Science.gov

Sample records for accumulation solid partitioning

  1. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  2. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum).

    PubMed

    Sankaran, Renuka P; Grusak, Michael A

    2014-01-01

    Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning of minerals in pea could help in developing cultivars with high mineral density. A mineral partitioning study was conducted in pea to assess whole-plant growth and mineral content and the potential source-sink remobilization of different minerals, especially during seed development. Shoot and root mineral content increased for all the minerals, although tissue-specific partitioning differed between the minerals. Net remobilization was observed for P, S, Cu, and Fe from both the vegetative tissues and pod wall, but the amounts remobilized were much below the total accumulation in the seeds. Within the mature pod, more minerals were partitioned to the seed fraction (>75%) at maturity than to the pod wall for all the minerals except Ca, where only 21% was partitioned to the seed fraction. Although there was evidence for net remobilization of some minerals from different tissues into seeds, continued uptake and translocation of minerals to source tissues during seed fill is as important, if not more important, than remobilization of previously stored minerals.

  3. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum)

    PubMed Central

    Sankaran, Renuka P.; Grusak, Michael A.

    2014-01-01

    Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning of minerals in pea could help in developing cultivars with high mineral density. A mineral partitioning study was conducted in pea to assess whole-plant growth and mineral content and the potential source-sink remobilization of different minerals, especially during seed development. Shoot and root mineral content increased for all the minerals, although tissue-specific partitioning differed between the minerals. Net remobilization was observed for P, S, Cu, and Fe from both the vegetative tissues and pod wall, but the amounts remobilized were much below the total accumulation in the seeds. Within the mature pod, more minerals were partitioned to the seed fraction (>75%) at maturity than to the pod wall for all the minerals except Ca, where only 21% was partitioned to the seed fraction. Although there was evidence for net remobilization of some minerals from different tissues into seeds, continued uptake and translocation of minerals to source tissues during seed fill is as important, if not more important, than remobilization of previously stored minerals. PMID:24795736

  4. Strain accumulation in quasicrystalline solids

    NASA Technical Reports Server (NTRS)

    Nori, Franco; Ronchetti, Marco; Elser, Veit

    1988-01-01

    The relaxation of two-dimensional quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously is studied. Whereas ideal, quasi-periodic networks are stable against such perturbations, significant accumulations of strain in a class of disordered networks generated by a growth process are found. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation observed in these networks also grows linearly with system size. Finally, dependence of strain accumulation on cooling rate is found.

  5. Carbon Partitioning during Sucrose Accumulation in Sugarcane Internodal Tissue.

    PubMed

    Whittaker, A.; Botha, F. C.

    1997-12-01

    The temporal relationship between sucrose (Suc) accumulation and carbon partitioning was investigated in developing sugarcane internodes. Radiolabeling studies on tissue slices, which contained Suc concentrations ranging from 14 to 42% of the dry mass, indicated that maturation coincided with a redirection of carbon from water-insoluble matter, respiration, amino acids, organic acids, and phosphorylated intermediates into Suc. It is evident that a cycle of Suc synthesis and degradation exists in all of the internodes. The decreased allocation of carbon to respiration coincides with a decreased flux from the hexose pool. Both the glucose and fructose (Fru) concentrations significantly decrease during maturation. The phosphoenolpyruvate, Fru-6-phosphate (Fru-6-P), and Fru-2,6-bisphosphate (Fru-2, 6-P2) concentrations decrease between the young and older internodal tissue, whereas the inorganic phosphate concentration increases. The calculated mass-action ratios indicate that the ATP-dependent phosphofructokinase, pyruvate kinase, and Fru-1,6-bisphosphatase reactions are tightly regulated in all of the internodes, and no evidence was found that major changes in the regulation of any of these enzymes occur. The pyrophosphate-dependent phosphofructokinase reaction is in apparent equilibrium in all the internodes. Substrate availability might be one of the prime factors contributing to the observed decrease in respiration.

  6. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum)

    USDA-ARS?s Scientific Manuscript database

    Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning o...

  7. Test Plan - Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  8. The effect of solid metal composition on solid metal/ liquid metal partitioning of trace elements

    NASA Astrophysics Data System (ADS)

    Rai, N.; van Westrenen, W.

    2010-12-01

    Fundamental understanding of the partitioning behaviour of elements between different core and/or mantle phases is needed to constrain processes of planetary differentiation and evolution. The partitioning behaviour of elements between solid metal and liquid metal in the Fe-S system, of relevance to core crystallisation in planetesimals and the terrestrial planets, has been investigated by several workers [1-6], most of whom [1-5] conclude that variations in partition coefficients can be explained by variations in melt composition. However, recently Stewart et al. [6] showed that the crystal-lattice strain model commonly used to describe silicate mineral - silicate melt partitioning can be applied to partially molten metallic systems. This suggests the structure of the solid metal also plays a role in determining solid metal / molten metal partitioning. Here, we investigate the effect of the structure of the solid metal in the Fe-S system on solid/liquid metal partitioning by obtaining new element partitioning data at pressures between 0.5 and 3 GPa. The effect of the solid metal is isolated from pressure-temperature-melt composition effects by performing experiments at constant P and T with two Fe-S bulk compositions on either side of the eutectic composition. In addition to the effect of solid metal composition we investigate the effects of pressure and S content on trace element partitioning behaviour and the application of the lattice strain model to our results. Starting mixtures were doped with several hundred ppm levels of trace elements Ni, Co, W, Mo, V, Nb, Ta, Sn, Cu, Pb, Zn, Cr, Mn, P, Ge,. Experiments were performed using a QUICKPress piston cylinder apparatus at the VU University, Amsterdam using alumina capsules. Experiments were heated to 1073 K at pressure and allowed to sinter for a duration of 10 hours before the temperature was raised at a rate of 50 K / min to the target value. Preliminary EPMA data for a 1 GPa experiment with FeS as the solid

  9. Electric accumulator with a solid electrolyte

    SciTech Connect

    Voinov, M.

    1980-07-29

    An electric accumulator is described that is comprised of an anode compartment containing an anode formed from at least one metal selected from the group consisting of metals belonging to groups IA, IIA, IIB, and IIIB of the periodic table of elements; a cathode compartment containing a cathode formed at least partly from a conducting member comprising a substance capable of accepting electrons, to form anions by cathodic reduction, and an electrolyte consisting of a substance capable of dissolving the product or products generated during discharge of the accumulator, said electrolyte being maintained in a molten state; the anode compartment and cathode compartment being separated from each other by a wall impervious to fluids and formed from a solid mineral electrolyte capable of allowing selective migration of the anode metal in the form of cations; wherein the anode compartment contains a porous matrix adjacent to the anode and at least one salt of the anode metal capable of allowing migration of this metal in the form of cations, said salt being maintained in a molten state and permeating said porous matrix, with said salt and said matrix being interposed between the anode and said separation wall, and wherein said anode metal salt is selected from the group consisting of compounds of the two general formulas: Me(Br/sub 4/)N and Me(AlR/sub 4/)N (in which Me represents a metal selected from the group consisting of metals belonging to groups IA, IIA, IIB, and IIIB of the periodic table of elements, R represents an alkyl or aryl group, and N is 1, 2 or 3, according to the valency of the metal Me) and mixtures of at least two of these compounds.

  10. Nitrogen retention and partitioning at the initiation of lipid accumulation in nitrogen-deficient algae.

    PubMed

    Adams, Curtis; Bugbee, Bruce

    2014-04-01

    Nitrogen (N) deficiency promotes lipid accumulation in many oleaginous algae, but we have a poor understanding of the associations between the initiation of lipid accumulation and algal N retention and partitioning. Here, we report on total cell N, five bulk pools of N in the cell (protein, free amino acids, DNA, RNA, chl), and lipids from N saturation to growth cessation in three species. While the maximum level of N uptake differed among species, the ratio of minimum retained N to N retained at the initiation of lipid accumulation was consistent among species at 0.5 ± 0.04. This suggests that the cellular initiation of lipid accumulation was associated with a common magnitude of N deficiency among species. Concerning the partitioning of N, the concentration of RNA and the protein to RNA ratio were most similar among species at the initiation of lipid accumulation with averages of 3.2 ± 0.26 g · L(-1) (8.2% variation) and 16 ± 1.5 (9.2% variation), respectively. All other pools and physiologically relevant ratios were considerably more variable. The species commonalities in RNA and protein show a similar reduction in general cellular function due to N deficiency before cellular initiation of lipid accumulation. These results provide insight into the physiological drivers for lipid accumulation in N-deficient algae and data for modeling these associations.

  11. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  12. Heavy metal partitioning in a municipal solid waste incinerator

    SciTech Connect

    Sorum, L.; Fossum, M.; Hustad, J.E.; Evensen, E.

    1997-12-01

    Norway has the following priorities for management of municipal solid waste (MSW) (1) Reduce waste generation and toxic components in waste, (2) Encourage re-use, recycling and energy recovery, and (3) Secure an environmentally safe management of residues. MSW consists of household waste and waste from the service and trade industry delivered to municipal waste treatment plants or recycling schemes. In 1995, a total of 2.7 million tons of MSW (1.26 million tons of household waste and 1.44 million tons of waste from service and trade industry) was handled as follows: 68% was deposited on landfills, 18% was combusted, 13% recycled and 1% composted. Combustion of MSW is handled in five larger plants with energy recovery located in different cities in Norway. In addition, a new incinerator for MSW is planned. This incinerator will have to meet the new emission regulations given by the European Union which are more stringent than the present regulations. Hence, Norway is moving towards more stringent regulations, leading to an increased interest in the environmental aspects of MSW incinerators. During 1995 Trondheim Energy Company carried out an investigation program to examine the residues from the incinerator. Primary attention was on the heavy metals in the bottom ash, fly ash and the landfill leacate. The program was conducted in order to establish more information about characteristics of the residues and thus be able to undertake a sounder evaluation of the environmental aspects of the final treatment of these products. This program was supplementary to the emission analysis done periodically for the flue gas and drain water. The objective of this work has been to establish knowledge about the partitioning of heavy metals through the incinerator and calculate the concentrations of heavy metal in the input MSW.

  13. Reverse energy partitioning-An efficient algorithm for computing the density of states, partition functions, and free energy of solids.

    PubMed

    Do, Hainam; Wheatley, Richard J

    2016-08-28

    A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction ("upward") into subdivisions whose integrated density of states is known. When combined with the density of states computed from the "downward" energy partitioning approach [H. Do, J. D. Hirst, and R. J. Wheatley, J. Chem. Phys. 135, 174105 (2011)], the equilibrium thermodynamic properties can be evaluated at any temperature and in any phase. The method is illustrated in the context of the Lennard-Jones system and can readily be extended to other molecular systems and clusters for which the structures are known.

  14. Accumulation of solid bodies in the solar nebula

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Davis, D. R.

    1987-01-01

    Research on the accumulation of solid bodies in the solar nebula is discussed. Studies of the earliest stage of accumulation of solid bodies in the solar system, which occured in the presence of the gaseous component of the solar nebula, are discussed. The combined effects of gas drag and gravitational perturbations of a planetary embryo on the orbital evolution of planetesimals, the effects of resonant trapping on planetesimals, and planetary mass accretion are discussed.

  15. The Parameterization of Solid Metal-Liquid Metal Partitioning of Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Jones, J. H.

    2003-01-01

    The composition of a metallic liquid can significantly affect the partitioning behavior of elements. For example, some experimental solid metal-liquid metal partition coefficients have been shown to increase by three orders of magnitude with increasing S-content of the metallic liquid. Along with S, the presence of other light elements, such as P and C, has also been demonstrated to affect trace element partitioning behavior. Understanding the effects of metallic composition on partitioning behavior is important for modeling the crystallization of magmatic iron meteorites and the chemical effects of planetary differentiation. It is thus useful to have a mathematical expression that parameterizes the partition coefficient as a function of the composition of the metal. Here we present a revised parameterization method, which builds on the theory of the current parameterization of Jones and Malvin and which better handles partitioning in multi-light-element systems.

  16. The Parameterization of Solid Metal-Liquid Metal Partitioning of Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Jones, J. H.

    2003-01-01

    The composition of a metallic liquid can significantly affect the partitioning behavior of elements. For example, some experimental solid metal-liquid metal partition coefficients have been shown to increase by three orders of magnitude with increasing S-content of the metallic liquid. Along with S, the presence of other light elements, such as P and C, has also been demonstrated to affect trace element partitioning behavior. Understanding the effects of metallic composition on partitioning behavior is important for modeling the crystallization of magmatic iron meteorites and the chemical effects of planetary differentiation. It is thus useful to have a mathematical expression that parameterizes the partition coefficient as a function of the composition of the metal. Here we present a revised parameterization method, which builds on the theory of the current parameterization of Jones and Malvin and which better handles partitioning in multi-light-element systems.

  17. Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Campbell, A. J.; Humayun, M.

    2004-01-01

    If the measured Os isotopic ratios are a signature from the Earth's outer core, understanding them is a unique opportunity to understand more about the Earth's core. The distribution of elements between the Earth's solid inner core and the liquid outer core will depend on their solid metal-liquid metal partition coefficients (D). Solid metal-liquid metal partitioning data are loosely consistent with the needed fractionations between Re-Os and Pt-Os to account for the Os isotopic signature; D(Os) is greater than both D(Re) and D(Pt), and the magnitude of the partition coefficients are similar to those needed [e.g. 7, 8]. The pressure in the core, the composition of the core, and the crystal structure of the solid Fe alloy in the inner core may influence the specific values of the partition coefficients. It may thus be possible to use these sensitivities of the partition coefficients to gain insight into the conditions within the Earth's core. In this abstract, we focus on the compositional influence of C, a potential component of the light element in the Earth's core [9], on the partitioning behaviors of Pt, Re, and Os.

  18. Actinide Partitioning and Radiation Effects in U(VI)-Solids: Thermodynamic & Mechanistic Study

    SciTech Connect

    Clark, Sue B.; Ewing, Rodney C.

    2010-05-20

    In most environmental systems, the mobility of a contaminant metal cation depends on its partitioning between the solid and solution phase. At the molecular level, partitioning to the solid phase is controlled by the coordination requirements of the contaminant cation. In this work, we developed linear free energy relationships (LFERs) to describe the partitioning of non-U actinide cations to U(VI) solid phases in a radiation environment; the LFERs are based on knowledge of the actinide coordination environment in or on the surface of the U(VI) solid, and the impact of ionizing radiation on the atomic interactions of the non-U actinide cations. LFERs were established for predicting (1) free energies of formation of pure U(VI) solids and solid solutions with non-U actinide cations, and (2) the adsorption of non-U actinide cations to pure U(VI) solids. We demonstrated the application of LFERs developed from knowledge of molecular structures of U(VI) solid phases to predict the predominance of U(VI) oxide hydrate and silicate solid phases as a function of geochemical conditions. We extended our efforts to define LFERs for U(VI) phosphate solids, and included the impact of actinide self-radiation on all LFERs for free energies of formation for U(VI) solids. We also defined LFERs for the formation of solid solutions between the U(VI) solids and non-U actinide cations such as Th, Np, Pu, Am, and Cm. We demonstrated the importance of nanocrystalline solids in the solid phase partitioning of these non-U actinide cations. For those solid solutions formed, we investigated the impact of ionizing radiation on the stability of those phases, and the release of the non-U actinide cations from the solids. Finally, developed LFERs to predict the adsorption of the non-U actinide cations to the surfaces of U(VI) oxide hydrates and U(VI) phosphates. We determined adsorption constants and coordination requirements for actinide adsorption to U(VI) solid phases. We determined

  19. Genetic Improvement in Short-Season Soybeans: II. Nitrogen Accumulation, Remobilization, and Partitioning.

    PubMed

    Kumudini, S.; Hume, D. J.; Chu, G.

    2002-01-01

    Genetic improvement in yield is conditional on surmounting yield-limiting factors. Nitrogen (N) has been considered an important limiting factor to soybean [Glycine max (L.) Merr.] yield. The high demand for N by soybean seed was previously considered to lead to early leaf senescence through accelerated remobilization of N from the vegetative tissue. The consequent reduction in photosynthetic capacity was postulated to limit yield. The objectives of the current experiment were to determine the changes in N accumulation, remobilization, and partitioning associated with genetic yield improvement. Two groups of old, low-yielding ('Pagoda' and 'Mandarin Ottawa') and new, high-yielding ('Maple Glen' and 'OAC Bayfield') soybean cultivars of similar maturity were grown in side-by-side trials at the Elora Research Station, Ontario, in 1996 and 1997. Nitrogen and dry matter accumulation in leaf, stem + petiole, roots, and seeds were determined during the growing season. The newer cultivars had higher yields and higher seed N content. Contrary to the postulated association between leaf senescence and leaf N values, neither leaf N concentration nor leaf N content per unit leaf area (at R6) were association consistently with either yield or leaf area duration (LAD). Although most of the N in the seed was derived from N remobilized from vegetative tissue, the newer cultivars with their higher yields and LAD, remobilized no more N out of the vegetative tissue than did older, lower-yielding ones. The newer cultivars were distinct from their older counterparts in their ability to accumulate more N during the seed filling period (SFP). Genetic improvement of the short-season soybeans tested was a consequence of continued N accumulation during the SFP and was not due to differences in the genotype's capacity to remobilize or partition N to the seed.

  20. Equilibrium partitioning of heavy metals in Dutch field soils. 2: Prediction of metal accumulation in earthworms

    SciTech Connect

    Janssen, R.P.T.; Posthuma, L.; Baerselman, R.; Hollander, H.A. Den; Veen, R.P.M. Van; Peijnenburg, W.J.G.M.

    1997-12-01

    To evaluate the adequacy of the equilibrium partitioning concept in predicting metal bioaccumulation, a soil invertebrate species was exposed in 20 Dutch field soils with moderate metal contamination. Earthworms (Eisenia andrei) were kept in the soils for 3 weeks under laboratory conditions. Bioconcentration factors (BCFs) for six metals (Zn, Cu, Pb, Cd, Cr, Ni) and for As were calculated as the ratio of body- and solid-phase metal concentrations. Multivariate statistical analyses suggested that the BCFs for As, Cd, Cu, and Zn are governed by the same soil characteristics that determine equilibrium partition coefficients between the soil solid phase and the pore water. This suggests that uptake of metals is either direct from the pore water or indirect through an uptake route closely related to pore water. Regression equations were derived for predicting BCF values as a function of easily determinable soil characteristics. By means of internal validation it was shown that the equations obtained can be used for predictive purposes within the range of soil properties encountered in the dataset. Due to a lack of data, external validation was possible only in a qualitative sense.

  1. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  2. Partitioning of Si and platinum group elements between liquid and solid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Badro, J.

    2014-05-01

    Crystallization of the Earth's inner core fractionates major and minor elements between the solid and liquid metal, leaving physical and geochemical imprints on the Earth's core. For example, the density jump observed at the Inner Core Boundary (ICB) is related to the preferential partitioning of lighter elements in the liquid outer core. The fractionation of Os, Re and Pt between liquid and solid during inner core crystallization has been invoked as a process that explains the observed Os isotopic signature of mantle plume-derived lavas (Brandon et al., 1998; Brandon and Walker, 2005) in terms of core-mantle interaction. In this article we measured partitioning of Si, Os, Re and Pt between liquid and solid metal. Isobaric (2 GPa) experiments were conducted in a piston-cylinder press at temperatures between 1250 °C and 1600 °C in which an imposed thermal gradient through the sample provided solid-liquid coexistence in the Fe-Si system. We determined the narrow melting loop in the Fe-Si system using Si partitioning values and showed that order-disorder transition in the Fe-Si solid phases can have a large effect on Si partitioning. We also found constant partition coefficients (DOs, DPt, DRe) between liquid and solid metal, for Si concentrations ranging from 2 to 12 wt%. The compact structure of Fe-Si liquid alloys is compatible with incorporation of Si and platinum group elements (PGEs) elements precluding solid-liquid fractionation. Such phase diagram properties are relevant for other light elements such as S and C at high pressure and is not consistent with inter-elemental fractionation of PGEs during metal crystallization at Earth's inner core conditions. We therefore propose that the peculiar Os isotopic signature observed in plume-derived lavas is more likely explained by mantle source heterogeneity (Meibom et al., 2002; Baker and Krogh Jensen, 2004; Luguet et al., 2008).

  3. Density of States Partitioning Method for Calculating the Free Energy of Solids.

    PubMed

    Do, Hainam; Wheatley, Richard J

    2013-01-08

    We propose a new simulation method, which combines a cage model and a density of states partitioning technique, to compute the free energy of an arbitrary solid. The excess free energy is separated into two contributions, noninteracting and interacting. The excess free energy of the noninteracting solid is computed by partitioning its geometrical configuration space with respect to the ideal gas. This quantity depends on the lattice type and the number of molecules. The excess free energy of the interacting solid, with respect to the noninteracting solid, is calculated using density of states partitioning and a cage model. The cage model is better than the cell model in that it has a smaller configuration space and better represents the equilibrium distribution of solid configurations. Since the partition function (and hence free energy) is obtained from the density of states, which is independent of the temperature, equilibrium thermodynamic properties at any condition can be obtained by varying the density. We illustrate our method in the context of the free energy of dry ice.

  4. Transfer functions for solid-solution partitioning of cadmium for Australian soils.

    PubMed

    de Vries, W; McLaughlin, M J; Groenenberg, J E

    2011-12-01

    To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based "partition-relations" based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption experiments were carried out over a realistic range of dissolved Cd concentrations in agricultural soils in Australia. Results showed linear sorption relationships, implying the adequacy of using Kd values to describe partitioning. Desorption measurements were then carried out to assess in-situ Kd values and relate these to soil properties The best transfer functions for solid-solution partitioning were found for Kd values relating total dissolved Cd concentration to total soil Cd concentrations, accounting for the variation in pH, SOM contents and DOC concentrations. Model predictions compared well with measurements of an independent data set, but there was a tendency to underestimate dissolved Cd concentrations of highly polluted soils.

  5. Nonlocal effects on dynamic damage accumulation in brittle solids

    SciTech Connect

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  6. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  7. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  8. Accumulation kinetics and equilibrium partitioning coefficients for semivolatile organic pollutants in forest litter.

    PubMed

    Nizzetto, Luca; Liu, Xiang; Zhang, Gan; Komprdova, Klara; Komprda, Jiri

    2014-01-01

    Soils are important stores of environmentally cycling semivolatile organic contaminants (SVOCs) and represent relevant atmospheric secondary sources whenever environmental conditions favor re-emission. The exchange between air and soil is controlled by resistances posed by interfacial matrices such as the ubiquitously distributed vegetation litter. For the first time, this study focused on the experimental characterization of accumulation parameters for SVOCs in litter under real field conditions. The logarithm of the litter-air equilibrium partitioning coefficient ranged 6.8-8.9 and had a similar dependence on logKOA as that of plant foliage and soil data. Uptake and release rates were also KOA dependent with values (relevant for real environmental conditions) ranging 30,000-150,000 d(-1) and 0.0004-0.0134 d(-1), respectively. The overall mass transfer coefficient v controlling litter-air exchange (0.03-1.4 cm s(-1)) was consistent with previously reported data of v for foliage in forest canopies after normalization on leaf area index. Obtained data suggest that litter holds the potential for influencing atmospheric fugacity in proximity to soil, likely affecting overall exchange of SVOCs between the soil reservoir and the atmosphere.

  9. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    NASA Astrophysics Data System (ADS)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  10. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    PubMed Central

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  11. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    PubMed

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  12. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite

    USGS Publications Warehouse

    Tesoriero, A.J.; Pankow, J.F.

    1996-01-01

    Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.

  13. Neptunium(V) partitioning to uranium(VI) oxide and peroxide solids.

    PubMed

    Douglas, Matthew; Clark, Sue B; Friese, Judah I; Arey, Bruce W; Buck, Edgar C; Hanson, Brady D

    2005-06-01

    Metaschoepite, [(UO2)8O2(OH)12] x 10H2O, and metastudtite, UO4 x 4H2O, are alteration phases anticipated in a spent nuclear fuel repository following the moist oxidation of UO2 on a geologic time scale. Dissolved concentrations and hence potential mobility of other radionuclides in the fuel, such as the neptunyl cation (NpO2+), will likely be determined by the extent of their partitioning into these U(VI) solids. 237Np is of particular interest due to its potential high mobility and long half-life (2.1 x 10(6) years.) In this study, metaschoepite has been precipitated and subsequently transformed to studtite in the presence of dissolved Np. The metaschoepite and studtite solids that formed initially contained <10 and 6500 ppm Np, respectively. Batch dissolution studies of these solids at pH 6 demonstrate release of Np that exceeds congruent dissolution of U from metastudtite; furthermore, the released Np cation remains in solution. Thus, although the Np partitions into the metastudtite solid initially, it is released to solution over time, indicating that metastudtite is not likely to serve as a host solid for Np incorporation or sorption of the neptunyl cation on long time scales.

  14. Partitioning, Persistence, and Accumulation in Digested Sludge of the Topical Antiseptic Triclocarban During Wastewater Treatment

    PubMed Central

    Heidler, Jochen; Sapkota, Amir; Halden, Rolf U.

    2009-01-01

    The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean ± standard deviation) entering and exiting the plant in influent (6.1 ± 2.0 μg/L) and effluent (0.17 ± 0.03 μg/L) was 3,737 ± 694 and 127 ± 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 ± 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 ± 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 ± 15 mg/kg dry weight (2,815 ± 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 ± 1%), 76 ± 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three quarters of the mass of TCC disposed of by consumers in the catchment area of the plant ultimately is released into the environment by application of municipal

  15. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment.

    PubMed

    Heidler, Jochen; Sapkota, Amir; Halden, Rolf U

    2006-06-01

    The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application

  16. Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning

    NASA Astrophysics Data System (ADS)

    Riederer, M.; Hübner, J.; Ruppert, J.; Brand, W. A.; Foken, T.

    2014-12-01

    Relaxed eddy accumulation is still applied in ecosystem sciences for measuring trace gas fluxes. On managed grasslands, the length of time between management events and the application of relaxed eddy accumulation has an essential influence on the determination of the proportionality factor b and thus on the resulting flux. In this study this effect is discussed for the first time. Also, scalar similarity between proxy scalars and scalars of interest is affected until the ecosystem has completely recovered. Against this background, CO2 fluxes were continuously measured and 13CO2 isofluxes were determined with a high measurement precision on two representative days in summer 2010. Moreover, a common method for the partitioning of the net ecosystem exchange into assimilation and respiration based on temperature and light response was compared with an isotopic approach directly based on the isotope discrimination of the biosphere. This approach worked well on the grassland site and could enhance flux partitioning results by better reproducing the environmental conditions.

  17. Endocrine activity of persistent organic pollutants accumulated in human silicone implants--Dosing in vitro assays by partitioning from silicone.

    PubMed

    Gilbert, Dorothea; Mayer, Philipp; Pedersen, Mikael; Vinggaard, Anne Marie

    2015-11-01

    Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing from silicone to the H295R steroidogenesis assay: (1) Measured concentrations of POPs in silicone breast implants were taken from a recent study and silicone disks were loaded according to these measurements. (2) Silicone disks were transferred into H295R cell culture plates in order to control exposure of the adrenal cells by equilibrium partitioning. (3) Hormone production of the adrenal cells was measured as toxicity endpoint. 4-Nonylphenol was used for method development, and the new dosing method was compared to conventional solvent-dosing. The two dosing modes yielded similar dose-dependent hormonal responses of H295R cells. However, with the partitioning-controlled freely dissolved concentrations (Cfree) as dose metrics, dose-response curves were left-shifted by two orders of magnitude relative to spiked concentrations. Partitioning-controlled dosing of POPs resulted in up to 2-fold increases in progestagen and corticosteroid levels at Cfree of individual POPs in or below the femtomolar range. Silicone acted not only as source of the POPs but also as a sorption sink for lipophilic hormones, stimulating the cellular hormone production. Methodologically, the study showed that silicone can be used as reference partitioning phase to transfer in vivo exposure in humans (silicone implants) to in vitro assays (partition-controlled dosing). The main finding was that POPs at the levels at which they are found in humans can interfere with steroidogenesis in a human adrenocortical cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Partitioning of heavy metals to suspended solids of the Flint River, Michigan

    SciTech Connect

    McIlroy, L.M.; DePinto, J.V.; Young, T.C.; Martin, S.C.

    1986-01-01

    The sorptive affinity of copper and zinc to suspended river sediments was investigated as a function of pH and adsorbent solids concentration. Water samples from the Flint River in Michigan were centrifuged to yield a composite sediment concentrate used as an adsorbent in experiments determining pH adsorption edges and conditional adsorption isotherms. Copper and zinc exhibited sharp pH adsorption edges at pH values of approximately 4 to 5.5 and 6 to 7, respectively. Both metals exhibited fractional adsorption decreases as total metal in the system increased. Adsorbent concentration increases were shown to cause decreases in measured copper partition coefficients. The indirect relationship between adsorbent concentration and partition coefficient was observed whether the adsorbent was concentrated or diluted without altering bulk solution chemistry. A mathematical formulation that incorporated both the adsorbent mass effects and the separation of sorbed metal into reversible and resistant components satisfactorily described the observations.

  19. Accumulation and sub-cellular partitioning of metals and As in the clam Venerupis corrugata: Different strategies towards different elements.

    PubMed

    Velez, Cátia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-08-01

    The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accumulate Hg, Cd and Pb (BCF ≥ 12.8) than As (BCF ≤ 2.1) and higher accumulation rate for Cd and Pb than for Hg and As. With the increase of Hg exposure concentrations clams tended to increase the amount of metal bound to metal-sensitive fractions, which may explain the mortality recorded at the highest exposure concentration. Cd sub-cellular partitioning showed that with the increase of exposure concentrations V. corrugata increased the amount of metal in the cellular debris fraction, probably bound to the cellular membranes which explain the mortality recorded at the highest concentration. Results on As partitioning demonstrated that most of the metalloid was associated with fractions in the biologically detoxified metal compartment (BDM). Since high mortality was observed in clams exposed to As our results may indicate that this strategy was not enough to prevent clams from toxic effects and mortality occurred. When exposed to Pb most of the metal was in the BDM compartment, but in this case the metal was mostly in the metal-rich granules fraction which seemed to be efficient in preventing clams from toxicity, and no mortality was recorded. Our study further revealed that As and Hg were the most available elements to be biomagnified through the food chain.

  20. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil.

    PubMed

    Le, T T Yen; Hendriks, A Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions.

  1. Microcarbon residue yield and heteroatom partitioning between volatiles and solids for whole vacuum resids and their liquid chromatographic fractions

    SciTech Connect

    Green, J.B.; Shay, J.Y.; Reynolds, J.W.; Green, J.A.; Young, L.L.; White, M.E.

    1993-10-01

    Five petroleum >1000{degrees}F resids were separated into compound type fractions using liquid chromatography. The coking tendency of each compound type was assessed using the microcarbon residue (MCR) test (ASTM D 4530). Heteroatom (N, S, Ni, V) partitioning between MCR solids versus volatiles was determined through analysis of the starting fractions and the corresponding MCR solids. The weighted sum of MCR solid yields over all compound types in a given resid was typically in good agreement with the MCR yield of the whole resid. This finding agrees with prior studies indicating coke yield to be an additive property. Sulfur partitioning was also an additive property, was predictable from MCR yield, and was nearly independent of the initial form (sulfide, thiophenic, sulfoxide) present. Nitrogen and nickel partitioning were nonadditive and therefore composition dependent. Partitioning of vanadium into solids was essentially quantitative for all resids and their fractions. MCR solid yield was generally dependent only on H/C ratio. However, there is some evidence indicating secondary dependence on hydrocarbon structure; i.e., that naphthenic rings reduce MCR in proportion to H/C by virtue of their effective hydrogen transfer properties. Deposition of N and Ni into MCR solids over the fractions was often appreciably less than that of the whole resids, thereby indicating that interaction among various compound types was required for maximum incorporation of those elements into coke.

  2. Integrated transcriptome sequencing and dynamic analysis reveal carbon source partitioning between terpenoid and oil accumulation in developing Lindera glauca fruits

    PubMed Central

    Niu, Jun; Chen, Yinlei; An, Jiyong; Hou, Xinyu; Cai, Jian; Wang, Jia; Zhang, Zhixiang; Lin, Shanzhi

    2015-01-01

    Lindera glauca fruits (LGF) with the abundance of terpenoid and oil has emerged as a novel specific material for industrial and medicinal application in China, but the complex regulatory mechanisms of carbon source partitioning into terpenoid biosynthetic pathway (TBP) and oil biosynthetic pathway (OBP) in developing LGF is still unknown. Here we perform the analysis of contents and compositions of terpenoid and oil from 7 stages of developing LGF to characterize a dramatic difference in temporal accumulative patterns. The resulting 3 crucial samples at 50, 125 and 150 days after flowering (DAF) were selected for comparative deep transcriptome analysis. By Illumina sequencing, the obtained approximately 81 million reads are assembled into 69,160 unigenes, among which 174, 71, 81 and 155 unigenes are implicated in glycolysis, pentose phosphate pathway (PPP), TBP and OBP, respectively. Integrated differential expression profiling and qRT-PCR, we specifically characterize the key enzymes and transcription factors (TFs) involved in regulating carbon allocation ratios for terpenoid or oil accumulation in developing LGF. These results contribute to our understanding of the regulatory mechanisms of carbon source partitioning between terpenoid and oil in developing LGF, and to the improvement of resource utilization and molecular breeding for L. glauca. PMID:26446413

  3. Modeled trace element concentrations and partitioning in the San Francisco estuary, based on suspended solids concentration.

    PubMed

    Benoit, Michelle D; Kudela, Raphael M; Flegal, A Russell

    2010-08-01

    Although trace element (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) and methylmercury (MeHg) concentrations have been systematically sampled 1-3 times per year throughout the San Francisco Bay estuary for more than two decades, those collections do not capture episodic events that may govern the biogeochemical cycles of these elements in the Bay and adjacent Pacific coastal waters. Analyses of the partitioning of in situ elemental concentrations between particulate and total dissolved (<0.45 microm) phases coupled with optically based measurements of suspended solids concentration (SSC) showed highly significant (p<0.001) associations between all elemental concentrations and SSC in the Bay. Predictive models were developed to estimate the distribution ratio (D), or partition coefficient (Kd), and total concentration of each element in the water column based solely on SSC measurements. Modeled predictions of total element concentrations and distribution ratios were then coupled with measured SSC to predict the concentrations of dissolved trace elements in the water column. These predicted total and dissolved concentrations of trace elements can provide both better diagnostics of biogeochemical cycling within the estuary and better estimates of fluxes to adjacent coastal waters, overcoming the limitations of the long-running but limited direct measurements of trace elements from existing sampling programs.

  4. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  5. Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates.

    PubMed

    Real, António C; Borges, José; Cabral, J Sarsfield; Jones, Gregory V

    2015-08-01

    Temperature and water status profiles during the growing season are the most important factors influencing the ripening of wine grapes. To model weather influences on the quality and productivity of the vintages, it is necessary to partition the growing season into smaller growth intervals in which weather variables are evaluated. A significant part of past and ongoing research on the relationships between weather and wine quality uses calendar-defined intervals to partition the growing season. The phenology of grapevines is not determined by calendar dates but by several factors such as accumulated heat. To examine the accuracy of different approaches, this work analyzed the difference in average temperature and accumulated precipitation using growth intervals with boundaries defined by means of estimated historical phenological dates and intervals defined by means of accumulated heat or average calendar dates of the Douro Valley of Portugal. The results show that in situations where there is an absence of historical phenological dates and/or no available data that makes the estimation of those dates possible, it is more accurate to use grapevine heat requirements than calendar dates to define growth interval boundaries. Additionally, we analyzed the ability of the length of growth intervals with boundaries based on grapevine heat requirements to differentiate the best from the worst vintage years with the results showing that vintage quality is strongly related to the phenological events. Finally, we analyzed the variability of growth interval lengths in the Douro Valley during 1980-2009 with the results showing a tendency for earlier grapevine physiology.

  6. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  7. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  8. [Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions].

    PubMed

    Feng, Lei; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Li, Yong; Huang, Tie-Ping; Xia, Hai-Ao

    2011-02-01

    In this study, the assimilation, partition and accumulation of carbon (C) and nitrogen (N), as well as the relationship between C and N accumulation of rice, were studied from typical paddy ecosystems under long-term fertilizer applications with equal N inputs in subtropical China. The results showed that chemical fertilizer plus low organic manure (LOM) could promote effectively the distribution of C in the rice plant. The N content in the stem-leaf and grain of rice under organic-inorganic fertilization was 8.9-10.2 g x kg(-1) and 11.9-14.8 g x kg(-1) respectively. It was much higher than under other treatments, with about 13% - 53% and 9% - 19% higher than under the chemical fertilization (NPK), separately and 12% - 77% and 23% - 32% higher than under the control treatment (CK), respectively. The C and N storages of rice were mainly accumulated in the aboveground part. Organic-inorganic fertilization treatment possessed higher storages of C (3467.8-4 323.9 kg x hm(-2)) and N (120.3-135.2 kg x hm(-2)) in the rice grain,which was about 13% - 23% of C and 26% - 45% of N higher than under NPK treatment. It indicated that rice grain was the main sink of C and N. The organic-inorganic fertilization was in favor of C accumulation and N absorption in the rice plant and it still possesses an obvious potential in C and N sequestration and absorption in subtropical paddy field.

  9. Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley

    PubMed Central

    Reuscher, Stefan; Kolter, Andreas; Hoffmann, Astrid; Pillen, Klaus

    2016-01-01

    The concentrations of both essential nutrients and chemically similar toxic analogues accumulated in cereal grains have a major impact on the nutritional quality and safety of crops. Naturally occurring genetic diversity can be exploited for the breeding of improved varieties through introgression lines (ILs). In this study, multi-element analysis was conducted on vegetative leaves, senesced flag leaves and mature grains of a set of 54 ILs of the wild ancestral Hordeum vulgare ssp. spontaneum in the cultivated variety Hordeum vulgare ssp. vulgare cv. Scarlett. Plants were cultivated on an anthropogenically heavy metal-contaminated soil collected in an agricultural field, thus allowing simultaneous localization of quantitative trait loci (QTL) for the accumulation of both essential nutrients and toxic trace elements in barley as a model cereal crop. For accumulation of the micronutrients Fe and Zn and the interfering toxin Cd, we identified 25, 16 and 5 QTL, respectively. By examining the gene content of the introgressions, we associated QTL with candidate genes based on homology to known metal homeostasis genes of Arabidopsis and rice. Global comparative analyses suggested the preferential remobilization of Cu and Fe, over Cd, from the flag leaf to developing grains. Our data identifies grain micronutrient filling as a regulated and nutrient-specific process, which operates differently from vegetative micronutrient homoeostasis. In summary, this study provides novel QTL for micronutrient accumulation in the presence of toxic analogues and supports a higher degree of metal specificity of trace element partitioning during grain filling in barley than previously reported for other cereals. PMID:27078500

  10. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  11. Hyphenating Centrifugal Partition Chromatography with Nuclear Magnetic Resonance through Automated Solid Phase Extraction.

