Wakana, Shigeharu; Nishino, Jo; Yagi, Takeshi

    2015-08-01

    The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10(-9) (95% confidence interval = 4.6 × 10(-9)-6.5 × 10(-9)) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.

  17. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice

    PubMed Central

    Uchimura, Arikuni; Higuchi, Mayumi; Minakuchi, Yohei; Ohno, Mizuki; Toyoda, Atsushi; Fujiyama, Asao; Miura, Ikuo; Wakana, Shigeharu; Nishino, Jo; Yagi, Takeshi

    2015-01-01

    The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10−9 (95% confidence interval = 4.6 × 10−9–6.5 × 10−9) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population. PMID:26129709

  18. Comparison of annual accumulation rates derived from in situ and ground penetrating radar methods across Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Gusmeroli, A.; Oneel, S.; Sass, L. C.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2013-12-01

    Constraining annual snowfall accumulation in mountain glacier environments is essential for determining the annual mass balance of individual glaciers and predicting seasonal meltwater runoff to river and marine ecosystems. However, large spatial and elevation gradients, coupled with sparse point measurements preclude accurate quantification of this variable using traditional methods. Here, we report on an extensive field campaign conducted in March-May 2013 on key benchmark glaciers in Alaska, including Taku Glacier near Juneau, Scott Glacier near Cordova, both Eklutna and Wolverine Glacier near Anchorage and Gulkana Glacier in the interior Alaska Range. Over 50 km of 500 MHz common-offset ground penetrating radar (GPR) surveys were collected on each glacier, with an emphasis on capturing spatial variability in the accumulation zone. Frequent in situ observations were collected for comparison with the GPR, including probe depths, snow pits and shallow firn cores (~8 m). We report on spatial and elevation gradients across this suite of glaciers and across numerous climatic zones and discuss differences between GPR and in situ derived annual accumulation estimates. This comparison is an essential first step in order to effectively evaluate regional atmospheric re-analysis products.

  19. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and

  20. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  1. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate

    PubMed Central

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen. PMID:27532007

  2. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate.

    PubMed

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen. PMID:27532007

  3. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate.

    PubMed

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen.

  4. Slip-rates along the Chaman fault: Implication for transient strain accumulation and strain partitioning along the western Indian plate margin

    NASA Astrophysics Data System (ADS)

    Ul-Hadi, Shams; Khan, Shuhab D.; Owen, Lewis A.; Khan, Abdul S.; Hedrick, Kathryn A.; Caffee, Marc W.

    2013-11-01

    The Chaman fault in Western Pakistan marks the western collision boundary between the Indian and Eurasian plates and connects the Makran subduction zone to the Himalayan convergence zone. Geomorphic-scale slip-rates along an active strand of the Chaman fault are added to the sporadic data set of this poorly investigated transform system. Field investigations coupled with high-resolution GeoEye-1 satellite data of an alluvial fan surface (Bostankaul alluvial fan) show ~ 1150 m left-lateral offset by the fault since the formation of the alluvial fan surface. A weighted mean 10Be exposure age of 34.8 ± 3 kyr for the Bostankaul alluvial surface yields a slip-rate of 33.3 ± 3.0 mm/yr. This rate agrees with the geologically defined slip-rates along the Chaman fault, but is approximately twice as large as that inferred from the decade-long global positioning system measurements of 18 ± 1 mm/yr. The contrast in geomorphic and geodetic slip-rates along the Chaman fault, like other major intra-continental strike-slip faults, has two major implications: 1) the geodetic rates might represent a period of reduced displacement as compared to the averaged Late Pleistocene rate because of transient variations in rates of elastic strain accumulation; or 2) strain partitioning within the plate boundary zone. While strain partitioning could be the reason of slip-rate variations within the western Indian plate boundary zone, transient strain accumulation could explain contrasting slip-rates along the Chaman fault at this stage in its poorly understood seismic cycle.

  5. Shallow Sediment Trace Metal Concentrations and Short-Term Accumulation Rates in the Neponset River Estuary, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Zhu, J.; Olsen, C. R.

    2010-12-01

    The Neponset River estuary is a small estuary that drains into the Boston Harbor on the east coast of the United States. It is also a highly urbanized estuary and has a long history of urban development over 450 years. In July 2006, six sediment cores were collected in the Neponset River estuary to examine particle dynamics and sediment accumulation via radionuclide (Beryllium-7) dating, and to determine sediment metal concentrations (As, Cu, Pb, and Zn) via ED-XRF measurements. Measured sediment Be-7 profiles indicate various sedimentation environments, where sediment accumulation, resuspension or redeposition is likely to occur. High metal concentrations were often corresponding to high Be-7 inventories in sediment cores. Possible sources of trace metal contaminants in the water column include: storm water run-off, Combined Sewer Overflows (CSOs), a well-documented industrial pollution event that occurred upstream in the early to mid twentieth century, and the resuspension of sediment. Existing and future data will provide baseline information for quantifying the effects of the proposed and pending environmental restoration project, which includes the removal of the Baker Dam. The combined pre- and post-Dam removal data may then be used in cost-benefit analyses for other similar estuarine restoration projects.

  6. Wind abrasion on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1991-01-01

    Aeolian activity was predicted for Mars from earth based observations of changing surface patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for aeolian processes in the form of active dust storms and various aeolian landforms including dunes and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars than on Earth because of the low atmospheric density on Mars. In order to determine rates of abrasion by wind blown particles, knowledge of three factors is required: (1) particle parameters such as numbers and velocities of windblown grains as functions of windspeeds at various heights above the surface; (2) the susceptibility to abrasion of various rocks and minerals; and (3) wind frequencies and speeds. For estimates appropriate to Mars, data for the first two parameters can be determined through lab and wind tunnel tests; data for the last two factors are available directly from the Viking Lander meteorology experiments for the two landing sites.

  7. Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Zebker, H. A.

    2012-12-01

    The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive

  8. Multihued Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at JPL shows the panoramic camera used onboard both Mars Exploration Rovers. The panel to the lower right highlights the multicolored filter wheel that allows the camera to see a rainbow of colors, in addition to infrared bands of light. By seeing Mars in all its colors, scientists can gain insight into the different minerals that constitute its rocks and soil.

  9. Geologic ages and accumulation rates of basalt-flow groups and sedimentary interbeds in selected wells at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Anderson, S.R.; Liszewski, M.J.; Cecil, L.D.

    1997-01-01

    Geologic ages and accumulation rates, estimated from regressions, were used to evaluate measured ages and interpreted stratigraphic and structural relations of basalt and sediment in the unsaturated zone and the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) in eastern Idaho. Geologic ages and accumulation rates were estimated from standard linear regressions of 21 mean potassium-argon (K-Ar) ages, selected mean paleomagnetic ages, and cumulative depths of a composite stratigraphic section composed of complete intervals of basalt and sediment that were deposited in areas of past maximum subsidence. Accumulation rates also were estimated from regressions of stratigraphic intervals in three wells in and adjacent to an area of interpreted uplift at and near the Idaho Chemical Processing Plant (ICPP) and the Test Reactor Area (TRA) to allow a comparison of rates in areas of past uplift and subsidence. Estimated geologic ages range from about 200 thousand to 1.8 million years before present and are reasonable approximations for the interval of basalt and sediment above the effective base of the aquifer, based on reported uncertainties of corresponding measured ages. Estimated ages between 200 and 800 thousand years are within the range of reported uncertainties for all 15 K-Ar ages used in regressions and two out of three -argon ({sup 40}Ar/{sup 39}Ar) ages of duplicate argon samples. Two sets of estimated ages between 800 thousand and 1.8 million years are within the range of reported uncertainties for all seven K-Ar ages used in regressions, which include one shared age of about 800 thousand years. Two sets of ages were estimated for this interval because K-Ar ages make up two populations that agree with previous and revised ages of three paleomagnetic subchrons. The youngest set of ages is consistent with a K-Ar age from the effective base of the aquifer that agrees with previous ages of the Olduvai Normal-Polarity Subchron.

  10. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis.

    PubMed

    Kobayashi, Natsuko I; Saito, Takayuki; Iwata, Naoko; Ohmae, Yoshimi; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2013-08-01

    Magnesium (Mg) is an essential macronutrient supporting various functions, including photosynthesis. However, the specific physiological responses to Mg deficiency remain elusive. In this study, 2-week-old rice seedlings (Oryza sativa. cv. Nipponbare) with three expanded leaves (L2-L4) were transferred to Mg-free nutrient solution for 8 days. In the absence of Mg, on day 8, L5 and L6 were completely developed, while L7 just emerged. We also studied several mineral deficiencies to identify specific responses to Mg deficiency. Each leaf was analyzed in terms of chlorophyll, starch, anthocyanin and carbohydrate metabolites, and only absence of Mg was found to cause irreversible senescence of L5. Resupply of Mg at various time points confirmed that the borderline of L5 death was between days 6 and 7 of Mg deficiency treatment. Decrease in chlorophyll concentration and starch accumulation occurred simultaneously in L5 and L6 blades on day 8. However, nutrient transport drastically decreased in L5 as early as day 6. These data suggest that the predominant response to Mg deficiency is a defect in transpiration flow. Furthermore, changes in myo-inositol and citrate concentrations were detected only in L5 when transpiration decreased, suggesting that they may constitute new biological markers of Mg deficiency.

  11. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis.

    PubMed

    Kobayashi, Natsuko I; Saito, Takayuki; Iwata, Naoko; Ohmae, Yoshimi; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2013-08-01

    Magnesium (Mg) is an essential macronutrient supporting various functions, including photosynthesis. However, the specific physiological responses to Mg deficiency remain elusive. In this study, 2-week-old rice seedlings (Oryza sativa. cv. Nipponbare) with three expanded leaves (L2-L4) were transferred to Mg-free nutrient solution for 8 days. In the absence of Mg, on day 8, L5 and L6 were completely developed, while L7 just emerged. We also studied several mineral deficiencies to identify specific responses to Mg deficiency. Each leaf was analyzed in terms of chlorophyll, starch, anthocyanin and carbohydrate metabolites, and only absence of Mg was found to cause irreversible senescence of L5. Resupply of Mg at various time points confirmed that the borderline of L5 death was between days 6 and 7 of Mg deficiency treatment. Decrease in chlorophyll concentration and starch accumulation occurred simultaneously in L5 and L6 blades on day 8. However, nutrient transport drastically decreased in L5 as early as day 6. These data suggest that the predominant response to Mg deficiency is a defect in transpiration flow. Furthermore, changes in myo-inositol and citrate concentrations were detected only in L5 when transpiration decreased, suggesting that they may constitute new biological markers of Mg deficiency. PMID:23176135

  12. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  13. The null hypothesis: steady rates of erosion, weathering and sediment accumulation during Late Cenozoic mountain uplift and glaciation

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Jerolmack, D. J.

    2015-12-01

    At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.

  14. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement.

  15. Time scales of erosion and deposition recorded in the residual south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Calvin, W. M.; Gierasch, P.; Haberle, R.; James, P. B.; Sholes, S.

    2013-08-01

    The residual south polar cap (RSPC) of Mars has been subject to competing processes during recent Mars years of high resolution image coverage: continuing erosion of scarps while the maximum extent grows as well as shrinks (Piqueux, S., Christensen, P.R. [2008]. J. Geophys. Res. (Planets) 113, 2006; James, P.B., Thomas, P.C., Malin, M.C. [2010]. Icarus 208, 82-85). Additionally, the cap has a variety of morphologies and erosion (scarp retreat) rates (Thomas, P.C., James, P.B., Calvin, W.M., Haberle, R., Malin, M.C. [2009]. Icarus 203, 352-375). Do these different forms and competing processes indicate an aging and possibly disappearing cap, a growing cap, or a fluctuating cap, and is it possible to infer the timescales of the processes acting on the RSPC? Here we use the latest imaging data from Mars' southern summer in Mars year 30 (Calendar year 2011) to evaluate erosion rates of forms in the RSPC over 6 Mars years, and to map more fully features whose sizes can be used to predict deposit ages. Data through Mars year 30 show that scarp retreat rates in the RSPC have remained approximately the same for at least 6 Mars years and that these rates of erosion also apply approximately over the past 21 Mars years. The thicker units appear to have undergone changes in the locations of new pit formation about 30-50 Mars years ago. The thinner units have some areas that are possibly 80 Mars years old, with some younger materials having accumulated more than a meter in thickness since Mars year 9. Formation of the thicker units probably required over 100 Mars years. The upper surfaces of most areas, especially the thicker units, show little change at the few-cm level over the last 2 Mars years. This observation suggests that current conditions are substantially different from those when the thicker units were deposited. A prime characteristic of the evolution of the RSPC is that some changes are progressive, such as those involving scarp retreat, while others, such as the

  16. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  17. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement. PMID:25434473

  18. Mars Underground News.

    NASA Astrophysics Data System (ADS)

    Edgett, K.

    Contents: Next entry to Mars (Mars Pathfinder and the microrover Sojourner). Hello, Mars, we're back! Mars Global Surveyor update. The Mars program - 2001 and beyond. Schedule of missions to Mars (as of June 11, 1997). Mars on the Web.

  19. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    USGS Publications Warehouse

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  20. Dune Exploration: Mars Allegories

    NASA Astrophysics Data System (ADS)

    Zahnle, K.; Sleep, N. H.; Abe, Y.; Abe-Ouchi, A.

    2005-12-01

    We know of one factual habitable planet, although other factual planets can be imagined as habitable. Sometimes the allegory is obvious. E.g., H. G. Wells imagined Martians exterminating humans as an allegory to Englishmen exterminating the Tasmanian aborigines, whilst Percival Lowell saw the global network of Martian canals as a world civilization that had progressed beyond war. But most habitable planets are overtly fictional. The planet properly known as Arrakis and colloquially known as Dune (Herbert 1965) provides an exceptionally well-developed example of a fictional habitable planet. In its particulars Dune resembles a warmer Mars with a breathable oxygen atmosphere. Like Mars, Dune is now a parched desert planet but there are signs that water flowed in the prehistoric past. Dune has small water ice caps at the poles and more extensive deep polar aquifers. The tropics are exceedingly dry but the polar regions are cool and moist enough to have morning dew. Dune is sparsely inhabited by a mix of indigenous and terran flora and fauna. The fictional Dune asks us to consider how much water is enough, why does oxygen accumulate in an atmosphere, and what actually sets the inner edge to the habitable zone. The inner edge of the habitable zone is conventionally set by the onset of the runaway greenhouse effect. The runaway greenhouse occurs when there is enough water vapor in the atmosphere to lift the planet's thermal photosphere off the ground. For a wet planet the mapping between saturation, temperature and optical depth is unique; together these set an upper limit on the rate the amount of thermal radiation that the planet can emit and still maintain a humid atmosphere. A dry atmosphere has a lower opacity for a given temperature, other things equal. With its vast dry equatorial deserts, a habitable Dune can radiate at a significantly higher effective temperature than a wet planet, and so it can provide an abode for life significantly closer to its sun. We use

  1. Hydrohalite in cold sea ice: Laboratory observations of single crystals, surface accumulations, and migration rates under a temperature gradient, with application to “Snowball Earth”

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Brandt, Richard E.; Warren, Stephen G.

    2009-07-01

    When NaCl precipitates out of a saturated solution, it forms anhydrous crystals of halite at temperatures above +0.11°C, but at temperatures below this threshold it instead precipitates as the dihydrate "hydrohalite," NaCl · 2H2O. When sea ice is cooled, hydrohalite begins to precipitate within brine inclusions at about -23°C. In this work, hydrohalite crystals are examined in laboratory experiments: their formation, their shape, and their response to warming and desiccation. Sublimation of a sea ice surface at low temperature leaves a lag deposit of hydrohalite, which has the character of a fine powder. The precipitation of hydrohalite in brine inclusions raises the albedo of sea ice, and the subsequent formation of a surface accumulation further raises the albedo. Although these processes have limited climatic importance on the modern Earth, they would have been important in determining the surface types present in regions of net sublimation on the tropical ocean in the cold phase of a Snowball Earth event. However, brine inclusions in sea ice migrate downward to warmer ice, so whether salt can accumulate on the surface depends on the relative rates of sublimation and migration. The migration rates are measured in a laboratory experiment at temperatures from -2°C to -32°C; the migration appears to be too slow to prevent formation of a salt crust on Snowball Earth.

  2. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    PubMed

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable.

  3. Myotubes from Severely Obese Type 2 Diabetic Subjects Accumulate Less Lipids and Show Higher Lipolytic Rate than Myotubes from Severely Obese Non-Diabetic Subjects

    PubMed Central

    Bakke, Siril S.; Kase, Eili T.; Moro, Cedric; Stensrud, Camilla; Damlien, Lisbeth; Ludahl, Marianne O.; Sandbu, Rune; Solheim, Brita Marie; Rustan, Arild C.; Hjelmesæth, Jøran; Thoresen, G. Hege; Aas, Vigdis

    2015-01-01

    About 80% of patients with type 2 diabetes are classified as overweight. However, only about 1/3 of severely obese subjects have type 2 diabetes. This indicates that several severely obese individuals may possess certain characteristics that protect them against type 2 diabetes. We therefore hypothesized that this apparent paradox could be related to fundamental differences in skeletal muscle lipid handling. Energy metabolism and metabolic flexibility were examined in human myotubes derived from severely obese subjects without (BMI 44±7 kg/m2) and with type 2 diabetes (BMI 43±6 kg/m2). Lower insulin sensitivity was observed in myotubes from severely obese subjects with type 2 diabetes. Lipolysis rate was higher, and oleic acid accumulation, triacylglycerol content, and fatty acid adaptability were lower in myotubes from severely obese subjects with type 2 diabetes compared to severely obese non-diabetic subjects. There were no differences in lipid distribution and mRNA and protein expression of the lipases HSL and ATGL, the lipase cofactor CGI-58, or the lipid droplet proteins PLIN2 and PLIN3. Glucose and oleic acid oxidation were also similar in cells from the two groups. In conclusion, myotubes established from severely obese donors with established type 2 diabetes had lower ability for lipid accumulation and higher lipolysis rate than myotubes from severely obese donors without diabetes. This indicates that a difference in intramyocellular lipid turnover might be fundamental in evolving type 2 diabetes. PMID:25790476

  4. Mars Bowling

    NASA Video Gallery

    More than 140 fourth and fifth graders from Kraft Elementary School in Hampton learned how Newton's laws of motion apply to bowling and the Mars Curiosity rover during "The Science of Bowling," an ...

  5. Exploring Mars

    NASA Astrophysics Data System (ADS)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  6. Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  7. Mars resources

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.

    1986-05-01

    The most important resources of Mars for the early exploration phase will be oxygen and water, derived from the Martian atmosphere and regolith, which will be used for propellant and life support. Rocks and soils may be used in unprocessed form as shielding materials for habitats, or in minimally processed form to expand habitable living and work space. Resources necessary to conduct manufacturing and agricultural projects are potentially available, but will await advanced stages of Mars habitation before they are utilized.

  8. Mars resources

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1986-01-01

    The most important resources of Mars for the early exploration phase will be oxygen and water, derived from the Martian atmosphere and regolith, which will be used for propellant and life support. Rocks and soils may be used in unprocessed form as shielding materials for habitats, or in minimally processed form to expand habitable living and work space. Resources necessary to conduct manufacturing and agricultural projects are potentially available, but will await advanced stages of Mars habitation before they are utilized.

  9. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Kern, Roger G.

    2004-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under cleanroom conditions that require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival on the surface of Mars by protecting spores from sterilizing agents, including UV irradiation. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  10. Autonomous Aerobraking at Mars

    NASA Technical Reports Server (NTRS)

    Hanna, Jill L.; Tolson, Robert; Cianciolo, Alicia Dwyer; Dec, John

    2002-01-01

    Aerobraking has become a proven approach for orbital missions at Mars. A launch of a 1000 kg class spacecraft on a Delta class booster saves 90% of the post-MOI fuel otherwise required to circularize the orbit. In 1997, Mars Global Surveyor demonstrated the feasibility and Mars 2001 Odyssey completed a nearly trouble free aerobraking phase in January 2002. In 2006, Mars Reconnaissance Orbiter will also utilize aerobraking. From the flight operations standpoint, however, aerobraking is labor intensive and high risk due to the large density variability in the Mars thermosphere. The maximum rate of aerobraking is typically limited by the maximum allowable temperature of the solar array which is the primary drag surface. Prior missions have used a surrogate variable, usually maximum free stream heat flux, as a basis for performing periapsis altitude corridor control maneuvers. This paper provides an adaptive sequential method for operationally relating measured temperatures to heat flux profile characteristics and performing maneuvers based directly on measured temperatures and atmospheric properties derived from the heat flux profiles. Simulations of autonomous aerobraking are performed using Odyssey mission data.

  11. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  12. Mars brine formation experiment

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.