    PubMed

    Bisson, Jonathan; Brunel, Marion; Badoc, Alain; Da Costa, Grégory; Richard, Tristan; Mérillon, Jean-Michel; Waffo-Téguo, Pierre

    2016-10-18

    Centrifugal partition chromatography (CPC) and all countercurrent separation apparatus provide chemists with efficient ways to work with complex matrixes, especially in the domain of natural products. However, despite the great advances provided by these techniques, more efficient ways of analyzing the output flow would bring further enhancement. This study describe a hyphenated approach made by coupling NMR with CPC through a hybrid-indirect coupling made possible by using a solid phase extraction (SPE) apparatus intended for high-pressure liquid chromatography (HPLC)-NMR hyphenation. Some hardware changes were needed to adapt the incompatible flow-rates and a reverse-engineering approach that led to the specific software required to control the apparatus. 1D (1)HNMR and (1)H-(1)H correlation spectroscopy (COSY) spectra were acquired in reasonable time without the need for any solvent-suppression method thanks to the SPE nitrogen drying step. The reduced usage of expensive deuterated solvents from several hundreds of milliliters to the milliliter order is the major improvement of this approach compared to the previously published ones.

  12. Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning.

    PubMed

    Costa, Anna I G; Queiroz, Maria E L R; Neves, Antônio A; de Sousa, Flaviane A; Zambolim, Laércio

    2015-08-15

    This work describes the optimization and validation of a method employing solid-liquid extraction with low temperature partitioning (SLE/LTP) together with analysis by gas chromatography with electron capture detection (GC/ECD) for the determination of nine pesticides (chlorothalonil, methyl parathion, procymidone, endosulfan, iprodione, λ-cyhalothrin, permethrin, cypermethrin, and deltamethrin) in lettuce. The method was found to be selective, accurate, and precise, with means recovery values in the range of 72.3-103.2%, coefficients of variation ⩽ 12%, and detection limits in the range 0.4-37 μg kg(-1). The matrix components significantly influence the chromatographic response of the analytes (above 10%). The optimized and validated method was applied to determine the residual concentrations of the fungicides iprodione and procymidone that had been applied to field crops of lettuce. The maximum residual concentrations of the pesticides in the lettuce samples were 13.6 ± 0.4 mg kg(-1) (iprodione) and 1.00 ± 0.01 mg kg(-1) (procymidone), on the day after application of the products.

  13. Measuring gas-liquid partition coefficients of aroma compounds by solid phase microextraction, sampling either headspace or liquid.

    PubMed

    Lloyd, Nathan W; Dungan, Stephanie R; Ebeler, Susan E

    2011-08-21

    Hydrophobic compounds are important odorants and nutrients in foods and beverages, as well as environmental contaminants and pharmaceuticals. Factors influencing their partitioning within multi-component systems and/or from the bulk liquid phase to the air are critical for understanding aroma quality and nutrient bioavailability. The equilibrium partitioning of hydrophobic analytes between air and water was analyzed using solid phase microextraction (SPME) in the headspace (HS-SPME) and via direct immersion in the liquid (DI-SPME). The compounds studied serve as models for hydrophobic aroma compounds covering a range of air-water partition coefficients that extends over four orders of magnitude. By varying the total amount of analyte as well as the ratio of vapor to liquid in the closed, static system, the partition coefficient, K(vl), can be determined without the need for an external calibration, eliminating many potential systematic errors. K(vl) determination using DI-SPME in this manner has not been demonstrated before. There was good agreement between results determined by DI-SPME and by HS-SPME over the wide range of partitioning behavior studied. This shows that these two methods are capable of providing accurate, complementary measurements. Precision in K(vl) determination depends strongly on K(vl) magnitude and the ratio of the air and liquid phases.

  14. Experimental determination of the partitioning of gallium between solid iron metal and synthetic basaltic melt Electron and ion microprobe study

    NASA Technical Reports Server (NTRS)

    Drake, M. J.; Newsom, H. E.; Reed, S. J. B.; Enright, M. C.

    1984-01-01

    The distribution of Ga between solid Fe metal and synthetic basaltic melt is investigated experimentally at temperatures of 1190 and 1330 C, and over a narrow range of oxygen fugacities. Metal-silicate reversal experiments were conducted, indicating a close approach to equilibrium. The analysis of the partitioned products was performed using electron and ion microprobes. At one bar total pressure, the solid metal/silicate melt partition coefficient D(Ga) is used to evaluate metal-silicate fractionation processes in the earth, moon, and Eucrite Parent Body (EPB). It is found that the depletion of Ga abundances in the EPB is due to the extraction of Ga into a metallic core. Likewise, the depletion of Ga in the lunar mantle is consistent with the extraction of Ga into a smaller lunar core if Ga was originally present in a subchondritic concentration. The relatively high Ga abundances in the earth's mantle are discussed, with reference to several theoretical models.

  15. Experimental determination of the partitioning of gallium between solid iron metal and synthetic basaltic melt Electron and ion microprobe study

    NASA Technical Reports Server (NTRS)

    Drake, M. J.; Newsom, H. E.; Reed, S. J. B.; Enright, M. C.

    1984-01-01

    The distribution of Ga between solid Fe metal and synthetic basaltic melt is investigated experimentally at temperatures of 1190 and 1330 C, and over a narrow range of oxygen fugacities. Metal-silicate reversal experiments were conducted, indicating a close approach to equilibrium. The analysis of the partitioned products was performed using electron and ion microprobes. At one bar total pressure, the solid metal/silicate melt partition coefficient D(Ga) is used to evaluate metal-silicate fractionation processes in the earth, moon, and Eucrite Parent Body (EPB). It is found that the depletion of Ga abundances in the EPB is due to the extraction of Ga into a metallic core. Likewise, the depletion of Ga in the lunar mantle is consistent with the extraction of Ga into a smaller lunar core if Ga was originally present in a subchondritic concentration. The relatively high Ga abundances in the earth's mantle are discussed, with reference to several theoretical models.

  16. The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight.

    PubMed

    Hendriks, A J; van der Linde, A; Cornelissen, G; Sijm, D T

    2001-07-01

    Most of the thousands of substances and species that risk assessment has to deal with are not investigated empirically because of financial, practical, and ethical constraints. To facilitate extrapolation, we have developed a model for accumulation kinetics of organic substances as a function of the octanol-water partition ratio (Kow) of the chemical and the weight, lipid content, and trophic level of the species. The ecological parameters were obtained from a previous review on allometric regressions. The chemical parameters, that is, resistances that substances encounter in water and lipid layers of organisms, were calibrated on 1,939 rate constants for absorption from water for assimilation from food and for elimination. Their ratio was validated on 37 laboratory bioconcentration and biomagnification regressions and on 2,700 field bioaccumulation data. The rate constant for absorption increased with the hydrophobicity of the substances with a Kow up to about 1,000 and then leveled off, decreasing with the weight of the species. About 39% of the variation was explained by the model, while deviations of more than a factor of 5 were noted for labile, large, and less hydrophobic molecules as well as for algae, mollusks, and arthropods. The efficiency for assimilation of contaminants from food was determined mainly by the food digestibility and thus by the trophic level of the species. A distinction was made between substances that are stable, that is, with a minimum elimination only, and those that are labile, that is, with an excess elimination probably largely due to biotransformation. The rate constant for minimum elimination decreased with the hydrophobicity of the substance and the weight of the species. About 70% of the variation was explained by the model, while deviations of more than a factor of 5 were noted for algae, terrestrial plants, and benthic animals. Labile substances were eliminated faster than isolipophilic stable compounds, but differences in

  17. An added-mass partition algorithm for fluid–structure interactions of compressible fluids and nonlinear solids

    SciTech Connect

    Banks, J.W. Henshaw, W.D. Kapila, A.K. Schwendeman, D.W.

    2016-01-15

    We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.

  18. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations.

  19. Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient

    SciTech Connect

    Fisk, A.T.; Norstrom, R.J.; Cymbalisty, C.D.; Muir, D.C.G.

    1998-01-01

    Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (K{sub ow}). A wide range of OCs were used including 16 polychlorinated biphenyls, hexachlorobenzene, mirex, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners. With the exception of TCPMeOH, Cl{sub 7}-CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half-lives had a significant curvilinear relationship with K{sub ow} (R{sup 2} = 0.85, p < 0.001), with a maximum t{sub 1/2} for OCs with log K{sub ow} {approximately}7.0. Decreasing t{sub 1/2} for OCs of log K{sub ow} > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by K{sub ow} as by t{sub 1/2} and BMF, although a significant curvilinear relationship was observed (R{sup 2} = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with K{sub ow} (R{sup 2} = 0.84, p < 0.001). Recalcitrant OCs with a log K{sub ow} of {approximately}7.0 would appear to have the greatest potential for food chain biomagnification in fish.

  20. Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach

    NASA Astrophysics Data System (ADS)

    Deng, Mingxi; Pei, Junfeng

    2007-03-01

    The feasibility of using the nonlinear effect of primary Lamb wave propagation for assessing accumulated fatigue damage in solid plates is theoretically analyzed. After the aluminum sheets are subjected to tension-tension fatigue loading for different numbers of loading cycles, they are subjected to ultrasonic tests near the driving frequency where Lamb waves have a strong nonlinearity. This is followed by the measurement of the amplitude-frequency curves for second harmonics of the considered Lamb waves. The experimental results show that the effect of second-harmonic generation by Lamb wave propagation is very sensitive to the accumulation of fatigue damage of solid plates.

  1. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland

    SciTech Connect

    Wilkin, Richard T.; Ford, Robert G.

    2008-10-06

    The geochemical partitioning of arsenic in organic-rich sediments from a contaminated wetland is examined using X-ray absorption spectroscopy and selective chemical extraction procedures, and evaluated in context to the anoxic diagenesis of iron and sulfur. The interaction between ground water and surface water has a significant influence on iron sulfide formation in the wetland sediments. Ground-water seeps supply concentrations of sulfate, dissolved hydrocarbons, ferrous iron, and arsenic, and sediments located near seeps are anomalously enriched in arsenic, reactive iron, and acid-volatile sulfides. Degree-of-sulfidation (DOS) values are high in sediments adjacent to sites of ground-water discharge, ranging from 0.57 to 1.0. Pyrite (FeS{sub 2}) formation is apparently not limited by the abundance of any one primary reactant, e.g., organic carbon, sulfate, or reactive iron; instead, persistence of precursor iron monosulfides is attributed to slow pyrite formation kinetics due to low concentrations of reactive intermediate sulfur species or possibly due to high concentrations of arsenite, dissolved organic-carbon, or other solutes that adsorb to iron monosulfides surfaces and impede transformation reactions to pyrite. Greigite (Fe{sub 3}S{sub 4}) accounts for > 80% of total reduced sulfur in sediments rich in acid-volatile sulfide and X-ray absorption spectroscopy data for magnetic separates provide direct evidence that As(III) is, at least in part, associated with reduced sulfur in the form of greigite. However, pyrite can only account for a small percentage, < 20%, of the total arsenic budget in the reduced sediments. Although pyrite is the predicted stable endpoint for reactive iron and sulfur, it appears that within a 30 y time period pyrite is a relatively unimportant host for arsenic in the system investigated here. The abundance of reactive iron in the sediments prevents accumulation of dissolved sulfide and thus prevents formation of soluble thioarsenic

  2. Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample.

    PubMed

    Jiang, Ruifen; Lin, Wei; Wen, Sijia; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng

    2015-08-07

    A fully automated solid phase microextraction (SPME) depletion method was developed to study the partition coefficient of organic compound between complex matrix and water sample. The SPME depletion process was conducted by pre-loading the fiber with a specific amount of organic compounds from a proposed standard gas generation vial, and then desorbing the fiber into the targeted samples. Based on the proposed method, the partition coefficients (Kmatrix) of 4 polyaromatic hydrocarbons (PAHs) between humic acid (HA)/hydroxypropyl-β-cyclodextrin (β-HPCD) and aqueous sample were determined. The results showed that the logKmatrix of 4 PAHs with HA and β-HPCD ranged from 3.19 to 4.08, and 2.45 to 3.15, respectively. In addition, the logKmatrix values decreased about 0.12-0.27 log units for different PAHs for every 10°C increase in temperature. The effect of temperature on the partition coefficient followed van't Hoff plot, and the partition coefficient at any temperature can be predicted based on the plot. Furthermore, the proposed method was applied for the real biological fluid analysis. The partition coefficients of 6 PAHs between the complex matrices in the fetal bovine serum and water were determined, and compared to ones obtained from SPME extraction method. The result demonstrated that the proposed method can be applied to determine the sorption coefficients of hydrophobic compounds between complex matrix and water in a variety of samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    SciTech Connect

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  4. Ionic liquid expedites partition of curcumin into solid gel phase but discourages partition into liquid crystalline phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes.

    PubMed

    El Khoury, Elsy D; Patra, Digambara

    2013-08-22

    The hydrolysis of curcumin in alkaline and neutral buffer conditions is of interest because of the therapeutic applicability of curcumin. We show that hydrolysis of curcumin can be remarkably suppressed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. The fluorescence of curcumin sensitively detects the phase transition temperature of liposomes. However, at greater concentrations, curcumin affects the phase transition temperature, encouraging fusion of two membrane phases. The interaction of curcumin with DMPC is found to be strong, with a partition coefficient value of Kp = 2.78 × 10(5) in the solid gel phase, which dramatically increases in the liquid crystalline phase to Kp = 1.15 × 10(6). The importance of ionic liquids as green solvents has drawn interest because of their toxicological effect on human health; however, the impact of ionic liquids (ILs) on liposomes is not yet understood. The present study establishes that ILs such as 1-methyl-3-octylimidazolium chloride (moic) affect the permeability and fluidity of liposomes and thus influence parition of curcumin into DMPC liposomes, helping in the solid gel phase but diminishing in the liquid crystalline phase. The Kp value of curcumin does not change appreciably with moic concentration in the solid gel state but decreases with moic concentration in the liquid crystalline phase. Curcumin, a rotor sensitive to detect phase transition temperature, is applied to investigate the influence of ionic liquids such as 1-methyl-3-octylimidazolium chloride, 1-buytl-3-methyl imadazolium tetrafluoroborate, and 1-benzyl-3-methyl imidazolium tetrafluoroborate on DMPC liposome properties. 1-Methyl-3-octylimidazolium chloride lowers the phase transition temperature, but 1-buytl-3-methyl imidazolium tetrafluoroborate and 1-benzyl-3-methyl imidazolium tetrafluoroborate do not perceptibly modify the phase transition temperature; rather, they broaden the phase transition.

  5. Soret separation of highly siderophile elements in Fe-Ni-S melts: Implications for solid metal-liquid metal partitioning

    NASA Astrophysics Data System (ADS)

    Brenan, James M.; Bennett, Neil

    2010-10-01

    Soret separation of melts consisting of Fe (+ 1-10 wt.% Ni) with added C, Si or S and trace highly siderophile elements (HSE; Ru, Rh, Pd, Re, Os, Ir, Pt and Au) was investigated in experiments done at 2 GPa, T hot ~ 2000 °C and T hot-T cold ~ 250 °C. Experiments with added C and Si produced homogeneous samples, whereas those with S resulted in significant compositional gradients, with S enriched at the hot end of the sample, and Fe and HSE enriched at the cold end. The magnitude of the separation of the HSE is not the same for each, but varies in the order (smallest to largest) Pd~Ausolid metal-liquid metal partitioning can be captured in a single thermal diffusion experiment. The magnitude of the melt composition effect, as judged by the Jones-Malvin interaction parameter, β, varies with metal size in a manner similar to solid metal-liquid metal partition coefficients, suggesting like origins of the HSE "selectivity" for Fe-rich solid or liquid structures.

  6. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-03-05

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  7. Sugar loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...

  8. The electric field in spontaneously heating accumulations of solid combustible minerals

    SciTech Connect

    Aleksandrov, I.V.

    1982-01-01

    The electric field in the ionic circuit in a spontaneously heating stack of cutter peat has been studied and modeled. On the basis of laboratory and industrial investigations and a theoretical analysis, the desirability has been shown of representing spontaneously heating accumulations of solid combustible minerals as macrogalvanic cells with spontaneous discharge.

  9. ARSENIC SOLID-PHASE PARTITIONING IN REDUCING SEDIMENTS OF CONTAMINATED WETLAND

    EPA Science Inventory

    The geochemical partitioning of arsenic in organic-rich sediments from a contaminated wetland is examined using X-ray absorption spectroscopy and selective chemical extraction procedures, and evaluated in context to the anoxic diagenesis of iron and sulfur. The interaction betwe...

  10. ARSENIC SOLID-PHASE PARTITIONING IN REDUCING SEDIMENTS OF CONTAMINATED WETLAND

    EPA Science Inventory

    The geochemical partitioning of arsenic in organic-rich sediments from a contaminated wetland is examined using X-ray absorption spectroscopy and selective chemical extraction procedures, and evaluated in context to the anoxic diagenesis of iron and sulfur. The interaction betwe...

  11. [Coupling effects of partitioning alternative drip irrigation with plastic mulch and nitrogen fertilization on cotton dry matter accumulation and nitrogen use].

    PubMed

    Li, Pei-Ling; Zhang, Fu-Cang

    2013-02-01

    A field experiment with complete combination design was conducted to study the effects of partitioning alternative drip irrigation with plastic mulch and nitrogen fertilization on the dry matter accumulation and nitrogen use efficiency of cotton plant. Three levels of irrigation (260, 200, and 140 mm) and of nitrogen fertilizer (270, 180, and 90 kg.hm-2) were installed. The cotton dry mass was the highest in treatments medium nitrogen/high water and high nitrogen/high water. As compared with that in high nitrogen/high water treatment, the nitrogen use efficiency for dry matter accumulation in medium nitrogen/high water treatment was increased by 34.0% -44.6%, with an average of 34.7% , while the water use efficiency was decreased by 6.4% -10.7%, averagely 10.2%. As for the nitrogen accumulation in cotton plant, the nitrogen use efficiency was the highest in medium nitrogen/high water treatment, and the water use efficiency was the highest in high nitrogen/medium water treatment. Compared with high nitrogen/high water treatment, medium nitrogen/high water treatment increased the nitrogen use efficiency for cotton nitrogen accumulation by 29.0% -41.7%, but decreased the water use efficiency for cotton nitrogen accumulation by 5.5%-14.0%. Among the treatments of coupling water and nitrogen of higher cotton yield, treatment medium nitrogen/high water had the higher cotton nitrogen recovery rate, nitrogen agronomic efficiency, and apparent use efficiency than the treatments high nitrogen/medium water and high nitrogen/high water, but no significant differences were observed in the nitrogen absorption ratio and nitrogen physiological efficiency. Treatment medium nitrogen/high water was most beneficial to the coupling effects of water and nitrogen under partitioning alternate drip irrigation with plastic mulch and nitrogen fertilization.

  12. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    SciTech Connect

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  13. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States

    USGS Publications Warehouse

    Anning, D.W.

    2011-01-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10(kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000(kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000(kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000(kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  14. Partition and size distribution of heavy metals in the flue gas from municipal solid waste incinerators in Taiwan.

    PubMed

    Yuan, Chung-Shin; Lin, Hsun-Yu; Wu, Chun-Hsin; Liu, Ming-Han

    2005-03-01

    This study investigates the partition of heavy metals in both solid and gas phases in the flue gas from municipal solid waste (MSW) incinerators. Six MSW incinerators in Taiwan were examined and heavy metals in the flue gas at the inlets and outlets of air pollution control devices (APCDs) were analyzed. Heavy metals including Hg, Pb, Cd, Zn, Cu and Cr were sampled by USEPA Method 29 and further analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS) and cold vapor atomic absorption spectrometry (CVAAS). Experimental results revealed that the removal efficiencies of the APCDs for the heavy metals Pb, Cd, Zn, Cu and Cr greatly exceeded 90%, but that of Hg did not. Two groups of heavy metals upstream of APCDs were observed. Pb, Cd, Zn, Cu and Cr were present mainly in the solid phase with a solid to gas ratio (S/G) of over 12.3. However, in most cases, mercury appeared mainly in the gas phase with an S/G ratio from 0.15 to 1.04, because it has a low boiling point. Additionally, treatment with the APCDs increased the S/G ratio of mercury because gaseous mercury could be removed by injecting powdered activated carbon (PAC) into the flue gas. Moreover, the distribution of particle sizes in the solid phase was bimodal. Finer particles (d(p)2.5 microm) contained more Cr and Hg.

  15. Difference in water accumulation patterns between solid and closed hollow obturators under a thermal cycle.

    PubMed

    Tsuboi, Akito; Sakurai, Takeshi; Watanabe, Makoto

    2012-09-01

    Water accumulation in the hollow space of a maxillary obturator is a continuing problem, and it is unclear whether the porosity of acrylic resin is involved in the mechanism. The purposes of the study were to evaluate the effect of a hollow space in the resin obturator on water sorption under a thermal cycle and to determine factors associated with water accumulation in the obturator. Twenty solid spheres (30-mm diameter) and 40 hemispheres (30-mm diameter, 1.5 mm thickness) were fabricated from heat-polymerized acrylic resin. Closed hollow specimens consisted of 2 hemispheres joined with autopolymerizing resin. Ten solid and 10 closed hollow specimens were immersed in distilled water, whereas the other specimens were stored at 100% relative humidity. Each specimen was thermocycled (5°C-37°C) with a dwell time of 12 hours and weighed every 12 hours for 180 days. Of the 20 closed hollow specimens, 16 showed no water accumulation (8 in distilled water, 8 at 100% humidity). The weight of these specimens became saturated by day 90, with increases from the initial weight of 1.41% at 5°C and 1.36% at 37°C. By day 180, the weights of the solid specimens had increased by 0.96% at 5°C and 0.94% at 37°C. Weight fluctuation associated with temperature was observed for both types of specimens and for all storage conditions. It is concluded that water accumulation inside a closed hollow obturator is not directly related to the water absorption properties of the acrylic resin but is related to thermal damage of the obturator.

  16. Solid partitioning and solid-liquid distribution of 210Po and 210Pb in marine anoxic sediments: roads of Cherbourg at the northwestern France.

    PubMed

    Connan, O; Boust, D; Billon, G; Solier, L; Rozet, M; Bouderbala, S

    2009-10-01

    A sequential extraction protocol has been used to determine the solid-phase partition of (210)Po and (210)Pb in anoxic marine sediment from the roads of Cherbourg (France) in the central English Channel. Measurements were also obtained in pore waters, in which (210)Po activities range between 1 and 20 mBq L(-1) and (210)Pb activities between 2.4 and 3.8 mBq L(-1), with highest activities in the topmost layer. These activities are higher than in seawater, suggesting that sediment act as a source of both (210)Po and (210)Pb for overlying water. The (210)Po profile in the pore waters is apparently correlated with those obtained for Fe, Mn and SO(4)(2)(-), suggesting an influence of early diagenetic processes on the (210)Po solid-liquid distribution. In the sediment, (210)Po is predominantly bound to organic matter or chromium reducible sulphides, and residuals (clay minerals and refractory oxides). Our results indicate that (210)Po is not significantly bound to AVS, i.e. acid volatile sulphides: bioturbation could play a role by the early redistribution of (210)Po bound to acid volatile sulphides in the sediment. (210)Po, (210)Pb and Pb exhibit differences in terms of distribution, probably due to a different mode of penetration in the sediment. This work provides information on solid and liquid distribution of (210)Po and (210)Pb in marine sediment. These data are very scarce in the literature.

  17. Accumulator

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Karigan, G. H. (Inventor)

    1977-01-01

    An accumulator particularly adapted for use in controlling the pressure of a stream of fluid in its liquid phase utilizing the fluid in its gaseous phase was designed. The accumulator is characterized by a shell defining a pressure chamber having an entry throat for a liquid and adapted to be connected in contiguous relation with a selected conduit having a stream of fluid flowing through the conduit in its liquid phase. A pressure and volume stabilization tube, including an array of pressure relief perforations is projected into the chamber with the perforations disposed adjacent to the entry throat for accommodating a discharge of the fluid in either gaseous or liquid phases, while a gas inlet and liquid to gas conversion system is provided, the chamber is connected with a source of the fluid for continuously pressuring the chamber for controlling the pressure of the stream of liquid.

  18. Partitioning and accumulation rates of polycyclic aromatic hydrocarbons into polydimethylsiloxane thin films and black worms from aqueous samples.

    PubMed

    Qin, Zhipei; Mok, Sandra; Ouyang, Gangfeng; Dixon, D George; Pawliszyn, Janusz

    2010-05-14

    Partition equilibriums and extraction rates of polycyclic aromatic hydrocarbons (PAHs) were examined for live biomonitoring with oligochaetes (black worms, Lumbriculus variegatus) and for high surface area chemical passive samplers constructed from polydimethylsiloxane thin film. The goals were to better understand the principles of bioconcentration by aquatic organisms and to aid in the design of a convenient and simple chemical monitoring tool to replace the use of live animals. The worms and films were exposed simultaneously to the contaminated water stream. In the initial extraction stage, similar extracted amount per surface area indicated that thin-film samplers could mimic the behavior of worms for passive sampling. Equilibrium was reached faster by the thin films than by the worms. A good linear relationship between the bioconcentration factors and the film-water partition coefficients of PAHs was found, which demonstrated the feasibility of thin-film sampler for determining the bioavailability of PAHs in water. Compared to the lengthy and inconvenient process of liquid-liquid extraction in worm treatment, thin-film technique simplifies the sample pretreatment procedure by integrating sampling and sample preparation.

  19. Comparison of Solid-Water Partitions of Radiocesium in River Waters in Fukushima and Chernobyl Areas.

    PubMed

    Takahashi, Yoshio; Fan, Qiaohui; Suga, Hiroki; Tanaka, Kazuya; Sakaguchi, Aya; Takeichi, Yasuo; Ono, Kanta; Mase, Kazuhiko; Kato, Kenji; Kanivets, Vladimir V

    2017-09-29

    Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca(2+)] in the Pripyat River. Consequently, RCs is more soluble in the Pripyat River due to weaker interaction of RCs with clay minerals caused by the inhibition effect of the adsorbed humic substances. In contrast, particulate matters and sediments in the Kuchibuto River display high adsorption affinity with lesser inhibition effect of adsorbed humic substances. This difference is possibly governed by the geology and soil type of provenances surrounding both catchments (Fukushima: weathered granite; Chernobyl: peat wetland and carbonate platform) which leads to high concentrations of organic matter and Ca(2+) in the Pripyat River.

  20. Solid-liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4-dichlorophenol biodegradation with used automobile tires as the partitioning phase.

    PubMed

    Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J

    2012-11-01

    Used automobile tire pieces were tested for their suitability as the sequestering phase in a two-phase partitioning bioreactor to treat 2,4-dichlorophenol (DCP). Abiotic sorption tests and equilibrium partitioning tests confirmed that tire "crumble" possesses very favourable properties for this application with DCP diffusivity (4.8 × 10(-8) cm(2)/s) and partition coefficient (31) values comparable to those of commercially available polymers. Biodegradation tests further validated the effectiveness of using waste tires to detoxify a DCP solution, and allow for enhanced biodegradation compared to conventional single-phase operation. These results establish the potential of using a low-cost waste material to assist in the bioremediation of a toxic aqueous contaminant.

  1. Nonlinear Stability of Convection in a Porous Layer with Solid Partitions

    NASA Astrophysics Data System (ADS)

    Straughan, B.

    2014-07-01

    We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.

  2. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    SciTech Connect

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  3. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGES

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; ...

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  4. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor.

    PubMed

    Prpich, George P; Daugulis, Andrew J

    2005-08-01

    Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates to or from an aqueous, cell-containing phase by means of second immiscible phase. Uptake of toxic substrates by the second phase effectively reduces their concentration within the aqueous phase to sub-inhibitory levels, and transfer of molecules between the phases to maintain equilibrium results in the continual feeding of substrate based on the metabolic demand of the microorganisms. Conventionally, a single pure species of microorganism, and a pure organic solvent, have been used in TPPBs. The present work has demonstrated the benefits of using a mixed microbial population for the degradation of phenol in a TPPB that uses solid polymer beads (comprised of ethylene vinyl acetate, or EVA) as the second phase. Polymer modification via an increase in vinyl acetate concentration was also shown to increase phenol uptake. Microbial consortia were isolated from three biological sources and, based on an evaluation of their kinetic performance, a superior consortium was chosen that offered improved degradation when compared to a pure strain of Pseudomonas putida ATCC 11172. The new microbial consortium used within a TPPB was capable of degrading high concentrations of phenol (approximately 2000 mg l(-1)), with decreased lag time (10 h) and increased specific rate of phenol degradation (0.71 g phenol g(1) cell h). Investigation of the four-member consortium showed that it consisted of two Pseudomonas sp., and two Acinetobacter sp., and tests conducted upon the individual isolates, as well as paired organisms, confirmed the synergistic benefit of their existence within the consortium. The enhanced effects of the use of a microbial consortium now offer improved degradation of phenol, and open the possibility of the degradation of multiple toxic substrates via a polymer-mediated TPPB system.

  5. Energy partitioning and electron momentum distributions in intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Magnusson, Joel; Gonoskov, Arkady; Marklund, Mattias

    2017-09-01

    Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA to laboratory astrophysics. Structures with the scale of the laser wavelength can significantly enhance energy absorption, which has been in the center of attention in recent studies. In this article, we demonstrate and assess the effect of the structures for widening the angular distribution of generated energetic electrons. We analyse the results of PIC simulations and reveal several aspects that can be important for the related applications.

  6. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    PubMed

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  7. The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers.

    PubMed

    Meighan, Michelle M; Fenus, Taressa; Karey, Emma; MacNeil, Joseph

    2011-06-01

    In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd(2+) in hydroponic solution had initial translocation rates of at least 0.12 mmol kg(-1)h(-1) and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g(-1) and extracting 1400 μg plant(-1). When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g(-1)min(-1). The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.

  8. Partition of organochlorine concentrations among suspended solids, sediments and brown mussel Perna perna, in tropical bays.

    PubMed

    Galvao, Petrus; Henkelmann, Bernhard; Longo, Renan; Dorneles, Paulo Renato; Torres, João Paulo Machado; Malm, Olaf; Schramm, Karl-Werner

    2014-11-01

    For evaluating the brown mussel Perna perna as a sentinel organism regarding environmental concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), the present study reports original data on the relationship between the concentrations of these chemicals in bottom surface sediments, suspended solids (SS) and concentrations bioaccumulated by this bivalve. Three P. perna cultivation areas, located at three bays in southeastern Brazil were used in this study. The three estuaries are under different degrees of environmental impact. Variations in the OCP and PCB concentrations bioaccumulated by the bivalves tended to be similar to those observed in the sediment, but differed from those found in SS. This latter difference might suggest that the SS trapping apparatuses should have been left in place for approximately 60 days (not only 15 days). This longer period would allow the integration of the environmental variability of the OCP and PCB burden adsorbed to this compartment. Authors encourage future studies to evaluate P. perna exposure to OCPs and PCBs through the evaluation of sediment concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals

    SciTech Connect

    Ramos, E.U.; Meijer, S.N.; Vaes, W.H.J.; Verhaar, H.J.M.; Hermens, J.L.M.

    1998-11-01

    In the current study, the suitability of negligible depletion solid-phase microextraction (nd-SPME) to determine free fractions of chemicals in aquatic environments was explored. The potential interferences of the dissolved matrix (i.e., humic acids) with the SPME measurements were tested. Results show that nd-SPME measures only the freely dissolved fraction and that the measurements are not disturbed by the humic acids. In addition, nd-SPME was used to determine partition coefficients between dissolved organic carbon and water for four hydrophobic chemicals. Obtained values are in excellent agreement with previously reported data. Finally, the bioaccumulation of hexachlorobenzene and PCB 77 to Daphnia magna was determined in the presence and absence of humic acids. The bioconcentration factors (BCF) were calculated based on total as well as on free concentration. Lower BCF values are obtained in the presence of humic acids using total concentrations, whereas equal BCFs are found using free concentrations measured with nd-SPME. Therefore, the authors can conclude that negligible depletion SPME is a good technique to determine bioavailable concentrations of hydrophobic chemicals in aquatic environments.

  10. Effect of metal mixture (Cu, Zn, Pb, and Ni) on cadmium partitioning in littoral sediments and its accumulation by the freshwater macrophyte Eriocaulon septangulare

    SciTech Connect

    Stewart, A.R.; Malley, D.F.

    1999-03-01

    The effect of a metal mixture (Cu, Zn, Pb, and Ni) on Cd fractionation in sediment and its accumulation by the freshwater macrophyte Eriocaulon septangulare was examined in an in situ experiment in the littoral zone at the Experimental Lakes Area, northwestern Ontario, Canada. Fresh sediment was spiked with Cd alone and together with the metal mixture at three concentration levels. Macrophytes were planted in the spiked sediment and placed at a water depth of 0.5 m. The distribution of Cd among sediment fractions (easily reducible [ER], reducible [R-ER], and organic [ORG]), pore water, and macrophytes was determined every 2 weeks for 10 weeks. Small differences among treatment levels in the recovery of Cd from the geochemical fractions were observed after 2 and 8 weeks but not after 10 weeks. At the highest concentration of the metal mixture, Cd repartitioned from the ER fraction onto the R-ER fraction after 2 weeks in situ. After 10 weeks, Cd was accumulated by the shoots and roots of E. septangulare and had not reached steady state. Significantly higher Cd concentrations were found in the shoots of plants in the treatment with Cd alone and the treatment with the highest concentration of the metal mixture than in treatments with intermediate levels of the mixture. Partitioning of Cd among geochemical fractions in sediment alone did not explain differences in tissue Cd concentrations related to treatment level.

  11. Cobalt and nickel uptake by rice and accumulation in soil amended with municipal solid waste compost.

    PubMed

    Bhattacharyya, P; Chakrabarti, K; Chakraborty, A; Tripathy, S; Kim, K; Powell, M A

    2008-03-01

    Effect of addition of municipal solid waste compost (MSWC) on cobalt (Co) and nickel (Ni) contents of submerged rice paddies were studied. A sequential extraction method was used to determine the metal (Co and Ni) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by water soluble and exchangeable fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. MSWC would be a valuable resource for agriculture, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.

  12. Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning.

    PubMed

    Subramanian, Nandhitha; Schumann-Gillett, Alexandra; Mark, Alan E; O'Mara, Megan L

    2016-04-01

    The apparent activity of the multidrug transporter P-glycoprotein (P-gp) is enhanced by the presence of cholesterol. Whether this is due to the direct effect of cholesterol on the activity of P-gp, its effect on the local concentration of substrate in the membrane, or its effect on the rate of entry of the drug into the cell, is unknown. In this study, molecular dynamics simulation techniques coupled with potential of mean force calculations have been used to investigate the role of cholesterol in the movement of four P-gp substrates across a POPC bilayer in the presence or absence of 10% cholesterol. The simulations suggest that the presence of cholesterol lowers the free energy associated with entering the middle of the bilayer in a substrate-specific manner. These findings suggest that P-gp substrates may preferentially accumulate in cholesterol-rich regions of the membrane, which may explain its enhanced transport activity.

  13. GAS- AND SOLID-PHASE PARTITIONING OF PCDDS/FS ON MSWI FLY ASH AND THE EFFECTS OF SAMPLING

    EPA Science Inventory

    Semi-volatile organic compounds (SOCs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), are partitioned as gas-phase and particle-bound products of many industrial combustion processes. This gas/particle partitioning of SOCs has severe implications on both ...

  14. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning

    PubMed Central

    Gaitán-Solís, Eliana; Taylor, Nigel J.; Siritunga, Dimuth; Stevens, William; Schachtman, Daniel P.

    2015-01-01

    Zinc deficiency in humans is a serious problem worldwide with an estimated one third of populations at risk for insufficient zinc in diet, which leads to impairment of cognitive abilities and immune system function. The goal of this research was to increase the bioavailable zinc in the edible portion of cassava roots to improve the overall zinc nutrition of populations that rely on cassava as a dietary staple. To increase zinc concentrations, two Arabidopsis thaliana genes coding for ZIP1 and MTP1 were overexpressed with a tuber-specific or constitutive promoter. Eighteen transgenic events from four constructs, out of a total of 73 events generated, showed significantly higher zinc concentrations in the edible portion of the storage root compared to the non-transgenic controls. The zinc content in the transgenic lines ranged from 4 to 73 mg/kg dry weight (DW) as compared to the non-transgenic control which contained 8 mg/kg. Striking changes in whole plant phenotype such as smaller plant size and chlorotic leaves were observed in transgenic lines that over accumulated zinc. In a confined field trial five transgenic events grown for 12 months showed a range of zinc concentrations from 18 to 217 mg/kg DW. Although the overexpression of zinc transporters was successful in increasing the zinc concentrations in 25% of the transgenic lines generated, it also resulted in a decrease in plant and tuber size and overall yield due to what appears to be zinc deficiency in the aerial parts of the plant. PMID:26217349

  15. Trapped Melt in IIIAB Irons: Solid/Liquid Elemental Partitioning During the Fractionation of the IIIAB Magma

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1999-01-01

    Group IIIAB, the largest iron-meteorite group, shows compositional trends (including a three-order-of-magnitude It concentration range) indicating that it formed by fractional crystallization of a metallic magma. Because about 200 irons are available, and all degrees of crystallization are well represented, IIIAB offers an excellent set of samples for the study of crystallization at all depths of the asteroidal core. On log-log Ir-Au, and Ir-As diagrams IIIAB forms a broad band; the breadth represents real meteorite-to-meteorite variations, far outside experimental or sampling uncertainties. A successful model must explain the width of this band; I suggest that it mainly resulted from the trapping of parental magma within the crystallizing solid. Because S is essentially insoluble in metal, the abundance of FeS is a measure of the fraction of trapped liquid. The trapped-melt model is supported by the observation that irons having higher S contents plot closer to the inferred composition of the magmatic parental liquid. The lowest S values are found in the irons occupying the left envelope of the IIIAB Ir-Au or Ir-As compositional fields, thus it is this set of irons that should be interpreted as the solid products of a fractionating magma. This simplifies the modeling of the crystallization process and allows inferences regarding the distribution ratios for other elements in the evolved IIIAB system. The large (multiton) Cape York irons show wide variations in their trapped-melt fractions; their compositions seem best understood in terms of a low initial S content of the IIIAB magma, about 20 mg/g. The inferred initial IIIAB distribution coefficient for Ir, 4.6, is much higher than published values based on laboratory studies of low-S systems; I suggest that low-S (and low-P) partition-ratio measurements tend to err in the direction of unity. In IIIAB distribution coefficients for Au, As, and Ni were still < 1 when the most evolved IIIAB irons formed, another

  16. The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grass Leymus chinensis.

    PubMed

    Li, Zhuolin; Zhang, Yuting; Yu, Dafu; Zhang, Na; Lin, Jixiang; Zhang, Jinwei; Tang, Jiahong; Wang, Junfeng; Mu, Chunsheng

    2014-01-01

    Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380 ± 20 µmol mol(-1),760 ± 20 µmol mol(-1)) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis.

  17. The Influence of Precipitation Regimes and Elevated CO2 on Photosynthesis and Biomass Accumulation and Partitioning in Seedlings of the Rhizomatous Perennial Grass Leymus chinensis

    PubMed Central

    Li, Zhuolin; Zhang, Yuting; Yu, Dafu; Zhang, Na; Lin, Jixiang; Zhang, Jinwei; Tang, Jiahong; Wang, Junfeng; Mu, Chunsheng

    2014-01-01

    Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380±20 µmol mol-1,760±20 µmol mol-1) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis. PMID:25093814

  18. The Partition Intervalometer: A Programmable Underwater Timer for Marking Accumulated Sediment Profiles Collected in Anderson Sediment Traps: Development, Operation, Testing Procedures, and Field Results

    USGS Publications Warehouse

    Rendigs, Richard R.; Anderson, Roger Y.; Xu, Jingping; Davis, Raymond E.; Bergeron, Emile M.

    2009-01-01

    This manual illustrates the development of a programmable instrument designed to deploy a series of wafer-shaped discs (partitions) into the collection tube of a sediment trap in various aquatic environments. These hydrodynamically shaped discs are deployed at discrete time intervals from the Intervalometer and provide markers that delineate time intervals within the sediments that accumulate in the collection tube. The timer and mechanical system are lodged in an air-filled, water-tight pressure housing that is vertically hung within the confines of a cone-shaped sediment trap. The instrumentation has been operationally pressure tested to an equivalent water depth of approximately 1 km. Flaws discovered during extensive laboratory and pressure testing resulted in the implementation of several mechanical modifications (such as a redesign of the rotor and the discs) that improved the operation of the rotor assembly as well as the release of discs through the end cap. These results also identified a preferred azimuth placement of the rotor disc relative to the drop hole of the end cap. In the initial field trial, five sediment traps and coupled Intervalometers were attached to moored arrays and deployed at two sites off the coast of Southern California for approximately 8 months. Each of the instruments released 18 discs at the programmed 10 day intervals, except one unit, which experienced a malfunction after approximately 4 months. Most of the discs oriented in a near-horizontal position upon the surface of the sediment in the collection tubes. Sampling of the sediments for geochemical analyses was improved by these clearly defined markers, which indicated the changes in the flux and nature of sediments accumulated during the deployment period of each sediment trap.

  19. Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases.

    PubMed

    Sklar, L A; Miljanich, G P; Dratz, E A

    1979-05-01

    The partition of cis-parinaric acid (9,11,13,15-cis, trans, trans,cis-octadecatetraenoic acid, cis-PnA) and trans-parinaric acid (9,11,13,15-all-trans-octadecatetraenoic acid, trans-PnA) among aqueous, solid lipid, and fluid lipid phases has been measured by three spectroscopic parameters: absorption spectral shifts, fluorescence quantum yield, and fluorescence polarization. The solid lipid was dipalmitoylphosphatidylcholine (DPPC); the fluid lipid was palmitoyldocosahexaenoylphosphatidylcholine (PDPC). Mole fraction partition coefficients between lipid and water were determined by absorption spectroscopy to be for ci--PnA, 5.3 X 10(5) with a solid lipid and 9 X 10(5) with fluid lipid and, for trans-PnA, 5 X 10(6) with solid lipid and 1.7 X 10(6) with fluid lipid. Ratios of the solid to the fluid partition coefficients (Kps/f) are 0.6 +/- 0.2 for cis-PnA and 3 +/- 1 for trans-PnA. A phase diagram for codispersions of DPPC and PDPC has been constructed from the measurements of the temperature dependence of the fluorescence quantum yield and polarization of cis-PnA and trans-PnA and their methyl ester derivatives. A simple analysis based on the phase diagram and fluorescence data allows additional calculations of Kps/f's which are determined to be 0.7 +/- 0.2 for the cis probes and 4 +/- 1 for the trans probes. The relative preference of trans-PnA for solid phase lipids and its enhanced quantum yield in solid phase lipids make it sensitive to a few percent solid. The trans probes provide evidence that structural order may persist in dispersions of these phospholipids 10 degrees C or more above their transition temperature. It is concluded that measurements of PnA fluorescence polarization vs. temperature are better suited than measurements of quantum yield vs. temperature for determining phospholipid phase separation.

  20. Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M. A.

    2006-04-01

    Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.

  1. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  2. Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetlands: solids accumulation and hydraulic conductivity reduction.

    PubMed

    De Paoli, André Cordeiro; von Sperling, Marcos

    2013-01-01

    This study aimed to evaluate the behaviour of two horizontal subsurface flow constructed wetland units regarding solids build up and clogging of the filter medium. In order to analyse the causes of this process, which is considered the major operational problem of constructed wetlands, studies were carried out to characterize accumulated solids and hydraulic conductivity at specific points of the beds of two wetlands (planted with Typha latifolia and unplanted units) receiving effluent from an upflow anaerobic sludge blanket reactor treating sanitary sewage (population equivalent of 50 inhabitants each unit). The experiments were performed after the units were operating for 2 years and 4 months. This study presents comparative results related to the quantification and characterization of accumulated solids and hydraulic conductivity along the length and width of the filter beds. Approximately 80% of the solids found were inorganic (fixed). Near the inlet end, the rate interstitial solids/attached solids was 5.0, while in the outlet end it was reduced to 1.5. Hydraulic conductivity was lower near the inlet of the units (as expected) and, by comparing the planted wetland with the unplanted, the hydraulic conductivity was lower in the former, resulting in larger undesired surface flow.

  3. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    PubMed

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha(-1), UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1), BBF; polymer-coated urea at 240 kg N ha(-1), PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  4. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    PubMed Central

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  5. Transfers of iodine in the soil-plant-air system: Solid-liquid partitioning, migration, plant uptake adn volatilization

    USDA-ARS?s Scientific Manuscript database

    Human exposure to soil iodine depends upon the partitioning of the iodine into the, mobile, liquid and gaseous soil phases. From the liquid phase, iodine can be transported into surface- and ground-waters, plant roots, and, consequently, into the human diet. From the gaseous phase, iodine can be tra...

  6. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.

  7. A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors.

    PubMed

    Hernández, María; Quijano, Guillermo; Thalasso, Frédéric; Daugulis, Andrew J; Villaverde, Santiago; Muñoz, Raúl

    2010-08-01

    A comparative study of the performance of solid and liquid non-aqueous phases (NAPs) to enhance the mass transfer and biodegradation of hexane by Pseudomonas aeruginosa in two-phase partitioning bioreactors (TPPBs) was undertaken. A preliminary NAP screening was thus carried out among the most common solid and liquid NAPs used in pollutant biodegradation. The polymer Kraton G1657 (solid) and the liquid silicone oils SO20 and SO200 were selected from this screening based on their biocompatibility, resistance to microbial attack, non-volatility and high affinity for hexane (low partition coefficient: K = C(g)/C(NAP), where C(g) and C(NAP) represent the pollutant concentration in the gas phase and NAP, respectively). Despite the three NAPs exhibited a similar affinity for hexane (K approximately 0.0058), SO200 and SO20 showed a superior performance to Kraton G1657 in terms of hexane mass transfer and biodegradation enhancement. The enhanced performance of SO200 and SO20 could be explained by both the low interfacial area of this solid polymer (as a result of the large size of commercial beads) and by the interference of water on hexane transfer (observed in this work). When Kraton G1657 (20%) was tested in a TPPB inoculated with P. aeruginosa, steady state elimination capacities (ECs) of 5.6 +/- 0.6 g m(-3) h(-1) were achieved. These values were similar to those obtained in the absence of a NAP but lower compared to the ECs recorded in the presence of 20% of SO200 (10.6 +/- 0.9 g m(-3) h(-1)). Finally, this study showed that the enhancement in the transfer of hexane supported by SO200 was attenuated by limitations in microbial activity, as shown by the fact that the ECs in biotic systems were far lower than the maximum hexane transfer capacity recorded under abiotic conditions.

  8. The partitioning of Pt-Re-Os between solid and liquid metal in the Fe-Ni-S system at high pressure: Implications for inner core fractionation

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiromi; Ohtani, Eiji; Terasaki, Hidenori; Ito, Yoshinori

    2009-08-01

    Coupled 186Os/ 188Os and 187Os/ 188Os enrichments of plume-derived lavas have been suggested to reflect contributions of materials from the outer core ( Brandon et al., 1998). This hypothesis is based on the assumption that the Earth's liquid outer core has high Pt/Os and slightly high Re/Os ratios as a result of the crystallization of the solid inner core, and shows coupled enrichments in the 186Os/ 188Os and 187Os/ 188Os ratios, reflecting the decay of 190Pt and 187Re to 186Os and 187Os, respectively. Partitioning experiments of Pt-Re-Os between solid and liquid metal were performed at 5-20 GPa and 1250-1400 °C, to examine the effects of pressure in the Fe-Ni-S system. The ratios ( DOs/ DPt, DOs/ DRe) of measured partition coefficients of Pt, Re and Os are almost constant with increasing pressure. DOs/ DPt increases significantly, whereas DOs/ DRe decreases, with increasing sulphur content in the liquid metal. On the basis of the present experimental results, it is unlikely that the required Pt-Re-Os fractionation is generated during inner core crystallization, assuming that the light element in the Earth's core is sulphur.

  9. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States1

    PubMed Central

    Anning, David W

    2011-01-01

    Abstract Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit. PMID:22457583

  10. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  11. Melting and solid-melt partitioning in iron-light element systems under megabar conditions: Implications for the thermal state of the Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Kamada, S.; Sakai, T.; Terasaki, H.; Hayashi, H.

    2011-12-01

    The experimental study of the core was pioneered by H.K. Mao [1]. After his pioneering works, significant developments have been made in our high pressure science community to clarify the Earth's core. We have extended the pressure range of melting experiments of iron-light element compounds to pressures exceeding 100 GPa. Melting can be detected by using different criteria, i.e., a change of laser heating efficiency, in situ X-ray diffraction, and the textural change of the recovered samples after quenching from melts. These criteria are generally consistent with one another and enabled us to constrain the temperature, thermal state, and the composition of the core. Melting and phase relations of the Fe-Si, Fe-S, Fe-Ni-S and Fe-S-O systems were determined up to the core pressures based on the in situ X-ray diffraction and a change of laser heating efficiency and texture of the recovered samples by the laser heated diamond anvil cell [2,3,4]. The melting curves may provide constraints for temperatures at the core-mantle boundary (CMB) and the inner core boundary (ICB). Melting and phase relations of the Fe-Fe3S and Fe-S-O systems revealed that Fe3S dissolves first at the solidus before melting of the metallic iron alloy at the liquidus at least up to 180 GPa. The (FeNi)3S phase together with hcp-FeNi is stable up to the pressure above 200 GPa. Therefore, these phases are candidates for the constituent of the inner core. Solid-liquid partitioning experiments can be made by the laser heated diamond anvil cell. The partitioning experiment of Pt, Re, and Os between solid hcp-FeNi alloy and Fe-Ni-S liquid metals is an example of such experiments. It has been assumed that Os isotopic signatures showing coupled 186Os/188Os and 187Os/188Os enrichments in some plume magmas is originated from contamination of outer core materials formed by the inner core fractionation at the base of the lower mantle [5]. We conducted partitioning experiments of Pt, Re, and Os up to 100 GPa

  12. Liquid accumulation in vibrating vocal fold tissue: a simplified model based on a fluid-saturated porous solid theory.

    PubMed

    Tao, Chao; Jiang, Jack J; Czerwonka, Lukasz

    2010-05-01

    The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small-amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph.D., dissertation, 1991, University of Iowa). (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  13. Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2-fS2 conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Brenan, James

    2015-06-01

    In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between monosulfide solid solution (MSS) and sulfide melt, as well as MSS and intermediate solid solution (ISS), at 0.1 MPa and 860-926 °C, log fS2 -3.0 to -2.2 (similar to the Pt-PtS buffer), with fO2 controlled at the fayalite-magnetite-quartz (FMQ) buffer. The IPGEs (Os, Ir, Ru), Rh and Re are found to be compatible in MSS relative to sulfide melt with D values ranging from ∼20 to ∼5, and DRe/DOs of ∼0.5. Pd, Pt, Au, Ag, Pb, as well as the chalcogens, are incompatible in MSS, with D values ranging from ∼0.1 to ∼1 × 10-3. For the same metal/sulfur ratio, D values for the IPGEs, Rh and Re are systematically larger than most past studies, correlating with higher oxygen content in the sulfide liquid, reflecting the significant effect of oxygen on increasing the activity coefficients for these elements in the melt phase. MSS/ISS partitioning experiments reveal that Ru, Os, Ir, Rh and Re are partitioned into MSS by a factor of >50, whereas Pd, Pt, Ag, Au and the chalcogens partition from weakly (Se, As) to strongly (Ag, Au) into ISS. Uniformly low MSS- and ISS- melt partition coefficients for the chalcogens, Pt, Pd, Ag and Au will lead to enrichment in the residual sulfide liquid, but D values are generally too large to reach early saturation in Pt-Pd-chalcogen-rich accessory minerals, based on current solubility estimates. Instead, these phases likely precipitate at the last dregs of crystallization. Modeled evolution curves for the PGEs and chalcogens are in reasonably good agreement with whole-rock sulfide compositions for the McCreedy East deposit (Sudbury, Ontario), consistent with an origin by crystallization of MSS, then MSS + ISS from sulfide magma.

  14. Odour-causing compounds in air samples: gas-liquid partition coefficients and determination using solid-phase microextraction and GC with mass spectrometric detection.

    PubMed

    Godayol, Anna; Alonso, Mònica; Sanchez, Juan M; Anticó, Enriqueta

    2013-03-01

    A quantification method based on solid-phase microextraction followed by GC coupled to MS was developed for the determination of gas-liquid partition coefficients and for the air monitoring of a group of odour-causing compounds that had previously been found in wastewater samples including dimethyl disulphide, phenol, indole, skatole, octanal, nonanal, benzothiazole and some terpenes. Using a divinylbenzene/carboxen/polydimethylsiloxane fibre, adsorption kinetics have been studied to define an extraction time that would avoid coating saturation. It was found that for an extraction time of 10 min, external calibration could be performed in the range of 0.4-100 μg/m(3), with detection limits between 0.1 and 20 μg/m(3). Inter-day precision of the developed method was evaluated (n = 5) and RSD values between 12 and 24% were obtained for all compounds. The proposed method has been applied to the analysis of air samples surrounding a wastewater treatment plant in Catalonia (Spain). In all air samples evaluated, dimethyl disulphide, limonene and phenol were detected, and the first two were the compounds that showed the highest partition coefficients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study of the separation limits of continuous solid support free liquid-liquid chromatography: separation of capsaicin and dihydrocapsaicin by centrifugal partition chromatography.

    PubMed

    Goll, Johannes; Frey, Andreas; Minceva, Mirjana

    2013-04-05

    Sequential centrifugal partition chromatography (sCPC) is a cyclic solid support-free liquid-liquid chromatographic process, in which a continuously introduced feed mixture is separated into two sequentially collected product streams. The few experimental demonstrations of this concept already revealed its potential for the preparative separation of pharmaceuticals and fine chemicals. In this work not only the possibilities, but also the limits of the sCPC technology are explored. A feed mixture consisting of capsaicin and dihydrocapsaicin, whose molecular structure differs in only one double bond, was selected for this purpose. The sCPC unit operating parameters needed for a complete separation of the feed mixture were selected using the recently published approach, which uses the partition coefficient of the feed components and the hydrodynamic characteristics of the system as input data. A complete separation of capsaicin and dihydrocapsaicin with the solvent system heptane/ethyl acetate/methanol/water:1/1/1/1 (v/v/v/v) was achieved, although the separation factor was only 1.32. The sCPC unit separation performance was successfully simulated using the cell model.

  16. Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids.

    PubMed

    Lamsal, B P; Wang, H; Johnson, L A

    2011-06-01

    Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d(50) for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d(50) ∼ 7 μm)in thin stillage and decreased coarse (d(50) ∼ 122 μm) by half compared to hammermilling.

  17. Partitioning of rhodium and ruthenium between Pd-Rh-Ru and (Ru,Rh)O2 solid solutions in high-level radioactive waste glass

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru; Ohira, Toshiaki; Komamine, Satoshi; Ochi, Eiji

    2015-10-01

    The partitioning of rhodium and ruthenium between Pd-Rh-Ru alloy with a face-centered cubic (FCC) structure and (Ru,Rh)O2 solid solution has been investigated between 1273 and 1573 K at atmospheric oxygen fugacity. The rhodium and ruthenium contents in FCC increase, while the RhO2 content in (Ru,Rh)O2 decreases with increasing temperature due to progressive reduction of the system. Based on the experimental results and previously reported thermodynamic data, the thermodynamic mixing properties of FCC phase and (Ru,Rh)O2 have been calibrated in an internally consistent manner. Phase equilibrium of platinum grope metals in an HLW glass was calculated by using the obtained thermodynamic parameters.

  18. [A Simultaneous Determination Method with Acetonitrile-n-Hexane Partitioning and Solid-Phase Extraction for Pesticide Residues in Livestock and Marine Products by GC-MS].

    PubMed

    Yoshizaki, Mayuko; Kobayashi, Yukari; Shimizu, Masanori; Maruyama, Kouichi

    2015-01-01

    A simultaneous determination method was examined for 312 pesticides (including isomers) in muscle of livestock and marine products by GC-MS. The pesticide residues extracted from samples with acetone and n-hexane were purified by acetonitrile-n-hexane partitioning, and C18 and SAX/PSA solid-phase extraction without using GPC. Matrix components such as cholesterol were effectively removed. In recovery tests performed by this method using pork, beef, chicken and shrimp, 237-257 pesticides showed recoveries within the range of 70-120% in each sample. Validity was confirmed for 214 of the target pesticides by means of a validation test using pork. In comparison with the Japanese official method using GPC, the treatment time of samples and the quantity of solvent were reduced substantially.

  19. Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid-liquid two-phase partitioning bioreactor.

    PubMed

    Morrish, Jenna L E; Daugulis, Andrew J

    2008-12-01

    In an effort to improve reactor performance and process operability, the microbial biotransformation of (-)-trans-carveol to (R)-(-)-carvone by hydrophobic Rhodococcus erythropolis DCL14 was carried out in a two phase partitioning bioreactor (TPPB) with solid polymer beads acting as the partitioning phase. Previous work had demonstrated that the substrate and product become inhibitory to the organism at elevated aqueous concentrations and the use of an immiscible second phase in the bioreactor was intended to provide a reservoir for substrates to be delivered to the aqueous phase based on the metabolic rate of the cells, while also acting as a sink to uptake the product as it is produced. The biotransformation was previously undertaken in a two liquid phase TPPB with 1-dodecene and with silicone oil as the immiscible second phase and, although improvement in the reactor performance was obtained relative to a single phase system, the hydrophobic nature of the organism caused the formation of severe emulsions leading to significant operational challenges. In the present work, eight types of polymer beads were screened for their suitability for use in a solid-liquid TPPB for this biotransformation. The use of selected solid polymer beads as the second phase completely prevented emulsion formation and therefore improved overall operability of the reactor. Three modes of solid-liquid TPPB operation were considered: the use of a single polymer bead type (styrene/butadiene copolymer) in the reactor, the use of a mixture of polymer beads in the reactor (styrene/butadiene copolymer plus Hytrel(R) 8206), and the use of one type of polymer beads in the reactor (styrene/butadiene copolymer), and another bead type (Hytrel(R) 8206) in an external column through which fermentation medium was recirculated. This last configuration achieved the best reactor performance with 7 times more substrate being added throughout the biotransformation relative to a single aqueous phase

  20. Solid / Liquid Partitioning of Iron in (Mg0.9Fe0.1)2SiO4 Bulk Composition under Lower Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Hirose, K.; Tateno, S.

    2009-12-01

    Melting causes strong chemical differentiation in the Earth’s interior. It is generally believed that ultra-low velocity zone (ULVZ) observed in the lowermost mantle represents the partially molten zone, but the nature of partial melting is not known yet. Is the partial melt enriched in iron? Is it denser than coexisting solid? Here we investigate the partitioning of iron between partial melt and solid residue in (Mg0.9Fe0.1)2SiO4 bulk composition up to 61 GPa using laser-heated diamond-anvil cell (LHDAC). We used the olivine from KLB-1 peridotite as starting material and loaded its powder between the argon pressure medium. The sample was heated from double side using the Nd:YLF laser. Melting was confirmed by a sudden increase in the absorption of the laser light by the sample. A recovered sample was processed to a thin film by Ar ion using the Ion Slicer, and subsequently examined under field emission-type microprobe (FE-EPMA). The X-ray mapping of the sample showed the extensive segregation of each phase under the temperature gradient. The center of the laser-heated hot spot had non-stoichiometric composition, indicating a quenched liquid. Liquidus phase was found to be ferropericlase (Fp) up to ~26 GPa and changed into Mg-silicate perovskite (MgPv) at about 31GPa, consistent with the results obtained by previous melting experiments in multi-anvil apparatus (Ohtani et al., 1998 PEPI; Ito et al., 2004 PEPI). MgPv remains the liquidus phase up to 61 GPa, the highest pressure condition examined so far in this study. We determined the iron partitioning between MgPv and melt (D= FeO (in crystal, wt.%) / FeO (in liquid, wt.%)) from the results of chemical analyses. The partition coefficient D increased weakly with increasing pressure from 31 to 61 GPa, though partial melt remains more iron-rich than perovskite up to 61GPa. The results up to the lowermost mantle condition will be discussed in the presentation.

  1. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    EPA Science Inventory

    A new method is described for determining total gasoline-range organics
    (TGRO) in water that combines solid-phase microextraction (SPME) and infrared
    (IR) spectroscopy. In this method, the organic compounds are extracted from
    250-mL of water into a small square (3....

  2. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    EPA Science Inventory

    A new method is described for determining total gasoline-range organics
    (TGRO) in water that combines solid-phase microextraction (SPME) and infrared
    (IR) spectroscopy. In this method, the organic compounds are extracted from
    250-mL of water into a small square (3....

  3. Iron Partitioning in Ferropericlase

    NASA Astrophysics Data System (ADS)

    Braithwaite, J. W. H.; Stixrude, L. P.; Pinilla, C.; Holmstrom, E.

    2015-12-01

    Ferropericlase, (Mg,Fe)O, is the second most abundant mineral in the Earth's lower mantle. Whether iron favours the liquid or solid phase of (Mg,Fe)O has important implications for the Earth's mantle, both chemically and dynamically. As iron is much heavier than magnesium, the partitioning of iron between liquid and solid will lead to a contrast in densities. This difference in density will lead one phase to be more buoyant than the other and would help, in part, to explain how the mantle crystallised from the magma ocean of the Hadean eon to its current state. The partitioning of iron between the two phases is characterized by partition coefficients. Using ab-initio methods, thermodynamic integration and adiabatic switching these coefficients have been determined. Results are presented for pressures encompassing the region between the upper mantle and the core-mantle boundary (10-140GPa).

  4. Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.).

    PubMed

    Treviño-Cueto, B; Luis, M; Contreras-Esquivel, J C; Rodríguez, R; Aguilera, A; Aguilar, C N

    2007-02-01

    Larrea tridentata (Sesse & Mocino ex DC.) Coville, also known as Larrea, gobernadora, chaparral, or creosote bush, is a shrubby plant which dominates some areas of the desert southwest in the United States and Northern Mexico and its use has not been exploited and standardized. In this study, gobernadora was studied to evaluate its potential use for support of solid state culture. Influence of two minimal media added with gobernadora powder as the sole carbon source and inducer of tannin-degrading enzymes was evaluated. Cultures were initially 70% moisture, had a pH of 5.5 and were inoculated with Aspergillus niger Aa-20 at 2 x 10(7) spores per gram of media. Analysis of pH, moisture, tannin uptake, gallic acid accumulation and tannase production were evaluated. Results indicated a high content of condensed (39.4%dm) and hydrolysable (22.8%dm) tannins. Invasion capacity of fungal growth was of 0.15 mmh(-1). Tannase production reached values of 1040 Ul(-1) at 43 h of culture. During the first 48 h of culture, the concentration of gallic acid accumulation was 0.33 gl(-1). Gobernadora is a potential source of gallic acid and tannase production by solid state culture; however, further optimization of the process is needed.

  5. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    PubMed

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides.

    PubMed Central

    McCormick, S P; Taylor, S L; Plattner, R D; Beremand, M N

    1989-01-01

    Mutant strains of Fusarium sporotrichioides NRRL 3299 deficient in the ability to synthesize T-2 toxin were examined on solid rice medium. Five novel alicyclic trichothecenes were isolated: 11 alpha-hydroxytrichodiene; tricho-9-ene-2 alpha,3 alpha,11 alpha-triol; tricho-9-ene-2 alpha,3 alpha,8 alpha,11 alpha-tetraol; tricho-9-ene-2 alpha,3 alpha,8 beta,11 alpha-tetraol; and tricho-9-ene-2 alpha,3 alpha,11 alpha,16-tetraol. PMID:2802605

  7. Remodelling of extracellular matrix due to solid stress accumulation during tumour growth

    PubMed Central

    Pirentis, Athanassios P.; Polydorou, Christiana; Papageorgis, Panagiotis; Voutouri, Chrysovalantis; Mpekris, Fotios; Stylianopoulos, Triantafyllos

    2015-01-01

    Solid stresses emerge as the expanding tumour displaces and deforms the surrounding normal tissue, and also as a result of intratumoural component interplay. Among other things, solid stresses are known to induce extensive extracellular matrix synthesis and reorganization. In the present study, we developed a mathematical model of tumour growth that distinguishes the contribution to stress generation by collagenous and non-collagenous tumour structural components, and also investigates collagen fibre remodelling exclusively due to solid stress. To this end, we initially conducted in vivo experiments using an orthotopic mouse model for breast cancer to monitor primary tumour growth and derive the mechanical properties of the tumour. Subsequently, we fitted the mathematical model to experimental data to determine values of the model parameters. According to the model, intratumoural solid stress is compressive, whereas extratumoural stress in the tumour vicinity is compressive in the radial direction and tensile in the periphery. Furthermore, collagen fibres engaged in stress generation only in the peritumoural region, and not in the interior where they were slackened due to the compressive stress state. Peritumoural fibres were driven away from the radial direction, tended to realign tangent to the tumour-host interface, and were also significantly stretched by tensile circumferential stresses. By means of this remodelling, the model predicts that the tumour is enveloped by a progressively thickening capsule of collagen fibres. This prediction is consistent with long-standing observations of tumour encapsulation and histologic sections that we performed, and it further corroborates the expansive growth hypothesis for the capsule formation. PMID:26194953

  8. Effect of HCl/SO₂₃/NH₃/O₂₃and mineral sorbents on the partitioning behaviour of heavy metals during the thermal treatment of solid wastes.

    PubMed

    Huang, Qunxing; Cai, Xu; Alhadj Mallah, Moussa Mallaye; Chi, Yong; Yan, Jianhua

    2015-01-01

    The high concentration of heavy metals in solid wastes may cause serious pollution during thermal treatment. We have investigated, theoretically and experimentally, the effects of several important flue gas species and mineral sorbents on the partitioning behaviour of four major heavy metals (cadmium, lead, zinc and copper) which are often present in municipal solid waste (MSW). Their concentrations in bottom ash, fly ash and flue gas were quantified when model MSW samples were treated thermally under different conditions. The evaporation ratio of the four metals, excluding Cu, increased with decreasing oxygen concentration. The presence of HCl promotes heavy metal evaporation by preventing the formation of stable metallic species, especially for Zn (evaporation of more than 20%). An increase in oxygen concentration has a negative influence on the effect of HCl. In the presence of SO₂, Cd and Pb exhibited a higher evaporation ratio, while Zn and Cu were insensitive to the change. SO₂also inhibits Cd vaporization in an oxidative atmosphere. The effect of NH3 on reducing the metal volatilization rate was established indirectly. Calcium oxide addition enhances metal evaporation except for that of Zn (which shows a decrease of 38%). Although desulphurization by calcium injection decreases the volume of acid gas, calcium affects heavy metal pollution control adversely. The presence or addition of SiO₂- or Al₂O₃-containing minerals can lead to the formation of stable metallic salts. This may favour the control of Cd, Pb, Zn and Cu volatilization up to 13%, 50%, 17.5% and 19%, respectively.

  9. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors.

    PubMed

    Quijano, Guillermo; Rocha-Ríos, José; Hernández, Maria; Villaverde, Santiago; Revah, Sergio; Muñoz, Raúl; Thalasso, Frédéric

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a(g)) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a(g) were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a(g) were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O(2)L(-1)h(-1) and 1.3 g O(2)L(-1)h(-1) were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a(g) rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  10. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  11. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  12. Rate of production, dissolution and accumulation of biogenic solids in the ocean.

    PubMed

    Arrhenius, G

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  13. Nonequilibrium capture rates induce protein accumulation and enhanced adsorption to solid-state nanopores.

    PubMed

    Freedman, Kevin J; Haq, Syed Raza; Fletcher, Michael R; Foley, Joe P; Jemth, Per; Edel, Joshua B; Kim, Min Jun

    2014-12-23

    Single molecule capturing of analytes using an electrically biased nanopore is the fundamental mechanism in which nearly all nanopore experiments are conducted. With pore dimensions being on the order of a single molecule, the spatial zone of sensing only contains approximately a zeptoliter of volume. As a result, nanopores offer high precision sensing within the pore but provide little to no information about the analytes outside the pore. In this study, we use capture frequency and rate balance theory to predict and study the accumulation of proteins at the entrance to the pore. Protein accumulation is found to have positive attributes such as capture rate enhancement over time but can additionally lead to negative effects such as long-term blockages typically attributed to protein adsorption on the surface of the pore. Working with the folded and unfolded states of the protein domain PDZ2 from SAP97, we show that applying short (e.g., 3-25 s in duration) positive voltage pulses, rather than a constant voltage, can prevent long-term current blockades (i.e., adsorption events). By showing that the concentration of proteins around the pore can be controlled in real time using modified voltage protocols, new experiments can be explored which study the role of concentration on single molecular kinetics including protein aggregation, folding, and protein binding.

  14. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    PubMed

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA.

  15. Partition search

    SciTech Connect

    Ginsberg, M.L.

    1996-12-31

    We introduce a new form of game search called partition search that incorporates dependency analysis, allowing substantial reductions in the portion of the tree that needs to be expanded. Both theoretical results and experimental data are presented. For the game of bridge, partition search provides approximately as much of an improvement over existing methods as {alpha}-{beta} pruning provides over minimax.

  16. Spatial distribution and accumulation of radicals arising in organic solids under the action of glow discharge

    NASA Astrophysics Data System (ADS)

    Raitsimring, A. M.; Kurshev, V. V.

    1994-12-01

    The method, based on analyzing the dipolar broadening of EPR spectra was applied for investigation of the spatial distribution of radicals generated by high-frequency glow discharge in organic molecular crystals (powders of malonic and dimethylmalonic acids) and glassy isopropanol contained electron scavenger. It was shown that in the first case the radical distribution does not depend on time of discharge. The radicals are generated in layer of size ˜.05-0.1 μm at a concentration of ˜2 10 20 cm -3. For the second case the distribution function was changed in the course of plasma treatment and the depth of radical generation was varied from 0.25 to 1.5 μm during the discharge action. Contribution of the various mechanisms of radical formation were evaluated and it was shown that ionic mechanism predominated. A kinetic model is proposed to describe both the radical accumulation and evolution of spatial distribution function in plasmolysis. The use of the model, method and obtained data for general and practical applications is discussed.

  17. Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost.

    PubMed

    Achiba, W Ben; Lakhdar, Abdelbasset; Gabteni, Noureddine; Du Laing, Gijs; Verloo, Marc; Boeckx, Pascal; Van Cleemput, Oswald; Jedidi, Naceur; Gallali, Tahar

    2010-04-15

    A field plots experiment was carried out to assess the effects of repeated application of municipal solid waste compost in comparison to farmyard manure on the accumulation and distribution of trace metals, as well as organic carbon and nitrogen in Tunisian calcareous soil. Compared with untreated soil, the application of the two organic amendments significantly increased the organic carbon and nitrogen contents of the soil. Particle-size fractionations showed that carbon and nitrogen were mainly found to occur in the macro-organic matter fraction (80%). The two organic amendments significantly increased organic carbon in the macro-organic and mineral >150 microm fraction and the 150-50 microm fraction, as well as the organic nitrogen in 150-50 microm and macro-organic fraction. Compared with farmyard manure, municipal solid waste compost significantly increased total Cd, Cu, Pb and Zn contents in the topsoil. These trace metals were mainly present in the macro-organic matter fraction. Significant increases of Cu, Zn and Pb were detected in the 150-50 microm, <50 microm and macro-organic fractions after application of municipal solid waste compost. A significant increase of Cd content was only observed in the 150-50 microm fraction. The trace metals also showed different fractionation patterns when the BCR sequential extraction scheme was applied on untreated and compost-treated soil. The residual fraction was found to be the major fraction, especially for Cu, Cr, Ni and Zn. In contrast, Cd was mainly present in the acid-extractable and reducible fraction, whereas Pb was mainly associated with the reducible fraction.

  18. Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction.

    PubMed

    Endo, Satoshi; Droge, Steven T J; Goss, Kai-Uwe

    2011-02-15

    The fiber-water partition coefficient, K(fw), is decisive for performance of solid-phase microextraction (SPME) techniques in organic chemical analyses. In this study, polyacrylate (PA)-coated fiber was evaluated for its K(fw) values toward diverse neutral organic compounds. Literature K(fw) data were thoroughly evaluated, and additional K(fw) values for 69 compounds were measured in phosphate-buffered saline (PBS) solution at 37 °C. These K(fw) data, spanning over 6 orders of magnitude, were used to construct polyparameter linear free energy relationship (PP-LFER) models. The PP-LFER models fit well to the data with a standard deviation of 0.15-0.23 log units. Additional experiments indicated that the differences in temperature (25 vs 37 °C), electrolyte concentrations (pure water vs PBS), and conditioning methods (heat vs methanol) had only minor influences (<0.3 log units) on K(fw). Using the established PP-LFERs, the SPME extraction efficiency of PA coating toward compounds of differing polarity was evaluated in comparison to poly(dimethylsiloxane) (PDMS) coating. PA exhibited higher extraction capacities for H-bond donor compounds (e.g., phenols, anilines, amides, and many drugs and pesticides) with the estimated K(fw) values being 1-4 log units higher than those of PDMS. Also, PA was shown to be more efficient than PDMS for hydrophobic aromatic compounds.

  19. Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration.

    PubMed

    Whittaker, Anne; Martinelli, Tommaso; Farrant, Jill M; Bochicchio, Adriana; Vazzana, Concetta

    2007-01-01

    Both sucrose and amino acids accumulate in desiccation-tolerant leaf material of the C(4) resurrection plant, Sporobolus stapfianus Gandoger (Poaceae). The present investigation was aimed at examining sucrose phosphate synthase (SPS) activity and various metabolic checkpoints involved in the co-ordination of carbon partitioning between these competing pathways during dehydration. In the initial phase of dehydration, photosynthesis and starch content declined to immeasurable levels, whilst significant increases in hexose sugars, sucrose, and amino acids were associated with concomitant significant increases in SPS and pyruvate kinase (PK) activities, and maximal activity levels of phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and NADH-dependent glutamate synthase (NADH-GOGAT). The next phase of dehydration was characterized by changes in metabolism coinciding with net hexose sugar phosphorylation. This phase was characterized by a further significant increase in sucrose accumulation, with increased rates of net sucrose accumulation and maximum rates of SPS activity measured under both saturating and limiting (inhibitory) conditions. SPS protein was also increased. The stronger competitive edge of SPS for carbon entering glycolysis during hexose phosphorylation was also demonstrated by the further decrease in respiration and the simultaneous, significant decline in both PEPCase and PK activities. A decreased anabolic demand for 2-oxoglutarate (2OG), which remained constant, was shown by the co-ordinated decrease in GOGAT. It is proposed that the further increase in amino acids in this phase of dehydration may be in part attributable to the breakdown of insoluble proteins.

  20. PREDICTING THE BIOAVAILABILITY OF COPPER AND ZINC IN SOILS: MODELING THE PARTITIONING OF POTENTIALLY BIOAVAILABLE COPPER AND ZINC FROM SOIL SOLID TO SOIL SOLUTION

    EPA Science Inventory

    This research produced statistically based, semi-mechanistic models describing partitioning of Cu and Zn in 40 soils from the US, Canada, the UK, the Netherlands, and Chile with widely varying characteristics. Two different types of models were constructed, partitioning models ...

  1. PREDICTING THE BIOAVAILABILITY OF COPPER AND ZINC IN SOILS: MODELING THE PARTITIONING OF POTENTIALLY BIOAVAILABLE COPPER AND ZINC FROM SOIL SOLID TO SOIL SOLUTION

    EPA Science Inventory

    This research produced statistically based, semi-mechanistic models describing partitioning of Cu and Zn in 40 soils from the US, Canada, the UK, the Netherlands, and Chile with widely varying characteristics. Two different types of models were constructed, partitioning models ...

  2. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  3. Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.; Sunyer, J.

    2015-04-01

    Particle size distribution patterns of trace elements and metals across three size fractions (<0.25 μm, quasi-ultrafine particles, q-UF; 0.25-2.5 μm, accumulation particles; 2.5-10 μm, coarse particles) were analysed in indoor and outdoor air at 39 primary schools across Barcelona (Spain). Special attention was paid to emission sources in each particle size range. Results evidenced the presence in q-UF particles of high proportions of elements typically found in coarse PM (Ca, Al, Fe, Mn or Na), as well as several potentially health-hazardous metals (Mn, Cu, Sn, V, Pb). Modal shifts (e.g., from accumulation to coarse or q-UF particles) were detected when particles infiltrated indoors, mainly for secondary inorganic aerosols. Our results indicate that the location of schools in heavily trafficked areas increases the abundance of q-UF particles, which infiltrate indoors quite effectively, and thus may impact children exposure to these health-hazardous particles.

  4. Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus.

    PubMed

    Arreghini, Silvana; de Cabo, Laura; Serafini, Roberto; de Iorio, Alicia Fabrizio

    2017-01-31

    Wetlands usually provide a natural mechanism that diminishes the transport of toxic compounds to other compartments of the ecosystem by immobilization and accumulation in belowground tissues and/or soil. This study was conducted to assess the ability of Schoenoplectus californicus growing in natural marsh sediments, with zinc and lead addition, to tolerate and accumulate these metals, taking account of the metal distribution in the sediment fractions. The Zn and Pb were mainly found in available (exchangeable) and potentially available (bound to organic matter) forms, respectively. The absorption of Zn and Pb by plants increased in sediments with added metals. Both metals were largely retained in roots (translocation factor < 1). Lead rhizome concentrations only increased significantly in treatments with high doses of metal independently of added Zn. The addition of Zn increased its concentration in roots and shoots significantly, while its concentration in rhizomes only increased when both metals were added together. Zinc concentration in shoots did not reach the toxic level for plants. Zinc and Pb concentrations in roots were high, but they were not sufficient to reduce biomass growth.