    1993-09-01

    Evaporites, particularly carbonates, nitrates, and sulfates, may be major sinks of volatiles scavenged from the martian atmosphere. Mars is thought to have once had a denser, warmer atmosphere that permitted the presence of liquid surface water. The conversion of atmospheric CO2 into carbonate is hypothesized to have degraded the martian climate to its present state of a generally subfreezing, desiccated desert. The rate for such a conversion under martian conditions is poorly known, so the time scale of climate degradation by this process cannot be easily evaluated. If some models are correct, carbonate formation may have been fast at geological time scales. The experiments of Booth and Kieffer also imply fast (106 - 107 yr) removal of the missing CO2 inventory, estimated to be 1 - 5 bar, by means of carbonate formation. The timing of formation of many of the fluvial features observed on Mars is, in large part, dependent on when and how fast the atmosphere changed. A knowledge of the rate at which carbonates and nitrates formed is also essential for assessing the probability that life, or its chemical precursors, could have developed on Mars. No previous experiments have quantitatively evaluated the rate of solution for a suite of mobile anions and cations from unaltered minerals and atmospheric gases into liquid water under Mars-like conditions. Such experiments are the focus of this task.

  13. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  14. Surface Characteristics of Spacecraft Components Affect the Aggregation of Microorganisms and May Lead to Different Survival Rates of Bacteria on Mars Landers

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew W.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-08-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10°C), and high CO2 gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  15. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Helmer, Eileen H.; Lefsky, Michael A.; Roberts, Dar A.

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

  16. Mars Topography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These maps are global false-color topographic views of Mars at different orientations from the Mars Orbiter Laser Altimeter (MOLA). The maps are orthographic projections that contain over 200,000,000 points and about 5,000,000 altimetric crossovers. The spatial resolution is about 15 kilometers at the equator and less at higher latitudes. The vertical accuracy is less than 5 meters. The right hand image view features the Hellas impact basin (in purple, with red annulus of high standing material). The left hand features the Tharsis topographic rise (in red and white). Note also the subtle textures associated with resurfacing of the northern hemisphere lowlands in the vicinity of the Utopia impact basin. These data were compiled by the Mars Orbiter Laser Altimeter (MOLA) Team led by David Smith at the Goddard Space Flight Center in Greenbelt, MD.

  17. Cracky Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    21 September 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows cracked, layered plains-forming material in the western part of Utopia Planitia, Mars. Investigators have speculated that ice might be -- or might once have been -- present in the ground, and changes in temperature and the amount of ice over time may have led to the formation of these cracks. But no one is certain just how these features formed.

    Location near: 45.0oN, 276.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  18. Biogeochemical cycling in an organic-rich coastal marine basin. 9. Sources and accumulation rates of vascular plant-derived organic material

    SciTech Connect

    Haddad, R.I.; Martens, C.S. )

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 {plus minus} 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 {plus minus} 17% of the total organic carbon buried over the past decade. When combined with a previously established sedimentary organic carbon budget for this site a vascular plant derived carbon burial rate of 26 {plus minus}20 mole C m{sup {minus}2} yr{sup {minus}1} is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  19. Austere Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    preposition a habitat, supplies, and exploration equipment. The next opportunity, two years later, would send to Mars orbit 1) a lander with a Mars Ascent Vehicle (MAV) and 2) a crewed Mars Transit Habitat with an Orion CEV for Earth return. The following opportunity, two years after the first crew, would go back to cargo-only launches. This alternation of cargo and crew opportunities results in a sustainable launch rate of six Ares V launches every two years. It is notable that four of the six launches per Mars opportunity are identical, build-to-print, Tran-Mars Injection stages. This type of production rate could lend itself well to a COTStype service provider, and would make it feasible to have a live spare in place in the event of a single launch failure.

  20. Dust Accumulation and Cleaning of the MER Solar Arrays

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Stella, P.; Chin, K. B.; Wood, E. G.

    2010-12-01

    The solar arrays of the two NASA Mars Exploration Rovers (MER), Spirit and Opportunity, were expected to accumulate so much dust after 90 Martian days (sols) that they could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, they have carried out surface operations for over 2200 sols each. During this time period, the rovers experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to scientifically estimate the loading and aeolian removal of dust from the solar arrays each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement on the Martian surface over the last 6 years.

  1. Site selection for Mars exobiology.

    PubMed

    Farmer, J; Des Marais, D; Greeley, R; Landheim, R; Klein, H

    1995-03-01

    The selection of sites on Mars that have a high priority for exobiological research is fundamental for planning future exploration. The most immediate need is to identify targets for high resolution orbital imaging during the Mars Observer and Mars '94/'96 missions that can be used to refine site priorities for surface exploration. We present an objective approach to site selection whereby individual sites are selected and scored, based on the presence of key geological features which indicate high priority environments. Prime sites are those that show evidence for the prolonged activity of liquid water and which have sedimentary deposits that are likely to have accumulated in environments favorable for life. High priority areas include fluvio-lacustrine (stream-fed lake systems), springs, and periglacial environments. Sites where mineralization may have occurred in the presence of organisms (e.g. springs) are given high priority in the search for a fossil record on Mars. A systematic review of Viking data for 83 sites in the Mars Landing Site Catalog resulted in the selection of 13 as being of exobiological interest. The descriptions of these sites were expanded to address exobiological concerns. An additional five sites were identified for inclusion in the second edition of the MLSC. We plan to broaden our site selection activities to include a systematic global reconnaissance of Mars using Viking data, and will continue to refine site priorities for exobiological research based on data from future missions in order to define strategies for surface exploration.

  2. Site selection for Mars exobiology

    NASA Technical Reports Server (NTRS)

    Farmer, J.; Des Marais, D.; Greeley, R.; Landheim, R.; Klein, H.

    1995-01-01

    The selection of sites on Mars that have a high priority for exobiological research is fundamental for planning future exploration. The most immediate need is to identify targets for high resolution orbital imaging during the Mars Observer and Mars '94/'96 missions that can be used to refined site priorities for surface exploration. We present an objective approach to site selection whereby individual sites are selected and scored, based on the presence of key geological features which indicate high priority environments. Prime sites are those that show evidence for the prolonged activity of liquid water and which have sedimentary deposits that are likely to have accumulated in environments favorable for life. High priority areas include fluvio-lacustrine (stream-fed lake systems), springs, and periglacial environments. Sites where mineralization may have occurred in the presence of organisms (e.g. springs) are given high priority in the search for a fossil record on Mars. A systematic review of Viking data for 83 sites in the Mars Landing Site Catalog (MLSC) resulted in the selection of 13 as being of exobiological interest. The descriptions of these sites were expanded to address exobiological concerns. An additional five sites were identified for inclusion in the second edition of the MLSC. We plan to broaden our site selection activities to include a systematic global reconnaissance of Mars using Viking data, and will continue to refine site priorities for exobiological research based on data from future missions in order to define strategies for surface exploration.

  3. The Distribution of Non-Volatile Elements on Mars: Mars Odyssey GRS Results

    NASA Technical Reports Server (NTRS)

    Boynton, W.; Janes, D.; Kerry, K.; Kim, K.; Reedy, R.; Evans, L.; Starr, R.; Drake, D.; Taylor, J.; Waenke, H.

    2004-01-01

    The major scientific objective of the Gamma-Ray Spectrometer (GRS) on the 2001 Mars Odyssey Mission is to determine the distribution of elements in the near-surface of Mars. Mars Odyssey has been in its mapping orbit since February, 2002, and the GRS boom, which removes the instrument from the gamma-ray background of the spacecraft, was erected in June, 2002. In the 580 days since boom erection, we have accumulated 453 days of mapping data. The difference is due mostly to two times when Odyssey went into safe mode and the instrument warmed up forcing us to anneal out radiation damage that manifests itself after warming. Other data losses are due to simple transmitter data gaps and to intense solar particle events. The data from the GRS is statistical in nature. We have a very low count rate and a very low signal-to-noise ratio. With the exception of K, the most easily mapped elements have a signal/noise ratio on the order of 0.1 (0.5 for K) and the counting rates are on the order of 0.3 to 0.7 counts/min (4 cpm for K). In order to map the distribution of an element, we have to divide the total signal from Mars up into many cells that define the map s spatial resolution (unless the statistics are good enough that the intrinsic spatial resolution of the instrument, about 550 km diameter, dominates). The data for several elements have now achieved a statistical precision that permits us to make meaningful maps.

  4. Mars X: A Mars Mission Architecture with Lunar-Mars Synergy

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    2006-01-01

    A human mission to Mars, if it is to be cost effective, should take maximum advantage of previous efforts at the Moon, in terms of habitats, heavy lift boosters, and vehicles. It must also make use of nuclear site power for bases. However, to make such an effort sustainable over many administrations, it should not make use of nuclear propulsion. It is proposed in this architecture that high power Solar Electric Propulsion based around the MET (Microwave Electro-Thermal) thruster with water propellant, as an upper stage for a heavy lift booster, will allow a 46MT basic payload package to be sent to Mars. ISRU is utilized on Mars for production of RP1 and LOX to achieve Mars ascent and Mars Orbit rendezvous with an interplanetary stage. Two full tests of ISRU and Mars ascent are assumed for a human-rating of the system and to preposition water and RP1 in Mars orbit for abort to Earth from Mars orbit.

  5. Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vasilyev, G.; Ostryakov, V. M.; Pavlov, A. K.; Mahaffy, P.

    2012-07-01

    Detection of the organic matter on Mars is one of the main goals of the future Martian landing missions. Yet, the degradation of organic molecules by cosmic ray irradiation on Mars is often ignored. We calculate the radiation dose accumulation rates from solar and galactic cosmic rays at various depths in the shallow Martian subsurface. We demonstrate that a 1-billion-year outcrop on Mars accumulates the dosage of ˜500 MGy in the top 0-2 cm and ˜50 MGy at 5-10 cm depths. We show that the preservation of ancient complex organic molecules in the shallow (˜10 cm depth) subsurface of rocks could be highly problematic if the exposure age of a geologic outcrop would exceed 300 Myr. We demonstrate that more simple organic molecules with masses ˜100 amu should have a good chance to survive in the shallow subsurface of rocks. Implications to the sampling strategy for the oncoming Martian missions are discussed.

  6. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  7. Bird's Eye View of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's concept shows NASA's future Mars Reconnaissance Orbiter mission over the red planet.

    NASA plans to launch this multipurpose spacecraft in August 2005 to advance our understanding of Mars through detailed observation, to examine potential landing sites for future surface missions and to provide a high-data-rate communications relay for those missions.

    The orbiter's shallow radar experiment, one of six science instruments on board, is designed to probe the internal structure of Mars' polar ice caps, as well as to gather information planet-wide about underground layers of ice, rock and, perhaps, liquid water, which might be accessible from the surface.

  8. Estimated Radiation Dosage on Mars

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This global map of Mars shows the estimated radiation dosages from cosmic rays reaching the surface, a serious health concern for any future human exploration of the planet.

    The estimates are based on cosmic-radiation measurements by the Mars radiation environment experiment, an instrument on NASA's Mars 2000 Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have the lowest levels of cosmic radiation are where the elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than we have on Earth.

    The colors in the map refer to the estimated annual dose equivalent in rems, a unit of radiation dose. The range is generally from 10 rems(color-coded dark blue) to 20 rems (color coded dark red). Radiation exposure for astronauts on the International Space Station in Earth orbit is typically equivalent to an annualized rate of 20 to 40 rems.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center, Houston. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. North polar region of Mars: imaging results from viking 2.

    PubMed

    Cutts, J A; Blasius, K R; Briggs, G A; Carr, M H; Greeley, R; Masursky, H

    1976-12-11

    During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.

  10. Mars habitat

    NASA Technical Reports Server (NTRS)

    Ayers, Dale; Barnes, Timothy; Bryant, Woody; Chowdhury, Parveen; Dillard, Joe; Gardner, Vernadette; Gregory, George; Harmon, Cheryl; Harrell, Brock; Hilton, Sherrill

    1991-01-01

    The objective of this study is to develop a conceptual design for a permanently manned, self-sustaining Martian facility, to accommodate a crew of 20 people. The goal is to incorporate the major functions required for long term habitation in the isolation of a barren planet into a thriving ecosystem. These functions include living, working, service, and medical facilities as well as a green house. The main design task was to focus on the internal layout while investigating the appropriate structure, materials, and construction techniques. The general concept was to create a comfortable, safe living environment for the crew members for a stay of six to twelve months on Mars. Two different concepts were investigated, a modular assembly reusable structure (MARS) designated Lavapolis, and a prefabricated space frame structure called Hexamars. Both models take into account factors such as future expansion, radiation shielding, and ease of assembly.

  11. Development of a solar-cell dust opacity measurement instrument for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Jenkins, Phillip P.

    1996-01-01

    The atmosphere of Mars has a considerable load of suspended dust. Over time, this dust is deposited out of the atmosphere. The mechanism and the temporal and geographical variation of this deposition are not well characterized. Measurements of settling rates and dust properties are of considerable scientific interest. Atmospheric dust affects the atmospheric solar absorption and thus the heat balance of Mars, as well as serving as nucleation sites for water and CO2 frost. Knowledge of dust properties is of critical interest to design and prediction of the lifetime and power output of solar arrays, and also to design of mechanical mechanisms and radiators. An instrument has been designed and fabricated to measure the dust accumulation during the course of the Mars Pathfinder rover mission. The solar-cell coverglass transmission experiment will measure the change in optical opacity of a transparent coverglass as dust settles on the surface, and a quartz crystal monitor will measure the mass deposited.

  12. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    In this study, surface mass balance data of two glaciers on James Ross Island, Antarctica, and its spatial and temporal variations are evaluated using snow ablation stakes, ground-penetrating radar, and dGPS measurements. The investigated glaciers are located on the Ulu Peninsula, northern part of James Ross Island. Davies Dome is an ice dome, which originates on the surface of a flat volcanic mesa at elevations >400 m a.s.l. and terminates with a single 700 m wide outlet in the Whisky Bay. Davies Dome has an area of ~6.5 km2 and lies in the altitude range of 0-514 m a.s.l. Whisky Glacier is a cold-based land-terminating valley glacier surrounded by an extensive moraine ridges made of debris-covered ice. The glacier has an area of ~2.4 km2 and lies in the altitude range of 215-520 m a.s.l. Within several summer austral summers, extensive field programme were carried out on both glaciers including the operation of two automatic weather stations, field mapping and mass balance measurements. Each station was equipped with albedometer CM7B (Kipp-Zonen, Netherlands), air temperature and humidity sensor EMS33 (EMS, Czech Republic), propeller anemometer 05103 (Young, USA), and snow depth sensors (Judd, USA). In the period 2009-2011, high seasonal and interdiurnal variability of incoming solar radiation and near-surface air temperature was found as a result of changes in the circulation patterns and synoptic-scale weather systems moving in the Circumpolar Trough. High ablation and accumulation rates were recorded mainly in the spring and summer seasons (October-February), while negligible changes were found in winter (May-September). The effects of positive degree-day temperatures on the surface ablation rates were examined using a linear regression model. In this approach, near-surface air temperature maps on the glacier surfaces were derived from digital elevation model according to actual temperature lapse rates. Mass balance investigations started in 2006 on Davies

  13. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions.

    PubMed

    Gao, Yang; Couwenberg, John

    2015-02-01

    Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands.

  14. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions.

    PubMed

    Gao, Yang; Couwenberg, John

    2015-02-01

    Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands. PMID:25230297

  15. Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration.

    PubMed

    Tuccimei, P; Moroni, M; Norcia, D

    2006-02-01

    A method to determine simultaneously the rates of 222Rn and 220Rn released from building materials quarried in Central Italy is presented. The method makes use of a continuous monitor equipped with a solid state alpha detector, in-line connected to a small accumulation chamber. The effects of chamber leakage and back diffusion on 222Rn free exhalation rate is evaluated. The influence of available exhalation surface, humidity content and precursors concentration on radon and thoron exhalation rates is investigated.

  16. NASA Mars Conference

    SciTech Connect

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space.

  17. Motor Brush Testing for Mars and Vacuum

    NASA Technical Reports Server (NTRS)

    Noon, Don E.

    1999-01-01

    Brush motors have been qualified and flown successfully on Mars missions, but upcoming missions require longer life and higher power. A test program was therefore undertaken to identify the best brush material for operation in the Mars atmosphere. Six different brush materials were used in 18 identical motors and operated under various load conditions for a period of four weeks in low-pressure CO2. All motors performed acceptably, with accumulated motor revolutions between 98 and 144 million revolutions, depending on load. A proprietary silver-graphite material from Superior Carbon (SG54-27) appears to be the best choice for long life, but even the stock copper-graphite brushes performed reliably with acceptable wear. The motors from the CO2 test were then cleaned and run in vacuum for 2 weeks. The difference in results was dramatic, with 5 motors failing catastrophically and wear rates increasing by orders of magnitude for the SG54-27 material. Three brush materials survived the test with no failures: SG54-27 with a proprietary Ball Aerospace impregnation, a silver-graphite-molybdenum disulfide material from Superior Carbon (SG59), and a copper sulfide-graphite material also from Superior Carbon (BG91).

  18. Radiation exposure for human Mars exploration.

    PubMed

    Simonsen, L C; Wilson, J W; Kim, M H; Cucinotta, F A

    2000-11-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human space flight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle events was of great concern. A new challenge appears in deep-space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays since the missions are of long duration, and accumulated exposures can be high. Because cancer induction rates increase behind low to moderate thicknesses of aluminum shielding, according to available biological data on mammalian exposures to galactic cosmic ray-like ions, aluminum shield requirements for a Mars mission may be prohibitively expensive in terms of mission launch costs. Alternative materials for vehicle construction are under investigation to provide lightweight habitat structures with enhanced shielding properties. In the present paper, updated estimates for astronaut exposures on a Mars mission are presented and shielding properties of alternative materials are compared with aluminum. PMID:11045525

  19. Radiation exposure for human Mars exploration.

    PubMed

    Simonsen, L C; Wilson, J W; Kim, M H; Cucinotta, F A

    2000-11-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human space flight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle events was of great concern. A new challenge appears in deep-space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays since the missions are of long duration, and accumulated exposures can be high. Because cancer induction rates increase behind low to moderate thicknesses of aluminum shielding, according to available biological data on mammalian exposures to galactic cosmic ray-like ions, aluminum shield requirements for a Mars mission may be prohibitively expensive in terms of mission launch costs. Alternative materials for vehicle construction are under investigation to provide lightweight habitat structures with enhanced shielding properties. In the present paper, updated estimates for astronaut exposures on a Mars mission are presented and shielding properties of alternative materials are compared with aluminum.

  20. A revised surface age for the North Polar Layered Deposits of Mars

    NASA Astrophysics Data System (ADS)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-04-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  1. A record of barite accumulation rate for marine export productivity changes in the tropical Indian Ocean during the Mid-Pliocene--Early-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Zhou, Liping; Ma, Zhongwu; Ding, Xuan

    2016-04-01

    One of the most interesting features in the marine oxygen isotope records is the gradual shift towards heavier 18O from the Mid-Pliocene, which ends with the initiation of Northern Hemisphere glaciation (NHG) around 2.7 Ma. The lack of significant change in sea surface temperature in the tropical Indian Ocean as revealed in the previous studies does not rule out their possible contributions to this dramatic climate change during the Mid-Pliocene transition. Changing circulation systems in the region will control the supply of nutrients for the water masses which in turn determine the marine productivity. In the areas of high productivity, ocean export productivity may potentially provide a mechanism of CO2 draw-down into the deep ocean, through which contributing to the lowering of the global temperature. In this study, we present a record of barite accumulation rate (BAR) for DSDP Site 214 drilled on the Ninetyeast Ridge. Here we use the marine barite, which is formed during the decay of organism in the twilight zone, as a proxy for ocean export productivity. Our results show that the BAR of Site 214 varies between 0.25 and 1.25 mg/cm2/kyr during the period between 4 Ma and 2 Ma. Five intervals of increased BAR from 3.6 Ma to 2.4 Ma are identified with the most distinct peak centred around 3 Ma. The overall pattern does not follow either the oxygen isotope record for the Site or the sea surface temperature and subsurface temperature reconstructed with the Mg/Ca of foraminifera. This suggests that regional changes in ocean circulation and water masses may have played more important role than temperature in controlling the productivity change in the tropical Indian Ocean. The relative higher productivity around 3 Ma may imply a biogenetic process towards the intensification of NHGs.

  2. Mars habitat

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The College of Engineering & Architecture at Prairie View A&M University has been participating in the NASA/USRA Advanced Design Program since 1986. The interdisciplinary nature of the program allowed the involvement of students and faculty throughout the College of Engineering & Architecture for the last five years. The research goal for the 1990-1991 year is to design a human habitat on Mars that can be used as a permanent base for 20 crew members. The research is being conducted by undergraduate students from the Department of Architecture.