  5. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium.

    PubMed

    Müller, Viola; Lankes, Christa; Zimmermann, Benno F; Noga, Georg; Hunsche, Mauricio

    2013-09-01

    In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    PubMed

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  7. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    PubMed Central

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Ángela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants. PMID:25429292

  8. GEMAS: prediction of solid-solution phase partitioning coefficients (Kd) for oxoanions and boric acid in soils using mid-infrared diffuse reflectance spectroscopy.

    PubMed

    Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens

    2015-02-01

    The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2)  = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2)  = 0.62-0.79), compared with those from PSLR-DRIFT (R(2)  = 0.61-0.72) and MLR (R(2)  = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. © 2014 SETAC.

  9. Effects of pressure and composition on Pt-Re-Os partitioning behavior between solid and liquid metal in the Fe-Ni-S system: Implication for Os isotopic anomalies in plume-derived lavas

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Ohtani, E.; Terasaki, H.; Ito, Y.

    2008-12-01

    Coupled 186Os/188Os and 187Os/188Os enrichments of plume-derived lavas have been suggested to reflect material contribution from the outer core (e.g., Brandon, 1998). This geochemical hypothesis is based on an assumption that the outer core shows coupled enrichments in 186Os/ 188Os and 187Os/ 188Os ratio, reflecting the decay of 190Pt and 187Re to 186Os and 187Os, respectively. In order to examine this hypothesis, partitioning experiments of Pt-Re-Os between solid metal and liquid metal were performed using an MA-8 Kawai-type multi-anvil apparatus at 5-20 GPa and 1250-1400C. Starting materials of Fe metal, Ni (7 wt.%) metal and FeS (5 wt.% S in the bulk) were doped with 3 wt.% of Pt, Re and Os metals. Concentrations of all elements were determined using JXA-8800M electron probe microanalyzer with wave-dispersive spectrometry. Measured partition coefficients of Pt, Re and Os increase with increasing sulfur content and almost constant with increasing pressure. Therefore, the effect of liquid composition on the partitioning behavior of highly siderophile elements is much more significant compared to the effect of pressure and temperature. On the basis of the present experimental results, it is unlikely to generate the required Pt-Re-Os fractionation during inner core crystallization assuming that the light element in the Earth"fs core is sulfur only.

  10. Software Partitioning Technologies

    DTIC Science & Technology

    2001-05-29

    1 Software Partitioning Technologies Tim Skutt Smiths Aerospace 3290 Patterson Ave. SE Grand Rapids, MI 49512-1991 (616) 241-8645 skutt_timothy...Limitation of Abstract UU Number of Pages 12 2 Agenda n Software Partitioning Overview n Smiths Software Partitioning Technology n Software Partitioning...Partition Level OS Core Module Level OS Timers MMU I/O API Layer Partitioning Services 6 Smiths Software Partitioning Technology n Smiths has developed

  11. Understanding sugar yield loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolisis.

    USDA-ARS?s Scientific Manuscript database

    During enzymatic hydrolysis of biomass, polysaccharides are cleaved by glycosyl hydrolases to soluble oligosaccharides and further hydrolyzed by ß-glucosidase, ß-xylosidase and other enzymes to monomeric sugars. However, not all oligosaccharides can be fully hydrolyzed and they may accumulate to 18-...

  12. Photosynthate Partitioning into Starch in Soybean Leaves

    PubMed Central

    Chatterton, N. Jerry; Silvius, John E.

    1979-01-01

    Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants (Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation. PMID:16661047

  13. 2,4-Dichlorophenol removal in a solid-liquid two phase partitioning bioreactor (TPPB): kinetics of absorption, desorption and biodegradation.

    PubMed

    Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J

    2012-11-15

    The applicability of a sequencing batch two phase partitioning bioreactor (TPPB) to the biodegradation of a highly toxic compound, 2,4-dichlorophenol (DCP) (EC(50)=2.3-40 mgL(-1)) was investigated. A kinetic study of the individual process steps (DCP absorption into the polymer, desorption and biodegradation) was performed and, based on favourable absorption/desorption characteristics (DCP diffusivity of 6.6×10(-8)cm(2)s(-1)), the commercial polymer Tone P787 (Dow Chemical), was utilized as the sequestering phase for TPPB operation. Batch kinetic biodegradation tests were performed in both single- and two-phase modes, and the Haldane equation kinetic parameters were estimated (k=1.3×10(-2) mgDCP mgVSS(-1)h(-1), K(I)=35 mgDCPL(-1) and K(s)=18 mgDCPL(-1)), confirming the highly toxic nature of DCP. Consistent with these findings, operation of the single-phase system showed that for an initial DCP concentration of 130 mg L(-1) the biomass was completely inhibited and DCP was not degraded, while the two-phase system achieved near-complete DCP removal. In sequencing batch mode the TPPB had a removal efficiency of 91% within 500 min for a feed of 320 mg L(-1), which exceeds the highest concentration previously degraded. These results have confirmed the effectiveness of the use of small amounts (5%, v/v) of inexpensive commercial polymers as the partitioning phase in TPPB reactors for the treatment of a highly toxic substrate at influent loads that are prohibitive for conventional single-phase operation, and suggest that similar detoxification of wastewater influents is achievable for other target cytotoxic substrates. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane

    NASA Astrophysics Data System (ADS)

    Mehryan, S. A. M.; Ghalambaz, Mohammad; Ismael, Muneer A.; Chamkha, Ali J.

    2017-02-01

    This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (105-108), Hartmann number (0-200) and the orientation of the magnetic field (0-180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity.

  15. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.

    PubMed

    Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel

    2015-11-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    PubMed

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix.

  17. Estimating evolution of δ(13)CH(4) during methanization of municipal solid waste based on chemical reactions, isotope accumulation in products and microbial ecology.

    PubMed

    Vavilin, V A

    2012-01-01

    Natural isotopic composition in substrate may be used to reveal the metabolic pathways of substrate transformation by microbial community. In this paper, a change in δ(13)CH(4) during methanization of reconstituted municipal solid waste was described using a mathematical model based on stoichiometric chemical reactions, equation for the (13)C isotope accumulation in products at the low natural C(13)/C(12) ratio and microbial ecology. A set of experimental data used in the model was taken from Qu et al. (2009a). According to the model, during mesophilic municipal solid waste methanization initially hydrogenotrophic and further aceticlastic methanogenesis dominated. At the final stage hydrogenotrophic methanogenesis followed by acetate oxidation dominated again. In spite of rather high measured values of δ(13)C for CO(2) above -21‰, a sharp decrease in δ(13)CH(4) from -20‰ to -60‰ at the final stage was explained by a larger fractionation against (13)C during methanogenesis from H(2)/H(2)CO(3) due to a kinetic isotope effect when hydrogenotrophic methanogens preferentially take down light (12)C. The model also confirmed that in thermophilic conditions a comparatively stable value of δ(13)CH(4) about -60‰ measured earlier (Qu et al. 2009b) was due to a dominance of hydrogenotrophic methanogenesis during all methanization process of cardboard waste.

  18. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  19. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4.

    PubMed

    Zhao, Shulan; Shang, Xiaojuan; Duo, Lian

    2013-02-01

    Municipal solid waste compost can be used to cropland as soil amendment to supply nutrients and improve soil physical properties. But long-term application of municipal solid waste (MSW) compost may result in accumulation of toxic metals in amended soil. Phytoremediation, especially phytoextraction, is a novel, cost-effective, and environmentally friendly approach that uses metal-accumulating plants to concentrate and remove metals from contaminated soils. Ethylenediaminetetraacetate (EDTA) was applied to metal-contaminated soil to increase the mobility and phytoavailability of metals in soil, thereby increasing the amount of toxic metals accumulated in the upper parts of phytoextracting plants. The objectives of this study were (1) to investigate the accumulation and spatial distribution of toxic metals (Cd, Cr, and Pb) in mulberry from MSW compost with the application of EDTA and (NH(4))(2)SO(4), (2) to examine the effectiveness of EDTA and (NH(4))(2)SO(4) applied together on toxic metals (Cd, Cr, and Pb) removal by mulberry under field conditions, and (3) to evaluate the potential of mulberry for phytoextraction of toxic metals from MSW compost. The tested plant-mulberry had been grown in MSW compost field for 4 years. EDTA solution at five rates (0, 50, 100, 50 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4), and 100 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4)) was added into mulberry root medium in September 2009. Twenty days later, the plants were harvested and separated into six parts according to plant height. Cd, Cr, and Pb contents in plant samples and MSW compost were analyzed using an atomic absorption spectrophotometer. In the same treatment, Cd, Cr, and Pb concentrations in mulberry shoot were all higher than those in root, and Cd and Pb concentrations in shoot increased from lower to upper parts, reaching the highest in leaves. Significant increases were found in toxic metal concentration in different parts of mulberry with increasing EDTA concentration

  20. Partitioning of Viruses in Wastewater Systems and Potential for Aerosolization

    PubMed Central

    2016-01-01

    To gain insight into the potential for aerosolization of viruses in wastewater systems, we investigated the partitioning of MS2 and Phi6 bacteriophages in synthetic sludge and anaerobically digested sludge from a wastewater treatment plant. We evaluated partitioning among the liquid, solids, and material surfaces of porcelain, concrete, polyvinyl chloride (PVC), and polypropylene. In all cases, at least 94% of the virions partitioned into the liquid fraction. In real sludge, no more than 0.8% of virions partitioned to the solids and no more than 6% to the material surface. Both MS2 and Phi6 partitioned more to the surface of concrete and polypropylene than to the surface of porcelain or PVC. Partitioning of viruses in wastewater among the liquid, biosolids, and material surface does not appear to mitigate the potential for aerosolization of virus, as most of the virus remains in the liquid phase. PMID:27213164

  1. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  2. Incentives for partitioning, revisited

    SciTech Connect

    Cloninger, M.O.

    1980-03-24

    The incentives for separating and eliminating various elements from radioactive waste prior to final geologic disposal were investigated. Exposure pathways to humans were defined, and potential radiation doses to an individual living within the region of influence of the underground storage site were calculated. The assumed radionuclide source was 1/5 of the accumulated high-level waste from the US nuclear power economy through the year 2000. The repository containing the waste was assumed to be located in a reference salt site geology. The study required numerous assumptions concerning the transport of radioactivity from the geologic storage site to man. The assumptions used maximized the estimated potential radiation doses, particularly in the case of the intrusion water well scenario, where hydrologic flow field dispersion effects were ignored. Thus, incentives for removing elements from the waste tended to be maximized. Incentives were also maximized by assuming that elements removed from the waste could be eliminated from the earth without risk. The results of the study indicate that for reasonable disposal conditions, incentives for partitioning any elements from the waste in order to minimize the risk to humans are marginal at best.

  3. The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    NASA Astrophysics Data System (ADS)

    Trembly, J. P.; Gemmen, R. S.; Bayless, D. J.

    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H 2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known. Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H 2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.

  4. The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    SciTech Connect

    Trembly, J.P.; Gemmen, R.S.; Bayless, D.J.

    2007-01-01

    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known.Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.

  5. Plasmid Partition Mechanisms.

    PubMed

    Baxter, Jamie C; Funnell, Barbara E

    2014-12-01

    The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.

  6. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    PubMed

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  7. Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study

    NASA Astrophysics Data System (ADS)

    Février, Pierre; Simonin, Olivier; Squires, Kyle D.

    2005-06-01

    The velocity distribution of dilute suspensions of heavy particles in gas-solid turbulent flows is investigated. A statistical approach - the mesoscopic Eulerian formalism (MEF) - is developed in which an average conditioned on a realization of the turbulent carrier flow is introduced and enables a decomposition of the instantaneous particle velocity into two contributions. The first is a contribution from an underlying continuous turbulent velocity field shared by all the particles - the mesoscopic Eulerian particle velocity field (MEPVF) - that accounts for all particle-particle and fluid-particle two-point correlations. The second contribution corresponds to a distribution - the quasi-Brownian velocity distribution (QBVD) - that represents a random velocity component satisfying the molecular chaos assumption that is not spatially correlated and identified with each particle of the system. The MEF is used to investigate properties of statistically stationary particle-laden isotropic turbulence. The carrier flow is computed using direct numerical simulation (DNS) or large-eddy simulation (LES) with discrete particle tracking employed for the dispersed phase. Particle material densities are much larger than that of the fluid and the force of the fluid on the particle is assumed to reduce to the drag contribution. Computations are performed in the dilute regime for which the influences of inter-particle collisions and fluid-turbulence modulation are neglected. The simulations show that increases in particle inertia increase the contribution of the quasi-Brownian component to the particle velocity. The particle velocity field is correlated at larger length scales than the fluid, with the integral length scales of the MEPVF also increasing with particle inertia. Consistent with the previous work of Abrahamson (1975), the MEF shows that in the limiting case of large inertia, particle motion becomes stochastically equivalent to a Brownian motion with a random spatial

  8. STRUCTURAL DYNAMICS OF METAL PARTITIONING TO MINERAL SURFACES

    EPA Science Inventory

    The conceptual understanding of surface complexation reactions that control trace element partitioning to mineral surfaces is limited by the assumption that the solid reactant possesses a finite, time-invariant population of surface functional groups. This assumption has limited...

  9. STRUCTURAL DYNAMICS OF METAL PARTITIONING TO MINERAL SURFACES

    EPA Science Inventory

    The conceptual understanding of surface complexation reactions that control trace element partitioning to mineral surfaces is limited by the assumption that the solid reactant possesses a finite, time-invariant population of surface functional groups. This assumption has limited...

  10. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  11. Carbon partitioning in photosynthesis.

    PubMed

    Melis, Anastasios

    2013-06-01

    The work seeks to raise awareness of a fundamental problem that impacts the renewable generation of fuels and chemicals via (photo)synthetic biology. At issue is regulation of the endogenous cellular carbon partitioning between different biosynthetic pathways, over which the living cell exerts stringent control. The regulation of carbon partitioning in photosynthesis is not understood. In plants, microalgae and cyanobacteria, methods need be devised to alter photosynthetic carbon partitioning between the sugar, terpenoid, and fatty acid biosynthetic pathways, to lower the prevalence of sugar biosynthesis and correspondingly upregulate terpenoid and fatty acid hydrocarbons production in the cell. Insight from unusual but naturally occurring carbon-partitioning processes can help in the design of blueprints for improved photosynthetic fuels and chemicals production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ionic partitioning and stomatal regulation

    PubMed Central

    Sanoubar, Rabab; Orsini, Francesco; Gianquinto, Giorgio Prosdocimi

    2013-01-01

    Vegetable grafting is commonly claimed to improve crop’s tolerance to biotic and abiotic stresses, including salinity. Although the use of inter-specific graftings is relatively common, whether the improved salt tolerance should be attributed to the genotypic background rather than the grafting per se is a matter of discussion among scientists. It is clear that most of published research has to date overlooked the issue, with the mutual presence of self-grafted and non-grafted controls resulting to be quite rare within experimental evidences. It was recently demonstrated that the genotype of the rootstock and grafting per se are responsible respectively for the differential ion accumulation and partitioning as well as to the stomatal adaptation to the stress. The present paper contributes to the ongoing discussion with further data on the differences associated to salinity response in a range of grafted melon combinations. PMID:24309549

  13. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  14. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment.

  15. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  16. Partitioning Breaks Communities

    NASA Astrophysics Data System (ADS)

    Reid, Fergal; McDaid, Aaron; Hurley, Neil

    Considering a clique as a conservative definition of community structure, we examine how graph partitioning algorithms interact with cliques. Many popular community-finding algorithms partition the entire graph into non-overlapping communities. We show that on a wide range of empirical networks, from different domains, significant numbers of cliques are split across the separate partitions produced by these algorithms. We then examine the largest connected component of the subgraph formed by retaining only edges in cliques, and apply partitioning strategies that explicitly minimise the number of cliques split. We further examine several modern overlapping community finding algorithms, in terms of the interaction between cliques and the communities they find, and in terms of the global overlap of the sets of communities they find. We conclude that, due to the connectedness of many networks, any community finding algorithm that produces partitions must fail to find at least some significant structures. Moreover, contrary to traditional intuition, in some empirical networks, strong ties and cliques frequently do cross community boundaries; much community structure is fundamentally overlapping and unpartitionable in nature.

  17. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (< 20 μm) by wet sieving. Organic carbon (Corg) and total nitrogen (Nt) were determined by dry combustion (975°C). The chemical composition was examined by solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions

  18. Equilibration timescale of atmospheric secondary organic aerosol partitioning

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Seinfeld, John H.

    2012-12-01

    Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τeq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. τeq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τeq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration.

  19. Partition density functional theory

    NASA Astrophysics Data System (ADS)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  20. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  1. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  2. Influence of a step-change in metal exposure (Cd, Cu, Zn) on metal accumulation and subcellular partitioning in a freshwater bivalve, Pyganodon grandis: a long-term transplantation experiment between lakes with contrasting ambient metal levels.

    PubMed

    Cooper, Sophie; Bonneris, Emmanuelle; Michaud, Annick; Pinel-Alloul, Bernadette; Campbell, Peter G C

    2013-05-15

    The objective of the present field experiment was to identify detoxification responses in the gills and digestive gland of a freshwater unionid bivalve, Pyganodon grandis, subjected to a step-change in metal exposure. Adult bivalves were transferred from a reference site (Lake Opasatica) and a metal-contaminated lake (Lake Héva) to a second contaminated lake (Lake Vaudray) in northwestern Quebec, Canada. Changes in organ metal concentrations, in the subcellular distribution of metals and in metallothionein concentrations were followed over time (t=0, 132, (400) and 860 days). At each collection time and for each bivalve, the gills and digestive gland were excised and gently homogenized; six sub-cellular fractions were separated by differential centrifugation and analyzed for their Cd, Cu and Zn content, and metallothionein was quantified independently. Metal detoxification strategies were shown to differ between target organs: in the gills, incoming metals were sequestered largely in the granules, whereas in the digestive gland the same metals primarily accumulated in the cytosol, in the metallothionein-like protein fraction. These metal-handling strategies, as employed by the metal-naïve bivalves originating in the reference lake, closely resemble those identified in free-living P. grandis chronically exposed in the metal-contaminated lake, suggesting that the ability to handle incoming metals (Cd in particular) is inherent in P. grandis and is not a trait acquired after long-term adaptation of the bivalve to metal-contaminated environments. The bivalves transplanted from both Lakes Opasatica and Héva were able to tolerate their new surroundings during the first 400 days of the transplant experiment, as indicated by the absence of mortality and the presence of gravid animals. Over the final 460 days, mortality remained low for the bivalves transplanted from the reference lake (20%) but reached 100% in the transplanted group from the contaminated lake. It would

  3. The influence of carbon on trace element partitioning behavior

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Campbell, Andrew J.; Jones, John H.; Humayun, Munir; Lauer, H. Vern

    2006-03-01

    Carbon has been proposed as a potential light element in planetary cores, included in models of planetary core formation, and found in meteoritic samples and minerals. To better understand the effect of C on the partitioning behavior of elements, solid/liquid partition coefficients ( D = (solid metal)/(liquid metal)) were determined for 17 elements (As, Au, Co, Cr, Cu, Ga, Ge, Ir, Ni, Os, Pd, Pt, Re, Ru, Sb, Sn, and W) over a range of C contents in the Fe-Ni-C system at 1 atm. The partition coefficients for the majority of the elements increased as the C content of the liquid increased, an effect analogous to that of S for many of the elements. In contrast, three of the elements, Cr, Re, and W, were found to have anthracophile (C-loving) preferences, partitioning more strongly into the metallic liquid as the C content increased, resulting in decreases to their partition coefficients. For half of the elements examined, the prediction that partitioning in the Fe-Ni-S and Fe-Ni-C systems could be parameterized using a single set of variables was not supported. The effects of S and C on elemental partitioning behavior can be quite different; consequently, the presence of different non-metals can result in different fractionation patterns, and that uniqueness offers the opportunity to gain insight into the evolution of planetary bodies.

  4. Gluing Nekrasov Partition Functions

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2015-07-01

    In this paper we summarise the localisation calculation of 5D super Yang-Mills on simply connected toric Sasaki-Einstein (SE) manifolds. We show how various aspects of the computation, including the equivariant index, the asymptotic behaviour and the factorisation property are governed by the combinatorial data of the toric geometry. We prove that the perturbative partition function on a simply connected SE manifold corresponding to an n-gon toric diagram factorises to n copies of perturbative part (zero instanton sector) of the Nekrasov partition function. This leads us to conjecture a prescription for the computation of the complete partition function, by gluing n copies of the full Nekrasov partition functions. This work is a generalisation of some earlier computation carried out on Y p, q manifolds, whose moment map cone has a quadrangle base and our result is valid for manifolds whose moment map cones have pentagon base, hexagon base, etc. The algorithm we used for dealing with general cones may also be of independent interest.

  5. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  6. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  7. Solute partitioning and filtration by extracellular matrices

    PubMed Central

    Hofmann, Christina L.; Ferrell, Nicholas; Schnell, Lisa; Dubnisheva, Anna; Zydney, Andrew L.; Yurchenco, Peter D.; Roy, Shuvo

    2009-01-01

    The physiology of glomerular filtration remains mechanistically obscure despite its importance in disease. The correspondence between proteinuria and foot process effacement suggests podocytes as the locus of the filtration barrier. If so, retained macromolecules ought to accumulate at the filtration barrier, an effect called concentration polarization. Literature data indicate macromolecule concentrations decrease from subendothelial to subepithelial glomerular basement membrane (GBM), as would be expected if the GBM were itself the filter. The objective of this study was to obtain insights into the possible role of the GBM in protein retention by performing fundamental experimental and theoretical studies on the properties of three model gels. Solute partitioning and filtration through thin gels of a commercially available laminin-rich extracellular matrix, Matrigel, were measured using a polydisperse polysaccharide tracer molecule, Ficoll 70. Solute partitioning into laminin gels and lens basement membrane (LBM) were measured using Ficoll 70. A novel model of a laminin gel was numerically simulated, as well as a mixed structure-random-fiber model for LBM. Experimental partitioning was predicted by numerical simulations. Sieving coefficients through thin gels of Matrigel were size dependent and strongly flux dependent. The observed flux dependence arose from compression of the gel in response to the applied pressure. Gel compression may alter solute partitioning into extracellular matrix at physiologic pressures present in the glomerular capillary. This suggests a physical mechanism coupling podocyte structure to permeability characteristics of the GBM. PMID:19587146

  8. Airborne phthalate partitioning to cotton clothing

    NASA Astrophysics Data System (ADS)

    Morrison, Glenn; Li, Hongwan; Mishra, Santosh; Buechlein, Melissa

    2015-08-01

    Accumulation on indoor surfaces and fabrics can increase dermal uptake and non-dietary ingestion of semi-volatile organic compounds. To better understand the potential for dermal uptake of phthalates from clothing, we measured the mass accumulation on cotton fabrics of two phthalate esters commonly identified in indoor air: diethylphthalate (DEP) and di-n-butyl phthalate (DnBP). In 10-day chamber experiments, we observed strong air-to-cloth partitioning of these phthalates to shirts and jean material. Area-normalized partition coefficients ranged from 209 to 411 (μg/m2)/(μg/m3) for DEP and 2850 to 6580 (μg/m2)/(μg/m3) for DnBP. Clothing volume-normalized partition coefficients averaged 2.6 × 105 (μg/m3)/(μg/m3) for DEP and 3.9 × 106 (μg/m3)/(μg/m3) for DnBP. At equilibrium, we estimate that a typical set of cotton clothing can sorb DnBP from the equivalent of >10,000 m3 of indoor air, thereby substantially decreasing external mass-transfer barriers to dermal uptake. Further, we estimate that a significant fraction of a child's body burden of DnBP may come from mouthing fabric material that has been equilibrated with indoor air.

  9. Partitioning of copper onto suspended particulate matter in river waters.

    PubMed

    Lu, Y; Allen, H E

    2001-09-28

    Suspended particles and river water from the Susquehanna River, White Clay Creek and the Delaware River were collected to experimentally study the partitioning of copper. The effects of many factors that may influence the partitioning coefficient (Kd) including pH, total suspended solids (TSS), total copper concentration ([Cu]T), dissolved organic matter (DOM), particulate organic matter (POM), hardness, and ionic strength were investigated by performing batch adsorption experiments. The results implied that organic matter binding sites in both the aqueous and solid phases play the most important role in controlling copper partitioning. Other major factors governing the partitioning are pH and TSS. Kd increases with pH in the pH range 3-8. TSS increases caused decreases in Kd values, which may be attributed to the decrease in the quantity of available binding sites caused by interparticle interactions, rather than by the redistribution of organic matter between solid and solution phases with the variation of TSS. Kd decreases slightly when total Cu concentration increases; however, Kd can be considered to be independent of Cu concentration when TSS is high. The effects of calcium competition and ionic strength on partitioning are small.

  10. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations

    SciTech Connect

    Macaskie, L.E.; Wates, J.M.; Dean, A.C.R.

    1987-01-01

    Polyacrylamide gel-immobilized cells of a Citrobacter sp. removed cadmium from flows supplemented with glycerol 2-phosphate, the metal uptake mechanism being mediated by the activity of a cell-bound phosphatase that precipitates liberated inorganic phosphate with heavy metals at the cell surface. The constraints of elevated flow rate and temperature were investigated and the results discussed in terms of the kinetics of immobilized enzymes. Loss in activity with respect to cadmium accumulation but not inorganic phosphate liberation was observed at acid pH and was attributed to the pH-dependent solubility of cadmium phosphate. Similarly high concentrations of chloride ions, and traces of cyanide inhibited cadmium uptake and this was attributed to the ability of these anions to complex heavy metals, especially the ability of CN/sup -/ to form complex anions with Cd/sup 2 +/. The data are discussed in terms of the known chemistry of chloride and cyanide-cadmium complexes and the relevance of these factors in the treatment of metal-containing liquid wastes is discussed. The cells immobilized in polyacrylamide provided a convenient small-scale laboratory model system. It was found that the Citrobacter sp. could be immobilized on glass supports with no chemical treatment or modification necessary. Such cells were also effective in metal accumulation and a prototype system more applicable to the treatment of metal-containing streams on a larger scale is described.

  11. Binary space partitioning trees and their uses

    NASA Technical Reports Server (NTRS)

    Bell, Bradley N.

    1989-01-01

    Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.

  12. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.

  13. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  14. Partitioning the Quaternary

    NASA Astrophysics Data System (ADS)

    Gibbard, Philip L.; Lewin, John

    2016-11-01

    We review the historical purposes and procedures for stratigraphical division and naming within the Quaternary, and summarize the current requirements for formal partitioning through the International Commission on Stratigraphy (ICS). A raft of new data and evidence has impacted traditional approaches: quasi-continuous records from ocean sediments and ice cores, new numerical dating techniques, and alternative macro-models, such as those provided through Sequence Stratigraphy and Earth-System Science. The practical usefulness of division remains, but there is now greater appreciation of complex Quaternary detail and the modelling of time continua, the latter also extending into the future. There are problems both of commission (what is done, but could be done better) and of omission (what gets left out) in partitioning the Quaternary. These include the challenge set by the use of unconformities as stage boundaries, how to deal with multiphase records in ocean and terrestrial sediments, what happened at the 'Early-Mid- (Middle) Pleistocene Transition', dealing with trends that cross phase boundaries, and the current controversial focus on how to subdivide the Holocene and formally define an 'Anthropocene'.

  15. EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS

    EPA Science Inventory

    Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...

  16. EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS

    EPA Science Inventory

    Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...

  17. Partitioning the UMLS semantic network.

    PubMed

    Chen, Zong; Perl, Yehoshua; Halper, Michael; Geller, James; Gu, Huanying

    2002-06-01

    The unified medical language system (UMLS) integrates many well-established biomedical terminologies. The UMLS semantic network (SN) can help orient users to the vast knowledge content of the UMLS Metathesaurus (META) via its abstract conceptual view. However, the SN itself is large and complex and may still be difficult to comprehend. Our technique partitions the SN into smaller meaningful units amenable to display on limited-sized computer screens. The basis for the partitioning is the distribution of the relationships within the SN. Three rules are applied to transform the original partition into a second more cohesive partition.

  18. Partitioning of main and side-chain units between different phases: a solid-state 13C NMR inversion-recovery cross-polarization study on a homogeneous, metallocene-based, ethylene-1-octene copolymer.

    PubMed

    Litvinov, Victor M; Mathot, Vincent B F

    2002-01-01

    13C NMR inversion-recovery cross-polarization experiments are used to study the phase structure and partitioning of main and side-chain groups in a homogeneous, metallocene-based, ethylene-1-octene copolymer. The results provide strong evidence for a three-phase model, i.e. a rigid, (imperfect) crystalline phase, which is mainly composed of long sequences of methylene carbon atoms of the main chain, a semi-rigid, amorphous interphase (also denoted as 'rigid amorphous'), which is enriched by chain segments bearing methylene and methine carbon atoms of the main chain, and a soft fraction of the amorphous phase (also denoted as 'mobile amorphous'), which is largely composed of side chains and short methylene sequences of the main chain.

  19. Carbon partitioning in sugarcane (Saccharum species)

    PubMed Central

    Wang, Jianping; Nayak, Spurthi; Koch, Karen; Ming, Ray

    2013-01-01

    Focus has centered on C-partitioning in stems of sugarcane (Saccharum sp.) due to their high-sucrose accumulation features, relevance to other grasses, and rising economic value. Here we review how sugarcane balances between sucrose storage, respiration, and cell wall biosynthesis. The specific topics involve (1) accumulation of exceptionally high sucrose levels (up to over 500 mM), (2) a potential, turgor-sensitive system for partitioning sucrose between storage inside (cytosol and vacuole) and outside cells, (3) mechanisms to prevent back-flow of extracellular sucrose to xylem or phloem, (4) apparent roles of sucrose-P-synthase in fructose retrieval and sucrose re-synthesis, (5) enhanced importance of invertases, and (6) control of C-flux at key points in cell wall biosynthesis (UDP-glucose dehydrogenase) and respiration (ATP- and pyrophosphate-dependent phosphofructokinases). A combination of emerging technologies is rapidly enhancing our understanding of these points and our capacity to shift C-flux between sucrose, cell wall polymers, or other C-sinks. PMID:23785381

  20. Metal partitioning and toxicity in sewage sludge

    SciTech Connect

    Carlson-Ekvall, C.E.A.; Morrison, G.M.

    1995-12-31

    Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.

  1. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.

    PubMed

    Su, Yen-Bin; Chang, Wei-Chun; Hsi, Hsing-Cheng; Lin, Chu-Ching

    2016-07-01

    Recent studies have shown that rice consumption is another critical route of human exposure to methylmercury (MeHg), the most toxic and accumulative form of mercury (Hg) in the food web. Yet, the mechanisms that underlie the production and accumulation of MeHg in the paddy ecosystem are still poorly understood. In 2013 and 2014, we conducted field campaigns and laboratory experiments over a rice growing season to examine Hg and MeHg cycling, as well as associated biogeochemistry in a suite of paddies close to a municipal solid waste incinerator and a coal-fired power plant station in Taiwan. Concentrations of total Hg and MeHg in paddy soil and rice grain at both sites were low and found not to exceed the control standards for farmland soil and edible rice in Taiwan. However, seasonal variations of MeHg concentrations observed in pore water samples indicate that the in situ bioavailability of inorganic Hg and activity of Hg-methylating microbes in the rhizosphere increased from the early-season and peaked at the mid-season, presumably due to the anoxia created under flooded conditions and root exudation of organic compounds. The presence of Hg-methylators was also confirmed by the hgcA gene detected in all root soil samples. Subsequent methylation tests performed by incubating the root soil with inorganic Hg and an inhibitor or stimulant specific for certain microbes further revealed that sulfate-reducers might have been the principal Hg-methylting guild at the study sites. Interestingly, results of hydroponic experiments conducted by cultivating rice in a defined nutrient solution amended with fixed MeHg and varying levels of MeHg-binding ligands suggested that chemical speciation in soil pore water may play a key role in controlling MeHg accumulation in rice, and both passive and active transport pathways seem to take place in the uptake of MeHg in rice roots.

  2. Partition Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Wasserman, Adam

    2012-02-01

    Partition Density Functional Theory (PDFT) is a formally exact method for obtaining molecular properties from self-consistent calculations on isolated fragments [1,2]. For a given choice of fragmentation, PDFT outputs the (in principle exact) molecular energy and density, as well as fragment densities that sum to the correct molecular density. I describe our progress understanding the behavior of the fragment energies as a function of fragment occupations, derivative discontinuities, practical implementation, and applications of PDFT to small molecules. I also discuss implications for ground-state Density Functional Theory, such as the promise of PDFT to circumvent the delocalization error of approximate density functionals. [4pt] [1] M.H. Cohen and A. Wasserman, J. Phys. Chem. A, 111, 2229(2007).[0pt] [2] P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010).

  3. Partitioning: splitting fact from fiction.

    PubMed

    Pike, Brian

    2012-05-01

    Many larger hospitals are sprawling complexes with endless corridors and rooms of varying purpose. While cleanliness and infection control are, understandably, leading considerations in any hospital building, fire safety also plays a crucial role. Here Brian Pike MBE, technical consultant at partitioning system designer and manufacturer, Komfort Workspace, looks at how current fire guidelines impact on the use of partitioning systems in hospital premises.

  4. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  5. Orientation and velocity dependence of the nonequilibrium partition coefficient

    NASA Technical Reports Server (NTRS)

    Beatty, K. M.; Jackson, K. A.

    1995-01-01

    Monte Carlo simulations based on a Spin-1 Ising Model for binary alloys have been used to investigate the non-equilibrium partition coefficient (k(sub neq)) as a function of solid-liquid interface velocity and orientation. In simulations of Si with a second component k(sub neq) is greater in the [111] direction than the [100] direction in agreement with experimental results reported by Azlz et al. The simulated partition coefficient scales with the square of the step velocity divided by the diffusion coefficient of the secondary component in the liquid.

  6. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  7. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  8. Orientation-dependent impurity partitioning of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Nozawa, Jun; Uda, Satoshi; Hu, Sumeng; Fujiwara, Kozo; Koizumi, Haruhiko

    2016-04-01

    Impurity partitioning during colloidal crystallization was investigated for grains with different orientations. Particles of various sizes were doped as impurities during the growth of colloidal polycrystals. The effective partition coefficient, keff, which is the impurity concentration in the solid (CS) divided by that in initial solution (CL), was measured for grains oriented in the [111] and [100] directions normal to the growth direction. The [111]-oriented grains were found to have a larger keff than [100]-oriented grains. This was analyzed by using the Thurmond and Struthers model. Though both [111]- and [100]-oriented grains were face centered cubic (fcc) structures, within several layers of crystals, the volume fraction of [111]-oriented grains was larger than that of [100]-oriented grains, yielding a larger driving force for nucleation, ΔGTr, and thus a larger equilibrium partition coefficient, k0, for [111]-oriented grains.

  9. The partitioning of trace elements during pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Seames, Wayne Stewart

    The environmental impact resulting from the release of trace elements during coal combustion is an important issue for the coal-fired electric utility industry. Trace elements exit the combustor by partitioning between the flue gas and the fly ash particles. A comprehensive study has been conducted to investigate the mechanisms governing the partitioning of trace elements during pulverized coal combustion. The behavior of seven trace elements (arsenic, selenium, antimony, cobalt, cesium, thorium, and cerium) in six pulverized coals were studied under commercially relevant conditions in a well-described laboratory combustion environment. The partitioning of trace elements is governed by the extent of volatilization during combustion, the form of occurrence in the flue gas, and the mechanisms controlling vapor-to-solid phase transformation to fly ash particle surfaces. The most common vapor-to-solid phase partitioning mechanism for semi-volatile trace elements is reaction with active fly ash surfaces. Trace elements that form oxy-anions upon volatilization (e.g. arsenic, selenium, antimony) will react with active calcium and iron cation fly ash surface sites. Trace elements that form simple oxides upon volatilization (e.g. cobalt, cesium) will react with active aluminum oxy-anion fly ash surface sites. The maximum combustion temperature affects the availability of active calcium and iron surface sites but not aluminum sites. Sulfur inhibits the reactivity of oxy-anions with iron surface sites. For coals with high sulfur contents (>1 wt % as SO 2), volatilized trace elements that form oxy-anions will partition by reaction with calcium surface sites if sufficient sites are available. For coals with low sulfur contents, volatilized trace elements that form oxy-anions, will partition by reaction with iron surface sites. Volatilized trace elements that form oxy-anions will not partition by reaction if the coal sulfur content is high and the calcium content is low (<3 wt

  10. Investigation of partitioning mechanism for volatile organic compounds in a multiphase system.

    PubMed

    Starokozhev, Elena; Sieg, Karsten; Fries, Elke; Püttmann, Willhelm

    2011-03-01

    Laboratory experiments were performed to investigate the partitioning behavior of a set of diverse volatile organic compounds (VOCs). After equilibration at a temperature of 25°C, the VOC concentrations were measured by headspace method in combination with gas chromatography/mass spectrometry (GC/MS). The obtained data were used to determine the partition coefficients (K(P)) of VOCs in a gas-liguid-solid system. The results have shown that the presence and nature of solid materials in the working solution control the air-water partitioning of dissolved VOCs. The air/solution partitioning of BTEX and C(9)-C(10) aldehydes was most affected in the presence of diesel soot. K(P) values decreased by a factor ranging from 1.5 for toluene to 3.0 for ethylbenzene. The addition of mineral dust in the working solution exhibited greater influence on the partitioning of short aldehydes. K(P) values decreased by a factor of 1.8. The experimental partition coefficients were used to develop a predictive model for partitioning of BTEX and n-aldehydes between air, water and solid phases.

  11. Effects of shoot pruning on carbon partitioning in poplar trees

    SciTech Connect

    Tschaplinski, T.J.; Blake, T.J.

    1986-04-01

    The effects of removal of all but the largest shoot on shoot growth, gas exchange (P/sub N/) and /sup 14/C- partitioning were determined on trees previously decapitated. Pruned trees had higher shoot and leaf relative growth rates, a higher rate of P/sub N/ but a lower turnover of carbohydrates, particularly sucrose. They also exported less carbohydrates but translocation was basipetal to the roots. Unpruned multi-stemmed plants showed a higher rate of turnover of carbohydrates which accumulated acropetally. The downward movement and accumulation of newly fixed carbon was correlated with the release of apical dominance on the lower stem of pruned trees resulting in a high specific activity in the new sprouts compared with the low translocation of carbon to the smaller shoots of multi-shoot trees. These results will be discussed in terms of carbon partitioning and source-sink relationships.