  3. New Paleoclimate Records from the Russian Far East: Carbon Accumulation Rates and Ecological Change Over the Last 13,000 Years from Western and Central Kamchatka

    NASA Astrophysics Data System (ADS)

    Bochicchio, C. J.; Loisel, J.; Yu, Z.; Beilman, D.; Dirksen, V.; Dirksen, O.; Nichols, J. E.

    2014-12-01

    The Kamchatka peninsula lies along the confluence of the Pacific Ocean, and the Bering and Okhotsk Seas (OS). Its location is ideal to record shifts in regional ocean and atmospheric circulation and contains vast stores of carbon-rich peatlands, yet paleoclimate records from this area are scarce. This research aims to provide new paleo-proxy records that document carbon dynamics, precipitation, and temperature over the Holocene. We focus on site C4 (54.02 N, 156.13 E) located 18 km from OS coast at 91 m elevation and draw comparisons with site C1 (54.91 N, 156.60 E) which is 62 km from the coast at 256 m elevation, both in the Western Lowland (WL) region. Cores C1 and C4 are 450 and 375 cm in length, respectively. C4 and C1 were analyzed for organic matter (OM) content; while C4 received additional δ-deuterium (δD), plant macrofossil, and fossil pollen analysis. Both cores cover the last 13,000 years from the Western Lowlands (WL); prior to this study no such records existed from the WL or the eastern OS coastline. Chronologies are based on radiocarbon dating of fine fraction bulk peat and Sphagnum plant macrofossils. At both sites, peat accumulation began 11 ka (1 ka = 1000 calibrated years before present), is continuous to the surface, interlayered with tephra, and overlays a clay unit with 20% OM. OM density measured at 1 cm intervals show similar means of 0.1 g cm-3 over the last 11 ka and, despite the close proximity of the sites (103 km), they show two opposing OM trends: Period 1) From 5.8 to 3.5 ka, C1 OM density decreased ~0.10 to 0.06 g cm-3 while C4 increased from ~0.10 to 0.19 g cm-3, and Period 2) from 3.5 to 0.9 ka, C1 OM density increased to ~0.18 g cm-3 while C4 decreased to ~0.11 cm-3. Peat carbon accumulation rate (PCAR) is similar for both periods in C1 and C4 at 20.1 and 14.1 g m-2 yr-1, respectively. Prior to 5.8 ka PCAR in C1 and C4 is ~30 g m-2 yr-1 in the early Holocene, decreasing to 19 g m-2 yr-1 in the Mid- Late Holocene. C4 shows large

  4. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  5. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  6. Mars Public Engagement Overview

    NASA Technical Reports Server (NTRS)

    Johnson, Christine

    2009-01-01

    This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.

  7. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  8. A Martian Telecommunications Network: UHF Relay Support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.; Theisinger, P.; Thorpe, T.; Waggoner, B.

    2004-01-01

    NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.

  9. Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo

    2000-01-01

    The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.

  10. Surface chemistry and mineralogy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  11. Water on early Mars.

    PubMed

    Carr, M H

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  12. Water on early Mars

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  13. Improved Mars Upper Atmosphere Climatology

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the

  14. The H Corona of Mars

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael Scott

    The atmosphere of every planet is surrounded by a tenuous cloud of hydrogen gas, referred to as a hydrogen corona. At Mars, a substantial fraction of the H present in the corona is moving fast enough to escape the planet's gravity, permanently removing H from the Martian atmosphere. Because this H is ultimately derived from lower atmospheric water, loss of H from Mars is capable of drying and oxidizing the planet over geologic time. Understanding the processes that supply the H corona and control its escape is therefore essential for a complete understanding of the climate history of Mars and for assessing its habitability. In this thesis, I present the most complete analysis of the H corona ever attempted, surveying eight years of data gathered by the ultraviolet spectrograph SPICAM on Mars Express. Using a coupled radiative transfer and physical density model, I interpret brightness measurements of the corona in terms of escape rates of H from the planet, uncovering an order-of-magnitude variability in the H escape rate never before detected. These variations are interpreted using a completely new photochemical model of the atmosphere, demonstrating that newly discovered high altitude water vapor layers are sufficient to produce the observed variation. Finally, I present first results of the SPICAM successor instrument IUVS, an imaging ultraviolet spectrograph carried by NASA's MAVEN spacecraft. IUVS measurements are producing the most complete dataset ever gathered for the Martian H corona, enabling supply and loss processes to be assessed in more complete detail than ever before. This dataset will allow present-day loss rates to be extrapolated into the past, determining the absolute amount of water Mars has lost to space over the course of its history. Planets the size of Mars may be common throughout the universe; the work of this thesis is one step toward assessing the habitability of such planets in general.

  15. Mars Radiator Characterization Experimental Program

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Hollingsworth, D. Keith

    2004-01-01

    Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to

  16. Lunar and Planetary Science XXXV: Mars Tectonism and Volcanism

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Tectonism and Volcanism", included the following reports:Structural Attitudes of Large Scale Layering in Valles Marineris, Mars, Calculated from Mars Orbiter Laser Altimeter Data and Mars Orbiter Camera Imagery; Stratigraphy of Eastern Coprates Chasma, Mars; Temporal Variability in Tharsis Stress State Based on Wrinkle Ridges and Strike-Slip Faulting; State of Stress in the Martian Lithosphere; Displacement-Length Scaling of Faults on Earth, Mars, and Beyond; Topographic Analysis of Quasi-Circular Depressions Around the Utopia Basin, Mars; The Olympus Mons Aureole Deposits: New Evidence for a Flank-failure Origin; Cerberus Fossae and Elysium Planitia Lavas, Mars: Source Vents, Flow Rates, Edifice Styles and Water Interactions; and Topographic Evidence for Eruptive Style Changes and Magma Evolution of Small Plains.

  17. Mars Global Surveyor: Cruising to Mars

    NASA Technical Reports Server (NTRS)

    Cunningham, Glenn E.

    1997-01-01

    The Mars Global Surveyor spacecraft was launched on November 7, 1996, and is now cruising to Mars. While the launch was excellent, and the spacecraft and its science payload are in perfect operating condition, a broken deployment damper on one of the two solar arrays has posed some concern relative to the use of that solar array as a drag surfae during aerobraking operations at Mars.

  18. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  19. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  20. Mars exploration mission

    NASA Astrophysics Data System (ADS)

    Matsuda, Seiji

    1991-07-01

    Mars exploration scenarios are reviewed. An emphasis is placed on scientific exploration. The review and evaluation results are reported for the following items: (1) orbit plans for Mars surface exploration missions that begin in Low Earth Orbit (LEO); (2) powered and aerodynamic capturing payloads from the transfer orbit to a Mars revolving orbit; and (3) a penetrator system as a Mars landing vehicle. Proposed Mars transfer orbits have the following advantages over Hohmann orbits: (1) transfer time and angle are less; (2) the inclination between the orbital planes of Earth and Mars is considered; and (3) velocity variations are not required to change orbit plane.

  1. Paleohydrology of Eberswalde crater, Mars

    NASA Astrophysics Data System (ADS)

    Irwin, Rossman P.; Lewis, Kevin W.; Howard, Alan D.; Grant, John A.

    2015-07-01

    Eberswalde crater, Mars, contains a well-preserved fluvial distributary network in a likely deltaic setting. The meandering inverted paleochannels and closed drainage basin of this deposit support relatively well constrained estimates of channel-forming discharge (over an individual event flood timescale), runoff production (event and annual timescales), and longevity of deposition (geologic timescale) during the Late Hesperian to Early Amazonian Epochs. The width and meander dimensions of two inverted paleochannels reflect the channel-forming discharge from event floods (~ 200 to 400 m3/s), the deposit surface indicates the level (- 1400 to - 1350 m) and surface area (410 to 810 km2) of the likely paleolake, and the topography and mapped extent of tributaries constrain the watershed area (5000 to 17,000 km2). Based on these results and terrestrial empirical constraints on evaporation and sediment concentration, we evaluated three hypothetical water sources: meltwater liberated by the nearby Holden crater impact (continuous deposition over ~ 101-102 years), intermittent rainfall or snowmelt during finite periods controlled by orbital evolution (deposition over ~ 104-106 years), and highly infrequent runoff or melting of accumulated snowpacks following distant impacts or secular changes in orbital parameters. Local impact-generated runoff and highly infrequent rainfall or snowmelt require unreasonably high and low rates of evaporation, respectively, to maintain the paleolake level. The local impact hypothesis alternatively depends on one flooding episode with very high concentrations of fluvial sediment that are inconsistent with morphologic considerations. Multiple primary impact craters in the area postdate Holden ejecta but were later dissected, indicating fluvial erosion long after the Holden impact. Intermittent rainfall of ~ 1 cm/day and seasonal snowmelt are both consistent with our results over a deposition timescale totaling ~ 104-106 years.

  2. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  3. Mars brine formation experiment

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.

    1993-01-01

    The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals.

  4. Solar array development for the surface of Mars

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Dawson, S.; Rapp, D.; Sharps, Paul; Aiken, D.; Spence, B. R.; White, S. F.; King, R. P.; Edmonson, K.

    2003-01-01

    JPL's missions to Mars have revealed factors that have an adverse impact on the performance of Mars Surface Solar Arrays. These factors included a spectrum shift toward the red wavelengths, atmospheric scattering and absorption and an accumulation of Mars surface dust on the arrays. All of these factors will reduce the power generated from state of the art triple junction solar cells used by earth orbiting satellites. This paper will report the results of JPL supported work conducted by US solar array manufacturers to increase the performance of solar arrays for future Mars surface missions. JPL awarded four vendors contracts to evaluate methods of improving power generation on the surface of Mars. These four contracts cover the redesign of the existing triple junction solar cell, modifying solar simulator output to match the Mars surface spectrum and techniques to control or remove dust from the surface of the arrays. The methodology and results of this evaluation will be presented in this paper.

  5. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  6. Mars chronology: Assessing techniques for quantifying surficial processes

    USGS Publications Warehouse

    Doran, P.T.; Clifford, S.M.; Forman, S.L.; Nyquist, L.; Papanastassiou, D.A.; Stewart, B.W.; Sturchio, N.C.; Swindle, T.D.; Cerling, T.; Kargel, J.; McDonald, G.; Nishiizumi, K.; Poreda, R.; Rice, J.W.; Tanaka, K.

    2004-01-01

    Currently, the absolute chronology of Martian rocks, deposits and events is based mainly on crater counting and remains highly imprecise with epoch boundary uncertainties in excess of 2 billion years. Answers to key questions concerning the comparative origin and evolution of Mars and Earth will not be forthcoming without a rigid Martian chronology, enabling the construction of a time scale comparable to Earth's. Priorities for exploration include calibration of the cratering rate, dating major volcanic and fluvial events and establishing chronology of the polar layered deposits. If extinct and/or extant life is discovered, the chronology of the biosphere will be of paramount importance. Many radiometric and cosmogenic techniques applicable on Earth and the Moon will apply to Mars after certain baselines (e.g. composition of the atmosphere, trace species, chemical and physical characteristics of Martian dust) are established. The high radiation regime may pose a problem for dosimetry-based techniques (e.g. luminescence). The unique isotopic composition of nitrogen in the Martian atmosphere may permit a Mars-specific chronometer for tracing the time-evolution of the atmosphere and of lithic phases with trapped atmospheric gases. Other Mars-specific chronometers include measurement of gas fluxes and accumulation of platinum group elements (PGE) in the regolith. Putting collected samples into geologic context is deemed essential, as is using multiple techniques on multiple samples. If in situ measurements are restricted to a single technique it must be shown to give consistent results on multiple samples, but in all cases, using two or more techniques (e.g. on the same lander) will reduce error. While there is no question that returned samples will yield the best ages, in situ techniques have the potential to be flown on multiple missions providing a larger data set and broader context in which to place the more accurate dates. ?? 2004 Elsevier B.V. All rights

  7. Mars chronology: assessing techniques for quantifying surficial processes

    NASA Technical Reports Server (NTRS)

    Doran, Peter T.; Clifford, Stephen M.; Forman, Steven L.; Nyquist, Larry; Papanastassiou, Dimitri A.; Stewart, Brian W.; Sturchio, Neil C.; Swindle, Timothy D.; Cerling, Thure; Kargel, Jeff

    2004-01-01

    Currently, the absolute chronology of Martian rocks, deposits and events is based mainly on crater counting and remains highly imprecise with epoch boundary uncertainties in excess of 2 billion years. Answers to key questions concerning the comparative origin and evolution of Mars and Earth will not be forthcoming without a rigid Martian chronology, enabling the construction of a time scale comparable to Earth's. Priorities for exploration include calibration of the cratering rate, dating major volcanic and fluvial events and establishing chronology of the polar layered deposits. If extinct andor extant life is discovered, the chronology of the biosphere will be of paramount importance. Many radiometric and cosmogenic techniques applicable on Earth and the Moon will apply to Mars after certain baselines (e.g. composition of the atmosphere, trace species, chemical and physical characteristics of Martian dust) are established. The high radiation regime may pose a problem for dosimetry-based techniques (e.g. luminescence). The unique isotopic composition of nitrogen in the Martian atmosphere may permit a Mars-specific chronometer for tracing the time-evolution of the atmosphere and of lithic phases with trapped atmospheric gases. Other Mars-specific chronometers include measurement of gas fluxes and accumulation of platinum group elements (PGE) in the regolith. Putting collected samples into geologic context is deemed essential, as is using multiple techniques on multiple samples. If in situ measurements are restricted to a single technique it must be shown to give consistent results on multiple samples, but in all cases, using two or more techniques (e.g. on the same lander) will reduce error. While there is no question that returned samples will yield the best ages, in situ techniques have the potential to be flown on multiple missions providing a larger data set and broader context in which to place the more accurate dates.

  8. MAVEN's Trajectory to Mars

    NASA Video Gallery

    This movie shows the cruise trajectory of NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission, which was launched on Nov. 18, 2013. It will arrive at Mars on Sept. 21, 2014, to explore th...

  9. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  10. Mars Meteorolgical Network

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Spann, J. F.

    2012-01-01

    Exploring and ultimately establishing a permanent presence on the surface of Mars will necessitate an understanding the weather conditions and the ability to forecast its dynamic behavior. The meteorology of Mars will need to be developed. This abstract puts forth a concept for a Mars Meteorological Network that will be used to investigate the Mars atmosphere behavior, explore the surface environment, and prepare for operational activities. It is proposed that the long term and the dynamic nature of the lower atmosphere and surface of Mars be observed with a distributed global array of simple automated surface nodes. The data would be ingested into the Mars Global Reference Atmospheric Model (Mars-GRAM) and other research tools for analyses to gain a better understanding of the atmospheric conditions on Mars.

  11. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  12. Mapping Mars with a Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2001-01-01

    In November 1996 the Mars Global Surveyor (MGS) spacecraft was launched to Mars. One of the instruments on the spacecraft was a laser altimeter, MOLA, for measuring the shape and topography of the planet. The altimeter has a diode pumped Q-switched ND:YAG laser at 1064nm, operating at 10Hz with an 8 nsec pulse width. The pulse energy is 48mJ, and the instrument has a 37cm ranging precision. The laser illuminates a spot on the surface of Mars approximately 160 meters in diameter and the instrument has accumulated over 600 million range measurements of the surface since arrival at Mars in September 1997. MOLA has operated continuously for over 2 years and has mapped the planet at a horizontal resolution of about 1 km and a radial accuracy of about a meter. MOLA has measured the shape of the planet, the heights of the volcanoes, the depths of the canyons, and the volumes of the polar icecaps. It has detected carbon dioxide clouds and measured the accumulation of seasonal CO2 on the polar icecaps. This new remote sensing tool has helped transform our understanding of Mars and its geological history, and opened a new door to planetary exploration.

  13. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  14. Mars: The Viking Discoveries.

    ERIC Educational Resources Information Center

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  15. Mars: 2010 - 2020

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2006-01-01

    This slide presentation reviews the Mars Exploration program for the current decade and beyond. The potential items for procurements for the Mars Science Laboratory (MSL) are discussed, as well as future technology investments to enable to continued development of exploration of Mars by rovers and orbiters that are planned and envisioned for future missions.

  16. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  17. Annual Greenland accumulation derived from airborne radar and comparisons to modeled and in situ data

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Cullather, R. I.; Nowicki, S.

    2015-12-01

    Mass loss across the Greenland Ice Sheet (GrIS) has accelerated in recent decades and recently a fundamental change in the nature of this mass loss has begun. The dominant GrIS mass-loss process has switched from ice dynamics to surface mass balance (SMB) processes, including melt generation and runoff. This recent shift further emphasizes the need to monitor and constrain SMB, which, across most of the GrIS, is dominated by accumulation. High resolution, near-surface radar data have shown good fidelity at mapping spatial patterns of accumulation to validate model outputs. To better constrain accumulation over the GrIS, we derive annual accumulation rates using NASA Operation IceBridge (OIB) Snow Radar data collected from 2009 through 2012. Accumulation is calculated using the radar-determined depth to an annual layer and the local snow/firn density profile. Up to 30 years of annual stratigraphy is observed in the interior of the ice sheet, near Summit Station, while only the past year is detectable in the ablation zone around the perimeter of the ice sheet. Annual layering is traced using a semi-automatic algorithm and mapped across large areas (tens of thousands of line kilometers). A combined measured and modeled density profile is used to convert the annual stratigraphy into accumulation. Modeled density profiles from the Modèle Atmosphérique Régional (MAR) model are shown to be less than half of in situ observations in the top 1 m of snow/firn and are, therefore, replaced with in situ measurements. Using a compilation of in situ measurements, the mean GrIS snow/firn density is found to be ~340 +/- 40 kg/m3 in the top 1 m. Error in the snow density profile represents the largest error in the radar-derived accumulation. The pattern of radar-derived accumulation rate compares well with MAR estimates, although the latter has a mean bias of 4.6 cm water equivalent, a root mean square error of 16.8 cm water equivalent and a correlation coefficient of 0.6 across

  18. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  19. Solar Power on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This chart illustrates the variation in available solar power for each of NASA's twin Mars Exploration Rovers over the course of approximately two Mars years. Two factors affect the amount of available power: the tilt of Mars' axis and the eccentricity of the Mars' orbit about the sun.

    The horizontal scale is the number of Martian days (sols) after the Jan. 4, 2004, (Universal Time) landing of Spirit at Mars' Gusev Crater. The vertical scale on the right indicates the amount of available solar power as a ratio of the amount available at the equator when Mars is closest to the sun (perihelion). The red line indicates power availability at Spirit's landing site (Gusev). The blue line indicates power availability at Opportunity's landing site (Meridiani).

    The vertical scale on the right applies to the dotted line, indicating the latitude north or south of Mars' equator where the noon sun is overhead at different times of the Martian year.

  20. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence.

    PubMed Central

    Sulavik, M C; Dazer, M; Miller, P F

    1997-01-01

    The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence

  1. Four Finalist Landing Site Candidates for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Out of more than 30 sites considered as possible landing targets for NASA's Mars Science Laboratory mission, by November 2008 four of the most intriguing places on Mars rose to the final round of the site-selection process.

    The four finalists are, alphabetically: Eberswalde, where an ancient river deposited a delta in a possible lake; Gale, with a mountain of stacked layers including clays and sulfates; Holden, a crater containing alluvial fans, flood deposits, possible lake beds and clay-rich deposits; and Mawrth, which shows exposed layers containing at least two types of clay.

    The locations of these four candidates are indicated here on a background map of color-coded topographical data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In latitude, the map extends from 70 degrees (north) to minus 70 degrees (south). The east-west axis is labeled at the top in degrees of east longitude, with the zero meridian at the center.

    The Mars Science Laboratory mission's capabilities for landing more precisely and at higher elevation than ever before, for driving farther, and for generating electricity without reliance on sunshine have enabled consideration of a wider range of possible landing sites than for any previous Mars mission. During the past two years, multiple observations of dozens of candidate sites by NASA's Mars Reconnaissance Orbiter have augmented data from earlier orbiters for evaluating sites' scientific attractions and engineering risks.

    More than 100 Mars scientists have participated in a series of open workshops presenting and assessing data that the orbiters have provided about the candidate sites. The four sites rated highest by researchers at a September 2008 workshop were the same ones chosen by mission leaders after a subsequent round of safety evaluations and analysis of terrain for rover driving.

    As a clay-bearing site where a river once flowed

  2. Mars: Cold, windy and occasionally unstable (Invited)

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Becerra, P.; Diniega, S.; Dundas, C. M.; Geissler, P.; Hansen, C. J.; McEwen, A. S.; Russell, P. S.; Thomas, N.

    2013-12-01

    observed to retreat from failure of sections up to 70m across. Avalanches on those scarps are so common in some seasons that several can be seen in progress in a single HiRISE image. New impact craters in the mid-latitudes expose sub-surface ice whose geographic extent implies that it is currently retreating, while infill of craters on the PLD confirm polar accumulation. This poleward transport of water ice is only the most recent chapter in PLD accumulation, but provides a link to this historical record. Wind is also a powerful agent of surface change. Migration of dunes and ripples is now monitored at many sites. Dark ejecta blankets of newly formed impact craters change over time as fallout of atmospheric dust gradually obscures them. Regional albedo boundaries shift episodically in response to dust storms while seasonal frost appears to reset surface albedo at high latitudes each year. The episodic nature and interannual variability of surface changes make extrapolation from short-term records perilous. Long-term monitoring increases the value of all datasets and is the means by which we can understand the nature and rates of many geologic processes on Mars today.

  3. Atmospheric engineering of Mars

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Averner, M. M.

    1976-01-01

    The feasibility of creating a breathable atmosphere on Mars was studied. Assuming that indigenous life is absent, and that human habitation will prove economically justifiable, several methods of introducing oxygen were considered. On the basis of energy requirements, photosynthetic oxygen production appears to be reasonable, assuming that the amounts of water, carbon dioxide, and mineral nutrients available on the Martian surface would be adequate for the growth of photosynthetic microorganisms. However, optimum rates of O2 formation could occur only after a significant increase in average temperature and in atmospheric mass. The generation of a runaway greenhouse/advective effect was considered. However, neither the energy requirement nor the time constant for initiation could be calculated. There appear to be no insuperable obstacles to the conversion of the Martian atmosphere to one containing oxygen, but the conversion would require many thousands of years.

  4. Mystery of the magnetic field of Mars

    NASA Astrophysics Data System (ADS)

    Mordovskaya, V.

    Research of interaction of the solar wind with bodies of Solar System is one of methods, which allows us to make the conclusion about substance of the bodies and about its magnetization. The investigation of the solar wind interaction with Mars and Phobos has been carried out using the data of the Soviet expedition "Phobos - 2" and the kinetic approach to study the data. It is shown, that the size of the Martian obstacle to the solar wind is actually the size of Mars, as a physical body. The weak ionosphere and crystal magnetic anomalies at Mars result in inelastic dispersion of particles of the solar wind on the Martian obstacle, which give additional accumulation of the plasma and magnetic field in front of the Martian obstacle. The more the density of the solar wind, the more will the pileup of the plasma in front of Mars. Mars has not magnetospheres, neither own, nor induced to give the additional size for the obstacle like the Earth. The tail inherent in the interaction of magnetized bodies with the solar wind plasma, practically, is absent at Mars. The magnetic topology of the Martian wake is a result of the flow by the warm plasma of the solar wind around Mars. The Phobos interaction with the solar wind has been investigated. Dependence of the pileup of the solar wind plasma ahead of Phobos from the ion skin-depth has been found, which shows the existence of an effective obstacle of Phobos with the sizes about 150-170 km. Source with equivalent magnetic moment as order 1015A m2 in Phobos leads to the development of such obstacle for the solar wind flow around Phobos. Thus the received results: absence of the intrinsic global magnetic field of Mars, the magnetization of the Martian moon of Phobos and so the crystal magnetic anomalies revealed by the MGS satellite on surface of Mars give the primal magnetic mystery of Mars. If we will understand it we may probably approach to the problem of lifelessness of Mars. It is necessary to remind that evidence of

  5. Mars Color Imager (MARCI) on the Mars Climate Orbiter

    USGS Publications Warehouse

    Malin, M.C.; Bell, J.F.; Calvin, W.; Clancy, R.T.; Haberle, R.M.; James, P.B.; Lee, S.W.; Thomas, P.C.; Caplinger, M.A.

    2001-01-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (???6 x 6 x 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 1/3 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6?? FOV, which covers ???40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals. Copyright 2001 by the American

  6. Relationship between RNA/DNA ratio, growth rate and accumulation of selenium in the cells of wheat leaves under the influence of minerals analcime and trepel.

    PubMed

    Martynenko, O I; Kyrylenko, T K; Zaimenko, N V; Antonyuk, M M; Stepanyugin, A V; Plodnik, D P; Hovorun, D M

    2014-01-01

    We studied specific effects of different doses of natural minerals--analcime (An) and trepel (Tr)--on the growth rate, selenium (Se) content and functional activity of the genome of wheat leaves measured by the RNA/DNA ratio. Our results show that under the influence of An and Tr, especially at low doses (25 mg/100 g sand), there is a significant increase in the content of Se, increased growth rate of leaves of wheat seedlings and decreased RNA/DNA ratio. We have found significant correlations between studied parameters. Our findings suggest that the RNA/DNA ratio can be used as a convenient, reliable indicator of the biological activity of minerals An and Tr, and for quantitative express-estimation of their impact on plant organisms.

  7. Growth, diffusion, and loss of subsurface ice on Mars : experiments and models

    NASA Astrophysics Data System (ADS)

    Hudson, Troy Lee

    Innovative experiments and models are used to explore the behavior of subsurface ice on Mars. Through communication with the atmosphere, the porous regolith of Mars hosts significant quantities of ice which grow, evolve, and are lost in response to climate changes. As a controlling property of rate of ice response to a changing equilibrium state, the diffusive properties of several regolith simulants are measured in Mars-like environments. Ice loss through a variety of particle sizes, particle size distributions, packing densities, and salt contents are examined and reveal that many unconsolidated media exhibit diffusion coefficients in the range of 2-6 cm^2 s^-1, indicating a response time on the order of several thousand years for ice within the upper meter of the regolith. Only high salt contents or mechanically packed micron-sized dust are observed to exhibit substantially lower coefficients, suggesting that strong diffusive barriers may not form as readily as previously invoked. The growth of ice directly from vapor under diffusive control is reproduced for Mars-like environmental conditions in the absence of the liquid phase. As predicted, ice deposits preferentially at grain contact points and the ice table interface is sharp and strongly controlled by near-surface temperature perturbations. The quantity of ice deposited as a function of depth and time accords well with new numerical models of vapor diffusion and ice deposition, though constriction of the pore space reduces the diffusion coefficient faster than originally expected. A numerical model incorporating a fast solution to subsurface ice growth predicts near-surface ice contents for the last 300,000 years of Mars' history at high latitude locations, including specifically the Phoenix landing site. Several parameterizations of constriction developed from laboratory observations of ice growth are employed and compared. The thickness of the ice-free layer above the ice table has the strongest effect on

  8. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  9. Lunar and Planetary Science XXXV: Mars: Gullies, Fluids, and Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Gullies, Fluids, and Rocks" included the following reports:Gullies on Mars and Constraints Imposed by Mars Global Surveyor Data; Gullies on Mars: Origin by Snow and Ice Melting and Potential for Life Based on Possible Analogs from Devon Island, High Arctic; Formation of Recent Martian Gullies by Avalanches of CO2 Frost; Martian Slope Streaks and Gullies: Origins as Dry Granular Flows; Depths and Geologic Setting of Northern Hemisphere Gullies (and Comparison to Their Southern Counterparts); Mars as a Salt-, Acid-, and Gas-Hydrate World; Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts; Evaporation Rates of Brine on Mars; Hydrogeology of the Valles Marineris-Chaotic Terrain Transition Zone, Mars; Measured Fluid Flow in an Active H2O-CO2 Geothermal Well as an Analog to Fluid Flow in Fractures on Mars: Preliminary Report; Understanding Rock Breakdown on Earth and Mars: Geomorphological Concepts and Facet Mapping Methods; Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices; and Systematic Rock Classification in a Data-poor Environment: Application to Mars.

  10. Quick trips to Mars

    NASA Technical Reports Server (NTRS)

    Hornung, R.

    1991-01-01

    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed.

  11. Cars on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  12. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  13. Mars Surface Habitability Options

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Simon, Matthew; Smitherman, David; Howard, Robert; Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    This paper reports on current habitability concepts for an Evolvable Mars Campaign (EMC) prepared by the NASA Human Spaceflight Architecture Team (HAT). For many years NASA has investigated alternative human Mars missions, examining different mission objectives, trajectories, vehicles, and technologies; the combinations of which have been referred to as reference missions or architectures. At the highest levels, decisions regarding the timing and objectives for a human mission to Mars continue to evolve while at the lowest levels, applicable technologies continue to advance. This results in an on-going need for assessments of alternative system designs such as the habitat, a significant element in any human Mars mission scenario, to provide meaningful design sensitivity characterizations to assist decision-makers regarding timing, objectives, and technologies. As a subset of the Evolvable Mars Campaign activities, the habitability team builds upon results from past studies and recommends options for Mars surface habitability compatible with updated technologies.

  14. Spacecraft exploration of Mars

    NASA Technical Reports Server (NTRS)

    Snyder, Conway W.; Moroz, Vasilii I.

    1992-01-01

    Soviet and American spacecraft exploration of Mars over the past quarter century is reviewed. Data on the earliest Soviet attempts to send spacecraft to observe the planet are presented. Of the series of spacecraft that were announced (designated Mars 1 to Mars 7), none fulfilled all its scientific goals, but some good photographs and other important data were obtained. Of the six spacecraft in the Mariner series, two failed, but Mariner 4 first revealed the cratered surface of Mars, and Mariner 9 discovered all the major geologic features. The Viking mission, with its two Orbiters, two Landers, and its 6-yr duration, surpassed in quantity and variety of data all other missions combined. The Phobos mission ended in two failures, but the second of the two spacecraft acquired significant new data about Mars and Phobos. An appendix listing special issues of journals containing collections of papers about Mars is provided.

  15. Solar-Panel Dust Accumulation and Cleanings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels.

    This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  16. Mars at Opposition

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  17. Mars: The Viking discoveries

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1977-01-01

    An overview of the Viking Mars probe is presented. The Viking spacecraft is described and a brief history of the earlier observations and exploration of Mars is provided. A number of the Viking photographs of the Martian surface are presented and a discussion of the experiments Viking performed including a confirmation of the general theory of relativity are reported. Martian surface chemistry is discussed and experiments to study the weather on Mars are reported.

  18. Investigation of Mars Rotational Dynamics Using Earth-based Radio Tracking of Mars Landers

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Folkner, W. M.; Kahn, R. D.; Preston, R. A.

    1993-01-01

    The development of space geodetic techniques over the past two decades has made it possible to measure the rotational dynamics of the Earth at the milliarcsecond level, improving our geophysical models of the Earth 's interior and the interactions between the solid Earth and its atmosphere. We have found that the rotational dynamics of Mars can be determined to nearly the same level of accuracy by acquiring Earth-based two-way radio tracking observations of three or more landers globally distributed on the surface of Mars. Our results indicate that the precession and long-term obliquity changes of the Mars pole direction can be determined to an angular accuracy corresponding to about 15 cm/yr at the planet's surface. In addition, periodic nutations of the pole and seasonal variations in the spin rate of the planet can be determined to 10 cm or less. Measuring the rotation of Mars at this accuracy would greatly improve the determination of the planet' s moment of inertia and would resolve the size of a planetary fluid core, providing a valuable constraint on Mars interior models. Detecting seasonal variations in the spin rate of Mars would provide global constraints on atmospheric angular momentum changes due to sublimation of the Mars CO2 polar ice caps. Finally, observation of quasisecular changes in Mars obliquity would have significant implications for understanding long-term climatic change. The key to achieving these accuracies is a globally distributed network of Mars landers with stable, phase-coherent radio transponders. By simultaneously acquiring coherent two-way carrier phase observations between a single Earth tracking station and multiple Mars landers, Earth media errors are essentially eliminated, providing an extremely sensitive measure of changes in the differential path lengths between the Earth tracking station and the Mars landers due to Mars rotation. Time variability of the instrumental phase delay through the radio transponder may represent

  19. Digital cartography of Mars

    NASA Technical Reports Server (NTRS)

    Batson, R. M.

    1987-01-01

    A medium-resolution Digital Image Model (DIM) of Mars is being compiled. A DIM is a mosaic of radiometrically corrected, photometrically modelled spacecraft images displaying accurate reflectance properties at uniform resolution, and geometrically tied to the best available control. The Mars medium-resolution DIM contains approximately 4700 Viking Orbiter image frames that were used to compile the recently completed 1:2,000,000-scale controlled photomosaic series of Mars. This DIM provides a planimetric control base to which all other Mars maps will be registered. A similar control base of topographic elevations (Digital Terrain Model, or DTM) is also being compiled. These products are scheduled for completion in 1989.

  20. Mars - Destination and challenge

    NASA Technical Reports Server (NTRS)

    Aldrich, Arnold D.

    1992-01-01

    A general evaluation is conducted of the challenges associated with prospective Mars exploration efforts. The technical challenge posed stems from the unforgiving physical environment of space travel, and such peculiarities of Mars as its great orbital eccentricity and 15-year cyclic variation in transfer energy. Additional considerations arise from the 'architecture' of NASA's Space Exploration Initiative, encompassing the determination of a Mars exploration effort's purpose, scope, and schedule. Finally, numerous unresolved issues arise from the definition of detailed scientific experimentation that is to be done for the sake of the greatest long-term benefit to an understanding of Mars, and the rallying of political support behind a major new exploration initiative.

  1. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  2. A Mars base

    NASA Technical Reports Server (NTRS)

    Soule, Veronique

    1989-01-01

    This study was initiated to provide an approach to the development of a permanently manned Mars base. The objectives for a permanently manned Mars base are numerous. Primarily, human presence on Mars will allow utilization of new resources for the improvement of the quality of life on Earth, allowing for new discoveries in technologies, the solar system, and human physiology. Such a mission would also encourage interaction between different countries, increasing international cooperation and leading to a stronger unification of mankind. Surface studies of Mars, scientific experiments in the multiple fields, the research for new minerals, and natural resource production are more immediate goals of the Mars mission. Finally, in the future, colonization of Mars will ensure man's perpetual presence in the universe. Specific objectives of this study were: (1) to design a Mars habitat that minimizes the mass delivered to the Mars surface, provides long-stay capability for the base crew, and accommodates future expansion and modification; (2) to develop a scenario of the construction of a permanently manned Mars base; and (3) to incorporate new and envisioned technologies.

  3. Mars Museum Visualization Alliance

    NASA Astrophysics Data System (ADS)

    Sohus, A. M.; Viotti, M. A.; de Jong, E. M.

    2004-11-01

    The Mars Museum Visualization Alliance is a collaborative effort funded by the Mars Public Engagement Office and supported by JPL's Informal Education staff and the Solar System Visualization Project to share the adventure of exploration and make Mars a real place. The effort started in 2002 with a small working group of museum professionals to learn how best to serve museum audiences through informal science educators. By the time the Mars Exploration Rovers landed on Mars in January 2004, over 100 organizations were partners in the Alliance, which has become a focused community of Mars educators. The Alliance provides guaranteed access to images, information, news, and resources for use by the informal science educators with their students, educators, and public audiences. Thousands of people have shared the adventure of exploring Mars and now see it as a real place through the efforts of the Mars Museum Visualization Alliance partners. The Alliance has been lauded for "providing just the right inside track for museums to do what they do best," be that webcasts, live presentations with the latest images and information, high-definition productions, planetarium shows, or hands-on educational activities. The Alliance is extending its mission component with Cassini, Genesis, Deep Impact, and Stardust. The Mars Exploration and Cassini Programs, as well as the Genesis, Deep Impact, and Stardust Projects, are managed for NASA by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

  4. Climatic change on Mars.

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Toon, O. B.; Gierasch, P. J.

    1973-01-01

    It is pointed out that Mars is the only known planet with a major atmospheric constituent condensable at typical surface temperatures. The temperatures range from 290 K at equatorial noon to a temperature at the cold pole of 145 K in polar winter. There may be three different periods of climatic variation on Mars. Aspects of reversible climatic instability might possibly explain the channels and other features suggestive of the extensive occurrence of liquid water on Mars. An aqueous epoch on Mars would have important biological and other geological implications. Putative Martian organisms which flourish in the aqueous epoch may now be in cryptobiotic repose.

  5. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    SciTech Connect

    Bastos, Rodrigo O.; Appoloni, Carlos R.

    2008-08-07

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performed according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  6. Fluvial processes on Mars: Erosion and sedimentation

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  7. Frequency and duty cycle modulation optimization in minimizing thermal accumulation effect in Z-scan measurement with high-repetition-rate laser

    NASA Astrophysics Data System (ADS)

    Shahnan Zainal Abidin, Mohd; Noor, Ahmad Shukri Muhammad; Rashid, Suraya Abdul; Adzir Mahdi, Mohd

    2014-11-01

    In this study, we demonstrate the optimization of the chopper frequency and duty cycle in a Z-scan measurement with a 250 MHz high-repetition-rate (HRR) femtosecond laser to minimize the thermal lensing effect due to cumulative heating of the sample. The result shows that such minimization can be achieved by keeping the modulated exposure time on the sample shorter than the thermal diffusivity decay time tc. The minimum chopper frequency fmin is predicted by relating the duty cycle factor F with tc, while maintaining stable peak and valley transmittances, i.e., ΔTp and ΔTv, respectively. Furthermore, a lower fmin is obtained by taking a stable range of the peak-valley difference ΔTpv into consideration. The optimization allows for the low operational modulation frequency of Z-scan measurement with reduced thermal influence, thus enabling simple management of the thermal lensing effect.

  8. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  9. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  10. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  11. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  12. Oxychlorine Detections on Mars: Implications for Cl Cycling

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Jackson, W. A.; Ming, D. W.; Archer, P. D.; Stern, J. C.; Mahaffy, P. R.; Gellert, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument has detected evolved O2 and HCl indicating the presence of perchlorate and/or chlorate (oxychlorine) in all 11 sediments analyzed to date. The hyperarid martian climate is believed to have allowed accumulation of oxychlorine and assumed chloride contents similar to those in hyperarid terrestrial settings. The linear correlation of oxychlorine and chloride of Gale Crater sediments is low (r (sup 2) equals 0.64). Correlations present in hyperarid Antarctica and the Atacama Desert are attributed to unaltered atmospheric source coupled with minimal redox cycling by biological activity. Terrestrial semi-arid to arid settings have low correlations similar to Gale Crater and are attributed to additional inputs of Cl minus from sea salt, dust, and/or proximal playa settings, and possible reduction of oxychlorine phases during wetter periods. While microbiological processes could contribute to low oxychlorine/chloride correlations on Mars, several abiotic mechanisms are more likely, such as changing oxychlorine production rates with time and/or post-depositional geochemical redox processes that altered the Gale Crater oxychlorine and chloride contents.

  13. The physical volcanology of Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Wilson, Lionel; Zuber, Maria T.

    1992-01-01

    The physical volcanology of Mars is reviewed, with particular attention given to the diversity of volcanic landforms, the implied styles of eruption associated with the construction of these landforms, the inferred internal structure of the volcanoes, and the influence that the eruptions have had on the Martian environment (both local and global in scale). Volcanism in the central highlands appears to have been explosive in character, while most of the constructional activity in the northern plains was effusive. Highlands volcanism appears to be relatively old compared to that in the northern hemisphere. There is evidence for the existence of large magma chambers and very high effusion rate eruptions on Mars. Tectonic deformation associated with volcanic constructs is primarily a consequence of loading and magma transport, while deformation in the volcanic plains reflects stresses associated with Tharsis and major impact basins.

  14. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder.

    PubMed

    Folkner, W M; Yoder, C F; Yuan, D N; Standish, E M; Preston, R A

    1997-12-01

    Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

  15. Review of NASA's Planned Mars Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contents include the following: Executive Summary; Introduction; Scientific Goals for the Exploration of Mars; Overview of Mars Surveyor and Others Mars Missions; Key Issues for NASA's Mars Exploration Program; and Assessment of the Scientific Potential of NASA's Mars Exploration Program.

  16. Is Mars Red Hot?

    NASA Video Gallery

    What would it feel like if you could stand on Mars – toasty warm, or downright chilly? Find out more about the temperature on Mars in this 60-second video from NASA’s Jet Propulsion Laboratory.

  17. The Mars Millennium Project.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The countdown to a new century provides a unique opportunity to engage America's youth in charting a course for the future. The Mars Millennium Project challenges students across the nation to design a community yet to be imagined for the planet Mars. This interdisciplinary learning project aims to encourage K-12 students in classrooms and youth…

  18. Viking Mars encounter

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Various phases of planetary operations related to the Viking mission to Mars are described. Topics discussed include: approach phase, Mars orbit insertion, prelanding orbital activities, separation, descent and landing, surface operations, surface sampling and operations starting, orbiter science and radio science, Viking 2, Deep Space Network and data handling.

  19. Plasma engineering for MARS

    SciTech Connect

    Carlson, G.A.; Baldwin, D.E.; Barr, W.L.

    1983-03-24

    The two-year Mirror Advanced Reactor Study (MARS) has resulted in the conceptual design of a commercial, electricity-producing fusion reactor based on tandem mirror confinement. The physics basis for the MARS reactor was developed through work in two highly coupled areas of plasma engineering: magnetics and plasma performance.

  20. Mars' grand finale

    NASA Astrophysics Data System (ADS)

    Parker, D. C.; Beish, J. D.; Hernandez, C. E.