  12. A predictive model for copper partitioning to suspended particulate matter in river waters.

    PubMed

    Lu, Yuefeng; Allen, Herbert E

    2006-09-01

    A chemical equilibrium-based predictive model expressing Cu partitioning as a function of aqueous and solid phase characteristics was developed. The model takes into account only the most important factors that govern Cu partitioning, and therefore results in a relatively simple formulation. It assumes particulate organic carbon (POC) and dissolved organic carbon (DOC) binding sites play the most important role in solid and aqueous phases. The model formulation assumed one-surface site and two dissolved organic matter (DOM) sites, and included the "solids effect". Proton effects were considered for both the particle surface sites and the DOM. The model was calibrated with data for samples collected from the Susquehanna River, and validated with White Clay Creek and Delaware River samples. Copper partitioning in natural water systems with different pH, and concentrations of alkalinity, DOC, POC, total suspended solids (TSS), and total copper was predicted reasonably well.

  13. Metal separations using aqueous biphasic partitioning systems

    SciTech Connect

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  14. Guidelines for Waste Accumulation Areas (WAAs)

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs.

  15. Guidelines for Satellite Accumulation Areas (SAAs)

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities smaller than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Satellite Accumulation Areas (SAAs). Areas designed for accumulation of wastes in greater amounts are called Waste Accumulation Areas (WSSs). This document provides guidelines for establishing and maintaining an SSA. 8 refs., 3 figs., 2 tabs.

  16. Evolving bipartite authentication graph partitions

    DOE PAGES

    Pope, Aaron Scott; Tauritz, Daniel Remy; Kent, Alexander D.

    2017-01-16

    As large scale enterprise computer networks become more ubiquitous, finding the appropriate balance between user convenience and user access control is an increasingly challenging proposition. Suboptimal partitioning of users’ access and available services contributes to the vulnerability of enterprise networks. Previous edge-cut partitioning methods unduly restrict users’ access to network resources. This paper introduces a novel method of network partitioning superior to the current state-of-the-art which minimizes user impact by providing alternate avenues for access that reduce vulnerability. Networks are modeled as bipartite authentication access graphs and a multi-objective evolutionary algorithm is used to simultaneously minimize the size of largemore » connected components while minimizing overall restrictions on network users. Lastly, results are presented on a real world data set that demonstrate the effectiveness of the introduced method compared to previous naive methods.« less

  17. Temporal Partitioning on Multicore Platform

    NASA Astrophysics Data System (ADS)

    Mahmud Pathan, Ristat; Hashi, Feysal; Stenstrom, Per; Green, Lars-Goran; Hult, Torbjorn; Sandin, Patrik

    2014-08-01

    This paper addresses the problem of ensuring temporal partitioning according to the ARINC-653 standard for integrating multiple applications on the same multicore platform. To employ temporal partitioning, we propose the design and analysis of a hierarchical scheduling framework (HSF) for multicore platform. In HSF, each application has a server task, which is mapped to one of the physical cores of the multicore platform. The HSF framework is based on scheduling at two-levels: (i) a system-level scheduler for each core schedules the server tasks that are mapped to that core, and (ii) a task- level scheduler for each application schedules the tasks of the application. This paper presents the design and analysis of this two-level HSF that can be used to ensure temporal partitioning and meeting all the deadlines of each application tasks. The effectiveness of our technique is demonstrated using real-world space applications provided by RUAG Space Sweden AB.

  18. Asymptotic prime partitions of integers

    NASA Astrophysics Data System (ADS)

    Bartel, Johann; Bhaduri, R. K.; Brack, Matthias; Murthy, M. V. N.

    2017-05-01

    In this paper, we discuss P (n ) , the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form Pas(n ) valid for n →∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the saddle-point method for Laplace inversion of the partition function in the limit of large n . This gives directly the asymptotic number of prime partitions Pas(n ) . The leading term in the asymptotic expression grows exponentially as √{n /ln(n ) } and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent, proportional to ln[ln(n )]/ln(n ) , and we show that an earlier result in the literature for its coefficient is incorrect. Furthermore, we also calculate the next higher-order correction, proportional to 1 /ln(n ) and given in Eq. (43), which so far has not been available in the literature. Finally, we compare our analytical results with the exact numerical values of P (n ) up to n ˜8 ×106 . For the highest values, the remaining error between the exact P (n ) and our Pas(n ) is only about half of that obtained with the leading-order approximation. But we also show that, unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being reached even for n ˜107 .

  19. A New Electrochemical System Based on a Flow-Field Shaped Solid Electrode and 3D-Printed Thin-Layer Flow Cell: Detection of Pb(2+) Ions by Continuous Flow Accumulation Square-Wave Anodic Stripping Voltammetry.

    PubMed

    Sun, Qianwen; Wang, Jikui; Tang, Meihua; Huang, Liming; Zhang, Zhiyi; Liu, Chang; Lu, Xiaohua; Hunter, Kenneth W; Chen, Guosong

    2017-05-02

    Here we describe a new and sensitive flow electrochemical detection system that employs a novel flow-field shaped solid electrode (FFSSE). The system was constructed with a 3D-printed thin-layer flow cell (TLFC) and a flat screen-printed FFSSE with USB connection. This interface facilitates continuous flow accumulation square-wave anodic stripping voltammetry (ASV). The flow distribution in the working space of TLFC was simulated using the finite element method (FEM) and the shape and configuration of electrodes were optimized accordingly. We demonstrated the electrochemical determination of Pb(2+) using this newly designed TLFC-FFSSE detection system without removal of oxygen from samples. This TLFC-FFSSE based system showed an attractive stripping voltammetric performance compared to a traditional ASV based method. A linear range for detection of Pb(2+) was found to be 0.5-100 μg/L (0.5 to 100 ppb) and a detection limit of 0.2 μg/L (0.2 ppb) was achieved in the presence of bismuth as codeposition metal. The system was further applied to detect Pb(2+) in biological broths of methane fermentation. The electrochemical detection results were consistent with that obtained from atomic fluorescence spectroscopy (AFS) analysis and the average recovery was found to be 95.5-106.5% using a standard addition method. This new flow electrochemical detection system showed better sensitivity and reproducibility compared to a traditional ASV based method. Such a system offers great potential for on-site and real-time detection of heavy metals where compact, inexpensive, robust, and low-volume analysis is required.

  20. Genuine N -partite entanglement without N -partite correlation functions

    NASA Astrophysics Data System (ADS)

    Tran, Minh Cong; Zuppardo, Margherita; de Rosier, Anna; Knips, Lukas; Laskowski, Wiesław; Paterek, Tomasz; Weinfurter, Harald

    2017-06-01

    A genuinely N -partite entangled state may display vanishing N -partite correlations measured for arbitrary local observables. In such states the genuine entanglement is noticeable solely in correlations between subsets of particles. A straightforward way to obtain such states for odd N is to design an "antistate" in which all correlations between an odd number of observers are exactly opposite. Evenly mixing a state with its antistate then produces a mixed state with no N -partite correlations, with many of them genuinely multiparty entangled. Intriguingly, all known examples of "entanglement without correlations" involve an odd number of particles. Here we further develop the idea of antistates, thereby shedding light on the different properties of even and odd particle systems. We conjecture that there is no antistate to any pure even-N -party entangled state making the simple construction scheme unfeasible. However, as we prove by construction, higher-rank examples of entanglement without correlations for arbitrary even N indeed exist. These classes of states exhibit genuine entanglement and even violate an N -partite Bell inequality, clearly demonstrating the nonclassical features of these states as well as showing their applicability for quantum information processing.

  1. Carbon allocation and accumulation in conifers

    SciTech Connect

    Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.

    1995-07-01

    Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect the global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.

  2. Partition and generating function zeros in adsorbing self-avoiding walks

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2017-03-01

    The Lee–Yang theory of adsorbing self-avoiding walks is presented. It is shown that Lee–Yang zeros of the generating function of this model asymptotically accumulate uniformly on a circle in the complex plane, and that Fisher zeros of the partition function distribute in the complex plane such that a positive fraction are located in annular regions centred at the origin. These results are examined in a numerical study of adsorbing self-avoiding walks in the square and cubic lattices. The numerical data are consistent with the rigorous results; for example, Lee–Yang zeros are found to accumulate on a circle in the complex plane and a positive fraction of partition function zeros appear to accumulate on a critical circle. The radial and angular distributions of partition function zeros are also examined and it is found to be consistent with the rigorous results.

  3. Rectilinear partitioning of irregular data parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  4. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  5. Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas).

    PubMed

    Morandi, Garrett D; Zhang, Kun; Wiseman, Steve B; Pereira, Alberto Dos Santos; Martin, Jonathan W; Giesy, John P

    2016-08-16

    Dissolved organic compounds in oil sands process affected water (OSPW) are known to be responsible for most of its toxicity to aquatic organisms, but the complexity of this mixture prevents use of traditional bottom-up approaches for predicting toxicities of mixtures. Therefore, a top-down approach to predict toxicity of the dissolved organic fraction of OSPW was developed and tested. Accurate masses (i.e., m/z) determined by ultrahigh resolution mass spectrometry in negative and positive ionization modes were used to assign empirical chemical formulas to each chemical species in the mixture. For each chemical species, a predictive measure of lipid accumulation was estimated by stir-bar sorptive extraction (SBSE) to poly(dimethyl)siloxane, or by partitioning to solid-supported lipid membranes (SSLM). A narcosis mode of action was assumed and the target-lipid model was used to estimate potencies of mixtures by assuming strict additivity. A model developed using a combination of the SBSE and SSLM lipid partitioning estimates, whereby the accumulation of chemicals to neutral and polar lipids was explicitly considered, was best for predicting empirical values of LC50 in 96-h acute toxicity tests with embryos of fathead minnow (Pimephales promelas). Model predictions were within 4-fold of observed toxicity for 75% of OSPW samples, and within 8.5-fold for all samples tested, which is comparable to the range of interlaboratory variability for in vivo toxicity testing.

  6. METAL PARTITIONING IN COMBUSTION PROCESSES

    EPA Science Inventory

    This article summarizes ongoing research efforts at the National Risk Management Research Laboratory of the U.S. Environmental Protection Agency examining [high temperature] metal behavior within combustion environments. The partitioning of non-volatile (Cr and Ni), semi-volatil...

  7. METAL PARTITIONING IN COMBUSTION PROCESSES

    EPA Science Inventory

    This article summarizes ongoing research efforts at the National Risk Management Research Laboratory of the U.S. Environmental Protection Agency examining [high temperature] metal behavior within combustion environments. The partitioning of non-volatile (Cr and Ni), semi-volatil...

  8. Understanding Partitive Division of Fractions.

    ERIC Educational Resources Information Center

    Ott, Jack M.; And Others

    1991-01-01

    Concrete experience should be a first step in the development of new abstract concepts and their symbolization. Presents concrete activities based on Hyde and Nelson's work with egg cartons and Steiner's work with money to develop students' understanding of partitive division when using fractions. (MDH)

  9. Understanding Partitive Division of Fractions.

    ERIC Educational Resources Information Center

    Ott, Jack M.; And Others

    1991-01-01

    Concrete experience should be a first step in the development of new abstract concepts and their symbolization. Presents concrete activities based on Hyde and Nelson's work with egg cartons and Steiner's work with money to develop students' understanding of partitive division when using fractions. (MDH)

  10. Partitioning behavior of five pharmaceutical compounds to activated sludge and river sediment.

    PubMed

    Jones, O A H; Voulvoulis, N; Lester, J N

    2006-04-01

    Pharmaceutical substances have been detected in sewage effluents as well as receiving waters in many parts of the world. To assess the fate and removal of these compounds within sewage treatment plants, an understanding of their partitioning behavior between the solid and aqueous phases is critical. Therefore, a preliminary study was conducted to ascertain an understanding of the binding behavior of five drug substances sorbing to the solid phase in a laboratory scale-activated sludge plant (Husmann unit). For comparison, uncontaminated river sediment was also used as a substrate. All of the compounds tested partitioned more readily to the sludge than the sediment, likely because of the former's higher organic carbon content. Partitioning to the solid phase correlated roughly with predicted log Kow values. A period of initial sorption was followed by a phase of desorption, and net absorption of the selected drugs (with the exception of mefenamic acid) after 5 hours of mixing was minimal.

  11. Some trees with partition dimension three

    NASA Astrophysics Data System (ADS)

    Fredlina, Ketut Queena; Baskoro, Edy Tri

    2016-02-01

    The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ..., Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ..., d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.

  12. Methodology for optimally sized centrifugal partition chromatography columns.

    PubMed

    Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain

    2015-04-03

    Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity.

  13. Radionuclide partitioning across great lakes natural interfaces

    NASA Astrophysics Data System (ADS)

    Platford, R. F.; Joshi, S. R.

    1989-11-01

    Several water and surface microlayer samples from Lake St. Clair, the Niagara River, and the North Shore of Lake Ontario collected during 1983 1986 have been assayed for a variety of radionuclides. In addition, the foam accumulating in the pool just below Niagara Falls was also analyzed and found to be the most efficient aqueous phase collector of137Cs,210Pb, and226Ra. The order of radioisotope specific activities from highest to lowest is: Lake Ontario sediment, Niagara River suspended solids, Niagara River foam, surface microlayer water, and subsurface water. Radiological dose rates to the sediments from137Cs,226Ra, and228Th total about 5 mGy/y.

  14. On the Analysis of Partitioned Data.

    ERIC Educational Resources Information Center

    Pruzek, Robert M.; And Others

    A description is given of a general method for studying partitions. The main focus is with the analysis of relationships among several different partitions of the same items for the explorations as well as confirmation of structural relationships. A partition is defined as a set of mutually exclusive clusters of items; however, this paper deals…

  15. Partitioning sparse rectangular matrices for parallel processing

    SciTech Connect

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  16. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments

    USGS Publications Warehouse

    Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.

    1998-01-01

    The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM

  17. Spectral partitioning in equitable graphs

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  18. Paths and partitions: Combinatorial descriptions of the parafermionic states

    NASA Astrophysics Data System (ADS)

    Mathieu, Pierre

    2009-09-01

    The Zk parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k -1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k -1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Zk parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained, and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Zk parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.

  19. Element Partitioning Constraints on Formation and Composition of the Earth's Core

    NASA Technical Reports Server (NTRS)

    Li, J.; Agee, C. B.; Fei, Y.

    1998-01-01

    Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.

  20. Element Partitioning Constraints on Formation and Composition of the Earth's Core

    NASA Technical Reports Server (NTRS)

    Li, J.; Agee, C. B.; Fei, Y.

    1998-01-01

    Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.

  1. Dual-phase reactor plant with partitioned isolation condenser

    DOEpatents

    Hui, Marvin M.

    1992-01-01

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  2. Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    Manaker, D. M.; Calais, E.; Freed, A. M.; Ali, S. T.; Przybylski, P.; Mattioli, G.; Jansma, P.; Prépetit, C.; de Chabalier, J. B.

    2008-09-01

    The northeastern Caribbean provides a natural laboratory to investigate strain partitioning, its causes and its consequences on the stress regime and tectonic evolution of a subduction plate boundary. Here, we use GPS and earthquake slip vector data to produce a present-day kinematic model that accounts for secular block rotation and elastic strain accumulation, with variable interplate coupling, on active faults. We confirm that the oblique convergence between Caribbean and North America in Hispaniola is partitioned between plate boundary parallel motion on the Septentrional and Enriquillo faults in the overriding plate and plate-boundary normal motion at the plate interface on the Northern Hispaniola Fault. To the east, the Caribbean/North America plate motion is accommodated by oblique slip on the faults bounding the Puerto Rico block to the north (Puerto Rico subduction) and to the south (Muertos thrust), with no evidence for partitioning. The spatial correlation between interplate coupling, strain partitioning and the subduction of buoyant oceanic asperities suggests that the latter enhance the transfer of interplate shear stresses to the overriding plate, facilitating strike-slip faulting in the overriding plate. The model slip rate deficit, together with the dates of large historical earthquakes, indicates the potential for a large (Mw7.5 or greater) earthquake on the Septentrional fault in the Dominican Republic. Similarly, the Enriquillo fault in Haiti is currently capable of a Mw7.2 earthquake if the entire elastic strain accumulated since the last major earthquake was released in a single event today. The model results show that the Puerto Rico/Lesser Antilles subduction thrust is only partially coupled, meaning that the plate interface is accumulating elastic strain at rates slower than the total plate motion. This does not preclude the existence of isolated locked patches accumulating elastic strain to be released in future earthquakes, but whose

  3. The partitioning of 7beryllium in fresh water

    NASA Astrophysics Data System (ADS)

    Hawley, N.; Robbins, J. A.; Eadie, B. J.

    1986-06-01

    Field observations and experimental measurements of the partitioning coefficient ( Kd) of 7Be in fresh water show that it varies inversely with the solids concentration at typical environmental values (up to 30 mg/1). This behavior is similar to that of many other metals and organic pollutants, which means that 7Be may be useful as a tracer of the movement of these substances in the water column. However, the wide range in the percentage of 7Be adsorbed by solids over this range of concentrations (over 50%) means that in order to use 7Be either to measure total sedimentation rates or to trace lateral sediment movement it will be necessary to monitor changes in sediment concentration over the area and time period of interest. The wide scatter in our data at both high and low solids concentrations suggests that other factors also affect Kd. Until these factors are identified, application of our results to other systems will be risky. At high (greater than 100 mg/1) solids concentrations over 90% of 7Be is associated with the solid phase, so it may be a useful tracer of reworking rates in bottom sediments. 7Be has a slightly greater affinity for the solid phase in fresh water than in seawater.

  4. Laser system with partitioned prism

    SciTech Connect

    Nettleton, J. E.; Barr, D. N.

    1985-03-26

    An array of optical frequency-sensitive elements such as diffraction gratings or interference filters are arranged in a row, and the optical path of the laser cavity can be directed to include one of these elements. A partitioned optical prism consisting of a triangular portion and one or more paralleogramatic portions are used to direct the path. Between the portions are piezoelectric elements which, when energized, expand to provide an air gap between the portions and to allow total reflection of an optical ray at the surface of the prism next to the gap.

  5. Partitioning of copper to suspended particles in surface water

    SciTech Connect

    Grassi, M.T.; Shi, B.; Allen, H.E.

    1995-12-31

    The recent recommendation that Water Quality Criteria for metals be implemented based on dissolved, rather than total recoverable metal, requires significant new understanding of the role of particulate matter in surface waters. Principal factors controlling the distribution of metal between the particles and the water include suspended solids concentration, the solution pH, and the concentrations of dissolved and particulate organic carbon. The authors have investigated these variables in the laboratory to develop predictions of partitioning in natural waters. Particulate water was concentrated from the Delaware River. The binding of copper was studied as a function of solution pH. Both inorganic copper and copper contained in sewage effluent was added.

  6. Estimating optimal partitions for stochastic complex systems

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aihara, Kazuyuki

    2013-06-01

    Partitions provide simple symbolic representations for complex systems. For a deterministic system, a generating partition establishes one-to-one correspondence between an orbit and the infinite symbolic sequence generated by the partition. For a stochastic system, however, a generating partition does not exist. In this paper, we propose a method to obtain a partition that best specifies the locations of points for a time series generated from a stochastic system by using the corresponding symbolic sequence under a constraint of an information rate. When the length of the substrings is limited with a finite length, the method coincides with that for estimating a generating partition from a time series generated from a deterministic system. The two real datasets analyzed in Kennel and Buhl, Phys. Rev. Lett. 91, 084102 (2003), are reanalyzed with the proposed method to understand their underlying dynamics intuitively.

  7. On some trees having partition dimension four

    NASA Astrophysics Data System (ADS)

    Ida Bagus Kade Puja Arimbawa, K.; Baskoro, Edy Tri

    2016-02-01

    In 1998, G. Chartrand, E. Salehi and P. Zhang introduced the notion of partition dimension of a graph. Since then, the study of this graph parameter has received much attention. A number of results have been obtained to know the values of partition dimensions of various classes of graphs. However, for some particular classes of graphs, finding of their partition dimensions is still not completely solved, for instances a class of general tree. In this paper, we study the properties of trees having partition dimension 4. In particular, we show that, for olive trees O(n), its partition dimension is equal to 4 if and only if 8 ≤ n ≤ 17. We also characterize all centipede trees having partition dimension 4.

  8. PARTITIONING OF GADOLINIUM IN THE CHEMICAL PROCESSING CELL

    SciTech Connect

    Reboul, S.; Best, D.; Stone, M.; Click, D.

    2011-04-27

    A combination of short-term beaker tests and longer-duration Sludge Receipt and Adjustment Tank (SRAT) simulations were performed to investigate the relative partitioning behaviors of gadolinium and iron under conditions applicable to the Chemical Processing Cell (CPC). The testing was performed utilizing non-radioactive simple Fe-Gd slurries, non-radioactive Sludge Batch 6 simulant slurries, and a radioactive real-waste slurry representative of Sludge Batch 7 material. The testing focused on the following range of conditions: (a) Fe:Gd ratios of 25-100; (b) pH values of 2-6; (c) acidification via addition of nitric, formic, and glycolic acids; (d) temperatures of {approx}93 C and {approx}22 C; and (e) oxalate concentrations of <100 mg/kg and {approx}10,000 mg/kg. The purpose of the testing was to provide data for assessing the potential use of gadolinium as a supplemental neutron poison when dispositioning excess plutonium. Understanding of the partitioning behavior of gadolinium in the CPC was the first step in assessing gadolinium's potential applicability. Significant fractions of gadolinium partitioned to the liquid-phase at pH values of 4.0 and below, regardless of the Fe:Gd ratio. In SRAT simulations targeting nitric and formic acid additions of 150% acid stoichiometry, the pH dropped to a minimum of 3.5-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were both {approx}20%. In contrast, in a SRAT simulation utilizing a nitric and formic acid addition under atypical conditions (due to an anomalously low insoluble solids content), the pH dropped to a minimum of 3.7, and the maximum fractions of gadolinium and iron partitioning to solution were {approx}60% and {approx}70%, respectively. When glycolic acid was used in combination with nitric and formic acids at 100% acid stoichiometry, the pH dropped to a minimum of 3.6-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were 60-80% and 3-5%, respectively

  9. A Henry's Law Test for Experimental Partitioning Studies of Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Campbell, A. J.; Humayun, M.; Agee, C. B.

    2001-01-01

    Low-level doped solid metal/liquid metal experiments analyzed by laser ablation ICP-MS allow Henry's Law to be tested. The results indicate Henry's Law is obeyed and the experimental partition coefficients can be applied to iron meteorites. Additional information is contained in the original extended abstract.

  10. Displaying multimedia environmental partitioning by triangular diagrams

    SciTech Connect

    Lee, S.C.; Mackay, D.

    1995-11-01

    It is suggested that equilateral triangular diagrams are a useful method of depicting the equilibrium partitioning of organic chemicals among the three primary environmental media of the atmosphere, the hydrosphere, and the organosphere (natural organic matter and biotic lipids and waxes). The technique is useful for grouping chemicals into classes according to their partitioning tendencies, for depicting the incremental effects of substituents such as alkyl groups and chlorine, and for showing how partitioning changes in response to changes in temperature.

  11. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  12. The stringy instanton partition function

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr

    2014-01-01

    We perform an exact computation of the gauged linear sigma model associated to a D1-D5 brane system on a resolved A 1 singularity. This is accomplished via supersymmetric localization on the blown-up two-sphere. We show that in the blow-down limit the partition function reduces to the Nekrasov partition function evaluating the equivariant volume of the instanton moduli space. For finite radius we obtain a tower of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten invariants of the ADHM moduli space. We show that these corrections can be encoded in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint, the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint captures the equivariant quantum cohomology of the ADHM instanton moduli space in the Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant Donaldson-Thomas invariants of.

  13. Geometric crossovers for multiway graph partitioning.

    PubMed

    Moraglio, Alberto; Kim, Yong-Hyuk; Yoon, Yourim; Moon, Byung-Ro

    2007-01-01

    Geometric crossover is a representation-independent generalization of the traditional crossover defined using the distance of the solution space. By choosing a distance firmly rooted in the syntax of the solution representation as a basis for geometric crossover, one can design new crossovers for any representation. Using a distance tailored to the problem at hand, the formal definition of geometric crossover allows us to design new problem-specific crossovers that embed problem-knowledge in the search. The standard encoding for multiway graph partitioning is highly redundant: each solution has a number of representations, one for each way of labeling the represented partition. Traditional crossover does not perform well on redundant encodings. We propose a new geometric crossover for graph partitioning based on a labeling-independent distance that filters out the redundancy of the encoding. A correlation analysis of the fitness landscape based on this distance shows that it is well suited to graph partitioning. A second difficulty with designing a crossover for multiway graph partitioning is that of feasibility: in general recombining feasible partitions does not lead to feasible offspring partitions. We design a new geometric crossover for permutations with repetitions that naturally suits partition problems and we test it on the graph partitioning problem. We then combine it with the labeling-independent crossover and obtain a much superior geometric crossover inheriting both advantages.

  14. Partitioning Strategy Using Static Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Seo, Yongjin; Soo Kim, Hyeon

    2016-08-01

    Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.

  15. Automatic analysis of D-partition

    NASA Astrophysics Data System (ADS)

    Bogaevskaya, V. G.

    2017-01-01

    The paper is dedicated to automatization of D-partition analysis. D-partition is one of the most common methods for determination of solution stability in systems with time-delayed feedback control and its dependency on values of control parameters. A transition from analytical form of D-partition to plain graph has been investigated. An algorithm of graph faces determination and calculation of count of characteristic equation roots with positive real part for appropriate area of D-partition has been developed. The algorithm keeps an information about analytical formulas for edges of faces. It allows to make further analytical research based on the results of computer analysis.

  16. Partitioning and diffusion of PBDEs through an HDPE geomembrane.

    PubMed

    Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison

    2016-09-01

    Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Growth rate controlled barium partitioning in calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  18. Phosphorus uptake, partitioning and redistribution during grain filling in rice.

    PubMed

    Julia, Cécile; Wissuwa, Matthias; Kretzschmar, Tobias; Jeong, Kwanho; Rose, Terry

    2016-11-01

    In cultivated rice, phosphorus (P) in grains originates from two possible sources, namely exogenous (post-flowering root P uptake from soil) or endogenous (P remobilization from vegetative parts) sources. This study investigates P partitioning and remobilization in rice plants throughout grain filling to resolve contributions of P sources to grain P levels in rice. Rice plants (Oryza sativa 'IR64') were grown under P-sufficient or P-deficient conditions in the field and in hydroponics. Post-flowering uptake, partitioning and re-partitioning of P was investigated by quantifying tissue P levels over the grain filling period in the field conditions, and by employing (33)P isotope as a tracer in the hydroponic study. Post-flowering P uptake represented 40-70 % of the aerial plant P accumulation at maturity. The panicle was the main P sink in all studies, and the amount of P potentially remobilized from vegetative tissues to the panicle during grain filling was around 20 % of the total aerial P measured at flowering. In hydroponics, less than 20 % of the P tracer taken up at 9 d after flowering (DAF) was found in the above-ground tissues at 14 DAF and half of it was partitioned to the panicle in both P treatments. The results demonstrate that P uptake from the soil during grain filling is a critical contributor to the P content in grains in irrigated rice. The P tracer study suggests that the mechanism of P loading into grains involves little direct transfer of post-flowering P uptake to the grain but rather substantial mobilization of P that was previously taken up and stored in vegetative tissues. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Relationship between carbohydrate partitioning and drought resistance in common bean.

    PubMed

    Cuellar-Ortiz, Sonia M; De La Paz Arrieta-Montiel, Maria; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A

    2008-10-01

    Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.

  20. Two-phase partitioning bioreactors in environmental biotechnology.

    PubMed

    Quijano, Guillermo; Hernandez, María; Thalasso, Frédéric; Muñoz, Raúl; Villaverde, Santiago

    2009-10-01

    Two-phase partitioning bioreactors (TPPBs) in environmental biotechnology are based on the addition of a non-aqueous phase (NAP) into a biological process in order to overcome both mass-transfer limitations from the gas to aqueous phase and pollutant-mediated inhibitions. Despite constituting a robust and reliable technology in terms of pollutant biodegradation rates and process stability in wastewater, soil, and gas treatment applications, this superior performance only applies for a restricted number of pollutants or contamination events. Severe limitations such as high energy requirements, high costs of some NAPs, foaming, or pollutant sequestration challenge the full-scale application of this technology. The introduction of solid NAPs into this research field has opened a promising pathway for the future development of TPPBs. Finally, this work reviews fundamental aspects of NAP selection and mass transfer and identifies the niches for future research: low energy-demand bioreactor designs, experimental determination of partial mass transfers, and solid NAP tailoring.

  1. Disentangling event-scale hydrologic flow partitioning in mountains of the Korean Peninsula under extreme precipitation

    NASA Astrophysics Data System (ADS)

    Shope, Christopher L.

    2016-07-01

    Mountainous headwaters include a variety of spatial landscape units; however, the flow contribution from different hydrologic components is complex and often unclear. In addition to complex landscape controls, temporal meteorological drivers play an important role in the distribution between surface runoff and subsurface storage changes. This spatiotemporal variability in partitioning can influence catchment-wide flow accumulation and nutrient and sediment loading. We use a multi-year, multi-method analysis of stable isotopes, geochemical indicators, and discharge distributed throughout the Haean catchment in South Korea to identify temporal variability in hydrologic flow partitioning from surface runoff, springs, shallow interflow, and groundwater under monsoonal conditions. By combining a weighted, multi-method discharge approach, high frequency, synoptic, catchment-wide isotopic and geochemical sampling, and baseflow analysis, we characterize watershed-scale spatiotemporal hydrologic flow partitioning. Meteorological drivers are spatially variable throughout the catchment and temporally between individual events. Baseflow contributions in the high elevation, forested areas are up to 50%, while the majority of the catchment is approximately 20%. Our study builds on previously reported seasonality of isotopic signatures by quantifying trends in distributed event-based partitioning of isotopic tracers. We demonstrate that high frequency flow partitioning can accurately be determined in mountainous topography with high precipitation and that there is a need for multiple method characterizations. Our results further show the benefit of spatially distributed synoptic sampling for process understanding of hydrologic partitioning throughout the watersheds.

  2. Characterization of partitioning behaviors of immunoglobulin G in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Show, Pau Loke; Juan, Joon Ching; Anuar, Mohd Shamsul; Ng, Eng-Poh; Ooi, Chien-Wei; Ling, Tau Chuan

    2016-11-01

    The partitioning behavior of immunoglobulin G (IgG) in the aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and phosphate was studied. The parameters of ATPS exhibiting the pronounced effects on the partitioning behavior of IgG include phase composition, PEG molecular weight, and the addition of sodium chloride (NaCl). The accumulation of IgG at the interface of the ATPS increased drastically as the tie-line length (TLL) was increased. This trend was correlated with a linear relationship relating the natural logarithm of interfacial partition coefficient (ln G) to the difference of PEG concentration between the top phase and the bottom phase (Δ[PEG]), and a good fit was obtained. An attempt was made to correlate the natural logarithm of partition coefficient (ln K) to the presence of NaCl with the proposed linear relationship, ln K = α″ ln [Cl(-)] + β″. The proposed relationship, which serves as a better description of the underlying mechanics of the protein partitioning behavior in the polymer-salt ATPS, provides a good fit (r(2) > 0.95) for the data of IgG partitioning. An optimum recovery of 99.97% was achieved in an ATPS (pH 7.5) composed of 14.0% (w/w) PEG 1450, 12.5% (w/w) phosphate and 5.0% (w/w) NaCl.

  3. Sophisticated Merging Over Random Partitions: A Scalable and Robust Causal Discovery Approach.

    PubMed

    Cai, Ruichu; Zhang, Zhenjie; Hao, Zhifeng; Winslett, Marianne

    2017-08-24

    Scalable causal discovery is an essential technology to a wide spectrum of applications, including biomedical studies and social network evolution analysis. To tackle the difficulty of high dimensionality, a number of solutions are proposed in the literature, generally dividing the original variable domain into smaller subdomains by computation intensive partitioning strategies. These approaches usually suffer significant structural errors when the partitioning strategies fail to recognize true causal edges across the output subdomains. Such a structural error accumulates quickly with the growing depth of recursive partitioning, due to the lack of correction mechanism over causally connected variables when they are wrongly divided into two subdomains, finally jeopardizing the robustness of the integrated results. This paper proposes a completely different strategy to solve the problem, powered by a lightweight random partitioning scheme together with a carefully designed merging algorithm over results from the random partitions. Based on the randomness properties of the partitioning scheme, we design a suite of tricks for the merging algorithm, in order to support propagation-based significance enhancement, maximal acyclic subgraph causal ordering, and order-sensitive redundancy elimination. Theoretical studies as well as empirical evaluations verify the genericity, effectiveness, and scalability of our proposal on both simulated and real-world causal structures when the scheme is used in combination with a variety of causal solvers known effective on smaller domains.

  4. Generalized Combinatoric Accumulator

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Seo, Jae Woo; Lee, Pil Joong

    The accumulator was introduced as a decentralized alternative to digital signatures. While most of accumulators are based on number theoretic assumptions and require time-consuming modulo exponentiations, Nyberg's combinatoric accumulator dose not depend on any computational assumption and requires only bit operations and hash function evaluations. In this article, we present a generalization of Nyberg's combinatoric accumulator, which allows a lower false positive rate with the same output length. Our generalization also shows that the Bloom filter can be used as a cryptographic accumulator and moreover excels the Nyberg's accumulator.

  5. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.

    PubMed

    Yang, Chunxia; Chen, Yongheng; Peng, Ping'an; Li, Chao; Chang, Xiangyang; Wu, Yingjuan

    2009-08-15

    Total concentrations combined with chemical partitioning of trace elements (Cd, Co, Cr, Mn, Ni, Pb, Tl, and Zn) in raw pyrite ore and solid roasting wastes were investigated in order to elucidate their transformations and partitioning during the roasting of raw pyrite ores in sulfuric acid production. In order to better understand the behavior of these elements during roasting, mineral transformations accompanying roasting were also investigated by using microscopy. Results indicated that the mode of occurrence of trace elements in raw pyrite ore and the thermostability of trace element-bearing species formed during roasting played major roles in the transformations of the selected trace elements. Silicate- and amorphous iron (hydr)oxide-bound elements (Cr and Pb) were stable and mainly retained in their original phases. However, acid-exchangeable and sulfide-bound elements tended to transform into other forms via different pathways: elements that tend to form low thermostable species (Cd, Pb and Tl) were significantly vaporized, whereas elements that tend to form high thermostable species (Co, Mn and Ni) mainly reacted with iron oxides or silicates, which then remained in the solid residues. The volatility of trace elements during the roasting has a significant effect on their subsequent partitioning in roasting wastes. Nonvolatile element (Co, Cr, Mn, and Ni) partitioning was determined by settling of the particulate in which they are bound, whereas the partitioning of (semi)volatile elements (Cd, Pb, Tl, and Zn) was controlled by the adsorption of their gaseous species on the particulate.

  6. Assimilate partitioning during reproductive growth

    SciTech Connect

    Finazzo, S.F.; Davenport, T.L.

    1987-04-01

    Leaves having various phyllotactic relationships to fruitlets were labeled for 1 hour with 10/sub r/Ci of /sup 14/CO/sub 2/. Fruitlets were also labeled. Fruitlets did fix /sup 14/CO/sub 2/. Translocation of radioactivity from the peel into the fruit occurred slowly and to a limited extent. No evidence of translocation out of the fruitlets was observed. Assimilate partitioning in avocado was strongly influenced by phyllotaxy. If a fruit and the labeled leaf had the same phyllotaxy then greater than 95% of the radiolabel was present in this fruit. When the fruit did not have the same phyllotaxy as the labeled leaf, the radiolabel distribution was skewed with 70% of the label going to a single adjacent position. Avocado fruitlets exhibit uniform labeling throughout a particular tissue. In avocado, assimilates preferentially move from leaves to fruits with the same phyllotaxy.

  7. HPAM: Hirshfeld partitioned atomic multipoles

    NASA Astrophysics Data System (ADS)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  8. MULTIVARIATE KERNEL PARTITION PROCESS MIXTURES

    PubMed Central

    Dunson, David B.

    2013-01-01

    Mixtures provide a useful approach for relaxing parametric assumptions. Discrete mixture models induce clusters, typically with the same cluster allocation for each parameter in multivariate cases. As a more flexible approach that facilitates sparse nonparametric modeling of multivariate random effects distributions, this article proposes a kernel partition process (KPP) in which the cluster allocation varies for different parameters. The KPP is shown to be the driving measure for a multivariate ordered Chinese restaurant process that induces a highly-flexible dependence structure in local clustering. This structure allows the relative locations of the random effects to inform the clustering process, with spatially-proximal random effects likely to be assigned the same cluster index. An exact block Gibbs sampler is developed for posterior computation, avoiding truncation of the infinite measure. The methods are applied to hormone curve data, and a dependent KPP is proposed for classification from functional predictors. PMID:24478563

  9. Body Partitioning in ASL Metaphorical Blends

    ERIC Educational Resources Information Center

    Wulf, Alyssa; Dudis, Paul

    2005-01-01

    Grounded blends may be literal or metaphorical, the latter allowing for an even richer variety of blend characteristics. This contribution of metaphor is achieved largely through the utilization of body partitioning. Body partitioning may result in: (1) the appearance of a single, coherent source-domain scene iconically represented; (2) a single…

  10. [On the partition of acupuncture academic schools].

    PubMed

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  11. Building Ecology and Partition Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This bulletin is intended as a resource for school system facility planners and architects who design schools. Ways in which decision makers can incorporate environmental concerns in the design of school buildings are detailed. Focus is on the design of interior partition systems. Partition systems in schools serve several purposes; they define…

  12. Building Ecology and Partition Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This bulletin is intended as a resource for school system facility planners and architects who design schools. Ways in which decision makers can incorporate environmental concerns in the design of school buildings are detailed. Focus is on the design of interior partition systems. Partition systems in schools serve several purposes; they define…

  13. Graph Partitioning Models for Parallel Computing

    SciTech Connect

    Hendrickson, B.; Kolda, T.G.

    1999-03-02

    Calculations can naturally be described as graphs in which vertices represent computation and edges reflect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.

  14. Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Shilling, John E.; Seinfeld, J. H.

    2014-05-27

    Evidence is mounting that the majority of the climatically active aerosols are produced through the growth of smaller particles via secondary organic aerosol (SOA) formation from gas-to-particle conversion of anthropogenic and biogenic volatile organic compounds (VOCs). The timescale of SOA partitioning and the associated size distribution dynamics are expected to depend on the gas-phase oxidation of the precursor VOCs and their products, volatility of these organic solutes, composition and phase state of the pre-existing particles, and diffusivity and reactivity of the solute within the particle phase. This paper describes a new framework for modeling kinetic gas-particle partitioning of SOA, with an analytical treatment for the diffusion-reaction process within the particle phase. The formulation is amenable for eventual use in regional and global climate models, although it currently awaits implementation of the actual particle-phase reactions that are important for SOA formation. In the present work, the model is applied to investigate the competitive growth dynamics of the Aitken and accumulation mode particles while the Kelvin effect and coagulation are neglected for simplicity. The timescale of SOA partitioning and evolution of number and composition size distributions are evaluated for a range of solute volatilities (C*), particle-phase bulk diffusivities (Db), and particle-phase reactivity, as exemplified by a pseudo-first-order rate constant (kc). Results show that irreversible condensation of non-volatile organic vapors (equivalent to ) produces significant narrowing of the size distribution. At the other extreme, non-reactive partitioning of semi-volatile organic vapors is volume-controlled in which the final (equilibrium) size distribution simply shifts to the right on the diameter axis while its shape remains unchanged. However, appreciable narrowing of the size distribution may occur when the pre-existing particles are highly viscous semi-solids such

  15. Partition behaviour of alkylphenols in crude oil/brine systems under subsurface conditions

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Larter, S. R.

    1997-10-01

    Partition of organic solutes between oils and water in the subsurface is an important geochemical process occurring during petroleum migration and reservoiring, during water washing, and during petroleum production. Currently no data exists on the quantitative aspects of the partition process at subsurface conditions for solutes such as phenols and aromatic hydrocarbons which are major components of both oils and waters. We have constructed an equilibration device for oils and waters based on flow injection analysis principles to measure partition coefficients of alkylphenols in crude oil/brine systems under reservoir conditions. Concentrations of C 0C 2 alkylphenols in waters and solid phase extracts of crude oils produced in the device were determined by reverse phase high performance liquid chromatography with electrochemical detection (RP-HPLC-ED), partition coefficients being measured as a function of pressure (25-340 bar), temperature (25-150°C), and water salinity (0-100,000 mg/L sodium chloride) for a variety of oils. Partition coefficients for all compounds decreased with increasing temperature, increased with water salinity and crude oil bulk NSO content, and showed little change with varying pressure. These laboratory measurements, determined under conditions close to those typically encountered in petroleum reservoirs, suggest temperature, water salinity, and crude oil bulk NSO content will have important influence on oil-water partition processes in the subsurface during migration and water washing.

  16. Prediction of partition coefficients of organic compounds between SPME/PDMS and aqueous solution.

    PubMed

    Chao, Keh-Ping; Lu, Yu-Ting; Yang, Hsiu-Wen

    2014-02-14

    Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique.

  17. The vapor-particle partitioning of n-alkanes

    SciTech Connect

    Doskey, P.V.

    1994-04-01

    A mixed-phase partitioning model has been proposed to predict the distribution of n-alkanes between the vapor and particle phases in the atmosphere. n-Alkanes having terrestrial plant wax and petroleum origins are assumed to be associated with atmospheric particles as microcrystalline solids and subcooled liquids, respectively. The fraction of n-alkanes on atmospheric particles having plant wax and petroleum origins is estimated with carbon preference indices. Hypothetical terrestrial plant wax and petroleum mixtures are used to estimate the mole fractions of the n-alkanes in each phase and the molecular weights of the phases. Solid and subcooled liquid phase n-alkane vapor pressures are used in the model to predict the fraction of n-alkanes associated with particles in the atmosphere. Trends in the prediction of vapor-particle partitioning using these assumptions agree well with field observations. However, the fraction of particle phase n-alkanes predicted by the model was significantly different from the field observations.

  18. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models.

    PubMed

    Chen, Bo-Ching; Ho, Pei-Chi; Juang, Kai-Wei

    2013-01-01

    Copper toxicity and accumulation in plants are affected by physicochemical characteristics of soil solutions such as the concentrations of coexistent cations (e.g., Ca(2+), Mg(2+), K(+), Na(+), and H(+)). The biotic ligand model (BLM) approach has been proposed to predict metal phyto-toxicity and -accumulation by taking into account the effects of coexistent cations, given the assumption of the partition equilibrium of metal ions between soil solution and solid phase. The alleviation effects of Mg on Cu toxicity and accumulation in grapevine roots were the main concerns in this study and were investigated by using a hydroponic experiment of grapevine cuttings. The BLM approach, which incorporated competition of Mg(2+) with Cu(2+) to occupy the biotic ligands on root surfaces, was developed to predict Cu rhizotoxicity and accumulation by grapevine roots. In the results, the effective activity of Cu, {Cu (2+)}, resulting in a 50 % reduction of root elongation (EA (50)), linearly increased with increments of Mg activity, {Mg (2+)}. In addition, the Cu concentration in root, Cu ( root ), was retarded by an increase of {Mg (2+)}. The linear model was significantly fitted to the relationship between {Cu (2+)}/Cu ( root ) and {Mg (2+)}. According to the concept of BLM, the present results revealed that the amelioration effects of Mg on Cu toxicity and accumulation in roots could arise from competition between Mg(2+) and Cu(2+) on the binding sites (i.e., the biotic ligands). Then, the developed Cu-BLMs incorporating the Mg(2+) competition effectiveness were validated provide accurate predictions of Cu toxicity and accumulation in grapevine roots. To our knowledge this is the first report of the successful development of BLMs for a woody plant. This BLM approach shows promise of being widely applicable for various terrestrial plants.

  19. Efficient multiple-way graph partitioning algorithms

    SciTech Connect

    Dasdan, A.; Aykanat, C.

    1995-12-01

    Graph partitioning deals with evenly dividing a graph into two or more parts such that the total weight of edges interconnecting these parts, i.e., cutsize, is minimized. Graph partitioning has important applications in VLSI layout, mapping, and sparse Gaussian elimination. Since graph partitioning problem is NP-hard, we should resort to polynomial-time algorithms to obtain a good solution, or hopefully a near-optimal solution. Kernighan-Lin (KL) propsoed a 2-way partitioning algorithms. Fiduccia-Mattheyses (FM) introduced a faster version of KL algorithm. Sanchis (FMS) generalized FM algorithm to a multiple-way partitioning algorithm. Simulated Annealing (SA) is one of the most successful approaches that are not KL-based.

  20. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  1. Parallel hypergraph partitioning for scientific computing.

    SciTech Connect

    Heaphy, Robert; Devine, Karen Dragon; Catalyurek, Umit; Bisseling, Robert; Hendrickson, Bruce Alan; Boman, Erik Gunnar

    2005-07-01

    Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.

  2. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  3. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  4. Recovery of small bioparticles by interfacial partitioning.

    PubMed

    Jauregi, P; Hoeben, M A; van der Lans, R G J M; Kwant, G; van der Wielen, L A M

    2002-05-20

    In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.

  5. Chalcophile element partitioning into magmatic sulphides: the effect of silicate melt composition

    NASA Astrophysics Data System (ADS)

    Kiseeva, Kate; Wood, Bernard

    2016-04-01

    Partitioning of many elements between sulphide and silicate melts is a function of the FeO content of the silicate liquid (Kiseeva and Wood, 2013). The theoretical relationship is a linear one between LogDM (DM=[M]sulph/[M]sil) and -log[FeO] with a slope of n/2, where n is the valency of trace element M. In practice we find that the slope deviates from the theoretical one because of the presence of oxygen in the sulphide. In our recent study we investigated the effects of sulphide composition and temperature on chalcophile element partitioning between sulphide and silicate liquids (Kiseeva and Wood, 2015). We have concluded that partitioning of most chalcophile elements is a strong function of the oxygen (or FeO) content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. The effect of Ni and Cu content of sulphide is significantly smaller than the effect of oxygen, while the effects of temperature are large only for a number of elements (such as Ni, Cu, Ag). In this study we show that in addition to the effect of sulphide composition, for certain elements the effect of silicate melt composition on sulphide/silicate partitioning can be quite large. For instance, within the range of NBO/T between 0.5 and 2 the DTlsulph/sil changes in order of magnitude. For the elements, like Pb, partition coefficient does not seem to change much with the silicate melt composition, while for Sb the effect of the silicate melt composition on D is a factor of 3. Partitioning of chalcophile elements into more evolved, alkali-rich and felsic magmas is estimated to be very different from the partitioning into basaltic melts, mainly due to the strong effects of temperature and alkali components. Although it is highly likely that sulphide is in solid form at liquidus temperatures for dacite and rhyolite and thus the partitioning of chalcophile

  6. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography.

    PubMed

    Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël

    2009-06-05

    Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55K. The influence of gas-liquid and gas-solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model.

  7. Selecting optimal partitioning schemes for phylogenomic datasets.

    PubMed

    Lanfear, Robert; Calcott, Brett; Kainer, David; Mayer, Christoph; Stamatakis, Alexandros

    2014-04-17

    Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.

  8. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards.

    PubMed

    Brandley, Matthew C; Schmitz, Andreas; Reeder, Tod W

    2005-06-01

    Partitioned Bayesian analyses of approximately 2.2 kb of nucleotide sequence data (mtDNA) were used to elucidate phylogenetic relationships among 30 scincid lizard genera. Few partitioned Bayesian analyses exist in the literature, resulting in a lack of methods to determine the appropriate number of and identity of partitions. Thus, a criterion, based on the Bayes factor, for selecting among competing partitioning strategies is proposed and tested. Improvements in both mean -lnL and estimated posterior probabilities were observed when specific models and parameter estimates were assumed for partitions of the total data set. This result is expected given that the 95% credible intervals of model parameter estimates for numerous partitions do not overlap and it reveals that different data partitions may evolve quite differently. We further demonstrate that how one partitions the data (by gene, codon position, etc.) is shown to be a greater concern than simply the overall number of partitions. Using the criterion of the 2 ln Bayes factor > 10, the phylogenetic analysis employing the largest number of partitions was decisively better than all other strategies. Strategies that partitioned the ND1 gene by codon position performed better than other partition strategies, regardless of the overall number of partitions. Scincidae, Acontinae, Lygosominae, east Asian and North American "Eumeces" + Neoseps; North African Eumeces, Scincus, and Scincopus, and a large group primarily from sub-Saharan Africa, Madagascar, and neighboring islands are monophyletic. Feylinia, a limbless group of previously uncertain relationships, is nested within a "scincine" clade from sub-Saharan Africa. We reject the hypothesis that the nearly limbless dibamids are derived from within the Scincidae, but cannot reject the hypothesis that they represent the sister taxon to skinks. Amphiglossus, Chalcides, the acontines Acontias and Typhlosaurus, and Scincinae are paraphyletic. The globally widespread

  9. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  10. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  11. Spectral partitioning in diffraction tomography

    SciTech Connect

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  12. Intersecting surface defects and instanton partition functions

    DOE PAGES

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-14

    We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  13. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung Fung

    1988-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  14. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung F.

    1990-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  15. Partitioning of regular computation on multiprocessor systems

    SciTech Connect

    Lee, F. . Computer Systems Lab.)

    1990-07-01

    Problem partitioning of regular computation over two-dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  16. Intersecting surface defects and instanton partition functions

    NASA Astrophysics Data System (ADS)

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-01

    We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  17. Effects of Iron Partitioning on Earth's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Ricard, Y. R.; Boukare, C. E.

    2016-12-01

    Present deep Earth mantle structures such as ultralow-velocity zones (ULVZs) and large low-shear velocity provinces (LLSVPs) may be directly linked to the crystallization of magma ocean. This scenario is mainly based on the generation of iron-rich dense material by fractionnal crystallization very early in the Earth's history. The generation of iron-rich materials at the bottom of the mantle is supported by experimental studies that show iron preferentially partitions into melts at all mantle depths. Since it has also been reported that melts are more compressible than solids, we need to better constrain the generation and buoyancy of such iron-rich materials at deep mantle conditions. Because iron content affects both the buoyancy and melting temperature of sillicate materials, this process might also affect the dynamics of a crystallizing system. A solid-liquid thermodynamic database for silicates in the MgO-FeO-SiO2 system from 20 GPa to 140 GPa has been constructed [Boukare et al., 2015]. We compute the ternary phase diagram in the MgO-FeO-SiO2 system as a function of temperature and pressure. This self-consistent approach allows us to predict crystallization sequences at deep mantle conditions. We confirm that the melt is lighter than a solid with same composition for all mantle conditions. However, due to iron partitioning, the iron-rich liquid is denser than the solid in the deep mantle. To understand the complex dynamics associated with these potential density cross-overs between melts and solids, we have developed a multiphase phase numerical code. It can simultaneously handle the convection of each phase. In crystal-rich regions, it calculates the compaction or decompaction of the two phases. Although our code can only run in a parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number) far from what would be realistic, it produces rich dynamics that illustrate potential physical and chemical processes. We show situations in which

  18. Evaluation of log K{sub ow} and tissue lipid content as predictors of chemical partitioning to fish tissues

    SciTech Connect

    Bertelsen, S.L.; Gallinat, C.A.; Elonen, C.M.; Hoffman, A.D.; Nichols, J.W.

    1998-08-01

    In vitro equilibrium chemical partition coefficients were determined for six chemicals in selected tissues from four species of fish. Log-transformed values were then regressed in stepwise fashion against chemical log octanol/water partition coefficient (K{sub ow}) and the log of tissue lipid content to derive a series of linear one- and two-variable models. Equations derived for fat indicate that n-octanol is a good surrogate for nonpolar lipid in the range of chemical log K{sub ow} tested (1.46 < log K{sub ow} < 4.04). These equations also support the conclusion that previously developed K{sub ow}-bioconcentration factor relationships are largely a reflection of chemical accumulation in fat. Fitted slope and intercept terms for lean tissues differed from those expected from chemical partitioning to lipid only and were instead consistent with the suggestion that partitioning to nonlipid-nonwater cellular constituents contributes substantially to chemical accumulation. A general equation is presented for prediction of tissue/water and blood/water partitioning from chemical log K{sub ow} and tissue (or blood) lipid content. It is suggested, however, that tissue- and blood-specific equations be used to estimate the tissue/blood partitioning relationships needed for kinetic modeling efforts.

  19. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  20. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  1. Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota?

    PubMed

    Leslie, Heather A; Ter Laak, Thomas L; Busser, Frans J M; Kraak, Michiel H S; Hermens, Joop L M

    2002-12-15

    When organic chemicals are extracted from a water sample with solid-phase microextraction (SPME) fibers, the resulting concentrations in exposed fibers are proportional to the hydrophobicity of the compounds. This fiber accumulation is analogous to the bioconcentration of chemicals observed in aquatic organisms. The objective of this study was to investigate the prospect of measuring the total concentration in SPME fibers to estimate the total body residue in biota for the purpose of risk assessment. Using larvae of the midge, Chironomus riparius and disposable 15-microm poly(dimethylsiloxane) fibers, we studied the accumulation and accumulation kinetics of a number of narcotic compounds with a range of log K(ow) between 3 and 6. The fibers, which have a larger surface area-to-volume ratio, had consistently higher uptake and elimination rate constants (k1 and k2, respectively) than midge larvae and accumulated the chemicals 5 times faster. Comparison of the relationships of the partition coefficients K(PDMS-water) and K(midge-water) (lipid-normalized) to log K(ow) for all compounds yielded a factor of 28 for translating fiber concentrations to biota concentrations. This factor can be used to estimate internal concentrations in biota for compounds structurally similar to the compounds in this study. The exact chemical domain to which this factor can be applied needs to be defined in future research.

  2. Synthesis on evaporation partitioning using stable isotopes

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Jonson Sutanto, Samuel

    2015-04-01

    Partitioning of evaporation into productive (transpiration) and non-productive evaporation (interception, soil evaporation) is of highest importance for water management practices, irrigation scheme design, and climate modeling. Despite this urge, the magnitude of the ratio of transpiration over total evaporation is still under debate and poorly understood due to measuring difficulties. However, with the current development in isotope measuring devices, new opportunities arise to untangle the partitioning of evaporation. In this paper we synthesize the opportunities and limitations using stable water isotopes in evaporation partitioning. We will analyze a set of field as well as laboratory studies to demonstrate the different evaporation components for various climate and vegetation conditions using stable isotopes 18O/16O and 2H/1H. Experimental data on evaporation partitioning of crops, grass, shrubs and trees are presented and we will discuss the specific experimental set-ups and data collection methods. The paper will be a synthesis of these studies.

  3. Virasoro constraint for Nekrasov instanton partition function

    NASA Astrophysics Data System (ADS)

    Kanno, Shoichi; Matsuo, Yutaka; Zhang, Hong

    2012-10-01

    We show that Nekrasov instanton partition function for SU( N ) gauge theories satisfies recursion relations in the form of U(1)+Virasoro constraints when β = 1. The constraints give a direct support for AGT conjecture for general quiver gauge theories.

  4. Merging Groups to Maximize Object Partition Comparison.

    ERIC Educational Resources Information Center

    Klastorin, T. D.

    1980-01-01

    The problem of objectively comparing two independently determined partitions of N objects or variables is discussed. A similarity measure based on the simple matching coefficient is defined and related to previously suggested measures. (Author/JKS)

  5. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  6. Connections between groundwater flow and transpiration partitioning

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  7. Niche saturation reveals resource partitioning among consumers.

    PubMed

    Northfield, Tobin D; Snyder, Gretchen B; Ives, Anthony R; Snyder, William E

    2010-03-01

    More diverse communities of consumers typically use more resources, which often is attributed to resource partitioning. However, experimentally demonstrating this role of resource partitioning in diverse communities has been difficult. We used an experimental response-surface design, varying intra- and interspecific consumer densities, to compare patterns of resource exploitation between simple and diverse communities of aphid predators. With increasing density, each single consumer species rapidly plateaued in its ability to extract more resources. This suggests intraspecific competition for a subset of the resource pool, a hallmark of resource partitioning. In contrast, more diverse-predator communities achieved greater overall resource depletion. By statistically fitting mechanistic models to the data, we demonstrated that resource partitioning rather than facilitation provides the better explanation for the observed differences in resource use between simple and diverse communities. This model-fitting approach also allowed us to quantify overlap in resource use by different consumer species.

  8. Merging Groups to Maximize Object Partition Comparison.

    ERIC Educational Resources Information Center

    Klastorin, T. D.

    1980-01-01

    The problem of objectively comparing two independently determined partitions of N objects or variables is discussed. A similarity measure based on the simple matching coefficient is defined and related to previously suggested measures. (Author/JKS)

  9. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  10. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  11. Reducing variance in batch partitioning measurements

    SciTech Connect

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  12. The accumulation and structure of comets

    NASA Technical Reports Server (NTRS)

    Donn, Bertram

    1991-01-01

    The paper reviews evidence for the accumulation of the terrestrial planets and comets from solid grains, with emphasis on the various proposals for the formation of cometary nuclei. With three exceptions, all hypotheses conclude or imply that a single compact object forms. Several hypotheses start with Goldreich-Ward-type gravitational instabilities. The collapse for this case also occurs at low velocities in the cm/s to m/s range. Experiment and theory show that under these conditions, low-density, filamentary clusters form that are fractal aggregates with a fractal dimension approximately equal to 2. In order to form cometary nuclei, the initial temperature must be about 50 K and not undergo a significant temperature rise during the accumulation process. The calculations show that accumulation will occur at low temperatures. Models of cometary nuclei are reviewed, and a simple model of the structure that results fom the accumulation of fluffy aggregates is described.

  13. Site partitioning for distributed redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.

    1992-01-01

    Distributed redundant disk arrays can be used in a distributed computing system or database system to provide recovery in the presence of temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites into redundant arrays in such way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-complete and we propose two heuristic algorithms for finding approximate solutions.

  14. Automatic Data Partitioning on Distributed Memory Multiprocessors

    DTIC Science & Technology

    1990-10-01

    to the user. In this paper , we present a novel approach to the problem of automatic data partitioning. We introduce the notion of constraints on data...partitioning scheme for a program. Most of the current projects leave this tedious problem almost entirely to the user. In this paper , we present a novel...tedious. In this paper , we propose a strategy which would instead allow a parallelizing compiler I to come up with a suitable data distribution pattern

  15. Deriving the Hirshfeld partitioning using distance metrics

    SciTech Connect

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-09-07

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic “stockholder” and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences.

  16. Exact Potts model partition function on strips of the triangular lattice

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Chiuan; Shrock, Robert

    2000-10-01

    In this paper we present exact calculations of the partition function Z of the q-state Potts model and its generalization to real q, for arbitrary temperature on n-vertex strip graphs, of width Ly=2 and arbitrary length, of the triangular lattice with free, cyclic, and Möbius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these graphs. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. Considering the full generalization to arbitrary complex q and temperature, we determine the singular locus B in the corresponding C2 space, arising as the accumulation set of partition function zeros as n→∞. In particular, we study the connection with the T=0 limit of the Potts antiferromagnet where B reduces to the accumulation set of chromatic zeros. Comparisons are made with our previous exact calculation of Potts model partition functions for the corresponding strips of the square lattice. Our present calculations yield, as special cases, several quantities of graph-theoretic interest.

  17. Partition dataset according to amino acid type improves the prediction of deleterious non-synonymous SNPs

    SciTech Connect

    Yang, Jing; Li, Yuan-Yuan; Li, Yi-Xue; Ye, Zhi-Qiang

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Proper dataset partition can improve the prediction of deleterious nsSNPs. Black-Right-Pointing-Pointer Partition according to original residue type at nsSNP is a good criterion. Black-Right-Pointing-Pointer Similar strategy is supposed promising in other machine learning problems. -- Abstract: Many non-synonymous SNPs (nsSNPs) are associated with diseases, and numerous machine learning methods have been applied to train classifiers for sorting disease-associated nsSNPs from neutral ones. The continuously accumulated nsSNP data allows us to further explore better prediction approaches. In this work, we partitioned the training data into 20 subsets according to either original or substituted amino acid type at the nsSNP site. Using support vector machine (SVM), training classification models on each subset resulted in an overall accuracy of 76.3% or 74.9% depending on the two different partition criteria, while training on the whole dataset obtained an accuracy of only 72.6%. Moreover, the dataset was also randomly divided into 20 subsets, but the corresponding accuracy was only 73.2%. Our results demonstrated that partitioning the whole training dataset into subsets properly, i.e., according to the residue type at the nsSNP site, will improve the performance of the trained classifiers significantly, which should be valuable in developing better tools for predicting the disease-association of nsSNPs.

  18. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.

    PubMed

    Bihmidine, Saadia; Julius, Benjamin T; Dweikat, Ismail; Braun, David M

    2016-01-01

    Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport proteins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expression tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illustrating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed.

  19. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems

    PubMed Central

    Bihmidine, Saadia; Julius, Benjamin T; Dweikat, Ismail; Braun, David M

    2016-01-01

    ABSTRACT Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport proteins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expression tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illustrating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed. PMID:26619184

  20. Contaminant Accumulation in Many New England Lead Pipe Scales

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers' taps. The objective of this s...

  1. Contaminant Accumulation in Many New England Lead Pipe Scales

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers' taps. The objective of this s...

  2. Experimental investigations of trace element fractionation in iron meteorites. III - Elemental partitioning in the system Fe-Ni-S-P

    NASA Technical Reports Server (NTRS)

    Malvin, D. J.; Jones, J. H.; Drake, M. J.

    1986-01-01

    Measurements of solid metal/liquid metal trace element partition coefficients, which are used to interpret the crystallization history of magmatic iron meteorite groups differ greatly between different research groups, using different experimental techniques. Specifically, partition coefficients measured utilizing 'static' experiments which approach equilibrium cannot be reconciled with the results of 'dynamic' experiments which mimic fractional crystallization. We report new tests of our 'static' experimental technique and demonstrate that our methodology yields reliable equilibrium values for Ni, P and Ge partition coefficients. Partition coefficients in the Fe-Ni-S-P system are well matched by interpolation between the Fe-Ni-S and Fe-Ni-P subsystems. In contrast, the predictions of 'dynamic' experiments do not agree with our measurements and, consequently, the ability of 'dynamic' experiments to reproduce iron meteorite Ge vs. Ni fractionation trends successfully must be regarded as fortuitous.

  3. Certificate Revocation Using Fine Grained Certificate Space Partitioning

    NASA Astrophysics Data System (ADS)

    Goyal, Vipul

    A new certificate revocation system is presented. The basic idea is to divide the certificate space into several partitions, the number of partitions being dependent on the PKI environment. Each partition contains the status of a set of certificates. A partition may either expire or be renewed at the end of a time slot. This is done efficiently using hash chains.

  4. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  5. Trace element partitioning in Fe-P-O-S alloy systems

    NASA Astrophysics Data System (ADS)

    Han, J.; Crispin, K. L.; Ash, R. D.; McDonough, W. F.; Van Orman, J. A.

    2013-12-01

    An understanding of siderophile trace element partitioning between liquid and solid metal phases and between immiscible liquid metal phases is a key to studying the differentiation of planetary and asteroidal cores. Cores are thought to contain non-metallic 'light' elements like S, P, C and N and Si or / and O which may strongly affect the partitioning behavior of trace elements. In a complex system with multiple light elements, each of these non-metallic elements may have a different influence on the partitioning behavior of the trace elements. However, these influences have not been quantified in most cases. We investigated the partitioning behavior of trace elements within the Fe-P-O-S system with varying concentrations of P, O and S. The experiments were performed under pressures ranging from 1 atm to 2 GPa and temperatures varying from 1000°C to 1300°C. The influence of each light element (i.e. P, O, S) on trace element partitioning and their combined effects have been examined. Some highly siderophile elements including Os, Re, and Ir are strongly repelled by sulfur but even more strongly repelled by oxygen. It is possible that these elements could be fractionated significantly during crystallization of Earth's core, if it is oxygen-rich.

  6. Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon

    PubMed Central

    Lill, Patrick C.; Dahlinger, Morris; Köhler, Jürgen R.

    2017-01-01

    Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient kp above unity with kp=1.25±0.05 and thermally-activated diffusivity DB, with a value DB(1687K)=(3.53±0.44)×10−4 cm2·s−1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment. PMID:28772548

  7. Antarctic accumulation seasonality.

    PubMed

    Sime, Louise C; Wolff, Eric W

    2011-11-09

    The resemblance of the orbitally filtered isotope signal from the past 340 kyr in Antarctic ice cores to Northern Hemisphere summer insolation intensity has been used to suggest that the northern hemisphere may drive orbital-scale global climate changes. A recent Letter by Laepple et al. suggests that, contrary to this interpretation, this semblance may instead be explained by weighting the orbitally controlled Antarctic seasonal insolation cycle with a static (present-day) estimate of the seasonal cycle of accumulation. We suggest, however, that both time variability in accumulation seasonality and alternative stable seasonality can markedly alter the weighted insolation signal. This indicates that, if the last 340 kyr of Antarctic accumulation has not always looked like the estimate of precipitation and accumulation seasonality made by Laepple et al., this particular accumulation weighting explanation of the Antarctic orbital-scale isotopic signal might not be robust.

  8. Preparation of nanomagnetic absorbent for partition coefficient measurement.

    PubMed

    Tsang, Shik Chi; Yu, Chih Hao; Gao, Xin; Tam, Kin Y

    2006-12-11

    In this paper, we report a new method based on supercritical carbon dioxide (scCO(2)) to fill and distribute the porous magnetic nanoparticles with n-octanol in a homogeneous manner. The high solubility of n-octanol in scCO(2) and high diffusivity and permeability of the fluid allow efficient delivery of n-octanol into the porous magnetic nanoparticles. Thus, the n-octanol-loaded magnetic nanoparticles can be readily dispersed into aqueous buffer (pH 7.40) to form a homogenous suspension consisting of nano-sized n-octanol droplets. We refer this suspension as the n-octanol stock solution. The n-octanol stock solution is then mixed with bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small-size of the particles and the efficient mixing enable a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). As a result, logD values of organic compounds of pharmaceutical interest determined by this modified method are found to be in excellent agreement with the literature data.

  9. Simulation of arsenic partitioning in tributaries to drinking water resevoirs.

    PubMed

    Alkhatib, E; Berna, E

    2008-02-01

    Arsenic released by bottom sediments was determined by experiments in which the sediments were artificially re-suspended using a particle entrainment simulator (PES) to simulate river conditions. Sediment cores were collected from various tributaries to drinking water reservoirs in Connecticut spiked with arsenic, and run in the PES at simulated bed-flow shear stresses from 0.0 to 0.6 N/m(2). Under equilibrium conditions, the dissolved fraction of arsenic was found to range from 8.3 to 22.1 microg/l, which in most cases exceeded EPA Maximum Contaminant Level (MCL) of 10 microg/l. Experimental results from these simulations have shown that bed-flow shear stress causes an increased concentration of dissolved arsenic, most notably at shear stresses of 0.4, 0.5, and 0.6 N/m(2). For the solid phase under equilibrium, the concentrations of arsenic ranged between 71 and 275 mg/kg. The average concentration of arsenic on the solid phase as well as partitioning coefficient values (K (p)) were highest at initial shear stress. This was attributed to the higher fraction of colloidal material and finer organic particles in the suspended solid mixture. Particles of such nature proved to have higher affinity to arsenic. K (p) values were determined from PES data and were found to range from 4,687 to 24,090 l/kg. However, on a mass load basis, the amount of arsenic found in suspended sediment increased with the increase of shear stress. Similarly, the amount of arsenic in the solid phase increased significantly for sites with high Volatile Organic Carbon (VOC) content. Because of the influence of Total Suspended Solids (TSS) and VOC concentrations on K (p), the use of the PES is more appropriate in obtaining K (p) values that would be found under real stream conditions when compared to the traditional way of measuring K (p) using a jar study technique.

  10. Quality Partitioned Meshing of Multi-Material Objects

    PubMed Central

    Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit

    2016-01-01

    We present a simple but effective algorithm for generating topologically and geometrically consistent quality triangular surface meshing of compactly packed multiple heterogeneous domains in R3. By compact packing we imply that adjacent homogeneous domains or materials share some 0, 1, and/or 2 dimensional boundary. Such packed multiple material (or multi-material) solids arise naturally from classification/partitioning/segmentation of homogeneous domains in R3 into different sub-regions. The multi-materials may also represent separate functionally classified sections or just be multiple component copies tightly fused together as perhaps by layered manufacturing processes. The input to our algorithm is a geometric representation of the entire multi-material solid, and a volumetric classification map identifying the individual materials. As output, each individual material region is represented by a triangulated 2-manifold boundary, with adjacent material regions having shared boundaries. Our algorithm has been implemented, and applied to different multi-material solids, and the results are additionally presented with quantitative analysis of detection and cure of non-manifold interfaces as well as spurious small components. These meshes are useful for combined boundary element analysis, however these simulation results are not presented. PMID:27563367

  11. Quality Partitioned Meshing of Multi-Material Objects.

    PubMed

    Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit

    We present a simple but effective algorithm for generating topologically and geometrically consistent quality triangular surface meshing of compactly packed multiple heterogeneous domains in [Formula: see text]. By compact packing we imply that adjacent homogeneous domains or materials share some 0, 1, and/or 2 dimensional boundary. Such packed multiple material (or multi-material) solids arise naturally from classification/partitioning/segmentation of homogeneous domains in [Formula: see text] into different sub-regions. The multi-materials may also represent separate functionally classified sections or just be multiple component copies tightly fused together as perhaps by layered manufacturing processes. The input to our algorithm is a geometric representation of the entire multi-material solid, and a volumetric classification map identifying the individual materials. As output, each individual material region is represented by a triangulated 2-manifold boundary, with adjacent material regions having shared boundaries. Our algorithm has been implemented, and applied to different multi-material solids, and the results are additionally presented with quantitative analysis of detection and cure of non-manifold interfaces as well as spurious small components. These meshes are useful for combined boundary element analysis, however these simulation results are not presented.

  12. Modeling of crude oil biodegradation using two phase partitioning bioreactor.

    PubMed

    Fakhru'l-Razi, A; Peyda, Mazyar; Ab Karim Ghani, Wan Azlina Wan; Abidin, Zurina Zainal; Zakaria, Mohamad Pauzi; Moeini, Hassan

    2014-01-01

    In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. © 2014 American Institute of Chemical Engineers.

  13. Capacities of membrane lipids to accumulate neutral organic chemicals.

    PubMed

    Endo, Satoshi; Escher, Beate I; Goss, Kai-Uwe

    2011-07-15

    Lipids have been considered as the predominant components for bioaccumulation of organic chemicals. However, differences in accumulation properties between different types of lipid (e.g., storage and membrane lipids) have rarely been considered. Moreover, in view of toxic effects on organisms, chemical accumulation specifically in biological membranes is of particular importance. In this review article, partition coefficients of 240 neutral organic compounds between liposomes (phospholipid membrane vesicles) and water (K(lipw)), reported in the literature or measured additionally for this work, were evaluated. Values of log K(lipw) and log K(ow) (octanol-water partition coefficients) differ by 0.4 on average. Polyparameter linear free energy relationships (PP-LFERs) can describe the log K(lipw) data even better (standard deviations = 0.28-0.31) than the log K(ow) model. Recent experimental data for highly hydrophobic compounds fit well to the PP-LFERs and do not indicate the existence of a previously postulated "hydrophobicity cutoff". Predictive approaches based only on the molecular structure (KOWWIN, SPARC, COSMOthermX, COSMOmic) were also evaluated for K(lipw) prediction. The PP-LFERs revealed that partition coefficients into membrane lipids can be two log units higher than those into storage lipids for H-bond donor compounds, suggesting that distinguishing between the two lipids is necessary to account for the bioaccumulation of these compounds, and that tissues rich in membrane lipids (e.g., kidneys, liver) instead of fat tissue can be the primary phase for accumulation.

  14. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  15. Exact Potts model partition functions on ladder graphs

    NASA Astrophysics Data System (ADS)

    Shrock, Robert

    2000-08-01

    We present exact calculations of the partition function Z of the q-state Potts model and its generalization to real q, for arbitrary temperature on n-vertex ladder graphs, i.e., strips of the square lattice with width Ly=2 and arbitrary length Lx, with free, cyclic, and Möbius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these graphs. The free energy is calculated exactly for the infinite-length limit of these ladder graphs and the thermodynamics is discussed. By comparison with strip graphs of other widths, we analyze how the singularities at the zero-temperature critical point of the ferromagnet on infinite-length, finite-width strips depend on the width. We point out and study the following noncommutativity at certain special values q s: lim n→∞ limq→q s Z 1/n≠ limq→q s limn→∞ Z 1/n. It is shown that the Potts antiferromagnet on both the infinite-length line and ladder graphs with cyclic or Möbius boundary conditions exhibits a phase transition at finite temperature if 0< q<2, but with unphysical properties, including negative specific heat and non-existence, in the low-temperature phase, of an n→∞ limit for thermodynamic functions that is independent of boundary conditions. Considering the full generalization to arbitrary complex q and temperature, we determine the singular locus B in the corresponding C2 space, arising as the accumulation set of partition function zeros as n→∞. In particular, we study the connection with the T=0 limit of the Potts antiferromagnet where B reduces to the accumulation set of chromatic zeros. Certain properties of the complex-temperature phase diagrams are shown to exhibit close connections with those of the model on the square lattice, showing that exact solutions on infinite-length strips provide a way of gaining insight into these complex-temperature phase diagrams.

  16. ADSORPTION-PARTITIONING UPTAKE OF NINE LOW-POLARITY ORGANIC CHEMICALS ON A NATURAL SORBENT. (R825406)

    EPA Science Inventory

    Sorption of comparatively nonpolar organic chemicals by natural solids not
    only can be predominated by partitioning with organic matter but also can
    reflect a substantial contribution from adsorption at low relative
    concentration. Sorption of nine polycyclic aromat...

  17. ADSORPTION-PARTITIONING UPTAKE OF NINE LOW-POLARITY ORGANIC CHEMICALS ON A NATURAL SORBENT. (R825406)

    EPA Science Inventory

    Sorption of comparatively nonpolar organic chemicals by natural solids not
    only can be predominated by partitioning with organic matter but also can
    reflect a substantial contribution from adsorption at low relative
    concentration. Sorption of nine polycyclic aromat...

  18. Screening of pesticides for environmental partitioning tendency.

    PubMed

    Gramatica, Paola; Di Guardo, Antonio

    2002-06-01

    The partitioning tendency of chemicals, in this study pesticides in particular, into different environmental compartments depends mainly on the concurrent relevance of the physico-chemical properties of the chemical itself. To rank the pesticides according to their distribution tendencies in the different environmental compartments we propose a multivariate approach: the combination, by principal component analysis, of those physico-chemical properties like organic carbon partition coefficient (Koc), n-octanol/water partition coefficient (Kow), water solubility (Sw), vapour pressure and Henry's law constant (H) that are more relevant to the determination of environmental partitioning. The resultant macrovariables, the PC1 and PC2 scores here named leaching index (LIN) and volatality index (VIN), are proposed as preliminary environmental partitioning indexes in different media. These two indexes are modeled by theoretical molecular descriptors with satisfactory predictive power. Such an approach allows a rapid pre-determination and screening of the environmental distribution of pesticides starting only from the molecular structure of the pesticide, without any a priori knowledge of the physico-chemical properties.

  19. A biologically motivated partitioning of mortality.

    PubMed

    Carnes, B A; Olshansky, S J

    1997-01-01

    For over a century, actuaries and biologists working independently of each other have presented arguments for why total mortality needs to be partitioned into biologically meaningful subcomponents. These mortality partitions tended to overlook genetic diseases that are inherited because the partitions were motivated by a paradigm focused on aging. In this article, we combine and extend the concepts from these disciplines to develop a conceptual partitioning of total mortality into extrinsic and intrinsic causes of death. An extrinsic death is either caused or initiated by something that orginates outside the body of an individual, while an intrinsic death is either caused or initiated by processes that originate within the body. It is argued that extrinsic mortality has been a driving force in determining why we die when we do from intrinsic causes of death. This biologically motivated partitioning of mortality provides a useful perspective for researchers interested in comparative mortality analyses, the consequences of population aging, limits to human life expectancy, the progress made by the biomedical sciences against lethal diseases, and demographic models that predict the life expectancy of future populations.

  20. Octanol/air partitioning of polychlorinated biphenyls

    SciTech Connect

    Komp, P.; McLachlan, M.S.

    1997-12-01

    The partitioning of 16 polychlorinated biphenyls (PCBs) between air and 1-octanol was investigated using a fugacity meter. The measurements were conducted over an environmentally relevant temperature range (10--43 C). For a given congener the measured 1-octanol/air partition coefficient K{sub OA} was exponentially proportional to the reciprocal temperature. The enthalpy of phase change (octanol to air) {Delta}H{sub OA} ranged from 71 to 93 kJ/mol. Up to log K{sub OA} values of 9.37 (corresponding to 2,2{prime},3,4{prime},5{prime},6-hexachlorobiphenyl), the enthalpy of phase change was similar to the enthalpy of vaporization of the subcooled liquid PCB. For the less volatile congeners (log K{sub OA} > 9.37), the enthalpies of vaporization exceeded the enthalpies of phase change, the difference increasing with increasing log K{sub OA}. Solubilities of the PCBs in 1-octanol were calculated from the data, and the results were in excellent agreement with octanol solubilities calculated using the OCTASOL fragment method. A very good correlation between the measured octanol/air partition coefficients and values calculated from octanol/water and air/water partition coefficients was obtained. This yielded a method to estimate reliably the octanol/air partitioning of all PCB congeners.