    1989-04-01

    Results are presented from observations of the 1988 Mars apparition. Consideration is given to observations of the Martian south polar cap, meteorological activity on the planet, and changes in the surface features of Mars during the apparition. Also, the Martian dust storms observed in November 1988 are described.

  1. Dust devils on Mars.

    PubMed

    Thomas, P; Gierasch, P J

    1985-10-11

    Columnar, cone-shaped, and funnel-shaped clouds rising 1 to 6 kilometers above the surface of Mars have been identified in Viking Orbiter images. They are interpreted as dust devils, confirming predictions of their occurrence on Mars and giving evidence of a specific form of dust entrainment.

  2. Landing on Mars

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Adler, Mark

    2005-01-01

    here have been five fully successful robotic landings on Mars. The systems used to deliver these robots to the surface have shown large design diversity and continue to evolve. How will future Mars landing systems evolve to eventually deliver precious human cargo? We do not yet know the answers, but current trends tell us an interesting and daunting tale.

  3. Mars Exploratory Vehicles.

    ERIC Educational Resources Information Center

    Canizo, Thea L.; And Others

    1997-01-01

    Presents an activity in which students learn about the characteristics of the planet Mars. Challenges students to design and build a model of a robotic vehicle that can travel on the surface of Mars and accomplish an assigned task that will provide information useful for future manned trips to the planet. Outlines mission task cards and progress…

  4. Rat on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken on Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's rock abrasion tool, also known as 'rat' (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  5. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  6. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  7. Surface Drainage on Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Vidal, A.

    2001-01-01

    The role of water on Mars bears directly on investigations crossing a wide range of disciplines, including geomorphology, geochemistry, and biology. We have calculated the potential flow patterns of water using Mars Orbiter Laser Altimeter (MOLA) topographic data. Additional information is contained in the original extended abstract.

  8. Mars Human Exploration Objectives

    NASA Technical Reports Server (NTRS)

    Briggs, Geoff

    1998-01-01

    This paper reviews the objectives and other considerations of Human exploration of Mars. The objectives of human exploration of Mars are: (1) to learn how Mars is similar to, and different from, Earth; (2) to explore possible life, past and present; (3) to discover what Mars is like now from the perspective of Geoscience and geologic history; and (4) how did Mars form and how did its formation differ from Earth. Considerations of human Martian exploration involve: (1) having a capable base laboratory; (2) having long range transportation; (3) having operational autonomy of the crew, and the requirement of the crew to possess a range of new cognitive processes along with easy communications with terrestrial colleagues; and finally (4) creating the human habitat along with human factors which involve more than just survivability.

  9. Mars landing exploration mission

    NASA Astrophysics Data System (ADS)

    Suzaki, Megumi

    1991-07-01

    The overall concept for Mars observation missions and the systems to implement the missions are reviewed. Reviews are conducted on the following items: (1) profiles of the candidate missions; (2) aerodynamic capture deceleration estimates; (3) prospective Mars orbit decisions; (4) landing methods as the prerequisites for mission accomplishment; and (5) explorer systems to accomplish the missions. The major processes involved in the mission, from the launch to the beginning of observation of the surface, are outlined. Reviews of possible orbits taken by the explorer from Mars transfer orbit (Hohmann orbit) to Mars revolving orbit are presented. Additionally, the possible orbits for the landing vehicle from departing from the revolving orbit through landing are presented. Transportation and landing module design concepts concerning the structure, weight, and electric power balances of the explorer system are presented. Critical Mars mission technologies are cited as follows: (1) inter-planet navigation; (2) aerodynamic capture; (3) automatic and autonomous operation; and (4) landing technology.

  10. MEMOS - Mars Environment Monitoring Satellite

    NASA Astrophysics Data System (ADS)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass < 20 kg) will accommodate four scientific instruments: solar EUV/UV monitor (SEM), solar wind monitor (SWIM), magnetometer (MAG) and radiation environment monitor (REM). The payload monitors the solar conditions at Mars and characterizes the Mars environment to support other missions and science investigations. Monitoring of the solar wind parameters (velocity, density, and field) is the key for any aeronomy and solar wind interaction mission at Mars. The solar EUV / UV (HeII 30.4 nm and HII 121.6 nm) flux monitoring is required for upper atmosphere / ionosphere studies. The radiation environment monitoring is needed to study space weather effects on the near-Mars environment as well as for the preparations for man-flights. MEMOS follows the design philosophy of a detached and autonomously flying instrument for achieving the mentioned objectives. It is intended to be carried "piggy-back" to Mars on a suitable mission. Potential missions are: ESA Mars orbiters within the NEXT or Cosmic Vision programs, NASA Mars orbiters, national / bilateral Mars missions. At Mars MEMOS is separated from its carrier (parent satellite) via the release mechanism implemented in the dual formation flight mission PRISMA. The separation will take place during the orbit insertion scenario of the parent satellite at Mars thus placing MEMOS in a highly elliptical orbit guarantying sufficient observation time in the solar wind. In orbit MEMOS will autonomously detumble and spin-up to ~1 rpm for reasons of stabilization and to fulfill instrument requirements. Such a low spin-rate is sufficient for a required inertial pointing accuracy of 2.5° because of the small external disturbance torques (< 10-7 Nm) predominant at Mars responsible for nutation and precession of the spin-axis. The

  11. Ionosphere of Mars observed by Mars Express.

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Andrews, Dave; Morgan, Dave

    2016-04-01

    The Martian ionosphere is studied at different solar zenith angles using the local electron number densities and total electron content (TEC) derived from the observations by MARSIS onboard Mars Express. The data are complemented by the ASPERA-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider the Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere and its influence on ion escape.

  12. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  13. Two Mars Years of South Polar Change

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-367, 21 May 2003

    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images acquired in 1999 and 2001 suggested that each Mars year, for the past several hundred years (if not thousands), the layered carbon dioxide ice of the south polar residual cap has been disappearing. Scarps formed by sublimation of these icy layers retreat at an average rate of about 3 meters (3 yards) per Martian year.

    MOC is now in its third Mars year of detailed exploration of the red planet. Recently, southern spring began, and the south polar cap emerged from winter darkness. The first picture shown here (top) was obtained by MOC less than a week ago (May 2003). The second picture shows the same area of the south polar residual cap, as it appeared 2 Mars years earlier in August 1999. Comparison shows that, between 1999 and 2003, several small mesas and buttes vanished, holes grew larger, and more cracks and pits appeared as carbon dioxide was removed from the polar cap.

    The image pair is located near 86.8oS, 109.0oW. Sunlight illuminates both from the upper right. One Mars year is about 687 Earth days long.

  14. Winds drive dune movement on Mars

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-01-01

    Sand dunes, a common feature on the surface of Mars, can provide a record of recent and past changes. Some dunes near Mars's polar areas have recently been observed to change due to carbon dioxide ice sublimation, but it has not been confirmed whether dunes are still active all over Mars. Winds contribute to dune movement on Earth, but wind tunnel and atmospheric computer simulations have suggested that strong winds would be rare in the current Martian atmosphere. In a new study, Silvestro et al. observe recent dune movement in Mars's tropical regions, which are not affected by seasonal changes in carbon dioxide frost. Focusing on the Arabia Terra and Meridiani regions on Mars, the researchers analyzed images from the High Resolution Science Experiment (HiRISE) camera on board the Mars Reconnaissance Orbiter as well as other sources of data. They measured migration rates of two groups of ripples in the sand in a dune field in Meridiani Planum and found that dunes advanced about 0.4-1 meter in a Martian year.

  15. Lessons from Mars on exploring for giants

    SciTech Connect

    Woidneck, R.K.; Mutschler, J.C.; Kasten, R.K. )

    1996-01-01

    Mars field, located in Mississippi Canyon blocks 763 and 807, stands out as the largest known field in the deep water Gulf of Mexico. Discovered in 1989, Mars is currently in the early stages of development. Understanding the geologic controls on this giant oil field provides insights which can be applied to exploration. Characteristics that distinguish Mars as a giant oil field are the large number of high quality reservoirs within an effective trapping configuration, and the highly efficient hydrocarbon migration pathway. Reservoir deposition was strongly influenced by shallow salt sheets, which focused deep marine sediment gravity flows. Trapping is predominantly stratigraphic, with reservoir limits controlled by basin geometry during deposition. Surrounding salt canopies served to focus, rather than impede, hydrocarbon migration into the Mars basin. Mars field geology typifies that of a broader play fairway, providing a framework for evaluating further prospectivity. The play fairway is characterized by Miocene to lower Pliocene deep marine reservoirs, primary salt withdrawal basins, thin salt canopies, and a low Pleistocene sedimentation rate. Experience at Mars demonstrates the importance of considering a range of possible reserve outcomes during prospect evaluation, and the value of high quality 3-D seismic data for reducing uncertainty.

  16. Lessons from Mars on exploring for giants

    SciTech Connect

    Woidneck, R.K.; Mutschler, J.C.; Kasten, R.K.

    1996-12-31

    Mars field, located in Mississippi Canyon blocks 763 and 807, stands out as the largest known field in the deep water Gulf of Mexico. Discovered in 1989, Mars is currently in the early stages of development. Understanding the geologic controls on this giant oil field provides insights which can be applied to exploration. Characteristics that distinguish Mars as a giant oil field are the large number of high quality reservoirs within an effective trapping configuration, and the highly efficient hydrocarbon migration pathway. Reservoir deposition was strongly influenced by shallow salt sheets, which focused deep marine sediment gravity flows. Trapping is predominantly stratigraphic, with reservoir limits controlled by basin geometry during deposition. Surrounding salt canopies served to focus, rather than impede, hydrocarbon migration into the Mars basin. Mars field geology typifies that of a broader play fairway, providing a framework for evaluating further prospectivity. The play fairway is characterized by Miocene to lower Pliocene deep marine reservoirs, primary salt withdrawal basins, thin salt canopies, and a low Pleistocene sedimentation rate. Experience at Mars demonstrates the importance of considering a range of possible reserve outcomes during prospect evaluation, and the value of high quality 3-D seismic data for reducing uncertainty.

  17. Aeolian Slipface Processes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Carin; Jackson, Derek; Bourke, Mary; Cooper, Andrew

    2016-04-01

    The surface of Mars is dominated by aeolian features and many locations show ripple and dune migration over the past decade with some sediment fluxes comparable to terrestrial dunes. One of the leading goals in investigating aeolian processes on Mars is to explore the boundary conditions of sediment transport, accumulation, and dune mor-phology in relation to wind regime as well as to quantify migration rates and sediment flux. We combine terrestrial field observations, 3D computational fluid dynamics (CFD) modeling and remote sensing data to investigate com-plex, small scale wind patterns and grainflow processes on terrestrial and martian dunes. We aim to constrain grain flow magnitudes and frequencies that occur on slipface slopes of dunes in order to improve estimates of martian dune field migration and sediment flux related to wind velocity and flow patterns. A series of ground-based, high resolution laser scans have been collected in the Maspalomas dune field in Gran Canaria, Spain to investigate grainflow frequency, morphology and slipface advancement. Analysis of these laser scans and simultaneous video recordings have revealed a variety of slipface activity. We identify 6 different grain-flow morphologies including, hourglass shape (classic alcove formation with deposit fan below), superficial flow (thin lenses), narrow trough (vertical lines cm in width), sheet, column (vertical alcove walls), and complex (combi-nation of morphologies triggered simultaneously in the same location). Hourglass grainflow morphologies were the most common and occurred regularly. The superficial and narrow trough morphologies were the second most com-mon and frequently occurred in between large grain flows. Sheet grainflows were rare and unpredictable. These flows involved large portions of the slipface (metres across) and mobilized a substantial amount of sediment in one event. We have compared these grainflow morphologies from Maspalomas to those in martian dune fields and

  18. ESA's Mars Program: European Plans for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Forget, Francois

    2005-01-01

    A viewgraph presentation on the European Space Agency Mars Exploration Program is shown. The topics include: 1) History:Mars Exploration in Europe; 2) A few preliminary results from Mars Express; 3) A new instrument:Radar MARSIS; and 4) European Mars Exploration in the future?

  19. Plate Tectonism on Early Mars: Diverse Geological and Geophysical Evidence

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Maruyama, S.; Baker, V. R.; Anderson, R. C.; Ferris, Justin C.; Hare, Trent M.

    2002-01-01

    Mars has been modified by endogenic and exogenic processes similar in many ways to Earth. However, evidence of Mars embryonic development is preserved because of low erosion rates and stagnant lid convective conditions since the Late Noachian. Early plate tectonism can explain such evidence. Additional information is contained in the original extended abstract.

  20. Mars Science Laboratory Entry Guidance

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.

    2011-01-01

    The Mars Science Laboratory will be the first Mars mission to attempt a guided entry with the objective of safely delivering the entry vehicle to a survivable parachute deploy state within 12.5 km of the pre-designated parachute deploy coordinates. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control range based on deviations in range, altitude rate, and drag acceleration from a reference trajectory. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Performance tradeoffs between ellipse size and deploy altitude will be presented, along with imposed constraints of entry acceleration and heating. Performance sensitivities to the bank reversal deadbands, heading alignment, attitude initialization error, and entry delivery errors are presented.

  1. Warming early Earth and Mars

    SciTech Connect

    Kasting, J.F.

    1997-05-23

    Sagan and Chyba, in their article on page 1217 of this issue, have revived an old debate about how liquid water was maintained on early Earth and Mars despite a solar luminosity 25 to 30% lower than that at present. A theory that has been popular for some time is that greatly elevated concentrations of atmospheric COD produced by the action of the carbonate-silicate cycle, provided enough of a greenhouse effect to warm early Earth. However, Rye et al. have placed geochemical constraints on early atmospheric CO{sub 2} abundances that fall well below the levels needed to warm the surface. These constraints are based on the absence of siderite (FeCO{sub 3}) in ancient soil profiles-a negative and, hence, rather weak form of evidence- and apply to the time period 2.2 to 2.8 billion years ago, when Earth was already middle aged. Nonetheless, the soil data provide some indication that atmospheric CO{sub 2} levels may have been lower than previously thought. An even more serious problem arises if one tries to keep early Mars warm with CO{sub 2}. Model calculations predict that CO{sub 2} clouds would form on Mars in the upper troposphere, reducing the lapse rate and severely limiting the amount of surface warming. A suggestion that CO{sub 2} clouds may have warmed the planet radiatively has yet to be borne out by detailed calculations. 26 refs.

  2. ExoMars 2016 arrives at Mars

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  3. Mars Aerobot Validation Program

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Cutts, J.; Bachelder, A.; Cameron, J.; Patzold, J.; Quadrelli, M.; Yavrouian, A.; Cantrell, J.; Lachenmeier, T.; Smith, M.

    1999-01-01

    The Mars Balloon Validation Program (MABVAP) was initiated in August 1997 to develop and validate key technologies needed for aerobot missions on Mars. The major elements of the program are the development of balloons for flight on Mars, robust techniques for deployment and inflation and modeling and simulation of balloon flight paths. selection, development and tests of available balloon materials, design and fabrication of balloons (both superpressure and solar- heated), design and fabrication of deployment and inflation systems for aerial deployment, design and fabrication of avionics to control deployment/inflation process and to get telemetry and video data. Modeling of main processes during deployment and actual flight is also a part of MABVAP. In order to validate deployment and inflation, MABVAP applies experience from previous Mars balloon development or study activities the Russian-French Mars Aerostat Project (1988-1995), Mars Aerial Platform Study (1994) and Mars Aerobot/Balloon Study (1996). The program includes laboratory, wind tunnel, vacuum chamber tests of the system components and a number of tropospheric and stratospheric flight tests of deployment and inflation of lightfilm balloons in a simulated Martian environment.

  4. Global climatic change on Mars.

    PubMed

    Kargel, J S; Strom, R G

    1996-11-01

    The authors examine evidence from Mariner and Viking probes of the Martian environment to support theories of a global climate change on Mars. Similarities between some geographical features on Earth and Mars are used to suggest a warmer climate on Mars in the past. An overview of planned Mars exploration missions is included.

  5. Third International Colloquium on Mars

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Abstracts of papers concerning the geology and geophysics of Mars, volcanism on Mars, the Mars atmosphere, and the long term history of the atmosphere-cap-regolith volatile regime are presented. Formation of the Mars surface, climatology, gravity and magnetism, atmospheric boundary layers, and interpretation of Viking imagery and Earth-based observations are considered.

  6. Mars Equipment Transport System

    NASA Technical Reports Server (NTRS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-01-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  7. Mars Equipment Transport System

    NASA Astrophysics Data System (ADS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-12-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  8. Mars surface transportation options

    NASA Technical Reports Server (NTRS)

    Leitner, Jeffrey M.; Alred, John W.

    1986-01-01

    As the number of scientific experiments for the surface of Mars grows, the need for effective surface transportation becomes critical. Because of the diversity of the experiments proposed, as well as the desire to explore Mars from the equator to the poles, the optimum surface vehicle configuration is not obvious. Five candidate vehicles are described, with an estimate of their size and performance. In order to maximize the success of a manned Mars mission, it appears that two vehicles should be designed for surface transportation: an advanced long-range rover, and a remotely-piloted airplane.

  9. Human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen; Mckay, Chris; Zubrin, Robert

    1991-01-01

    Novel approaches to the human exploration of Mars are considered with emphasis on a space suit design, extraterrestrial surface mobility, and water supply. A possible way of transporting personnel on the surface of Mars uses a suborbital rocket that will hop from one site to the next, refuelling each time it lands and giving the Martian explorers effective global mobility. Telepresence could be used to avoid limiting the people on Mars to a small exploration area as a result of a lack of transportation infrastructure. Drawings and photographs are included.

  10. Mars Aerocapture Systems Study

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Oh, David Y.; Westhelle, Carlos H.; Fisher, Jody L.; Dyke, R. Eric; Edquist, Karl T.; Brown, James L.; Justh, Hilary L.; Munk, Michelle M.

    2006-01-01

    Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment.

  11. Exploring Mars in 1988

    NASA Astrophysics Data System (ADS)

    Beish, J. D.; Parker, D. C.

    1988-04-01

    During September 19-26, 1988, Mars will be 23.8 arcsec wide; this is fully 95 percent as large as Mars can ever possibly become, and only 1 arcsec smaller than it attained during the last very favorable apparition, in 1971. In the case of the 1988 apparition, Mars will be 20 deg higher in the sky than in either 1971 or 1986, offering observers in the Northern Hemisphere a much better view. The south polar cap is discussed as well as clouds and hazes, yellow dust storms, and seasonable trends.

  12. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  13. Mars tectonics and volcanism

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1990-01-01

    The focus of this research was on three broad areas: (1) the relation between lithospheric stress in the vicinity of a growing volcano and the evolution of eruption characteristics and tectonic faulting; (2) the relation between elastic lithosphere thickness and thermal structure; and (3) a synthesis of constraints on heat flow and internal dynamics on Mars. The two reports presented are: (1) Heterogeneities in the Thickness of the Elastic Lithosphere of Mars--Constraints on Heat Flow and Internal Dynamics; and (2) State of Stress, Faulting, and Eruption Characteristics of Large Volcanoes on Mars.

  14. Airbag Tracks on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  15. Exobiology on Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Marshall, J. R. (Editor); Andersen, D. (Editor)

    1990-01-01

    Descriptions of several instrument concepts that were generated during a workshop entitled, Exobiology Instrument Concepts for a Soviet Mars 94/94 Mission, held at NASA Ames Research Center in 1989 are presented. The objective was to define and describe instrument concepts for exobiology and related science that would be compatible with the mission types under discussion for the 1994 and 1996 Soviet Mars missions. Experiments that use existing technology were emphasized. The concepts discussed could also be used on U.S. missions that follow Mars Observer.

  16. Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen; McKay, Chris; Zubrin, Robert

    1991-06-01

    Novel approaches to the human exploration of Mars are considered with emphasis on a space suit design, extraterrestrial surface mobility, and water supply. A possible way of transporting personnel on the surface of Mars uses a suborbital rocket that will hop from one site to the next, refuelling each time it lands and giving the Martian explorers effective global mobility. Telepresence could be used to avoid limiting the people on Mars to a small exploration area as a result of a lack of transportation infrastructure. Drawings and photographs are included.

  17. An ice age recorded in the polar deposits of Mars.

    PubMed

    Smith, Isaac B; Putzig, Nathaniel E; Holt, John W; Phillips, Roger J

    2016-05-27

    Layered ice deposits at the poles of Mars record a detailed history of accumulation and erosion related to climate processes. Radar investigations measure these layers and provide evidence for climate changes such as ice advance and retreat. We present a detailed analysis of observational data showing that ~87,000 cubic kilometers of ice have accumulated at the poles since the end of the last ice age ~370,000 years ago; this volume is equivalent to a global layer of ~60 centimeters. The majority of the material accumulated at the north pole. These results provide both a means to understand the accumulation history of the polar deposits as related to orbital Milankovitch cycles and constraints for better determination of Mars' past and future climates.