  1. A modified approach to controller partitioning

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Veillette, Robert J.

    1993-01-01

    The idea of computing a decentralized control law for the integrated flight/propulsion control of an aircraft by partitioning a given centralized controller is investigated. An existing controller partitioning methodology is described, and a modified approach is proposed with the objective of simplifying the associated controller approximation problem. Under the existing approach, the decentralized control structure is a variable in the partitioning process; by contrast, the modified approach assumes that the structure is fixed a priori. Hence, the centralized controller design may take the decentralized control structure into account. Specifically, the centralized controller may be designed to include all the same inputs and outputs as the decentralized controller; then, the two controllers may be compared directly, simplifying the partitioning process considerably. Following the modified approach, a centralized controller is designed for an example aircraft mode. The design includes all the inputs and outputs to be used in a specified decentralized control structure. However, it is shown that the resulting centralized controller is not well suited for approximation by a decentralized controller of the given structure. The results indicate that it is not practical in general to cast the controller partitioning problem as a direct controller approximation problem.

  2. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, D.; Adams, L.

    1999-07-01

    In this paper the authors propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning and interprocessor data communication techniques. They prove that the PSOR method has the same asymptotic rate of convergence as the Red/Black (R/B) SOR method for the five-point stencil on both strip and block partitions, and as the four-color (R/B/G/O) SOR method for the nine-point stencil on strip partitions. They also demonstrate the parallel performance of the PSOR method on four different MIMD multiprocessors (a KSR1, an Intel Delta, a Paragon, and an IBM SP2). Finally, they compare the parallel performance of PSOR, R/B SOR, and R/B/G/O SOR. Numerical results on the Paragon indicate that PSOR is more efficient than R/B SOR and R/B/G/O SOR in both computation and interprocessor data communication.

  3. Partitioning a macroscopic system into independent subsystems

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  4. Factorization of the bosonic partition function

    NASA Astrophysics Data System (ADS)

    Alsharafat, Ayed; Chair, Noureddine

    2017-04-01

    The factorization formula in the non-interacting quantum field theories that relates the fermionic partition function to the bosonic partition function considered recently by Chair (2013) [3] is obtained for the harmonic oscillator using the path integral formulation. By using the latter, the fermionic partition function turns out to be the ratio of two determinants of the same operator (∂τ + ω), whose eigenmodes being both periodic on the imaginary time intervals [ 0 , 2 β ], [ 0 , β ]. The natural generalization of the factorization formula when β →2m β is derived, such a factorization implies that the bosonic oscillator at temperature β can be seen as a non-interacting mixture of a bosonic oscillator at temperature 2m β and m-fermionic oscillators at different temperatures 2 m - k β, k = 1 , 2 , … , m. As a consequence, a general relationship between the bosonic and fermionic thermal zeta functions is deduced.

  5. The EPRL intertwiners and corrected partition function

    NASA Astrophysics Data System (ADS)

    Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-08-01

    Do the SU(2) intertwiners parametrize the space of the Engle, Pereira, Rovelli, Livine (EPRL) solutions to the simplicity constraint? What is the complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective in the general n-valent vertex case for the Barbero-Immirzi parameter less than 1. We find, however, that the EPRL map is not isometric. In the consequence, a partition function can be defined either using the EPRL intertwiners Hilbert product or the SU(2) intertwiners Hilbert product. We use the EPRL one and derive a new, complete formula for the partition function. Next, we view it in terms of the SU(2) intertwiners. The result, however, goes beyond the SU(2) spin-foam models' framework and the original EPRL proposal.

  6. Parallel algorithms for dynamically partitioning unstructured grids

    SciTech Connect

    Diniz, P.; Plimpton, S.; Hendrickson, B.; Leland, R.

    1994-10-01

    Grid partitioning is the method of choice for decomposing a wide variety of computational problems into naturally parallel pieces. In problems where computational load on the grid or the grid itself changes as the simulation progresses, the ability to repartition dynamically and in parallel is attractive for achieving higher performance. We describe three algorithms suitable for parallel dynamic load-balancing which attempt to partition unstructured grids so that computational load is balanced and communication is minimized. The execution time of algorithms and the quality of the partitions they generate are compared to results from serial partitioners for two large grids. The integration of the algorithms into a parallel particle simulation is also briefly discussed.

  7. Gold and Copper Partitioning Between Vapor and Brine at 800° C and 100 MPa.

    NASA Astrophysics Data System (ADS)

    Frank, M.; Candela, P.; Piccoli, P.; Pettke, T.; Heinrich, C.

    2002-05-01

    Recent studies of fluid inclusions from porphyry-type ore deposits indicate that, although a magmatic brine may have been responsible for the generation of these deposits, high-concentrations of Au and Cu may exist in low-salinity vapor-bearing fluid inclusions as well (Ulrich et al., 1999, Nature, 399, 676). Experimental studies of Au (Frank et al., 2001, 11th Goldschmidt Conf., #3773) and Cu (Williams et al., 1995, CMP, v. 121, 388) have indicated that those elements will partition into a high-salinity brine relative to a low-salinity vapor in a sulfur-poor environment. To this point, the conditions under which Au and Cu will partition into a vapor relative to a brine have not been reproduced experimentally. Therefore, the question we wish to address is: Under what conditions will Au and Cu partition preferentially into a vapor relative to a brine? In an attempt to answer this, we performed experiments in the brine-vapor-haplogranitic melt-intermediate solid solution-pyrrhotite-quartz system at 800° C, 100 MPa and oxygen fugacity buffered by Ni-NiO. The coexisting brine ( ~68wt.% NaCl equivalent) and vapor ( ~3wt.% NaCl equivalent) were composed of NaCl+KCl+HCl+H2O, with starting HCl set to either ~160 or ~1600 ppm in the aqueous mixture. Vapor and brine bearing fluid inclusions were trapped in quartz during the experiment. Select fluid inclusions were drilled out of polished quartz samples using an ArF Excimer laser (output energy of 220 mJ at 30 kV) and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ELAN 6000). Counts of Au, Cu, Fe, and K were related to those of Na (internal standard) to calculate concentrations of those elements in the fluid inclusions. Analyses revealed that at ~160 ppm HCl in the aqueous mixture, Au and Cu partitioned preferentially into the brine with partition coefficients of ~14 and ~7, respectively. Au and Cu partition coefficients were ~2 and ~8 at ~1600 ppm HCl in the aqueous mixture. These data indicate that Au and Cu

  8. Anion-exchange displacement centrifugal partition chromatography.

    PubMed

    Maciuk, Alexandre; Renault, Jean-Hugues; Margraff, Rodolphe; Trébuchet, Philippe; Zèches-Hanrot, Monique; Nuzillard, Jean-Marc

    2004-11-01

    Ion-exchange displacement chromatography has been adapted to centrifugal partition chromatography. The use of an ionic liquid, benzalkonium chloride, as a strong anion-exchanger has proven to be efficient for the preparative separation of phenolic acid regioisomers. Multigram quantities of a mixture of three hydroxycinnamic acid isomers were separated using iodide as a displacer. The displacement process was characterized by a trapezoidal profile of analyte concentration in the eluate with narrow transition zones. By taking advantage of the partition rules involved in support-free liquid-liquid chromatography, a numerical separation model is proposed as a tool for preliminary process validation and further optimization.

  9. Chiral partition functions of quantum Hall droplets

    SciTech Connect

    Cappelli, Andrea Viola, Giovanni; Zemba, Guillermo R.

    2010-02-15

    Chiral partition functions of conformal field theory describe the edge excitations of isolated Hall droplets. They are characterized by an index specifying the quasiparticle sector and transform among themselves by a finite-dimensional representation of the modular group. The partition functions are derived and used to describe electron transitions leading to Coulomb blockade conductance peaks. We find the peak patterns for Abelian hierarchical states and non-Abelian Read-Rezayi states, and compare them. Experimental observation of these features can check the qualitative properties of the conformal field theory description, such as the decomposition of the Hilbert space into sectors, involving charged and neutral parts, and the fusion rules.

  10. Partitioning SAT Instances for Distributed Solving

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Antti E. J.; Junttila, Tommi; Niemelä, Ilkka

    In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.

  11. Cochlear implant in incomplete partition type I.

    PubMed

    Berrettini, S; Forli, F; De Vito, A; Bruschini, L; Quaranta, N

    2013-02-01

    In this investigation, we report on 4 patients affected by incomplete partition type I submitted to cochlear implant at our institutions. Preoperative, surgical, mapping and follow-up issues as well as results in cases with this complex malformation are described. The cases reported in the present study confirm that cochlear implantation in patients with incomplete partition type I may be challenging for cochlear implant teams. The results are variable, but in many cases satisfactory, and are mainly related to the surgical placement of the electrode and residual neural nerve fibres. Moreover, in some cases the association of cochlear nerve abnormalities and other disabilities may significantly affect results.

  12. Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.

    2013-12-01

    During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate

  13. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    PubMed

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  14. Ionizing radiation increases systemic nanoparticle tumor accumulation

    PubMed Central

    Giustini, A.J.; Petryk, A.A.; Hoopes, P.J.

    2012-01-01

    Nanoparticle-based therapies are currently being explored for both the imaging and treatment of primary and metastatic cancers. Effective nanoparticle cancer therapy requires significant accumulations of nanoparticles within the tumor environment. Various techniques have been used to improve tumor nanoparticle uptake and biodistribution. Most notable of these techniques are the use of tumor-specific-peptide-conjugated nanoparticles and chemical modification of the nanoparticles with immune-evading polymers. Another strategy for improving the tumor uptake of the nanoparticles is modification of the tumor microenvironment with a goal of enhancing the enhanced permeability and retention effect inherent to solid tumors. We demonstrate a two-fold increase in the tumor accumulation of systemically delivered iron oxide nanoparticles following a single, 15 Gy radiation dose in a syngeneic mouse breast tumor model. This increase in nanoparticle tumor accumulation correlates with a radiation-induced decrease in tumor interstitial pressure and a subsequent increase in vascular permeability. PMID:22633900

  15. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  16. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  17. Zr partitioning and kinetics and mechanism

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.

    1973-01-01

    The results of investigations concerning the cooling histories of lunar rocks are reported. Publications resulting from this research are listed. Studies discussed include the partitioning of Zr between FeTi03 and Fe2Ti04 in the presence of Fe + Zr02, and ulvospinel reduction.

  18. Hydrologic transport and partitioning of phosphorus fractions

    NASA Astrophysics Data System (ADS)

    Berretta, C.; Sansalone, J.

    2011-06-01

    SummaryPhosphorus (P) in rainfall-runoff partitions between dissolved and particulate matter (PM) bound phases. This study investigates the transport and partitioning of P to PM fractions in runoff from a landscaped and biogenically-loaded carpark in Gainesville, FL (GNV). Additionally, partitioning and concentration results are compared to a similarly-sized concrete-paved source area of a similar rainfall depth frequency distribution in Baton Rouge, LA (BTR), where in contrast vehicular traffic represents the main source of pollutants. Results illustrate that concentrations of P fractions (dissolved, suspended, settleable and sediment) for GNV are one to two orders of magnitude higher than BTR. Despite these differences the dissolved fraction ( f d) and partitioning coefficient ( K d) distributions are similar, illustrating that P is predominantly bound to PM fractions. Examining PM size fractions, specific capacity for P (PSC) indicates that the P concentration order is suspended > settleable > sediment for GNV, similarly to BTR. For GNV the dominant PM mass fraction is sediment (>75 μm), while the mass of P is distributed predominantly between sediment and suspended (<25 μm) fractions since these PM mass fractions dominated the settleable one. With respect to transport of PM and P fractions the predominance of events for both areas is mass-limited first-flush, although each fraction illustrated unique washoff parameters. However, while transport is predominantly mass-limited, the transport of each PM and P fraction is influenced by separate hydrologic parameters.

  19. Application of partition technology to particle electrophoresis

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.

    1989-01-01

    The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.

  20. Shedding light on daytime flux partitioning

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, that is disaggregating the measured net ecosystem carbon dioxide exchange into the underlying gross primary productivity (GPP) and ecosystem respiration (ER), has become a key component of the FLUXNET processing chain and the resulting products are widely used by experimentalists and modellers alike. Here I review flux partitioning based on light response curve modelling, commonly termed the daytime flux partitioning approach. In particular I tackle the question whether daytime flux partitioning is able to account for the reduction in daytime ER relative to nighttime due to the reduction in leaf mitochondrial respiration in the presence of daylight. To this end I use synthetic data (with realistic noise superimposed) generated (i) by light response curve models upon which a daytime reduction in ER was imposed, (ii) results from a process-oriented soil-vegetation-atmosphere-transfer model, as well as (iii) experimental data from a simple ecosystem, where daytime ER was estimated based on a combination of complementary measurements and a canopy model.

  1. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER ISSUANCE OF PATENTS IN FEE, CERTIFICATES OF COMPETENCY, REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152..., regardless of their competency, patents in fee to be issued to the competent heirs for their shares and...

  2. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER ISSUANCE OF PATENTS IN FEE, CERTIFICATES OF COMPETENCY, REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152..., regardless of their competency, patents in fee to be issued to the competent heirs for their shares and...

  3. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER ISSUANCE OF PATENTS IN FEE, CERTIFICATES OF COMPETENCY, REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152..., regardless of their competency, patents in fee to be issued to the competent heirs for their shares and...

  4. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER ISSUANCE OF PATENTS IN FEE, CERTIFICATES OF COMPETENCY, REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152..., regardless of their competency, patents in fee to be issued to the competent heirs for their shares and...

  5. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER ISSUANCE OF PATENTS IN FEE, CERTIFICATES OF COMPETENCY, REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152..., regardless of their competency, patents in fee to be issued to the competent heirs for their shares and...

  6. A review of approaches for evapotranspiration partitioning

    USDA-ARS?s Scientific Manuscript database

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  7. Set Partitions and the Multiplication Principle

    ERIC Educational Resources Information Center

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  8. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    USDA-ARS?s Scientific Manuscript database

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  9. A Partition Formula for Fibonacci Numbers

    NASA Astrophysics Data System (ADS)

    Fahr, Philipp; Ringerl, Claus Michael

    2008-02-01

    We present a partition formula for the even index Fibonacci numbers. The formula is motivated by the appearance of these Fibonacci numbers in the representation theory of the socalled 3-Kronecker quiver, i.e., the oriented graph with two vertices and three arrows in the same direction.

  10. Set Partitions and the Multiplication Principle

    ERIC Educational Resources Information Center

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  11. Partitioning of selected antioxidants in mayonnaise.

    PubMed

    Jacobsen, C; Schwarz, K; Stöckmann, H; Meyer, A S; Adler-Nissen, J

    1999-09-01

    This study examined partitioning of alpha-, beta-, and gamma-tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase" and the "precipitate" (7-34% and 2-7%, respectively). This indicated entrapment of antioxidants at the oil-water interface in mayonnaise. The results signify that antioxidants partitioning into different phases of real food emulsions may vary widely.

  12. Spontaneous Formation of Water Droplets at Oil-Solid Interfaces

    PubMed Central

    Yang, Zhongqiang; Abbott, Nicholas L.

    2010-01-01

    We report observations of spontaneous formation of micrometer-sized water droplets within micrometer-thick films of a range of different oils (isotropic and nematic 4-cyano-4’-pentylbiphenyl (5CB), and silicone, olive and corn oil) that are supported on glass substrates treated with octadecyltrichlorosilane (OTS) and immersed under water. Confocal imaging was used to determine that the water droplets nucleate and grow at the interface between the oils and OTS-treated glass with a contact angle of ~130°. A simple thermodynamic model based on macroscopic interfacial energetic arguments consistent with the contact angle of 130°, however, fails to account for the spontaneous formation of the water droplets. ζ-potential measurements performed with OTS-treated glass (− 59.0 ± 16.4 mV) and hydrophobic monolayers formed on gold films (2.0 ± 0.7 mV), when combined with the observed absence of droplet formation under films of oil supported on the latter surfaces, suggest that the charge of the oil-solid interface promotes partitioning of water to the interfacial region. The hydrophobic nature of the OTS-treated glass promotes dewetting of water accumulated in the interfacial region into droplets (a thin film of water is seen to form on bare glass). The inhibitory effect on droplet formation of both salt (NaCl) and sucrose (0.1mM to 500mM) added to the aqueous phase was similar, indicating that both solutes lower the chemical potential of the bulk water (osmotic effect) sufficiently to prevent partitioning of the water to the interface between the oil and supporting substrates. These results suggest that charged, hydrophobic surfaces can provide routes to spontaneous formation of surface-supported, water-in-oil emulsions. PMID:20712383

  13. Isotope fractionation of benzene during partitioning - Revisited.

    PubMed

    Kopinke, F-D; Georgi, A; Imfeld, G; Richnow, H-H

    2017-02-01

    Isotope fractionation between benzene-D0 and benzene-D6 caused by multi-step partitioning of the benzenes between water and two organic solvents, n-octane and 1-octanol, as well as between water and the gas phase, was measured. The obtained fractionation factors αH = KH/KD are αH = 1.080 ± 0.015 and αH = 1.074 ± 0.015 for extraction into n-octane and 1-octanol, respectively, and αH = 1.049 ± 0.010 for evaporation from aqueous solution. The comparison of solvent- and gas-phase partitioning reveals that about 2/3 of the driving force of fractionation is due to different interactions in the aqueous phase, whereas 1/3 is due to different interactions in the organic phase. The heavy benzene isotopologue behaves more 'hydrophilically' and the light one more 'hydrophobically'. This synergistic alignment gives rise to relatively large fractionation effects in partitioning between water and non-polar organic matter. In contrast to a previous study, there is no indication of strong fractionation by specific interactions between benzene and octanol. Partitioning under non-equilibrium conditions yields smaller apparent fractionation effects due to opposite trends of thermodynamic and kinetic fractionation parameters, i.e. partition and diffusion coefficients of the isotopologues. This may have consequences which should be taken into account when considering isotope fractionation due to sorption in environmental compartments.

  14. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore, current extreme N deposition events -and the predicted future increase in extreme deposition events- may represent an important source of eutrophication to 'pristine' arctic tundra.

  15. Partitioning of Inorganic Elements Consumed by Humans Between the Various Fractions of Human Wastes: A Review and Analysis of Existing Literature

    NASA Technical Reports Server (NTRS)

    Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.

    2003-01-01

    The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.

  16. Partitioning of Inorganic Elements Consumed by Humans Between the Various Fractions of Human Wastes: A Review and Analysis of Existing Literature

    NASA Technical Reports Server (NTRS)

    Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.

    2003-01-01

    The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.

  17. Open software tools for eddy covariance flux partitioning

    USDA-ARS?s Scientific Manuscript database

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  18. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    PubMed Central

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  19. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  20. Slip Vectors and Strain Partitioning Along the Maule 2010 Rupture Zone

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Moreno, Marcos; Bedford, John

    2014-05-01

    Strain partitioning is observed along various subduction zones where plate convergence is oblique to the trench because slip vectors from thrust earthquakes in the seismogenic zone are rather perpendicular to the trench than parallel to the convergence direction. If no slip partitioning occurs, the slip vectors coincide with the plate convergence direction, whereas for full partitioning the azimuths of the vectors fall along the trench normal direction. Strain partitioning can have an influence on the deformation that remains after a complete cycle and on the seismotectonic segmentation of a margin. On 27 February 2010 the Mw 8.8 Maule earthquake ruptured a seismic gap where significant strain had accumulated since 1835. Before, during and after the earthquake the forearc was densely monitored by seismological and geodetic networks allowing to investigate strain partitioning, its causes and its consequences on the stress regime during the inter-, co- and postseismic phases of a great subduction earthquake. Here, we examine azimuths from displacements from continuous GPS stations and focal mechanisms along the Maule rupture area as a proxy of stress field indicators. Since the focal mechanisms are related to the principal stress axes and the GPS stations measure the displacement on the surface, they provide independent constraint to quantify the variation in time of the strain partitioning. The azimuthal information from seismicity and GPS is used to characterize the phases of the seismic cycle along the Maule 2010 rupture zone by looking at data from the inter-, co- and postseismic phase. Results show that the mean azimuth direction of the postseismic and coseismic displacement differs approximately 10° with the postseismic displacement directions have a smaller trench parallel component. Larger aftershocks occur mostly offshore or close to the shoreline and show the tendency to point more to the plate convergence direction with increasing distance from the trench

  1. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... are here Home » Disorders » All Disorders Neurodegeneration with Brain Iron Accumulation Information Page Neurodegeneration with Brain Iron Accumulation Information Page What research is being ...

  2. Evaluation of liposome-water partitioning for predicting bioaccumulation potential of hydrophobic organic chemicals.

    PubMed

    van der Heijden, Stephan A; Jonker, Michiel T O

    2009-12-01

    Considering the importance of bioaccumulation factors (BAFs) in risk assessment of chemicals and the ethical issues and complexity of the determination of these factors in standard tests with living organisms, there is a need for alternative approaches for predicting bioaccumulation. In this study, liposome-water partitioning coefficients as determined by using solid-phase microextraction (SPME) were evaluated for the cause of assessing bioaccumulation potential of hydrophobic organic chemicals (HOCs). To this end, the SPME method was mapped (in terms of mass balance, mode of spiking, kinetics, and reproducibility) and validated against literature data. Furthermore, the robustness of liposomes as partitioning phase was investigated (in terms of chemical loading, and pH and ionic strength of the medium), and finally liposome-water partition coefficients (K(lipw)) determined for polycyclic aromatic hydrocarbons (PAHs; 4.5 < logK(ow) < 7.2) were compared with literature BAF values for several aquatic species. The results indicated that (i) SPME is a valid, fast, and reproducible method for measuring K(lipw) values; (ii) liposomes provide a very robust partitioning phase; and (iii) K(lipw) values agreed very well with literature PAH BAF values. SPME-derived K(lipw) values therefore seem a very promising predictor of bioaccumulation potential of HOCs. By including model- or in vitro-derived biotransformation rates, bioaccumulation potential estimates might be converted into surrogate BAFs, thereby extending the applicability of K(lipw) values to metabolizable chemicals and species with more advanced biotransformation capacity.

  3. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    SciTech Connect

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-08-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions.

  4. Altered nucleic acid partitioning during phenol extraction or silica adsorption by guanidinium and potassium salts.

    PubMed

    Xu, Lei; Lv, Jun; Ling, Liefeng; Wang, Peng; Song, Ping; Su, Ruirui; Zhu, Guoping

    2011-12-15

    Nucleic acids were found to partition into the phenol phase during phenol extraction in the presence of guanidinium at certain concentrations under acidic conditions. The guanidinium-concentration-dependent nucleic acid partitioning patterns were analogous to those of the nucleic acid adsorption/partitioning onto silica mediated by guanidinium, which implied that phenol and silica interact with nucleic acids through similar mechanisms. A competition effect was observed in which the nucleic acids that had partitioned into the phenol phase or onto the silica solid phase could be recovered to the aqueous phases by potassium in a molecular weight-salt concentration-dependent manner (the higher molecular weight nucleic acids needed higher concentrations of potassium to be recovered, and vice versa). Methods were developed based on these findings to isolate total RNA from Escherichia coli. By controlling the concentrations of guanidinium and potassium salts used before phenol extraction or silica adsorption, we can selectively recover total RNA but not the high molecular weight genomic DNA in the aqueous phases. Genomic DNA-free total RNA obtained by our methods is suitable for RT-PCR or other purposes. The methods can also be adapted to isolate small RNAs or RNA in certain molecular weight ranges by changing the salt concentrations used.

  5. Using Reward/Utility Based Impact Scores in Partitioning

    DTIC Science & Technology

    2014-05-01

    ing approach called Reward/Utility-Based Impact ( RUBI ). RUBI nds an e ective partitioning of agents while requir- ing no prior domain knowledge...provides better performance by discovering a non-trivial agent partitioning, and leads to faster simulations. We test RUBI in the Air Tra c Flow Management...partitioning with RUBI in the ATFMP, there is a 37% increase in per- formance, with a 510x speed up per simulation step over non-partitioning approaches

  6. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-02-29

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites.

  7. Chimpanzee accumulative stone throwing

    PubMed Central

    Kühl, Hjalmar S.; Kalan, Ammie K.; Arandjelovic, Mimi; Aubert, Floris; D’Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E.; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J.; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M.; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  8. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  9. 33. Elevation of Doors / Typical Cement Toilet Partitions / ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Elevation of Doors / Typical Cement Toilet Partitions / Typical Cement Shower Bath Partitions / Typical Marble Shower Bath Partitions / Dispensary Cupboard Supply Room Cupboard Similar / Section / Kitchen Cupboard and Sink / Screened Porch Cupboard (drawing 10) - Whittier State School, Hospital & Receiving Building, 11850 East Whittier Boulevard, Whittier, Los Angeles County, CA

  10. Bounds for the Eventual Positivity of Difference Functions of Partitions

    NASA Astrophysics Data System (ADS)

    Woodford, Roger

    2007-01-01

    In this paper we specialize work done by Bateman and Erdos concerning difference functions of partition functions. In particular, we are concerned with partitions into fixed powers of the primes. We show that any difference function of these partition functions is eventually increasing, and derive explicit bounds for when it will attain strictly positive values. From these bounds an asymptotic result is derived.

  11. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  12. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  13. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  14. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  15. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  16. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  17. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  18. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  19. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  20. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  1. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  2. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  3. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  4. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  5. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  6. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  7. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  8. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  9. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  10. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  11. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  12. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  13. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  14. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  15. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  16. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  17. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter.

    PubMed

    Yeats, Trevor H; Sorek, Hagit; Wemmer, David E; Somerville, Chris R

    2016-05-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1 This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H(+) symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H(+) gradient that likely underlies the enhanced accumulation of Suc via Suc/H(+) symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Trace Element Partitioning Between Metal and Melt at High Pressure

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Moses, M.; Fei, Y.

    2004-12-01

    Fractionations between siderophile trace elements are produced during crystallization of solid metal from a molten planetary core. It has been proposed (e.g., Brandon et al., 2003) that fractionations of Re/Os and Pt/Os produced during crystallization of Earth's inner core are recorded in rocks whose source regions lie at the core-mantle boundary. However, the possible effects of pressure, temperature, composition, and metal crystal structure on metal-melt partitioning have not been fully evaluated experimentally. Accordingly, we have begun to measure the partitioning of major and trace siderophile elements between Fe-rich metal and metal-sulfide melt at high pressures and temperatures using laser ablation ICP-MS of multi-anvil press samples. The starting materials included iron meteorite powder (having natural abundances of PGEs at the /sim10 ppm level) and troilite. In some cases Ru powder was also added to the starting material to promote transformation of the Fe-rich metal to the hcp structure, as described by Campbell et al. (2003). The powders were loaded into an MgO or BN sample capsule in a 10/5 multi-anvil press assembly, and pressurized to 14.5 GPa. The sample chamber thickness was held to <0.4 mm to minimize the temperature gradient experienced by the samples. Melting was achieved at temperatures of 975 C or above, and run durations were 6 to 24 hours. The recovered run products were polished and examined by SEM or electron microprobe before LA-ICP-MS analysis. Laser ablation spot sizes ranged from 15 to 50 microns, depending on the available grain size. Partition coefficients (D) were determined for Co, Ni, Ru, Re, Os, Ir, and Pt. Errors on the D values were based on the reproduceability of at least 3 measurements in each phase, and were <10% for major elements and <25% for trace elements. The effects of temperature and composition were evaluated and implications on the chemistry of the core will be discussed. Brandon A. D. et al. (2003) EPSL 206

  19. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  20. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1993-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  1. Fructokinase is required for carbon partitioning to cellulose in aspen wood.

    PubMed

    Roach, Melissa; Gerber, Lorenz; Sandquist, David; Gorzsás, András; Hedenström, Mattias; Kumar, Manoj; Steinhauser, Marie Caroline; Feil, Regina; Daniel, Geoffrey; Stitt, Mark; Sundberg, Björn; Niittylä, Totte

    2012-06-01

    Sucrose is the main transported form of carbon in several plant species, including Populus species. Sucrose metabolism in developing wood has therefore a central role in carbon partitioning to stem biomass. Half of the sucrose-derived carbon is in the form of fructose, but metabolism of fructose has received little attention as a factor in carbon partitioning to walls of wood cells. We show that RNAi-mediated reduction of FRK2 activity in developing wood of hybrid aspen (Populus tremula × tremuloides) led to the accumulation of soluble neutral sugars and a decrease in hexose phosphates and UDP-glucose, indicating that carbon flux to cell-wall polysaccharide precursors is decreased. Reduced FRK2 activity also led to thinner fiber cell walls with a reduction in the proportion of cellulose. No pleiotropic effects on stem height or diameter were observed. The results establish a central role for FRK2 activity in carbon flux to wood cellulose.

  2. Octanol-water partition coefficient of benzo(a)pyrene: measurement, calculation, and environmental implications

    SciTech Connect

    Mallon, B.J.; Harrison, F.L.

    1984-03-01

    Benzo(a)pyrene (BaP) is a potent carcinogen produced in significant quantities during pyrolysis of such substances as coal, wood, and cigarettes. Several researchers have shown that the lipophilic storage and soil sediment accumulation of many organic solutes is proportional to the partitioning between octanol-1 and water. The octanol-water partition coefficient (P) is defined as P = C/sub o//C/sub w/, where C/sub o/ and C/sub w/ are the concentration of the solute in n-octanol and water. Considerable data are available demonstrating that P values measured in the laboratory can be used to predict the environmental behavior of organic pollutants. Literature searches reveal that calculated, but not measured, log P values are reported for BaP. This laboratory study was initiated to define better the log P of BaP.

  3. Parasites modify sub-cellular partitioning of metals in the gut of fish.

    PubMed

    Oyoo-Okoth, Elijah; Admiraal, Wim; Osano, Odipo; Kraak, Michiel H S; Gichuki, John; Ogwai, Caleb

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    SciTech Connect

    Steensland, Johan

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  5. Bipartite graph partitioning and data clustering

    SciTech Connect

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D.

    2001-05-07

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.

  6. Measurement of the iodine partition coefficient

    SciTech Connect

    Furrer, M.; Cripps, R.C.; Gubler, R.

    1985-08-01

    The hydrolysis of iodine is complicated because it involves a number of species that differ considerably in their individual volatilities. Large uncertainties exist in the thermodynamic data of some of the iodine species, especially at temperatures above 25C. Because of this, an experiment was undertaken to measure the partition coefficient under varying physical and chemical conditions. Measurements of P were made for a temperature range of 21 to 113C under well-defined conditions (liquid molar concentration, pH, and redox potential) for inorganic iodine. The experimental results are interpreted with the aid of an analytical model and published thermodynamic data. A good agreement between calculated and measured values was found. The experimental setup allows the determination of very high partition coefficients up to a value of 2.0 X 10W. This is demonstrated by adding cesium-iodide to the fuel pool water of a boiling water reactor.

  7. Partition-DFT on the water dimer.

    PubMed

    Gómez, Sara; Nafziger, Jonathan; Restrepo, Albeiro; Wasserman, Adam

    2017-02-21

    As is well known, the ground-state symmetry group of the water dimer switches from its equilibrium Cs-character to C2h-character as the distance between the two oxygen atoms of the dimer decreases below RO-O∼2.5 Å. For a range of RO-O between 1 and 5 Å, and for both symmetries, we apply Partition Density Functional Theory (PDFT) to find the unique monomer densities that sum to the correct dimer densities while minimizing the sum of the monomer energies. We calculate the work involved in deforming the isolated monomer densities and find that it is slightly larger for the Cs geometry for all RO-O. We discuss how the PDFT densities and the corresponding partition potentials support the orbital-interaction picture of hydrogen-bond formation.

  8. Dynamic criteria for partitioning and transmutation

    SciTech Connect

    Lu, A.H. )

    1991-11-01

    Because of the slow progress being made in the national geologic repository program, the idea of partitioning and transmuting (P-T) long-lived radionuclides resurfaces as a potential improvement in high-level radioactive waste management. It seems theoretically possible to reduce the overall problems of radioactive waste by repeatedly partitioning and recycling wastes into actinide-free wastes, but there are recognizable difficulties and negative consequences that may overshadow the long-term benefits. This paper addresses some of the criteria that might be used to achieve an optimal P-T concept development, i.e., to minimize the negative short-term impact and to maximize both short-term and long-term benefits.

  9. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  10. Analysis of fractals with combined partition

    NASA Astrophysics Data System (ADS)

    Dedovich, T. G.; Tokarev, M. V.

    2016-03-01

    The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.

  11. On the Potts Model Partition Function in an External Field

    NASA Astrophysics Data System (ADS)

    McDonald, Leslie M.; Moffatt, Iain

    2012-03-01

    We study the partition function of the Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial.

  12. Partition algebraic design of asynchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Chen, Kristen Q.; Gopalakrishnan, Suresh K.

    1993-01-01

    Tracey's Theorem has long been recognized as essential in generating state assignments for asynchronous sequential circuits. This paper shows that partitioning variables derived from Tracey's Theorem also has a significant impact in generating the design equations. Moreover, this theorem is important to the fundamental understanding of asynchronous sequential operation. The results of this work simplify asynchronous logic design. Moreover, detection of safe circuits is made easier.

  13. Phase partitioning in space and on earth

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.

    1987-01-01

    The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.

  14. Current Partition at Topological Channel Intersections

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Jung, Jeil; Lin, Chungwei; Ren, Yafei; MacDonald, Allan H.; Niu, Qian

    2014-05-01

    An intersection between one-dimensional chiral channels functions as a topological current splitter. We find that the splitting of a chiral zero-line mode obeys very simple yet highly counterintuitive partition laws that relate current paths to the geometry of the intersection. Our results have far reaching implications for electron beam splitter and interferometer device proposals based on chiral transport, and for understanding transport in systems in which multiple topological domains lead to a statistical network of chiral channels.

  15. Hardware Index to Set Partition Converter

    DTIC Science & Technology

    2013-01-01

    www.jstatsoft.org/ 8. Knuth , D.E.: Volume 4 Generating all combinations and permutations. In: The Art of Computer Programming, Fascicle 3. Addison...especially requires high-speed enumeration of partitions. Recent research in computational molecular biology has shown the importance of par- titions...speed generation of combinations, as well as the generation of random combina- tions for use in reconfigurable computers . It can also be viewed as a

  16. Environment Partitioning and Reactivity of Polybrominated Diphenylethers

    NASA Technical Reports Server (NTRS)

    Hua, Inez; Iraci, Laura T.; Jafvert, Chad; Bezares-Cruz, Juan

    2004-01-01

    Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Annual global demand for these compounds was over 67,000 metric tons in 2001. PBDEs have recently been extensively investigated as environmental contaminants because they have been detected in air, sediment, and tissue samples from urban and remote areas. Important issues include quantifying PBDE partitioning in various environmental compartments, and elucidating transformation pathways. The partitioning of PBDE congeners to aerosols was estimated for 16 sites in the United States, Canada, and Mexico. The aerosol particles were PM2.5, the total suspended particle (TSP) concentration varied between 3.0 - 55.4 micro g/cubic meter, and the organic fraction ranged from 11 - 41%; these data are published values for each site. It is estimated that the largest fraction of each PBDE associated with the aerosol particles occurs in Mexico City, and the smallest fraction in Colorado Plateau. Although the organic fraction in Mexico City is about 60% of that observed in the Colorado Plateau, the TSP is larger by a factor of about 18.5, and it is the difference in TSP that strongly influences the fraction of particle-bound PBDE in this case. PBDE partitioning to PM2.5 particles also varies seasonally because of temperature variations. For the less brominated congeners the percentage that is particle-bound is relatively low, regardless of air temperature. In contrast, the heavier congeners exhibit a significant temperature dependence: as the temperature decreases (fall, winter) the percentage of PBDE that is particle-bound increases. The partitioning calculations complement experimental data indicating that decabromodiphenyl ether (DBDE) dissolved in hexane transforms very rapidly when irradiated with solar light. DBDE is the most highly brominated PBDE congener (10 bromine atoms) and occurs in the commercial formulation which is subject to the largest global demand.

  17. Partitioning coefficients between olivine and silicate melts

    NASA Astrophysics Data System (ADS)

    Bédard, J. H.

    2005-08-01

    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  18. Interaction of 7-n-alkoxycoumarins with cytochrome P-450(2) and their partitioning into liposomal membranes. Assessment of methods for determination of membrane partition coefficients.

    PubMed Central

    Vermeir, M; Boens, N; Heirwegh, K P

    1992-01-01

    A study was made of the binding of 7-ethoxy-, 7-n-propoxy- and 7-n-pentoxy-coumarin to cytochrome P-450(2) reconstituted into large unilamellar liposomes composed of a mixture of egg L-alpha-phosphatidylcholine, egg phosphatidylethanolamine and dipalmitoyl phosphatidic acid (2:1:0.06, by weight). The apparent spectral dissociation constants Ksapp. increased linearly with increasing proteoliposomal concentration. When both cytochrome P-450(2) and NADPH:cytochrome P-450 reductase were reconstituted into liposomes, the apparent Michaelis constants Kmapp. for O-dealkylation of 7-methoxy-, 7-ethoxy- and 7-n-propoxy-coumarin showed a similar dependence on the proteoliposomal concentration. The results were in accordance with models for kinetic or equilibrium processes in biphasic systems containing membrane-bound catalytic or acceptor sites, in which a linear solute partition in the bilayer membrane is postulated. The methyl, ethyl and n-propyl ether were readily dealkylated. However, the O-dealkylation rate of 7-n-butoxycoumarin was low and became very small for longer alkyl ethers. Both the effective dissociation constants and effective Michaelis constants decreased with elongation of the alkyl side chain of the coumarins. From plots of the apparent dissociation constants and apparent Michaelis constants against the lipid volume fraction of the proteoliposomes, the membrane partition coefficients for several homologues were calculated. When protein-free liposomes were added to 7-n-alkoxycoumarin solutions, the fluorescence intensity of the coumarins decreased and eventually became negligible in the presence of an excess of liposomal material. On the assumption that the overall fluorescence can be ascribed exclusively to the fraction of 7-n-alkoxycoumarin molecules present in the aqueous phase, partition coefficients for liposomal accumulation of the test compounds could be determined directly. For several coumarin ethers, comparable values were derived for the membrane

  19. Control of helium accumulation

    SciTech Connect

    Varadarajan, V.; Miley, G.H.

    1990-01-01

    The fishbone like oscillations in ignited tokamaks are addressed in an exploratory manner. The effects of the strong m = 1 oscillations and the weak high-frequency oscillations are examined in order to explore the feasibility of utilizing these oscillations for alpha accumulation control. The prospects of achieving small scale continuous alpha removal from the plasma center by mild fishbone-like oscillations are examined.