  18. An ice age recorded in the polar deposits of Mars.

    PubMed

    Smith, Isaac B; Putzig, Nathaniel E; Holt, John W; Phillips, Roger J

    2016-05-27

    Layered ice deposits at the poles of Mars record a detailed history of accumulation and erosion related to climate processes. Radar investigations measure these layers and provide evidence for climate changes such as ice advance and retreat. We present a detailed analysis of observational data showing that ~87,000 cubic kilometers of ice have accumulated at the poles since the end of the last ice age ~370,000 years ago; this volume is equivalent to a global layer of ~60 centimeters. The majority of the material accumulated at the north pole. These results provide both a means to understand the accumulation history of the polar deposits as related to orbital Milankovitch cycles and constraints for better determination of Mars' past and future climates. PMID:27230372

  19. Dust devils as observed by Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Ferri, Francesca; Smith, Peter H.; Lemmon, Mark; Rennó, Nilton O.

    2003-12-01

    Dust devils are localized meteorological phenomena frequently observed in terrestrial dry lands and desert landscapes as well as on Mars. They are low-pressure, warm core vortices that form at the bottom of convective plumes and loft dust from the surface. They move with the speed of the ambient wind and are tilted by wind shears. The Mars Pathfinder detected dust devils as dust plumes in the Imager for Mars Pathfinder images and as low-pressure convective vortices in the meteorological Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment data. The Pathfinder data have been analyzed in terms of dust devil size, spatial distribution, and frequency of occurrence. The results show that the Pathfinder imaging and MET observations are consistent with each other and with the observations made by the Viking 1 Orbiter and Mars Global Surveyor. The dust devil's ability to loft dust into the atmosphere has been investigated and a thermodynamic theory for dust devils has been used to calculate their physical parameters relevant to dust transport. The dust devils observed in an active day provide a pumping rate larger than the dust-settling rate derived from the optical obscuration of the Pathfinder rover solar panels. Therefore dust devils are a major factor in transporting dust from the surface to the atmosphere at the Pathfinder site.

  20. Ion flux profiles observed at Mars

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Lundin, R. N.; Frahm, R. A.

    2012-12-01

    How Mars lost it's water and atmosphere is still an important question. Many studies have investigated high-energy ion fluxes (>10 eV) surrounding the planet and derived ion outflow rates in order to determine atmospheric loss. These rates suggest that the outflow from high-energy ions is not the dominant escape path for atmospheric loss. Over the years increasing evidence has indicated that the loss of low-energy ions are more important than the high-energy ion loss. In this presentation ion observations (down to the spacecraft potential) from the Mars Express (MEX) mission (2010/11), are used to describe the ion altitude distribution at Mars. The focus of this study is below the altitude of ~1000 km. Within the Mars environment, using the MEX electron observations different plasma regions was identified. Supported by electron identification, different altitude profiles of ion fluxes have been analyzed from the different plasma regions. One of the results from this study is that the altitude profile of the ion flux observed below the photoelectron boundary is different when comparing the northern and the southern hemispheres. The ion distributions, resulting altitude profile, the influence of the crustal magnetic field at Mars, and the implications relating to plasma outflow will be discussed in this presentation.

  1. Radiometry Measurements of Mars at 1064nm Using the Mars Orbiter Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Neumann, G. A.; Zuber, M. T.

    2001-12-01

    Measurements by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) may be used to provides a radiometric measurement of Mars in addition to the topographic measurement. We will describe the principle of operation, a mathematical model, and the receiver calibration in this presentation. MOLA was designed primarily to measure Mars topography, surface roughness, and the bidirectional reflectance to the laser beam. To achieve the highest sensitivity, the receiver detection threshold is dynamically adjusted to be as low as possible while keeping a predetermined false alarm rate. The average false alarm rate is monitored in real time on board MOLA via a noise counter, whose output is fed to the threshold control loop. The false alarm rate at a given threshold is a function of the detector output noise, which is the sum of the photodetector shot noise due to the background light seen by the detector and the dark noise. A mathematical model has been developed that can be used to numerically solve for the optical background power given the MOLA threshold setting and the average noise count. The radiance of Mars can then be determined by dividing the optical power by the solid angle subtended by the MOLA receiver, the receiver optical bandwidth, and the Mars surface area within the receiver field of view. The phase angle which is the sun-Mars-MOLA angle is available from the MGS database. MOLA also measures simultaneously the bidirectional reflectance of Mars via its 1064nm laser beam at nadir with nearly zero phase angle. The optical bandwidth of the MOLA receiver is 2nm full width at half maximum (FWHM) and centered at 1064nm. The receiver field of view is 0.85mrad FWHM. The nominal spacecraft altitude is 400km and the ground track speed is about 3km/s. Under normal operation, the noise counters are read and the threshold levels are updated at 1Hz. The receiver sensitivity is limited by the detector dark noise to about 0.1nW, which corresponds

  2. Radiation Environment at Mars and Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This graphic shows the radiation dose equivalent as measured by Odyssey's martian radiation environment experiment at Mars and by instruments aboard the Earth-orbiting International Space Station (ISS), for the 18-month period from April 2002 through October 2003. The accumulated total in Mars orbit is just over two times larger than that aboard the Space Station. The bars where the Mars instrument's measurements are well above the average (as shown by the orange line) are months when there was significant solar activity, which increases the dose equivalent. Dose equivalent is expressed in units of milliSieverts per day.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington. The radiation experiment was provided by the Johnson Space Center, Houston, Texas. Lockheed Martin Space Systems, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  4. Solar Wind Interaction With Mars: From Phobos to MGS, Mars Express, and Beyond

    NASA Astrophysics Data System (ADS)

    Barabash, S.

    2008-12-01

    Since 1964 there were only 7 successful / partially successful missions to Mars from 33 attempted carrying instrumentations to study the solar wind interaction. So far there have not been any successful dedicated missions to investigate the near - Mars environment. Nevertheless, earlier American and Soviet missions including Phobos-2 launched in 1988 provided us with basic description of the interaction and helped to formulate detailed scientific objectives for following-on missions. It is MGS and Mars Express launched in 1996 and 2003 respectively that conducted most detailed measurements finding answers to longstanding questions on the Martian magnetic field and dynamic of planetary ions. In this talk I review the MGS and Mars Express results and discuss the outstanding open issues. Those are: dependence of the atmospheric erosion rate on solar / solar wind conditions, mechanisms of planetary ion acceleration and ion extraction from the ionosphere, and effects of magnetic anomalies.

  5. Mars Balance Challenge

    NASA Video Gallery

    The Challenge is to develop ideas for how NASA can turn available entry, descent, and landing balance mass on a future Mars mission into a scientific or technological payload. Proposed concepts sho...

  6. Explore Mars With Curiosity

    NASA Video Gallery

    This animation shows the approximate true position of NASA’s Curiosityrover on Mars. A 3-D virtual model of Curiosity is shown inside GaleCrater, near Mount Sharp, Curiosity’s ultimate destin...

  7. Walking on Mars

    NASA Astrophysics Data System (ADS)

    Cavagna, G. A.; Willems, P. A.; Heglund, N. C.

    1998-06-01

    Sometime in the near future humans may walk in the reduced gravity of Mars. Gravity plays an essential role in walking. On Earth, the body uses gravity to `fall forwards' at each step and then the forward speed is used to restore the initial height in a pendulum-like mechanism. When gravity is reduced, as on the Moon or Mars, the mechanism of walking must change. Here we investigate the mechanics of walking on Mars onboard an aircraft undergoing gravity-reducing flight profiles. The optimal walking speed on Mars will be 3.4 km h-1 (down from 5.5 km h-1 on Earth) and the work done per unit distance to move the centre of mass will be half that on Earth.

  8. The Mars Observer Mission

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1985-01-01

    The Mars Observer Mission is to be the first in a series of modest-cost inner-planet missions. Launch is planned for the August/September 1990 Mars opportunity with arrival at Mars one year later. The geoscience/climatology objectives are to be met during a mapping mission over the course of one Mars year (687 days). The mapping orbit will be near-polar (93 degree orbital inclination), sun-synchronous (2 PM sunward equator crossing), and near-circular (350 km orbit altitude, 116 minute period). The spacecraft, to be selected in late 1985, will be a modified version of an existing commercial design which, in the mapping orbit, will maintain a nadir orientation. Experiments and instruments will be selected through an Announcement of Opportunity (AO) process with release of the AO in April 1985, and selection in early 1986. A description of current planning for this mission, with emphasis on climatology, is presented here.

  9. Atmospheric Electricity on Mars

    NASA Astrophysics Data System (ADS)

    Delory, G.; Farrell, W.

    2011-10-01

    The atmosphere of Mars is one compelling example in our solar system that should possess active electrical processes, where dust storms are known to occur on local, regional, and global scales. Laboratory experiments and simulations all indicate that these events are expected to generate substantial quasi-static electric fields via triboelectric (i.e., frictional) charging, perhaps up to the breakdown potential of the Martian atmosphere. However current observations of potential electrical activity on Mars from both ground-based and orbital platforms have yielded conflicting results. If present, significant atmospheric electricity could be an important source of atmospheric chemistry on Mars, and thus impact our understanding of the evolution of the atmosphere and its past or present astrobiological potential. Here we review the current state of understanding regarding atmospheric electricity on Mars, and discuss its implications pending the results of future measurements.

  10. Retrograde Motion of Mars.

    ERIC Educational Resources Information Center

    Knappenberger, Paul H.

    1979-01-01

    Presents an activity whereby students describe the path of Mars through a background starfield. Includes purpose, materials, pre-lab, and procedure. Also provides guidelines for making a dial-a-planet wheel. (MA)

  11. Mars' Inner Core

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This figure shows a cross-section of the planet Mars revealing an inner, high density core buried deep within the interior. Dipole magnetic field lines are drawn in blue, showing the global scale magnetic field that one associates with dynamo generation in the core. Mars must have one day had such a field, but today it is not evident. Perhaps the energy source that powered the early dynamo has shut down. The differentiation of the planet interior - heavy elements like iron sinking towards the center of the planet - can provide energy as can the formation of a solid core from the liquid.

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  12. From Siberia to Mars

    PubMed

    McKay, C P; Friedmann, E I; Meyer, M A

    1991-01-01

    Because Mars is so similar to Earth, planetary scientists looking for answers to questions like these often use analogous environments on Earth to help them design future Mars missions. Such terrestrial sites, however remote, are still much more accessible than Mars. Field studies in such places give us a chance to test and refine instruments and procedures, develop overall concepts and collect baseline data to compare with actual results from Mars. Perhaps the best terrestrial analogue to the martian permafrost lies in northeastern Siberia. Freezing conditions have persisted here for over 3 million years. Although young by martian standards, these are among the oldest continuously frozen localities on Earth. They also hold something remarkable: not only organic residues, but also large numbers of viable bacteria (up to 100 million per gram of frozen soil), preserved for 3 million years in ice.

  13. The Cruise to Mars

    NASA Video Gallery

    The long journey to Mars through the harsh environment of spaceconfronts the Curiosity navigation team with a long list of challengesto get the spacecraft safely to its destination.› Mission site

  14. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  15. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2012-12-01

    We have developed a very high performance anemometer (wind gauge) for use at Mars. This instrument has great scientific as well as strategic reasons to be included on all future missions to the surface of Mars. We will discuss why we set out to develop this instrument, as well as why the previous wind sensors for Mars are insufficient to meet the scientific and strategic needs at Mars. We will also discuss how the instrument works, and how it differs from terrestrial counterparts. Additionally, we will discuss the current status of the instrument. Measuring winds at Mars is important to better understand the atmospheric circulation at Mars, as well as exchange between the surface and atmosphere. The main conduit of transport of water, and hence its current stability at any particular location on Mars is controlled by these atmospheric motions and the exchange between surface and atmosphere. Mars' large-scale winds are moderately well understood from orbital observations, but the interaction with the surface can only be addressed adequately in situ. Previous anemometers have been 2-D (with the exception of REMS on MSL) and slow response (typically <1Hz), and relatively low sensitivity/accuracy (>1 m/s). Our instrument is capable of fully 3-D measurements, with fast response (>20 Hz) and great sensitivity/accuracy (~3 cm/s). This significant step forward in performance is important for the surface-atmosphere exchanges of heat, momentum and volatiles. In particular, our instrument could directly measure the heat and momentum fluxes between surface and atmosphere using eddy-flux techniques proven terrestrially. When combined with a fast response volatile analysis instrument (e.g., a TLS) we can also measure eddy fluxes of volatile transport. Such a study would be nearly impossible to carry out with preceding anemometers sent to Mars with insufficient response time and sensitivity to adequately sample the turbulent eddies. Additionally, our instrument, using acoustics

  16. Environment of Mars, 1988

    NASA Technical Reports Server (NTRS)

    Kaplan, David I. (Compiler)

    1988-01-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design.

  17. The atmosphere of Mars.

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Calcutt, S. B.; Taylor, F. W.; McCleese, D. J.

    Mars, one of the most Earth-like of the planets, is today a cold, dry and barren world. However, there is good evidence that it may have been much warmer and wetter in the past and perhaps even supported life. The public interest aroused by these findings and by recent studies of `SNC' meteorites, believed to have come from Mars, with their claims of the evidence of ancient Martian life, has focused attention on the ambitious programme of Mars Exploration currently being undertaken by NASA and ESA and has provided additional impetus. Improved measurements of the conditions on Mars' surface and in its atmosphere are central to both agencies' plans, and current atmospheric missions are reviewed in this paper together with possible future designs.

  18. Bringing Life to Mars

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    1999-01-01

    A suitable long-term goal for human exploration of Mars is the determination of whether or not a self-sustainable bio-sphere could be constructed on Mars, a process called Terraforming. Preliminary considerations of the conditions on a habitable Mars suggest that there are two potentially habitable states: one -characterized by an atmosphere of 1-3 bars of CO2 - would be habitable for plants and microorganisms and another which would be habitable by humans. It may be possible to warm the planet by selective introduction of trace gases to enhance the greenhouse effect. Energy balance considerations suggest that warming Mars would take on the order of 100 years with a much longer time required to produce a breathable atmosphere.

  19. Future Mars outpost architecture

    NASA Technical Reports Server (NTRS)

    Williams, T. D.; Owens, J.; Easter, R. W.; Mireles, O. R.; Ramsey, S. A.; Palko, C. W.

    2000-01-01

    This paper describes an outpost designed with the JPL Mars Long Range Planning Team's goals in mind. The design focuses on subsurface mapping and characterization, accomplished through seismic mapping and deep drilling.

  20. The climate of Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    1986-01-01

    The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed

  1. Internal constitution of Mars.

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    Models of the internal structure of Mars consistent with the mass, radius and moment of inertia of the planet are constructed. The models assume that the radius of the core is between 0.36 and 0.60 of the radius of the planet, that the zero-pressure density of the mantle is between 3.54 and 3.49 g/cu cm, and that the planet contains 25 to 28% iron. Meteorite models of Mars containing 25 wt % iron and 12 wt % core are also proposed. It is maintained that Mars in contrast to the earth is an incompletely differentiated planet with a core substantially richer in sulfur than the core of the earth. The absence of a magnetic field on Mars is possibly linked with lack of lunar precessional torque and the small size and high resistivity of the Martian core.

  2. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  3. NASA's Mars Landings

    NASA Video Gallery

    This video shows the landing sites of all six NASA spacecraft to reachMars—Viking 1, Viking 2, Pathfinder, Spirit, Opportunity, Phoenix—and thetarget location where Curiosity will touch down ...

  4. Mars Exploration Zones

    NASA Video Gallery

    This concept animation shows just one of many potential concepts for how the first human landing site on Mars might evolve throughout the course of multiple human expeditions to the Red Planet over...

  5. Sexual selection and maintenance of sex: evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis.

    PubMed

    Artieri, Carlo G; Haerty, Wilfried; Gupta, Bhagwati P; Singh, Rama S

    2008-05-01

    Several hypotheses have been proposed to explain the persistence of dioecy despite the reproductive advantages conferred to hermaphrodites, including greater efficiency at purging deleterious mutations in the former. Dioecy can benefit from both mutation purging and accelerated evolution by bringing together beneficial mutations in the same individual via recombination and shuffling of genotypes. In addition, mathematical treatment has shown that sexual selection is also capable of mitigating the cost of maintaining separate sexes by increasing the overall fitness of sexual populations, and genomic comparisons have shown that sexual selection can lead to accelerated evolution. Here, we examine the advantages of dioecy versus hermaphroditism by comparing the rate of evolution in sex-related genes and the rate of accumulation of deleterious mutations using a large number of orthologs (11,493) in the dioecious Caenorhabditis remanei and the hermaphroditic Caenorhabditis briggsae. We have used this data set to estimate the deleterious mutation rate per generation, U, in both species and find that although it is significantly higher in hermaphrodites, both species are at least 2 orders of magnitude lower than the value required to explain the persistence of sex by efficiency at purging deleterious mutations alone. We also find that genes expressed in sperm are evolving rapidly in both species; however, they show a greater increase in their rate of evolution relative to genes expressed in other tissues in C. remanei, suggesting stronger sexual selection pressure acting on these genes in dioecious species. Interestingly, the persistence of a signal of rapid evolution of sperm genes in C. briggsae suggests a recent evolutionary origin of hermaphrodism in this lineage. Our results provide empirical evidence of increased sexual selection pressure in dioecious animals, supporting the possibility that sexual selection may play an important role in the maintenance of sexual

  6. Discovery concepts for Mars

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Brace, L. H.; Nagy, A. F.; Jakosky, B. M.; Barth, C. A.; Waite, J. H.

    1992-01-01

    Two focused Mars missions that would fit within the guidelines for the proposed Discovery line are discussed. The first mission would deal with the issue of the escape of the atmosphere (Mars') to space. A complete understanding of this topic is crucial to deciphering the evolution of the atmosphere, climate change, and volatile inventories. The second mission concerns the investigation of remanent magnetization of the crust and its relationship to the ionosphere and the atmosphere.

  7. Mars Observer Press Conference

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Footage shows Bob MacMillin, NASA's Public Information Office, as he introduces the Mars Observer Project Manager, Glen Cunningham. Glen is shown addressing the current status of the Mars Observer communication system, the inability of NASA to establish contact, and the action that is currently being taken to establish contact with the spacecraft. Glen is also seen answering questions from both the audience as well as other NASA Centers.

  8. North Polar Layers, Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view shows the basal layers of Mars' north polar layered deposits. The floor of Chasma Boreale is at the bottom of the image. This is a sub-image of a larger view imaged by the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter on Oct. 1, 2006. The resolution is 64 centimeters (25 inches) per pixel, and the scene is 568 meters (621 yards) wide.

  9. Mars Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Jordan, James F.; Miller, Sylvia L.

    2000-01-01

    The architecture of NASA's program of robotic Mars exploration missions received an intense scrutiny during the summer months of 1998. We present here the results of that scrutiny, and describe a list of Mars exploration missions which are now being proposed by the nation's space agency. The heart of the new program architecture consists of missions which will return samples of Martian rocks and soil back to Earth for analysis. A primary scientific goal for these missions is to understand Mars as a possible abode of past or present life. The current level of sophistication for detecting markers of biological processes and fossil or extant life forms is much higher in Earth-based laboratories than possible with remotely deployed instrumentation, and will remain so for at least the next decade. Hence, bringing Martian samples back to Earth is considered the best way to search for the desired evidence. A Mars sample return mission takes approximately three years to complete. Transit from Earth to Mars requires almost a single year. After a lapse of time of almost a year at Mars, during which orbital and surface operations can take place, and the correct return launch energy constraints are met, a Mars-to-Earth return flight can be initiated. This return leg also takes approximately one year. Opportunities to launch these 3-year sample return missions occur about every 2 years. The figure depicts schedules for flights to and from Mars for Earth launches in 2003, 2005, 2007 and 2009. Transits for less than 180 deg flight angle, measured from the sun, and more than 180 deg are both shown.

  10. Status of MARS Code

    SciTech Connect

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  11. A Mars 1984 mission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  12. Mars Ice Age, Simulated

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 17, 2003

    This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.

    Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.

    In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.

    Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  13. An examination of historic inorganic sedimentation and organic matter accumulation in several marsh types within the Mobile Bay and and Mobile-Tensaw River Delta region

    USGS Publications Warehouse

    Smith, Christopher G.; Osterman, Lisa E.; Poore, Richard Z.

    2013-01-01

    Mass accumulation rates (MAR; g cm-2 y-1), linear sedimentation rates (LSR; cm y-1), and core geochronology derived from excess lead-210 (210Pb) profiles and inventories measured in six sediment cores collected from marsh sites from the MobileTensaw River Delta and Mobile Bay region record the importance of both continuous and event-driven inorganic sedimentation over the last 120 years. MAR in freshwater marshes varied considerably between sites and through time (0.24 and 1.31 g cm-2 y-1). The highest MARs occurred in the 1950s and 1960s and correspond to record discharge events along the Mobile and Tensaw Rivers. In comparison, MAR at salt marsh sites increased almost threefold over the last 120 years (0.05 to 0.18 g cm-2 y-1 or 0.23 to 0.48 cm y-1). From 1880 to 1960, organic accumulation remained fairly constant (20%), while intermittent pulses of high inorganic sedimentation were observed following 1960. The pulses in inorganic sedimentation coincide with several major hurricanes (e.g., Hurricanes Camille, Fredric, Georges, and Ivan). The nearly threefold increase in MAR in salt marshes during the last 120 years would thus appear to be partially dependent on inorganic sedimentation from storm events. This study shows that while hurricanes, floods, and other natural hazards are well-known threats to human infrastructure and coastal ecosystems, these events also transport sediment to marshes that help abate other pressures such as sea-level rise (SLR) and subsidence.

  14. Southern Mars: It's Spring!

    NASA Technical Reports Server (NTRS)

    1999-01-01

    August 2, 1999, marks the spring equinox for the martian southern hemisphere. It is also the start of autumn for regions north of the equator. Winter in the south has finally come to a close, and the seasonal frosts of the wintertime south polar cap are retreating. Small, local dust storms frequently occur along the margins of the polar cap, as the colder air blowing off the cap moves northward into warmer regions.

    The wide angle camera view of Mars shown here was obtained by the Mars Global Surveyor Mars Orbiter Camera in late July 1999, about 1 week before the start of southern spring. The frosty, retreating south polar cap (white) is seen in the lower quarter of the image, and wisps of dust storm clouds (grayish-orange in this view) occur just above the cap at the lower left. The southern most of the large environmental changes volcanoes, Arsia Mons, is seen at the upper left. Arsia Mons is about 350 kilometers(220 miles) across.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  15. Why exobiology on Mars?

    NASA Astrophysics Data System (ADS)

    Brack, A.

    1996-11-01

    Processing of organic molecules by liquid water was probably an essential requirement towards the emergence of terrestrial primitive life. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Geochemists favour now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere very few building blocks are formed. Import of extra-terrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, meteorites and micrometeorites. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well. Liquid water disappeared from the surface of Mars very early, about 3.8 Ga ago. The Viking missions did not find, at the surface of the Martian soil, any organic molecules or clear-cut evidence for microbial activities such as photo-synthesis, respiration or nutrition. The results can be explained referring to an active photochemistry of Martian soil driven by the high influx of solar UV. These experiments do not exclude the existence of organic molecules and fossils of micro-organisms which developed on early Mars until liquid water disappeared. Mars may store below its surface some well preserved clues of a still hypothetical primitive life.

  16. Why exobiology on Mars?

    PubMed

    Brack, A

    1996-11-01

    Processing of organic molecules by liquid water was probably an essential requirement towards the emergence of terrestrial primitive life. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Geochemists favour now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere, very few building blocks are formed. Import of extraterrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, meteorites and micrometeorites. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars attesting the presence of an atmosphere capable of decelerating C-rich micro-meteorites. Therefore, primitive life may have developed on Mars, as well. Liquid water disappeared from the surface of Mars very early, about 3.8 Ga ago. The Viking missions did not find, at the surface of the Martian soil, any organic molecules or clear-cut evidence for microbial activities such as photosynthesis, respiration or nutrition. The results can be explained referring to an active photochemistry of Martian soil driven by the high influx of solar UV. These experiments do not exclude the existence of organic molecules and fossils of micro-organisms which developed on early Mars until liquid water disappeared. Mars may store below its surface some well preserved clues of a still hypothetical primitive life.

  17. Paleolakes on Mars

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Crosby, J. M.; McKay, C. P.; Rice, J. W. Jr; Wharton RA, ,. J. r. (Principal Investigator)

    1995-01-01

    Observational evidence such as outflow channels and valley networks suggest that in the past there was flowing water on Mars. The images of fluvial features on Mars logically suggest that there must exist downstream locations in which the water pooled and the sediment load deposited (i.e. lakes). Sediments and morphological features associated with the martian paleolakes are believed to occur in Valles Marineris, and several large basins including Amazonis, Chryse and Elysium planitia. As Mars became progressively colder over geological time, any lakes on its surface would have become seasonally, and eventually perennially ice-covered. We know from polar lakes on Earth that ice-covered lakes can persist even when the mean annual temperature falls below freezing. Thus, the most recent lacustrine sediments on Mars were probably deposited in ice-covered lakes. While life outside of the Earth's atmosphere has yet to be observed, there is a general consensus among exobiologists that the search for extraterrestrial life should be based upon liquid water. The inference that there was liquid water on Mars during an earlier epoch is the primary motivation for considering the possibility of life during this time. It would be of enormous interest from both an exobiological and paleolimnological perspective to discover lakes or the evidence of former lakes on another planet such as Mars. Limnology would then become an interplanetary science.

  18. The Mars Observer database

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1988-01-01

    Mars Observer will study the surface, atmosphere, and climate of Mars in a systematic way over an entire Martian year. The observations of the surface will provide a database that will be invaluable to the planning of a future Mars sample return mission. Mars Observer is planned for a September 1992 launch from the Space Shuttle, using an upper-stage. After the one year transit the spacecraft is injected into orbit about Mars and the orbit adjusted to a near-circular, sun-synchronous low-altitude, polar orbit. During the Martian year in this mapping orbit the instruments gather both geoscience data and climatological data by repetitive global mapping. The scientific objectives of the mission are to: (1) determine the global elemental and mineralogical character of the surface material; (2) define globally the topography and gravitational field; (3) establish the nature of the magnetic field; (4) determine the time and space distribution, abundance, sources, and sinks of volatile material and dust over a seasonal cycle; and (5) explore the structure and aspects of the circulation of the atmosphere. The science investigations and instruments for Mars Observer have been chosen with these objectives in mind. These instruments, the principal investigator or team leader and the objectives are discussed.

  19. Transportation: Destination Mars

    NASA Technical Reports Server (NTRS)

    Eoff, Bill

    1998-01-01

    As the agency space transportation lead center, Marshall Space Flight Center has been conducting transportation assessments for future robotic and human Mars missions to identify critical technologies. Five human Mars options are currently under assessment with each option including all transportation requirements from Earth to Mars and return. The primary difference for each option is the propulsion source from Earth to Mars. In case any of the options require heavy launch capability that is not currently projected as available, an in-house study has been initiated to determine the most cost effective means of providing such launch capability. This assessment is only considering launch architectures that support the overall human Mars mission cost goal of $25B. The guidelines for the launch capability study included delivery of 80 metric ton (176 KLB) payloads, 25 feet diameter x 92 feet long, to 220 nmi orbits at 28.5 degrees. The launch vehicle concept of the study was designated "Magnum" to differentiate from prior heavy launch vehicle assessments. This assessment along with the assessment of options for all transportation phases of a Mars mission are on-going.

  20. Mars Rover RTG Study

    SciTech Connect

    Schock, Alfred

    1989-11-27

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.

  1. Optical Dust Characterization in Manned Mars Analogue Research Stations

    NASA Technical Reports Server (NTRS)

    Bos, B. J.; Krebs, Carolyn (Technical Monitor)

    2003-01-01

    Martian dust has been identified as a potentially serious hazard to any manned Mars landing mission. NASA and other organizations realize this risk and continue to support Martian dust research through the Matador project led by researchers at the University of Arizona. The Mars Society can contribute to this work by beginning a regimen of monitoring and measuring dust properties at its Mars analogue research stations. These research facilities offer the unique opportunity to study the transport and distribution of dust particles within a crewed habitat supporting active geologic exploration. Information regarding the amount, location and size of dust particles that may accumulate in a Mars habitat will be required to design a real Mars habitat and habitat equipment. Beginning such an effort does not require a large outlay of equipment and can be accomplished using crewmembers experienced with station operations. Various optical techniques, such as dark-field illumination, coupled with image processing algorithms enable the collection of dust grain relative size and frequency information. Such approaches can be applied in several different zones within the research stations to evaluate the various dust reduction and isolation procedures implemented during a particular crew rotation. As the stations simulation fidelity increases, the applicability of such data to a functional Mars lander will increase. This presentation describes the optical equipment and procedures for measuring dust properties in Mars analogue research stations that can be implemented during the next field season.

  2. Hydrogen Escape from early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Ramirez, R. M.; Kasting, J. F.

    2012-12-01

    A controversy regarding hydrodynamic escape rates arose when Tian et al. (2005) published transonic escape rates for an atmosphere composed of pure H2. Tian et al. concluded that the hydrogen escape rate from early Earth would have been a factor of 20 or more slower than the diffusion limit, even if the solar EUV (extreme ultraviolet) flux was enhanced by a factor of 5 relative to today. This conclusion was challenged by Catling (2006), who pointed out that solar EUV fluxes could have been much higher than this so that plenty of energy should have been available to power escape. This controversy has remained unresolved to date. Hydrogen escape from early Mars is also of interest. As discussed in this session in a complementary paper by Ramirez et al., collision-induced absorption by molecular hydrogen could have helped to warm early Mars, perhaps explaining the formation of valleys and valley networks. Ramirez et al. have shown that a mixture of 90% CO2 and 10% H2 is capable raising early Mars' surface temperature above the freezing point of water, for surface pressures exceeding ~3 bar. However, we need to understand whether H2 mixing ratios of 10% are physically plausible. The H2 partial pressure in Mars' early atmosphere would have been determined by the balance between volcanic outgassing and escape to space. The 10% mixing ratio is high compared to the value of ~10-3 typically assumed for early Earth. But Mars' early atmosphere may have been more reduced than Earth's (Wadwha, 2001); if the hydrogen escape rate on Mars was also slower than on Earth, then additional increases in atmospheric hydrogen concentration are possible. To answer these questions about the early atmospheres of Earth and Mars, we have modified an existing model of hydrodynamic escape, developed by F. Tian, J. Kasting, and others, to converge for atmospheres with a wide range of hydrogen mixing ratios. The model finds subsonic solutions to the hydrodynamic equations; these can be shown to

  3. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  4. Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-04-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri

  5. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (< 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory is presented.

  6. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (less than 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory (MSL) is presented.

  7. The MARS2013 Mars analog mission.

    PubMed

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  8. The MARS2013 Mars analog mission.

    PubMed

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations. PMID:24823799

  9. Mars at Ls 211o

    NASA Technical Reports Server (NTRS)

    2005-01-01

    31 May 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 211o during a previous Mars year. This month, Mars looks similar, as Ls 211o occurred in mid-May 2005. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn.

    Season: Northern Autumn/Southern Spring

  10. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  11. Mars at Ls 357o

    NASA Technical Reports Server (NTRS)

    2006-01-01

    31 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurred in mid-January 2006. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn.

    Season: Northern Winter/Southern Summer

  12. Mars at Ls 324o

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurred in mid-November 2005. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn.

    Season: Northern Winter/Southern Summer

  13. Mars - Pathway to the stars

    NASA Astrophysics Data System (ADS)

    Angelo, J. A., Jr.; Buden, D.

    Mars has and will continue to play a key role in our exploration and conquest of the Solar System. Within the context of the creation of humanity's extraterrestrial civilization, the major technical features of the following Mars programs are reviewed: the Mars Geoscience/Climatology Orbiter; the Mars Aeronomy Orbiter; the Mars airplane; the Mars Penetrator Network; Mars surface rovers and mobility systems; human exploration of Mars; and permanent Martian bases and settlements. Mars properly explored and utilized opens the way to the resources of the asteroid belt and the outer planets; supports the creation of smart machines for space exploration and exploitation; and encourages the creation of autonomous niches of intelligent life within heliocentric space. All of these developments, in turn, establish the technological pathway for the first interstellar missions.

  14. Examining Mars with SPICE

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  15. Four Mars Years of South Polar Changes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    the south polar cap had retreated at an average rate of about 3 meters (10 feet) since 1999. In other words, they were retreating 3 meters per Mars year (and, of course, most of that retreat takes place during the summer). In some places on the cap, the scarps retreat less than 3 meters a Mars year, and in others it can retreat as much as 8 meters (26 feet) per martian year.

    Of the two volatile materials one is likely to find in a frozen state on Mars -- water and carbon dioxide -- it is carbon dioxide that is volatile enough to permit scarp retreat rates like those observed by the Mars Orbiter Camera.

    Over time, south polar pits merge to become plains, mesas turn into buttes, and buttes vanish forever. Since 2001, two additional Mars years have elapsed. A scientific benefit of having a long extended mission for Mars Global Surveyor has been the opportunity to document how the polar cap is changing each year.

    Four images are shown here, plus an animation at left presenting the four frames in sequence. The location is near 86.3 degrees south latitude, 49.4 degrees west longitude, and the images show the same portion of the south polar residual cap as it appeared in 1999, 2001, 2003, and 2005. Comparing the images or viewing the animation makes it evident that the landscape of the south polar cap has been changing rapidly over the past four martian years.

    Each year that Mars Global Surveyor has been in orbit, the landforms of the south polar residual cap have gotten smaller, and the carbon dioxide removed from the cap has not been re-deposited. The implication is that Mars presently has a warm (and possibly warming) climate, with new carbon dioxide going into the atmosphere every year. The other implication is that, at some time in the not-too-distant past, the planet had a colder climate, so that the layers of carbon dioxide could be deposited in the first place. If one takes the rate of scarp retreat and projects it backwards to fill in all of the

  16. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    USGS Publications Warehouse

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  17. Mars Odyssey Seen by Mars Global Surveyor (3-D)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This stereoscopic picture of NASA's Mars Odyssey spacecraft was created from two views of that spacecraft taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor. The camera's successful imaging of Odyssey and of the European Space Agency's Mars Express in April 2005 produced the first pictures of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

    Mars Global Surveyor acquired this image of Mars Odyssey on April 21, 2005. The stereoscopic picture combines one view captured while the two orbiters were 90 kilometers (56 miles) apart with a second view captured from a slightly different angle when the two orbiters were 135 kilometers (84 miles) apart. For proper viewing, the user needs '3-D' glasses with red over the left eye and blue over the right eye.

    The Mars Orbiter Camera can resolve features on the surface of Mars as small as a few meters or yards across from Mars Global Surveyor's orbital altitude of 350 to 405 kilometers (217 to 252 miles). From a distance of 100 kilometers (62 miles), the camera would be able to resolve features substantially smaller than 1 meter or yard across.

    Mars Odyssey was launched on April 7, 2001, and reached Mars on Oct. 24, 2001. Mars Global Surveyor left Earth on Nov. 7, 1996, and arrived in Mars orbit on Sept. 12, 1997. Both orbiters are in an extended mission phase, both have relayed data from the Mars Exploration Rovers, and both are continuing to return exciting new results from Mars. JPL, a division of the California Institute of Technology, Pasadena, manages both missions for NASA's Science Mission Directorate, Washington, D.C.

  18. Teleoperation from Mars Orbit: A proposal for Human Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    For a human expedition to Mars, a case can be made that the best strategy for initial exploration is not to actually land the humans on Mars, but to put the humans into Mars orbit and operate on the surface by the technology of teleoperation. This will provide the results of human exploration, but at greatly reduced risk and cost. Teleoperation of Mars surface robots from a Mars-orbital habitat will operation near real time operation with minimum time delay, giving a virtual presence on the surface. By use of teleoperation, it is possible to vastly simplify the surface exploration mission. We now have no need to develop a human-rated Mars Lander and Mars Ascent Vehicle, and we can send geologists & biologists on the mission; not VTOL pilots. It is a cheaper, simpler, and safer way to explore, and hence it will be a faster way to explore. It has the excitement of being there, at a fraction of the price. Tele-exploration from Mars orbit also allows human (virtual) presence at a wide variety of locations. With an orbital base controlling surface telerobotics, human explorers are not stuck with one base location, but can explore all over Mars. They can explore the polar caps and also near-equatorial canyon regions, from the same orbiting base. This frees the mission from landing site constraints. With no need to select a "grab bag" site that contains a large number of geologically diverse features at or near a single location; it is now possible go to all the best sites-- paleolake sites, river beds, volcanic calderas, lava tube sites, layered terrain, canyons, possible shoreline features, the North and South poles. A near-polar inclination 24-hr 39-minute period Mars orbit, for example, will put the orbital station in line-of-sight of a given region for about 8 hours per day-- one teleoperation shift. Since present day life could exist on Mars, planetary protection is also needed to preserve the (possible) fragile Mars biosphere from competition from ferocious Earth

  19. The Siding Spring Hazard at Mars

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Li, Jian-Yang; Samarasinha, Nalin; Stevenson, Rachel; Tricarico, Pasquale

    2014-02-01

    Comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 136,000 km in Oct 2014, giving Mars orbiting spacecraft an up-close and unprecedented view of this dynamically new comet. However, 100 minutes after the closest approach to the nucleus, Mars passes within 30,000 km of the comet's orbit. Here, large dust grains may be found on impacting trajectories, potentially posing a fatal hazard to the spacecraft. Such large grains must be ejected from the comet nucleus well before the time of encounter. Therefore, we propose IRAC imaging of this comet to assess the present-day gas production rate, which will aid dust impact hazard assessment.

  20. Volcanic recycling of carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1993-01-01

    Thermal erosion of carbonate deposits by turbulently-flowing lava is investigated as a means of recycling carbon dioxide back into the atmosphere of Mars. Erosion rates of several meters/day are found, implying that up to hundreds of meters of carbonate could be removed over the lifetime of a flow. A large fraction of the northern plains and other parts of Mars were covered by lava during the Hesperian, and may have released the carbon dioxide trapped in carbonate deposits. This period of time, several times 10 exp 8 yrs, is comparable to that for the redeposition of such carbonate deposits. Therefore, there could have existed a relatively dense atmosphere, and enhanced weathering and erosion, after the Noachian era. This may help explain the apparent observational evidence for late fluvial and lacustrine activity on Mars.

  1. Nonthermal atmospheric escape from Mars and Titan

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Bauer, S. J.

    1991-02-01

    Energy flux spectra and particle concentrations of the hot O and N coronae from Mars and Titan, respectively, resulting primarily from dissociative recombination of molecular ions, have been calculated by means of a Monte Carlo method. The calculated energy flux spectra lead to an escape flux phi(esc) about 6 x 10 to the 6th/sq cm per sec for Mars and phi(esc) about 2 x 10 to 6th/sq cm per sec for Titan, corresponding to a mass loss of about 0.14 kg/s for Mars and about 0.3 kg/s for Titan. (The contribution of electron impact ionization on N2 amounts to only about 25 percent of Titan's mass loss). Mass loss via solar and magnetospheric wind is also estimated using newly calculated mass loading limits. The mass loss via ion pickup from the extended hot atom corona for Mars amounts to about 0.25 kg/s (O/+/) and for Titan to about 50 g/s (N2/+/or H2CN/+/). Thus, the total mass loss rate from Mars and Titan is about the same (i.e., 0.4 kg/s).

  2. Feasibility Study of a Three-Stage Radioisotope-Powered Mars Ascent Vehicle

    NASA Astrophysics Data System (ADS)

    Chalpek, T. M.; Allen, R. E.; Guan, J. Y.; Rao, S. S.; Howe, S. D.

    Recent advancements in methods of housing radioisotopes at the Center for Space Nuclear Research have led to the concept of a radioisotope thermal rocket--a rocket powered by the accumulated heat of radioisotope decay. Heat energy from the decay can be accumulated over long periods of time in a material of high heat capacity to create a thermal capacitor. The capacitor can then be discharged at such a rate as to provide high power for short periods of time; in this case, the heat is transferred to a gas propellant. This paper explores the feasibility of using a radioisotope thermal rocket with in-situ atmospheric CO2 propellant to deliver a 10 kg payload from the Martian surface to a 200 km circular orbit about Mars. Models of heat transfer, gas dynamics, and ascent mechanics are constructed to test performance of different core materials and geometries. Of the configurations tested, the best simulation results fail to meet the altitude and velocity requirements by 12 km and 50 m/s respectively. The proximity to success indicates that the given models are capable of reaching orbital parameters if optimization algorithms and closed-loop guidance methods are employed. It is believed, however, that the current models underestimate expansion losses to the degree that if more realistic and computationally-intensive models are incorporated, the effect will definitively disprove the concept with currently available technology. Based on this preliminary research, radioisotope thermal rockets utilizing current technology are not capable of serving as Mars ascent vehicles.

  3. The Scientific Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.

    2009-12-01

    Part I. Views of Mars, From the Beginning to the Present Day: 1. The dawn of Mars exploration; 2. The first space missions to Mars; 3. After Viking: the 20-year hiatus; 4. The modern era; Part II. The Big Science: Motivation to Continue the Quest: 5. The origin and evolution of planet Mars; 6. The changing climate of Mars; 7. The search for life; Part III. Plans and Visions for the Future: 8. The future of the unmanned programme; 9. Towards human expeditions; 10. The first footfall on Mars; Appendixes; Index.