  20. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    EPA Pesticide Factsheets

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  1. Microbial partitioning to settleable particles in stormwater.

    PubMed

    Characklis, Gregory W; Dilts, Mackenzie J; Simmons, Otto D; Likirdopulos, Christina A; Krometis, Leigh-Anne H; Sobsey, Mark D

    2005-05-01

    The degree to which microbes in the water column associate with settleable particles has important implications for microbial transport in receiving waters, as well as for microbial removal via sedimentation (i.e. detention basins). The partitioning behavior of several bacterial, protozoan and viral indicator organisms is explored in three urban streams under both storm and dry weather conditions. The fraction of organisms associated with settleable particles in stormwater is estimated through use of a centrifugation technique which is calibrated using suspensions of standard particles (e.g., glass, latex). The fraction of organisms associated with settleable particles varies by type of microbe, and the partitioning behavior of each organism generally changes between dry weather and storm conditions. Bacterial indicator organisms (fecal coliforms, Escherichia coli, enterococci) exhibited relatively consistent behavior, with an average of 20-35% of organisms associated with these particles in background samples and 30-55% in storm samples. Clostridium perfringens spores exhibited the highest average level of particle association, with storm values varying from 50% to 70%. Results related to total coliphage partitioning were more variable, with 20-60% associated with particles during storms. These estimates should be valuable in surface water quality modeling efforts, many of which currently assume that all microbes exist as free (unattached) organisms.

  2. Biogeography of time partitioning in mammals

    PubMed Central

    Bennie, Jonathan J.; Duffy, James P.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Many animals regulate their activity over a 24-h sleep–wake cycle, concentrating their peak periods of activity to coincide with the hours of daylight, darkness, or twilight, or using different periods of light and darkness in more complex ways. These behavioral differences, which are in themselves functional traits, are associated with suites of physiological and morphological adaptations with implications for the ecological roles of species. The biogeography of diel time partitioning is, however, poorly understood. Here, we document basic biogeographic patterns of time partitioning by mammals and ecologically relevant large-scale patterns of natural variation in “illuminated activity time” constrained by temperature, and we determine how well the first of these are predicted by the second. Although the majority of mammals are nocturnal, the distributions of diurnal and crepuscular species richness are strongly associated with the availability of biologically useful daylight and twilight, respectively. Cathemerality is associated with relatively long hours of daylight and twilight in the northern Holarctic region, whereas the proportion of nocturnal species is highest in arid regions and lowest at extreme high altitudes. Although thermal constraints on activity have been identified as key to the distributions of organisms, constraints due to functional adaptation to the light environment are less well studied. Global patterns in diversity are constrained by the availability of the temporal niche; disruption of these constraints by the spread of artificial lighting and anthropogenic climate change, and the potential effects on time partitioning, are likely to be critical influences on species’ future distributions. PMID:25225371

  3. Phase partitioning experiment (8-IML-1)

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.

    1992-01-01

    Phase partitioning is a method of separating biological cells and macromolecules via their differential distribution in two phase aqueous polymer solutions. The ultimate goal of the experiment is to test the hypothesis that the efficiency of separation of closely related cell types, by partitioning in immiscible aqueous phases, will be enhanced in the non-convective environment provided by space. Before a cell separation experiment can be performed, the demixing of immiscible aqueous polymer solutions must be understood and controlled in order to optimize the experimental conditions for a cell separation experiment in the future. The present Phase Partitioning Experiment (PPE) is the third in a series, the first two flew on STS 51-D in Apr. 1985 and STS 26 in Oct. 1988. In those experiments the immiscible aqueous phases demixed spontaneously at different rates, the final disposition being one in which the phase which wetted the container wall surrounded the second phase which formed an 'egg yolk' in the center of the chamber.

  4. NAPL compositional changes influence partitioning coefficients

    SciTech Connect

    Lee, C.M.; Meyers, S.L.; Wright, C.L. Jr.; Coates, J.T.; Haskell, P.A.; Falta, R.W. Jr.

    1998-11-15

    Partitioning interwell tracer tests (PITTs) that were developed by the petroleum industry are being used to characterize the extent and amount of subsurface contamination by nonaqueous phase liquids (NAPLs). A promising application of PITTS is to estimate the volume of contamination removed by various remediation technologies by conducting the tests before and after remediation efforts. Laboratory experiments with a light NAPL from Hill Air Force Base, UT, the site of the SERDP demonstration of innovative technologies, indicate that the type of remediation technology used changes the partitioning of the tracer compounds between the NAPL and the aqueous phase. Partitioning coefficients (K{sub nw}) that were measured by static and dynamic methods showed a statistically significant change in value after the NAPL was treated in batchwise washes with a cosolvent that simulated enhanced dissolution. In contrast, the value of K{sub nw} showed little change before and after the NAPL was treated in a column with a cosolvent that simulated mobilization. The results indicate that PITTS could significantly underestimate the volume remaining of a complex NAPL like the Hill AFB material for an operation that employs the solubilization mechanism without a corrected K{sub nw} for the post-treatment test.

  5. Phase partitioning experiment (8-IML-1)

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.

    1992-01-01

    Phase partitioning is a method of separating biological cells and macromolecules via their differential distribution in two phase aqueous polymer solutions. The ultimate goal of the experiment is to test the hypothesis that the efficiency of separation of closely related cell types, by partitioning in immiscible aqueous phases, will be enhanced in the non-convective environment provided by space. Before a cell separation experiment can be performed, the demixing of immiscible aqueous polymer solutions must be understood and controlled in order to optimize the experimental conditions for a cell separation experiment in the future. The present Phase Partitioning Experiment (PPE) is the third in a series, the first two flew on STS 51-D in Apr. 1985 and STS 26 in Oct. 1988. In those experiments the immiscible aqueous phases demixed spontaneously at different rates, the final disposition being one in which the phase which wetted the container wall surrounded the second phase which formed an 'egg yolk' in the center of the chamber.

  6. Peptide partitioning properties from direct insertion studies

    SciTech Connect

    Ulmschneider, Martin; Smith, Jeremy C; Ulmschneider, Jakob

    2010-06-01

    Partitioning properties of polypeptides are at the heart of biological membrane phenomena and their precise quantification is vital for ab-initio structure prediction and the accurate simulation of membrane protein folding and function. Recently the cellular translocon machinery has been employed to determine membrane insertion propensities and transfer energetics for a series of polyleucine segments embedded in a carrier sequence. We show here that the insertion propensity, pathway, and transfer energetics into synthetic POPC bilayers can be fully described by direct atomistic peptide partitioning simulations. The insertion probability as a function of peptide length follows two-state Boltzmann statistics, in agreement with the experiments. The simulations expose a systematic offset between translocon-mediated and direct insertion free energies. Compared to the experiment the insertion threshold is shifted toward shorter peptides by 2 leucine residues. The simulations reveal many hitherto unknown atomic-resolution details about the partitioning process and promise to provide a powerful tool for urgently needed calibration of lipid parameters to match experimentally observed peptide transfer energies.

  7. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    EPA Pesticide Factsheets

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  8. Diversity partitioning during the Cambrian radiation

    PubMed Central

    Na, Lin; Kiessling, Wolfgang

    2015-01-01

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  9. Biogeography of time partitioning in mammals.

    PubMed

    Bennie, Jonathan J; Duffy, James P; Inger, Richard; Gaston, Kevin J

    2014-09-23

    Many animals regulate their activity over a 24-h sleep-wake cycle, concentrating their peak periods of activity to coincide with the hours of daylight, darkness, or twilight, or using different periods of light and darkness in more complex ways. These behavioral differences, which are in themselves functional traits, are associated with suites of physiological and morphological adaptations with implications for the ecological roles of species. The biogeography of diel time partitioning is, however, poorly understood. Here, we document basic biogeographic patterns of time partitioning by mammals and ecologically relevant large-scale patterns of natural variation in "illuminated activity time" constrained by temperature, and we determine how well the first of these are predicted by the second. Although the majority of mammals are nocturnal, the distributions of diurnal and crepuscular species richness are strongly associated with the availability of biologically useful daylight and twilight, respectively. Cathemerality is associated with relatively long hours of daylight and twilight in the northern Holarctic region, whereas the proportion of nocturnal species is highest in arid regions and lowest at extreme high altitudes. Although thermal constraints on activity have been identified as key to the distributions of organisms, constraints due to functional adaptation to the light environment are less well studied. Global patterns in diversity are constrained by the availability of the temporal niche; disruption of these constraints by the spread of artificial lighting and anthropogenic climate change, and the potential effects on time partitioning, are likely to be critical influences on species' future distributions.

  10. On bottleneck partitioning k-ary n-cubes

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Mao, Weizhen

    1994-01-01

    Graph partitioning is a topic of extensive interest, with applications to parallel processing. In this context graph nodes typically represent computation, and edges represent communication. One seeks to distribute the workload by partitioning the graph so that every processor has approximately the same workload, and the communication cost (measured as a function of edges exposed by the partition) is minimized. Measures of partition quality vary; in this paper we consider a processor's cost to be the sum of its computation and communication costs, and consider the cost of a partition to be the bottleneck, or maximal processor cost induced by the partition. For a general graph the problem of finding an optimal partitioning is intractable. In this paper we restrict our attention to the class of k-art n-cube graphs with uniformly weighted nodes. Given mild restrictions on the node weight and number of processors, we identify partitions yielding the smallest bottleneck. We also demonstrate by example that some restrictions are necessary for the partitions we identify to be optimal. In particular, there exist cases where partitions that evenly partition nodes need not be optimal.

  11. Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars

    SciTech Connect

    Clarke, B.B.; Brennan, E. )

    1989-10-01

    A greenhouse experiment was conducted to determine the effect of plant genotype on cadmium accumulation and phytotoxicity in tobacco. When low levels of CdCl{sub 2} were added to the nutrient solution of 16 tobacco cultivars growing in sand culture, the heavy metal was partitioned in the following order: leaves > roots > stems. Because leaves are the commercial product, this pattern of partitioning is highly undersirable. The concentration of Cd accumulated in the tissues varied with plant genotype and level of Cd treatment. At the 0.25 ppm Cd treatment, a maximum of 127.6 ppm Cd was found in foliage of the Coker-48 variety, and at the 1.0 ppm Cd treatment, a maximum of 382.6 ppm Cd was detected in the foliage of NC-232. None of the Cd-treated tobacco plants exhibited visual foliar symptoms commonly observed in other plant species. A concentration of 0.25 ppm Cd stimulated shoot height, internode length and leaf number but inhibited total dry weight and percent dry weight. Cd phytotoxicity was found to vary with plant genotype and level of Cd treatment but not with the amount of Cd accumulated by the plant.

  12. Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning.

    PubMed

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp

    2016-06-07

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.

  13. Superionic solids and solid electrolytes

    SciTech Connect

    Laskar, A. ); Chandra, S. )

    1989-01-01

    Superionic solids and solid electrolytes are a special group of materials showing high ionic conductivity with tremendous technological potential. This book updates the present status of the field. Starting with an overview of recent trends in solid state ionics, the book ends with the assessment of future implications. Different theoretical, experimental (including NMR), and materials aspects have been covered along with applications. Important materials covered include alkali and silver ion conductors, fluorites, Nasicon, heterogeneous solid electrolytes, and glasses. The theoretical topics covered in this volume include phenomenological models, fractal techniques, the pre-exponential problem, and fluctuations.

  14. THE ACCUMULATION AND RELEASE OF CONTAMINANTS FROM DISTRIBUTION SYSTEM SOLIDS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  15. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  16. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  17. Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer

    NASA Technical Reports Server (NTRS)

    Gillies, John A.; Nickling, William G.; King, James

    2007-01-01

    Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.

  18. Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer

    NASA Technical Reports Server (NTRS)

    Gillies, John A.; Nickling, William G.; King, James

    2007-01-01

    Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.

  19. The relative importance of the adsorption and partitioning mechanisms in hydrophilic interaction liquid chromatography.

    PubMed

    Gritti, Fabrice; Höltzel, Alexandra; Tallarek, Ulrich; Guiochon, Georges

    2015-01-09

    We propose an original model of effective diffusion along packed beds of mesoporous particles for HILIC developed by combining Torquatos model for heterogeneous beds (external eluent+particles), Landauers model for porous particles (solid skeleton+internal eluent), and the time-averaged model for the internal eluent (bulk phase+diffuse water (W) layer+rigid W layer). The new model allows to determine the analyte concentration in rigid and diffuse W layer from the experimentally determined retention factor and intra-particle diffusivity and thus to distinguish the retentive contributions from adsorption and partitioning. We apply the model to investigate the separation of toluene (TO, as a non-retained compound), nortriptyline (NT), cytosine (CYT), and niacin (NA) on an organic ethyl/inorganic silica hybrid adsorbent. Elution conditions are varied through the choice of a third solvent (W, ethanol, tetrahydrofuran (THF), acetonitrile (ACN), or n-hexane) in a mobile phase (MP) of ACN/aqueous acetate buffer (pH 5)/third solvent (90/5/5, v/v/v). Whereas NA and CYT retention factors increase monotonously from W to n-hexane as third solvent, NT retention reaches its maximum with polar aprotic third solvents. The involved equilibrium constants for adsorption and partitioning, however, do not follow the same trends as the overall retention factors. NT retention is dominated by partitioning and NA retention by adsorption, while CYT retention is controlled by adsorption rather than partitioning. Our results reveal that the relative importance of adsorption and partitioning mechanisms depends in a complex way from analyte properties and experimental parameters and cannot be predicted generally. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    NASA Technical Reports Server (NTRS)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  1. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    NASA Technical Reports Server (NTRS)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  2. Subcellular Partitioning and Intramacrophage Selectivity of Antimicrobial Compounds against Mycobacterium tuberculosis.

    PubMed

    Schump, Michael D; Fox, Douglas M; Bertozzi, Carolyn R; Riley, Lee W

    2017-03-01

    The efficacy of antimicrobial drugs against Mycobacterium tuberculosis, an intracellular bacterial pathogen, is generally first established by testing compounds against bacteria in axenic culture. However, inside infected macrophages, bacteria encounter an environment which differs substantially from broth culture and are subject to important host-dependent pharmacokinetic phenomena which modulate drug activity. Here, we describe how pH-dependent partitioning drives asymmetric antimicrobial drug distribution in M. tuberculosis-infected macrophages. Specifically, weak bases with moderate activity against M. tuberculosis (fluoxetine, sertraline, and dibucaine) were shown to accumulate intracellularly due to differential permeability and relative abundance of their ionized and nonionized forms. Nonprotonatable analogs of the test compounds did not show this effect. Neutralization of acidic organelles directly with ammonium chloride or indirectly with bafilomycin A1 partially abrogated the growth restriction of these drugs. Using high-performance liquid chromatography, we quantified the degree of accumulation and reversibility upon acidic compartment neutralization in macrophages and observed that accumulation was greater in infected than in uninfected macrophages. We further demonstrate that the efficacy of a clinically used compound, clofazimine, is augmented by pH-based partitioning in a macrophage infection model. Because the parameters which govern this effect are well understood and are amenable to chemical modification, this knowledge may enable the rational development of more effective antibiotics against tuberculosis.

  3. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    PubMed

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  4. Investigating the Partitioning of Inorganic Elements Consumed by Humans between the Various Fractions of Human Wastes: An Alternative Approach

    NASA Technical Reports Server (NTRS)

    Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John W.

    2003-01-01

    The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is important in understanding (a) developing waste separation technologies, (b) decision-making on how these elements can be recovered for reuse in space habitats, and (c) to developing the processors for waste management. Though considerable literature exists on these elements, there is a lack of understanding and often conflicting data. Two major reasons for these problems include the lack of controlled experimental protocols and the inherently large variations between human subjects (Parker and Gallagher, 1988). We have used the existing knowledge of human nutrition and waste from the available literature and NASA documentation to build towards a consensus to typify and chemically characterize the various human wastes. It is our belief, that this could be a building block towards integrating a human life support and waste processing in a closed system.

  5. Carbon-nitrogen ratio and in vitro assimilate partitioning patterns in Cyrtanthus guthrieae L.

    PubMed

    Ncube, Bhekumthetho; Finnie, Jeffrey F; Van Staden, Johannes

    2014-01-01

    In response to variations in nutritional composition of the growth medium, plants often adjust their metabolism and progressively alter their growth patterns. Carbon (C) and nitrogen (N) constitute the major plant nutritional components influencing plant growth and development patterns. This study examined the growth dynamics and patterns of assimilate partitioning to primary and secondary metabolites in response to varying levels and combinations of C and N in the culture media of Cyrtanthus guthrieae. In vitro callus-derived C. guthrieae plantlets were cultured on solid Murashige and Skoog (MS) media with different concentrations and combinations of C and N. Relative growth rate (RGR) increased proportionally with an increase in C concentrations up to 88 mM sucrose (0.58 d(-1)) beyond which it was hardly influenced by further increases in C. Growth was also significantly favoured in media with high concentrations of N at all C concentrations tested. In C-limited media regimes with growth saturating N conditions, alkaloid accumulation became favoured while polyphenol content increased with an increase in C levels in the medium, a characteristic pattern that appeared to be less influenced by the amount of N. Of the primary metabolites, only proteins showed small significant variations across different media treatments, with starch and soluble sugars increasing proportionately with C levels. In the medium with a high sucrose concentration (175 mM), soluble sugars, amino acids and polyphenols increased markedly, possibly as an adaptive response to the reduced osmotic potential in the media and/or a storage mechanism for excess C and N reserves in the media. From a medicinal perspective, with regard to polyphenolic compounds in C. guthrieae, growth medium conditions that allow for high levels of C pools in the tissue would thus be favourable for the enhanced synthesis of this group of compounds. The medium conditions with 175 mM sucrose and 10.3 mM NH4NO3 gave the

  6. Impact of Solvents Treatment on the Wettability of Froth Solids

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    The purpose of this study is to investigate the impact of solvent addition to bitumen froth on the wettability of froth solids. The wettability of solids determines the transportation/partitioning of the solids between phases, which in turn affects the solids and water rejection in a Clark hot water extraction process (CHWE). The impact of solvents treatment on the wettability of froth solids was studied using both a model system and a real bitumen froth system. The vulnerabilities of four kinds of model minerals to hydrocarbon contamination/wettability alteration in different solvents were compared and discussed by considering solvent composition and mineral types. The wettability of solids extracted from the industrial froth using different solvents was also compared. The XRD analysis on these solids confirmed the partitioning behavior of solids observed in model solids system. The results from this study indicate that the composition of paraffinic/aromatic solvent in an industrial froth treatment process could be tailor-optimized to achieve a better solids/water rejection.

  7. Quantitative investigation into the influence of temperature on carbide and austenite evolution during partitioning of a quenched and partitioned steel

    SciTech Connect

    Pierce, Dean T.; Coughlin, D. R.; Williamson, Don L.; Kähkönen, Joonas; Clarke, A. J.; Clarke, Kester D.; Speer, J. G.; De Moor, Emmanuel

    2016-05-03

    Here, the influence of partitioning temperature on microstructural evolution during quenching and partitioning was investigated in a 0.38C-1.54Mn-1.48Si wt.% steel using Mössbauer spectroscopy and transmission electron microscopy. η-carbide formation occurs in the martensite during the quenching, holding, and partitioning steps. More effective carbon partitioning from martensite to austenite was observed at 450 than 400°C, resulting in lower martensite carbon contents, less carbide formation, and greater retained austenite amounts for short partitioning times. Conversely, greater austenite decomposition occurs at 450°C for longer partitioning times. Lastly, cementite forms during austenite decomposition and in the martensite for longer partitioning times at 450°C.

  8. Accumulative Tritium Transfer from Water into Biosystems

    SciTech Connect

    Baumgaertner, Franz

    2005-07-15

    The energy balance of hydrogen isotopes in H bonds of water and biomolecules results in accumulative tritium transfer from water into biomolecules. Tests of DNA dissolved in tritiated water and of maize or barley hydroponically grown in tritiated water confirm the increase. The primary hydration shell of DNA shows an accumulation factor of {approx}1.4, and the exchangeable hydrogens inside DNA show {approx}2. Logistic growth analyses of maize and barley reveal the intrinsic growth rates of tritium 1.3 and 1.2 times larger than that of hydrogen. The higher rate of tritium than hydrogen incorporation in solid biomatter is caused by the hydration shells, which constitute an intrinsic component of biomolecules.

  9. High dimensional data clustering by partitioning the hypergraphs using dense subgraph partition

    NASA Astrophysics Data System (ADS)

    Sun, Xili; Tian, Shoucai; Lu, Yonggang

    2015-12-01

    Due to the curse of dimensionality, traditional clustering methods usually fail to produce meaningful results for the high dimensional data. Hypergraph partition is believed to be a promising method for dealing with this challenge. In this paper, we first construct a graph G from the data by defining an adjacency relationship between the data points using Shared Reverse k Nearest Neighbors (SRNN). Then a hypergraph is created from the graph G by defining the hyperedges to be all the maximal cliques in the graph G. After the hypergraph is produced, a powerful hypergraph partitioning method called dense subgraph partition (DSP) combined with the k-medoids method is used to produce the final clustering results. The proposed method is evaluated on several real high-dimensional datasets, and the experimental results show that the proposed method can improve the clustering results of the high dimensional data compared with applying k-medoids method directly on the original data.

  10. A brief history of partitions of numbers, partition functions and their modern applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  11. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-09

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  12. Photosynthate Partitioning and Fermentation in Hot Spring Microbial Mat Communities

    PubMed Central

    Nold, S. C.; Ward, D. M.

    1996-01-01

    Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from various hot springs predominantly accumulated polyglucose during periods of illumination (between 77 and 85% of total incorporated (sup14)CO(inf2)). Although photosynthetically active, mat photoautotrophs do not appear to be rapidly growing, since we also detected only limited synthesis of macromolecules associated with growth (i.e., protein and rRNA). To test the hypothesis that polysaccharide reserves are fermented in situ under the dark anaerobic conditions cyanobacterial mats experience at night, mat cores were prelabeled with (sup14)CO(inf2) under illuminated conditions and then transferred to dark anaerobic conditions. Radiolabel in the polysaccharide fraction decreased by 74.7% after 12 h, of which 58.5% was recovered as radiolabeled acetate, CO(inf2), and propionate. These results indicate tightly coupled carbon fixation and fermentative processes and the potential for significant transfer of carbon from primary producers to heterotrophic members of these cyanobacterial mat communities. PMID:16535472

  13. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    SciTech Connect

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J.

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  14. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  15. Dry matter and energy partitioning in plants under climatic stress

    SciTech Connect

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.; Ledl, D.; Nemeth, K.; Ludlow, M.M.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any case stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.

  16. Carbon and nitrogen partitioning in peach/plum grafts.

    PubMed

    Moing, A; Gaudillère, J P

    1992-01-01

    Modifications in root-shoot relationships induced by graft incompatibility were studied in peach/plum graft combinations by means of carbohydrate and nitrogen analyses and isotope labeling. Mobilization of stored carbon, phloem transport of carbon, and mobilization, assimilation and distribution of nitrogen were studied in one compatible peach/plum graft (Prunus persica L. Batsch cv. springtime grafted on Prunus cerasifera L. Ehrh cv. myrobalan P 2032) and one incompatible graft (Prunus persica L. Batsch cv. Springtime grafted on Prunus cerasifera L. Ehrh cv. myrobalan P 18) for 89 days after grafting. Carbon and nitrogen reserves were mobilized in the rootstock in both graft combinations during the first 78 days following grafting. After that, sorbitol concentration was lower in the roots of the incompatible graft than in the roots of the compatible graft, whereas soluble sugars and starch accumulated in the peach scion of the incompatible graft. In both graft types, carbon was allocated mainly to the scion. Labeling with (13)CO(2) from 78 to 81 days after grafting showed that carbon partitioning among the different plant organs was only slightly affected by graft incompatibility. Carbohydrate concentrations provided indirect evidence that carbon transfer to the roots was hindered in the incompatible graft. Labeling with (15)NO(3) showed that nitrogen distribution and the rate of nitrogen assimilation were similar in the two graft combinations from 57 to 78 days after grafting. Nitrogen assimilation in the incompatible graft ceased 78 days after grafting, whereas it continued in the compatible graft.

  17. Solid consistency

    NASA Astrophysics Data System (ADS)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  18. Impact of sediment partitioning methods on environmental safety assessment of surfactants

    SciTech Connect

    Orth, R.G.; Powell, R.L.; Kutey, G.; Kimerle, R.A. )

    1995-02-01

    Selection of laboratory methods for partitioning and toxicity tests of sediments has a significant impact on interpretation of aquatic safety of surfactants. This is the case for the assessment of the sediment toxicity of C[sub 12] linear alkylbenzene sulfonates, LAS. In this study, the batch-equilibrium partition coefficient (K[sub d]) was measured as a function of organic carbon, cation exchange capacity, and quantity of sediments. The quantity of sediment was varied from a low of 5 g per 1,000 ml of water to a level of 500 g to 500 ml of water. The measured K[sub d] decreased by an order of magnitude when the ratio of water to sediments increased to 1:1, and as a consequence of this observation, LAS on suspended solids was included in the quantitation of LAS in the water phase. When measured K[sub d] values were then used to predict the toxicity (based on known aquatic toxicity concentrations of LAS using Ceriodaphnia dubia), LAS was calculated to be an order of magnitude less toxic by the low-solids test compared to the high-solids test system. This work reaffirms that selection of a laboratory test to assess environmental safety must be made on the basis of its correlation to the real-world behavior of the surfactant.

  19. Dietary lipid-dependent regulation of de novo lipogenesis and lipid partitioning by ketogenic essential amino acids in mice.

    PubMed

    Nishikata, N; Shikata, N; Kimura, Y; Noguchi, Y

    2011-03-28

    We have previously reported that dietary ketogenic amino acids (KAAs) modulate hepatic de novo lipogenesis (DNL) and prevent hepatic steatosis in mice. However, the dependence of the metabolic phenotypes generated by KAA on the type of dietary lipid source remains unclear. The aim of this study was to assess the effect of KAA combined with different dietary lipid sources on hepatic DNL and tissue lipid partitioning in mice. We compared three different KAA-supplemented diets, in which a portion of the dietary protein was replaced by five major essential amino acids (Leu, Ile, Val, Lys and Thr) in high-fat diets based on palm oil (PO), high-oleic safflower oil (FO) or soy oil (SO). To compare the effects of these diets in C57B6 mice, the differential regulation of DNL and dietary lipid partitioning due to KAA was assessed using stable isotopic flux analysis. The different dietary oils showed strikingly different patterns of lipid partitioning and accumulation in tissues. High-PO diets increased both hepatic and adipose triglycerides (TG), whereas high-FO and high-SO diets increased hepatic and adipose TG, respectively. Stable isotopic flux analysis revealed high rates of hepatic DNL in high-PO and high-FO diets, whereas it was reduced in the high-SO diet. KAA supplementation in high-PO and high-FO diets reduced hepatic TG by reducing the DNL of palmitate and the accumulation of dietary oleate. However, KAA supplementation in the high-SO diet failed to reduce hepatic DNL and TG. Interestingly, KAA reduced SO-induced accumulation of hepatic linoleate and enhanced SO-induced accumulation of dietary oleate. Overall, the reduction of hepatic TG by KAA is dependent on dietary lipid sources and occurs through the modulation of DNL and altered partitioning of dietary lipids. The current results provide further insight into the underlying mechanisms of hepatic lipid reduction by amino acids.

  20. Experimental Partitioning of As and SB Among Metal, Troilite, Schreibersite, Barringerite, and Metallic Liquid

    NASA Astrophysics Data System (ADS)

    Jones, J. H.; Casanova, I.

    1993-07-01

    We have performed a series of experiments to evaluate the behaviors of As and Sb in metallic systems. Because of the reputed chalcophile nature of these elements, we wrongly anticipated that they would follow S and that, compared to the Fe-X systems [1], (solid metal/liquid metal) partition coefficients would be considerably lower in S-bearing systems. Experimental and Analytical: Experiments were performed in sealed silica tubes as in [2]. Starting materials were high-purity metals, natural pyrite, and natural stibnite. Charges were doped either with As or Sb. Experiments were held at either 950 degrees C for six days or 1250 degrees C for three days. Typical experimental assemblages consisted either of taenite and coexisting Fe-Ni-S-X liquid (1250 degrees and 950 degrees C) or an assemblage of troilite, schreibersite, and Fe-Ni-S-P-X liquid (950 degrees C). The schreibersite-bearing, As-doped charge also contained barringerite (Fe,Ni)2P. Charges were mounted in epoxy, polished, and analyzed using a Cameca SX-50 electron microprobe and standard techniques. Results: Phases appeared homogeneous. Our results, along with partition coefficients inferred for the S-free system, are given in Table 1. Table 1 appears here in the hard copy. Discussion: Our results indicate that As behaves as a siderophile element at low temperatures, very analogous to Au. While the siderophility of Sb increases with decreasing temperature, it remains incompatible in solid metal. In this regard Sb is unique. Both As and Sb are very incompatible in troilite. Arsenic is weakly incompatible in schreibersite and strongly compatible in barringerite. Nickel shows no preference for either phosphide. Nickel partition coefficients for metal and schreibersite are similar to those measured previously [3]. On a lnD vs. ln(1-2 alpha X(S)) diagram [4], the data for Sb and As subparallel each other, indicating similar dependencies on S, despite their very different partition coefficients. Arsenic behaves

  1. Dust Accumulation on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since landing on Mars a year ago, NASA's pair of six-wheeled geologists have been constantly exposed to martian winds and dust. As a result, the Spirit rover has gradually experienced a slight decline in power as a thin layer of dust has accumulated on the solar panels, blocking some of the sunlight that is converted to electricity. In this enlarged image of a postage-stamp-size (3-centimeter-square, 1.2-inch-square) portion of one of Spirit's solar panels, a fine layer of martian dust coats electrical connections and metal surfaces. Individual silt grains or clumps of dust are visible where sediment has accumulated in crevices between solar cells and circuits. The upper right half of the image shows the edge of one of the rover's solar cells. The lower left half shows electrical wires bonded with silicon adhesive to the underlying composite surface; the circular abrasions are the result of sanding by hand on Earth. The braided wire is connected to a thermocouple used to measure temperature based on electrical resistance. Spirit took this image with its microscopic imager on martian day, or sol, 350 (Dec. 26, 2004).

  2. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  3. Understanding disease processes by partitioned dynamic Bayesian networks.

    PubMed

    Bueno, Marcos L P; Hommersom, Arjen; Lucas, Peter J F; Lappenschaar, Martijn; Janzing, Joost G E

    2016-06-01

    For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in a clinical setting has been often compensated by utilizing time homogeneous models, such as dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in the obtained models. In the current work, we propose the new concept of partitioned dynamic Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from an intuitive and compact representation with the solid theoretical foundation of Bayesian network models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic algorithm to search and learn these non-homogeneous models taking into account a preference for less complex models. An extensive set of experiments were ran, in which simulating experiments show that the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and statistical distance to the original distributions, in consonance with the underlying processes that generated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depression was conducted using non-homogeneous models learned by the heuristic, leading to insightful answers for clinically relevant questions concerning the dynamics of this mental disorder.

  4. Boron, beryllium, and lithium, partitioning in olivine

    SciTech Connect

    Neroda, Elizabeth

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  5. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  6. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  7. Light period regulation of carbohydrate partitioning

    NASA Technical Reports Server (NTRS)

    Janes, Harry W.

    1994-01-01

    We have shown that the photosynthetic period is important in regulating carbon partitioning. Even when the same amount of carbon is fixed over a 24h period considerably more is translocated out of the leaf under the longer photosynthetic period. This is extremely important when parts of the plant other than the leaves are to be sold. It is also important to notice the amount of carbon respired in the short photosynthetic period. The light period effect on carbohydrate fixation, dark respiration, and translocation is shown in this report.

  8. ESTimating plant phylogeny: lessons from partitioning

    PubMed Central

    de la Torre, Jose EB; Egan, Mary G; Katari, Manpreet S; Brenner, Eric D; Stevenson, Dennis W; Coruzzi, Gloria M; DeSalle, Rob

    2006-01-01

    Background While Expressed Sequence Tags (ESTs) have proven a viable and efficient way to sample genomes, particularly those for which whole-genome sequencing is impractical, phylogenetic analysis using ESTs remains difficult. Sequencing errors and orthology determination are the major problems when using ESTs as a source of characters for systematics. Here we develop methods to incorporate EST sequence information in a simultaneous analysis framework to address controversial phylogenetic questions regarding the relationships among the major groups of seed plants. We use an automated, phylogenetically derived approach to orthology determination called OrthologID generate a phylogeny based on 43 process partitions, many of which are derived from ESTs, and examine several measures of support to assess the utility of EST data for phylogenies. Results A maximum parsimony (MP) analysis resulted in a single tree with relatively high support at all nodes in the tree despite rampant conflict among trees generated from the separate analysis of individual partitions. In a comparison of broader-scale groupings based on cellular compartment (ie: chloroplast, mitochondrial or nuclear) or function, only the nuclear partition tree (based largely on EST data) was found to be topologically identical to the tree based on the simultaneous analysis of all data. Despite topological conflict among the broader-scale groupings examined, only the tree based on morphological data showed statistically significant differences. Conclusion Based on the amount of character support contributed by EST data which make up a majority of the nuclear data set, and the lack of conflict of the nuclear data set with the simultaneous analysis tree, we conclude that the inclusion of EST data does provide a viable and efficient approach to address phylogenetic questions within a parsimony framework on a genomic scale, if problems of orthology determination and potential sequencing errors can be overcome. In

  9. Partitioning Kripke frames of finite height

    NASA Astrophysics Data System (ADS)

    Kudinov, A. V.; Shapirovsky, I. B.

    2017-06-01

    In this paper we prove the finite model property and decidability of a family of modal logics. A binary relation R is said to be pretransitive if R^*=\\bigcupi≤slant m R^i for some m≥slant 0, where R^* is the transitive reflexive closure of R. By the height of a frame (W,R) we mean the height of the preorder (W,R^*). We construct special partitions (filtrations) of pretransitive frames of finite height, which implies the finite model property and decidability of their modal logics.

  10. Spatially-partitioned many-body vortices

    NASA Astrophysics Data System (ADS)

    Klaiman, S.; Alon, O. E.

    2016-02-01

    A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.

  11. The minimal length and quantum partition functions

    NASA Astrophysics Data System (ADS)

    Abbasiyan-Motlaq, M.; Pedram, P.

    2014-08-01

    We study the thermodynamics of various physical systems in the framework of the generalized uncertainty principle that implies a minimal length uncertainty proportional to the Planck length. We present a general scheme to analytically calculate the quantum partition function of the physical systems to first order of the deformation parameter based on the behavior of the modified energy spectrum and compare our results with the classical approach. Also, we find the modified internal energy and heat capacity of the systems for the anti-Snyder framework.

  12. Partitioning technique for discrete quantum systems

    SciTech Connect

    Jin, L.; Song, Z.

    2011-06-15

    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.

  13. Activation status coupled transient S-acylation determines membrane partitioning of a plant Rho-related GTPase.

    PubMed

    Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim; Yalovsky, Shaul

    2017-09-11

    ROPs or RACs are plant Rho-related GTPases implicated in regulation of multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relations between ROP activation status and their membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6:GFP:AtROP6 fusion protein, were partitioned between Triton X-100 soluble and insoluble membranes. In contrast, the His6:GFP:Atrop6(CA) activated mutant accumulated exclusively in detergent resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild type and constitutively active AtROP6 were purified from Arabidopsis plants and in turn their lipids were cleaved and analyzed by gas chromatography coupled mass spectrometry. In Triton-soluble membranes, the wild type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent resistant membranes was modified by prenyl and acyl lipids, identified to be palmitic and stearic acids. Consistently, activated His6:GFP:Atrop6(CA)mS(156), in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S-acylated inducing their partitioning into detergent resistant membranes. Copyright © 2017 American Society for Microbiology.

  14. Bacterial plasmid partition machinery: a minimalist approach to survival.

    PubMed

    Schumacher, Maria A

    2012-02-01

    The accurate segregation or partition of replicated DNA is essential for ensuring stable genome transmission. Partition of bacterial plasmids requires only three elements: a centromere-like DNA site and two proteins, a partition NTPase, and a centromere-binding protein (CBP). Because of this simplicity, partition systems have served as tractable model systems to study the fundamental molecular mechanisms required for DNA segregation at an atomic level. In the last few years, great progress has been made in this endeavor. Surprisingly, these studies have revealed that although the basic partition components are functionally conserved between three types of plasmid partition systems, these systems employ distinct mechanisms of DNA segregation. This review summarizes the molecular insights into plasmid segregation that have been achieved through these recent structural studies.

  15. A Robustness Testing Campaign for IMA-SP Partitioning Kernels

    NASA Astrophysics Data System (ADS)

    Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David

    2015-09-01

    With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.

  16. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  17. WEALTH INEQUALITY AND ACCUMULATION.

    PubMed

    Killewald, Alexandra; Pfeffer, Fabian T; Schachner, Jared N

    2017-07-01

    Research on wealth inequality and accumulation and the data upon which it relies have expanded substantially in the twenty-first century. While the field has experienced rapid growth, conceptual and methodological challenges remain. We begin by discussing two major unresolved methodological concerns facing wealth research: how to address challenges to causal inference posed by wealth's cumulative nature and how to operationalize net worth, given its highly skewed nature. To underscore the need for continued empirical attention to net worth, we review trends in wealth levels and inequality and evaluate wealth's distinctiveness as an indicator of social stratification. Next, we provide an overview of data sources available for wealth research. We then review recent empirical evidence on the effects of wealth on other social outcomes, as well as research on the determinants of wealth. We close with a list of promising avenues for future research on wealth, its causes, and its consequences.

  18. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  19. Alterations in internal partitioning of carbon in soybean plants in response to nitrogen stress

    NASA Technical Reports Server (NTRS)

    Rufty, T. W. Jr; Raper, C. D. Jr; Huber, S. C.

    1984-01-01

    Alterations in internal partitioning of carbon were evaluated in plants exposed to limited nitrogen supply. Vegetative, nonnodulated soybean plants (Glycine max (L.) Merrill, 'Ransom') were grown for 21 days with 1.0 mM NO3- and then exposed to solutions containing 1.0, 0.1, or 0.0 mM NO3- for a 25-day treatment period. In nitrogen-limited plants, there were decreases in emergence of new leaves and in the expansion rate and final area at full expansion of individual leaves. As indicated by alterations in accumulation of dry weight, a larger proportion of available carbon in the plant was partitioned to the roots with decreased availability of nitrogen. Partitioning of reduced nitrogen to the root also was increased and, in plants devoid of an external supply, considerable redistribution of reduced nitrogen from leaves to the root occurred. The general decrease in growth potential and sink strength for nutrients in leaves of nitrogen-limited plants suggested that factors other than simply availability of nitrogen likely were involved in the restriction of growth in the leaf canopy and the associated increase in carbon allocation to the roots.

  20. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-01

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.