  4. Radiometry Measurements of Mars at 1064 nm Using the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Abshire, James B.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E. (Technical Monitor)

    2001-01-01

    Measurements by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) may be used to provides a radiometric measurement of Mars in addition to the topographic measurement. We will describe the principle of operation, a mathematical model, and the receiver calibration in this presentation. MOLA was designed primarily to measure Mars topography, surface roughness end the bidirectional reflectance to the laser beam. To achieve the highest sensitivity the receiver detection threshold is dynamically adjusted to be as low as possible while keeping a predetermined false alarm rate. The average false alarm rate 29 monitored in real time on board MOLA via a noise counter, whose output is fed to the threshold control loop. The false alarm rate at a given threshold is a function of the detector output noise which is the sum of the photo detector, shot noise due to the background light seen by the detector and the dark noise. A mathematical model has been developed that can be used to numerically solve for the optical background power given the MOLA threshold setting and the average noise count. The radiance of Mars can then be determined by dividing the optical power by the solid angle subtended by the MOLA receiver, the receiver optical band-width, end the Mars surface area within the receiver field of view. The phase angle which is the sun-Mars-MOLA angle is available from the MGS database. MOLA also measures simultaneously the bidirectional reflectance of Mars vie its 106-lum loser beam at nadir with nearly zero phase angle. The optical bandwidth of the MOLA receiver is 2um full width at half maximum (FWHM) and centered at 106-lum. The receiver field of view is 0.95mrad FWHM. The nominated spacecraft altitude is 100km and the ground track speed is about 3km/s. Under normal operation, the noise counter are read and the threshold levels are updated at 1Hz. The receiver sensitivity is limited by the detector dark noise to about 0.1nW, which

  5. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  6. Where is the nitrogen on Mars?

    NASA Astrophysics Data System (ADS)

    Mancinelli, Rocco L.; Banin, Amos

    2003-07-01

    Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e. NH3, NH4+, NOx or N that is chemically bound to either inorganic or organic molecules and can be released by hydrolysis to form NH3 or NH4+) is useful to living organisms. Nitrogen on present-day Mars has been analysed only in the atmosphere. The inventory is a small fraction of the amount of nitrogen presumed to have been received by the planet during its accretion. Where is the missing nitrogen? Answering this question is crucial for understanding the probability of the origin and evolution of life on Mars, and for its future astrobiological exploration. The two main processes that could have removed nitrogen from the atmosphere include: (1) non-thermal escape of N atoms to space and (2) burial within the regolith as nitrates and ammonium salts. Nitrate would probably be stable in the highly oxidized surface soil of Mars and could have served as an NO3[minus sign] sink. Such accumulations are observed in certain desert environments on Earth. Some NH4+ nitrogen may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K+. Analysis of the Martian soil for traces of NO3[minus sign] and NH4+ during future missions will provide important information regarding the nitrogen abundance on Mars. We hypothesize that Mars soil, as typical of extremely dry desert soils on Earth, is likely to contain at least some of the missing nitrogen as nitrate salts and some fixed ammonium bound to aluminosilicate minerals.

  7. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    PubMed

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv.

  8. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Ehresmann, B.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Hassler, D. M.; Reitz, G.; Brinza, D. E.; Appel, J.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Lohf, H.; Martin, C.; Posner, A.; Rafkin, S.

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8 ± 1.2 μGy /day and a dose equivalent of 19 ± 5 μSv /day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6 ± 2 μGy /day and the dose equivalent rate is 30 ± 10 μSv /day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11 ± 4 mSv.

  9. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    PubMed

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. PMID:26177845

  10. Sugar Accumulation in Sugarcane

    PubMed Central

    Gayler, K. R.; Glasziou, K. T.

    1972-01-01

    The rate-limiting reaction for glucose uptake in storage tissue of sugarcane, Saccharum officinarum L., appears to be the movement of glucose across the boundary between the free space and the metabolic compartments. The mechanism for uptake of glucose across this boundary has been studied using 3-O-methyl glucose, an analogue of glucose which is not metabolized by sugar-cane tissue. This analogue is taken up by sugarcane storage tissue at a similar rate to glucose. Its rate of uptake follows Michaelis-Menten kinetics, Km = 1.9 mm, and it is competitively inhibited by glucose, Ki = 2 to 3 mm. Glucose uptake is similarly inhibited by 3-O-methyl glucose. Uptake of 3-O-methyl glucose is energy-dependent and does not appear to be the result of counterflow of glucose. It is concluded that glucose and 3-O-methyl glucose uptake across the boundary between the free space and the metabolic compartment in this tissue is mediated by an energy-dependent carrier system capable of accumulating the sugars against a concentration gradient. PMID:16658002

  11. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  12. Mars digital terrain model

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington, Annie-Elpis

    1987-01-01

    The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation.

  13. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  14. Simulating "Mars on Earth"

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    By now, everyone who's heard of the Haughton-Mars Project knows that we travel to Devon Island to learn how people will live and work on Mars. But how do we learn about Mars operations from what happens in the Arctic? We must document our experience--traverses, life in the hab, instrument deployment, communications, and so on. Then we must analyze and formally model what happens. In short, while most scientists are studying the crater, other scientists must be studying the expedition itself. That's what I have done in the past four field seasons. I study field science, both as it naturally occurs at Haughton (unconstrained by a "Mars Sam") and as a constrained experiment using the Flashline Mars Arctic Research Station. During the second week of July 2001, I lived and worked in the hab as part of the Phase 2 crew of six. Besides participating in all activities, I took many photographs and time lapse video. The result of my work will be a computer simulation of how we lived and worked in the hab. It won't be a model of particular people or even my own phase per se, but a pastiche that demonstrates (a proof of concept) that we have appropriate tools for simulating the layout of the hab and daily routines followed by the group and individual scientists. Activities-how people spend their time-are the focus of my observations for building such a simulation model.

  15. Mars Rover RTG Study

    SciTech Connect

    Schock, Alfred

    1989-10-01

    Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.

  16. K(+) accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS.

    PubMed

    Feng, Zhong-Tao; Deng, Yun-Quan; Zhang, Shi-Chao; Liang, Xue; Yuan, Fang; Hao, Jia-Long; Zhang, Jian-Chao; Sun, Shu-Feng; Wang, Bao-Shan

    2015-09-01

    Recretohalophytes with specialized salt-secreting structures (salt glands) can secrete excess salts from plant, while discriminating between Na(+) and K(+). K(+)/Na(+) ratio plays an important role in plant salt tolerance, but the distribution and role of K(+) in the salt gland cells is poorly understood. In this article, the in situ subcellular localization of K and Na in the salt gland of the recretohalophyte Limonium bicolor Kuntze is described. Samples were prepared by high-pressure freezing (HPF), freeze substitution (FS) and analyzed using NanoSIMS. The salt gland of L. bicolor consists of sixteen cells. Higher signal strength of Na(+) was located in the apoplast of salt gland cells. Compared with control, 200 mM NaCl treatment led to higher signal strength of K(+) and Na(+) in both cytoplasm and nucleus of salt gland cells although K(+)/Na(+) ratio in both cytoplasm and nucleus were slightly reduced by NaCl. Moreover, the rate of Na(+) secretion per salt gland of L. bicolor treated with 200 mM NaCl was five times that of controls. These results suggest that K(+) accumulation both in the cytoplasm and nucleus of salt gland cells under salinity may play an important role in salt secretion, although the exact mechanism is unknown.

  17. Nitrogen evolution and present day distribution on Mars

    NASA Astrophysics Data System (ADS)

    Banin, A.; Mancinelli, R. L.

    2003-04-01

    Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e., NH_3, NH_4^+, NO_3^-, NO_2^- and N chemically bound to either inorganic or organic molecules and is releasable by hydrolysis to NH_3 or NH_4^+) is the form of nitrogen useful to living organisms. Nitrogen on present-day Mars has been analyzed only in the atmosphere. The inventory is a small fraction of the nitrogen complement presumed to have been received by the planet during its accretion. Where is the missing N? Answering this question is crucial for understanding of the probability of life evolution on Mars and for future exobiological exploration of this intriguing planet. Two main processes could have removed N from the atmosphere: 1) escape to space; 2) burial within the regolith. Non thermal escape to space due to atmospheric erosion has been suggested but its extent has not been constrained yet. No traces of organic compounds were detected in Mars soil by the Viking Landers. However, direct in situ analysis of mineral N concentration in Martian soils and rocks has not been performed yet. Due to the lack of neither biological (denitrification) nor geological (plate tectonics) recycling of N on the surface of Mars, nitrogen may have been stored in the Martian regolith as soluble inorganic salts of NO_3^- and NH_4^+, and as mineral-bound NH_4^+. Nitrates will be stable in the highly oxidized surface soil of Mars, and will tend to accumulate there. Such accumulations are observed in cold and extremely arid environments on Earth (e.g. Antarctica, the Atacama Desert). NH_4^+-N may be bound and stabilized in the soil replacing K as a structural cation in silicate minerals. In this paper we constrain the possible total N content in the Mars crust/regolith using information obtained from Mars (SNC) meteorites analyses. Further, we briefly discuss chemical, physical and, possibly, biological processes that may have affected the patterns of N distribution in the top horizons of Mars

  18. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; Schratz, Brian C.; Shihabi, Mazen M.; Srinivasan, Jeffrey M.; Varghese, Phillip; Sanders, Stephen S.; Denis, Michel

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  19. Recent Surface Changes on Mars

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Mukherjee, P.

    2010-12-01

    The MARCI camera on Mars Reconnaissance Orbiter has now been making global observations of the Martian surface for over two Martian years with better spatial resolution and better spectral definition than earlier visible imaging systems. These observations extend the record of continuous global monitoring of the planet's surface that dates from the arrival of Mars Global Surveyor (MGS) in 1999. The orbital images show a dynamic and rapidly changing pattern of bright and dark regions generated by erosion and deposition of sediments by the Martian winds. Previous analyses of the MGS MOC images (Geissler et al., AGU 2009) showed that the temporal behavior of surface albedo varied with geographic location on the planet, with some regions exhibiting gradual changes, while others showed episodic changes that typically took place during the perihelion season, and still other regions such as Solis that appeared to change on a quasi-continuous basis. These observations help to explain the significant changes observed on a decadal time scale between the era of the Viking Orbiters and the arrival of MGS (Geissler, 2005, 1029/2004JE2345). The MARCI data so far confirm many of the conclusions drawn from the MOC record up to the end of 2006. Over the most recent two Martian years, dramatic changes continued in the Solis Lacus region south of the Vallis Marineris. Another episodic wind event stripped away bright dust and darkened the area west of Syrtis Major. New dust accumulations were deposited in the southern mid-latitudes west of Hellas. Most interesting is the gradual advance of many albedo boundaries in the tropical latitudes of Mars. In several locations, dark terrain appears to be encroaching on formerly bright terrain as bright dust is stripped away from the region. MOC and MARCI observations show that these albedo boundaries are moving at speeds of up to tens of kilometers per Martian year. At sites such as Hyblaeus (west of Elysium), the Southern Tropical Dark Band

  20. Journey of a Lifetime -- Mars

    NASA Video Gallery

    NASA wants you to be part of the Journey to Mars. Today, NASA is pushing the boundaries of technology and innovation. NASA’s fleet of robotic scientific explorers at Mars are paving the way for hu...

  1. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  2. Mars lander survey

    NASA Technical Reports Server (NTRS)

    Stump, William R.; Babb, Gus R.; Davis, Hubert P.

    1986-01-01

    The requirements, issues, and design options are reviewed for manned Mars landers. Issues such as high 1/d versus low 1/d shape, parking orbit, and use of a small Mars orbit transfer vehicle to move the lander from orbit to orbit are addressed. Plots of lander mass as a function of Isp, destination orbit, and cargo up and down, plots of initial stack mass in low Earth orbit as a function of lander mass and parking orbit, detailed weight statements, and delta V tables for a variety of options are included. Lander options include a range from minimum landers up to a single stage reusable design. Mission options include conjunction and Venus flyby trajectories using all-cryogenic, hybrid, NERVA, and Mars orbit aerobraking propulsion concepts.

  3. Dynamics of Mars' magnetosphere

    NASA Astrophysics Data System (ADS)

    Kennel, C. F.; Coroniti, F. V.; Moses, S. L.; Zelenyi, L. M.

    1989-08-01

    If Mars has a small intrinsic magnetic moment, Mars' magnetosphere could vary on time scales of a few minutes due to reconnection with the solar wind magnetic field. The day-side magnetopause will be one or two reflected-ion Larmor radii from the bow shock. Substorms will have scale-times of about six minutes. Mars' high ionospheric conductance will virtually stop polar cap convection, and create a magnetic 'topological crisis' unless convecting magnetic flux finds a dissipative way to return to the day-side. The strong magnetic shear induced by magnetospheric convection above the ionosphere could be tearing unstable. The magnetic field might diffusively 'percolate' through the tearing layer. This shearing also draws field aligned currents from the ionosphere which could inject few KeV heavy ionospheric ions into the magnetotail.

  4. Ionospheric storms on Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Woch, J.; Duru, F.; Gurnett, D.; Modolo, R.; Barabash, S.; Lundin, R.

    2009-04-01

    Measurements made by the ASPERA-3 and MARSIS experiments on Mars Express have shown that space weather effects related to the impact of a dense and high pressure solar wind on Mars cause strong perturbations in the martian induced magnetosphere and ionosphere. The magnetic barrier formed by pile-up of the draped interplanetary magnetic field ceases to be a shield for the incoming solar wind. Large blobs of solar wind plasma penetrate to the magnetosphere and sweep out dense plasma from the ionosphere. The topside martian ionosphere becomes very fragmented consisting of intermittent cold/low energy and energized plasmas. The scavenging effect caused by the intrusions of solar wind plasma clouds enhances significantly the losses of volatile material from Mars.

  5. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  6. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  7. Spiders from Mars?

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003

    No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  8. UBV photometry of Mars

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1974-01-01

    A critical analysis of selected high-quality photometric observations of Mars indicates that: (1) the phase function is concave upward out to at least 40-deg phase. No sudden brightening occurs at opposition, but the curvature increases at small phase; (2) large systematic differences (0.1-0.2 mag.) exist between different observers' data. However, the small random scatter attributable to Mars (0.01-0.02 mag.) in the better series suggests that these differences represent systematic errors in data reduction, not variations in the planet's brightness; (3) the disentangling of seasonal, diurnal, and phase effects leaves considerable ambiguity; more observations are needed, over a long time, with a stable instrumental system. However, even the present data are sufficient to expose substantial errors in published phase curves of Mars (and consequently, in interpretations based on them).

  9. Remanent magnetism at Mars

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  10. Climatic change on Mars.

    PubMed

    Sagan, C; Toon, O B; Gierasch, P J

    1973-09-14

    The equatorial sinuous channels on Mars detected by Mariner 9 point to a past epoch of higher pressures and abundant liquid water. Advective instability of the martian atmosphere permits two stable climates-one close to present conditions, the other at a pressure of the order of 1 bar depending on the quantity of buried volatiles. Variations in the obliquity of Mars, the luminosity of the sun, and the albedo of the polar caps each appear capable of driving the instability between a current ice age and more clement conditions. Obliquity driving alone implies that epochs of much higher and of much lower pressure must have characterized martian history. Climatic change on Mars may have important meteorological, geological, and biological implications.

  11. Mars transportation system

    NASA Technical Reports Server (NTRS)

    Garrard, William; Vano, Andrew; Rutherford, Dave

    1992-01-01

    The University of Minnesota Advanced Space Design Program has developed a sample Mars exploration scenario. The purpose of the design project is to enhance NASA and university interaction, to provide fresh ideas to NASA, and to provide real world design problems to engineering students. The Mars Transportation System in this paper is designed to transport a crew of six astronauts to the Martian surface and return them to Low Earth Orbit (LEO) starting in the year 2016. The proposed vehicle features such advanced technologies as nuclear propulsion, nuclear power generation, and aerobraking. Three missions are planned. Orbital trajectories are of the conjunction class with an inbound Venus swingby providing a 60-day surface stay at Mars and an average total trip time of 520 days.

  12. The atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Barth, C. A.

    1974-01-01

    The atmosphere of Mars is essentially a pure carbon dioxide atmosphere that contains a small and seasonably varying amount of water vapor. A number of minor constituents which arise from the interactions of solar radiation with water vapor and carbon dioxide include carbon monoxide, atomic oxygen, molecular oxygen, ozone, and atomic hydrogen. At the surface of Mars the atmospheric pressure is less than one hundredth of the pressure at the surface of the earth. Extensive cloud systems appear on Mars. The structure of the lower Martian atmosphere is discussed together with variations in the lower atmosphere and the characteristics of the upper atmosphere. Reactions of photochemistry are considered along with the atmospheric escape and interactions between the atmosphere and the polar caps.

  13. Planetary astronomy of Mars. Mars data reduction

    NASA Technical Reports Server (NTRS)

    Singer, Robert B.

    1990-01-01

    Grant #NAGW-1408 was specifically awarded to obtain telescopic visible and near-IR spectral imaging of Mars during the 1988 apparition (9/28/88). The observing program was highly successful producing approximately 2 Gbytes of data, but was only funded for one year and virtually all of the funds were spent in data acquisition. The follow-up grant was funded the following year for reduction of these data into a scientifically productive form, which because of the size and nature of our observations, was a non-trivial task. A more detailed scientific analysis of these data (fully reduced) is in progress now and will take a number of years. Extended geologic analyses of the astronomical data are being funded by the NASA Planetary Geology and Geophysics program. The objective was to produce detailed reflectance spectra for contiguous, spatially resolved surface elements covering most of the planet (about +50 degrees to -90 degrees latitude, all longitudes). A total of 6 observing runs, of 3-4 days duration each, were conducted on the University of Arizona's 1.5m telescope on Mt. Bigelow. We present a sketch map showing the approximate total extent of our spectral image coverage. Nearly all of Mars south of 40 degrees N was observed at least once. About half of the area shown was observed multiple times. South of 65 degrees S, including the south polar cap, our coverage is heavily redundant. The first run was conducted June 29 - July 1, 1988 (all dates are UT) to serve as a baseline prior to possible dust storm activity on Mars. The other observing runs were closer to opposition: Sept. 3-6, 13-15, 24-26, and Oct. 5-7 and 16-18. The September and October observations were scheduled to provide maximum longitudinal coverage. This was also intended to provide a balance between surface observations and observations of predicted dust storm activity. No global dust storm developed in 1988, so we have a large volume of data for the surface of Mars.

  14. Mars Rover Studies Soil on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).

  15. Hybrid Particle Code Simulations of Mars: The Role Ionospheric Escape in Explaining Water Loss from Mars

    NASA Astrophysics Data System (ADS)

    Brecht, Stephen; Ledvina, Stephen

    2015-11-01

    The results of our latest hybrid particle simulations using the HALFSHEL code are discussed. The presentation will address assorted processes that produce differing ion escape rates from Mars. The simulations investigate the role of the neutral atmosphere (Univ. of Michigan's MTGCM) in its dynamic form (neutral winds and co-rotation) in the calculation of the ionospheric loss from Mars. In addition, the effect of crustal magnetic field orientation in ion escape from Mars will be discussed. Further, the presentation addresses reasons for these differences and details of the interaction around the crustal magnetic fields. Finally, these results and others will be compared to fits to data. The estimated loss rates from a variety of missions and times were fit to the solar EUV flux. Our results will be compared to this fit.

  16. Windblown sand on Mars: The effect of saltation threshold on drift potentials derived from Mars GCM

    NASA Technical Reports Server (NTRS)

    Xu, P.; Greeley, R.; Williams, S.; Pollack, J. B.

    1994-01-01

    The rate at which the wind can redistribute sedimentary material is an important part of any planet's sedimentologic cycle, particularly for Mars, where the competing effects of other gradational processes are less than on Earth. The aeolian drift potential (DP) is a measure of the amount of material capable of being moved through a unit length by the wind for a given period of time. DP is a useful measure of the potential redistribution rate of windblown material on regional scales. The Martian aeolian DP was calculated from laboratory studies of sand movement conducted at Martian atmospheric densities and from surface stress, temperature, and pressure values for that region as determined from the Mars General (Atmospheric) Circulation Model (GCM) developed at the NASA/Ames Research Center. In our simulations for Mars, DP changes in both magnitude (as expected) and direction if the saltation threshold is altered.

  17. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  18. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  19. Mars: New Determination of Impact Crater Production Function Size Distribution

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11mMars/moon cratering rate and in the accumulation rate of globally scattered background secondaries (Hartmann 2005). References: Hartmann, W.K., 2005, Icarus 174, 294-320. McEwen, A.S., Bierhaus, E.B., 2006, Ann. Rev. Earth. Planet. Sci. 34, 535-567. McEwen, A.S., 2005, Icarus 176, 351-381. Plescia, J.B. 2005, LPSC 36, 2171.

  20. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.