Ward W. Carson; Stephen E. Reutebuch
1997-01-01
A procedure for performing a rigorous test of elevational accuracy of DEMs using independent ground coordinate data digitized photogrammetrically from aerial photography is presented. The accuracy of a sample set of 23 DEMs covering National Forests in Oregon and Washington was evaluated. Accuracy varied considerably between eastern and western parts of Oregon and...
Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland
NASA Astrophysics Data System (ADS)
Woroszkiewicz, Małgorzata; Ewiak, Ireneusz; Lulkowska, Paulina
2017-06-01
The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission launched in 2010 is another programme - after the Shuttle Radar Topography Mission (SRTM) in 2000 - that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project "Accuracy assessment of a Digital Elevation Model based on TanDEM-X data" for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.
NASA Astrophysics Data System (ADS)
Hudec, P.
2011-12-01
A digital elevation model (DEM) is an important part of many geoinformatic applications. For the creation of DEM, spatial data collected by geodetic measurements in the field, photogrammetric processing of aerial survey photographs, laser scanning and secondary sources (analogue maps) are used. It is very important from a user's point of view to know the vertical accuracy of a DEM. The article describes the verification of the vertical accuracy of a DEM for the region of Medzibodrožie, which was created using digital photogrammetry for the purposes of water resources management and modeling and resolving flood cases based on geodetic measurements in the field.
A New Era in Geodesy and Cartography: Implications for Landing Site Operations
NASA Technical Reports Server (NTRS)
Duxbury, T. C.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.
Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...
DOT National Transportation Integrated Search
2011-05-01
This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...
Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Kenward, T.; Lettenmaier, D. P.
1997-01-01
The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.
Open-Source Digital Elevation Model (DEMs) Evaluation with GPS and LiDAR Data
NASA Astrophysics Data System (ADS)
Khalid, N. F.; Din, A. H. M.; Omar, K. M.; Khanan, M. F. A.; Omar, A. H.; Hamid, A. I. A.; Pa'suya, M. F.
2016-09-01
Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available Digital Elevation Model (DEM) datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS) observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR) dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.
Scoping of Flood Hazard Mapping Needs for Belknap County, New Hampshire
2006-01-01
DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM...Agriculture Imag- ery Program (NAIP) color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data...found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map accuracy. NH GRANIT is
NASA Astrophysics Data System (ADS)
Howat, I.; Noh, M. J.; Porter, C. C.; Smith, B. E.; Morin, P. J.
2017-12-01
We are creating the Reference Elevation Model of Antarctica (REMA), a continuous, high resolution (2-8 m), high precision (accuracy better than 1 m) reference surface for a wide range of glaciological and geodetic applications. REMA will be constructed from stereo-photogrammetric Digital Surface Models (DSM) extracted from pairs of submeter resolution DigitalGlobe satellite imagery and vertically registred to precise elevations from near-coincident airborne LiDAR, ground-based GPS surveys and Cryosat-2 radar altimetry. Both a seamless mosaic and individual, time-stamped DSM strips, collected primarily between 2012 and 2016, will be distributed to enable change measurement. These data will be used for mapping bed topography from ice thickness, measuring ice thickness changes, constraining ice flow and geodynamic models, mapping glacial geomorphology, terrain corrections and filtering of remote sensing observations, and many other science tasks. Is will also be critical for mapping ice traverse routes, landing sites and other field logistics planning. REMA will also provide a critical elevation benchmark for future satellite altimetry missions including ICESat-2. Here we report on REMA production progress, initial accuracy assessment and data availability.
ICESat Lidar and Global Digital Elevation Models: Application to DESDynI
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Suchdeo, Vijay P.
2010-01-01
Geodetic control is extremely important in the production and quality control of topographic data sets, enabling elevation results to be referenced to an absolute vertical datum. Global topographic data with improved geodetic accuracy achieved using global Ground Control Point (GCP) databases enable more accurate characterization of land topography and its change related to solid Earth processes, natural hazards and climate change. The multiple-beam lidar instrument that will be part of the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission will provide a comprehensive, global data set that can be used for geodetic control purposes. Here we illustrate that potential using data acquired by NASA's Ice, Cloud and land Elevation Satellite (ICEsat) that has acquired single-beam, globally distributed laser altimeter profiles (+/-86deg) since February of 2003 [1, 2]. The profiles provide a consistently referenced elevation data set with unprecedented accuracy and quantified measurement errors that can be used to generate GCPs with sub-decimeter vertical accuracy and better than 10 m horizontal accuracy. Like the planned capability for DESDynI, ICESat records a waveform that is the elevation distribution of energy reflected within the laser footprint from vegetation, where present, and the ground where illuminated through gaps in any vegetation cover [3]. The waveform enables assessment of Digital Elevation Models (DEMs) with respect to the highest, centroid, and lowest elevations observed by ICESat and in some cases with respect to the ground identified beneath vegetation cover. Using the ICESat altimetry data we are developing a comprehensive database of consistent, global, geodetic ground control that will enhance the quality of a variety of regional to global DEMs. Here we illustrate the accuracy assessment of the Shuttle Radar Topography Mission (SRTM) DEM produced for Australia, documenting spatially varying elevation biases of several meters in magnitude.
NASA Astrophysics Data System (ADS)
Hassan, Mahmoud A.
2004-02-01
Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.
NASA Astrophysics Data System (ADS)
Chavis, Christopher
Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.
The National Map seamless digital elevation model specifications
Archuleta, Christy-Ann M.; Constance, Eric W.; Arundel, Samantha T.; Lowe, Amanda J.; Mantey, Kimberly S.; Phillips, Lori A.
2017-08-02
This specification documents the requirements and standards used to produce the seamless elevation layers for The National Map of the United States. Seamless elevation data are available for the conterminous United States, Hawaii, Alaska, and the U.S. territories, in three different resolutions—1/3-arc-second, 1-arc-second, and 2-arc-second. These specifications include requirements and standards information about source data requirements, spatial reference system, distribution tiling schemes, horizontal resolution, vertical accuracy, digital elevation model surface treatment, georeferencing, data source and tile dates, distribution and supporting file formats, void areas, metadata, spatial metadata, and quality assurance and control.
New land surface digital elevation model covers the Earth
Gesch, Dean B.; Verdin, Kristine L.; Greenlee, Susan K.
1999-01-01
Land surface elevation around the world is reaching new heights—as far as its description and measurement goes. A new global digital elevation model (DEM) is being cited as a significant improvement in the quality of topographic data available for Earth science studies.Land surface elevation is one of the Earth's most fundamental geophysical properties, but the accuracy and detail with which it has been measured and described globally have been insufficient for many large-area studies. The new model, developed at the U.S. Geological Survey's (USGS) EROS Data Center (EDC), has changed all that.
Worlddem - a Novel Global Foundation Layer
NASA Astrophysics Data System (ADS)
Riegler, G.; Hennig, S. D.; Weber, M.
2015-03-01
Airbus Defence and Space's WorldDEM™ provides a global Digital Elevation Model of unprecedented quality, accuracy, and coverage. The product will feature a vertical accuracy of 2m (relative) and better than 6m (absolute) in a 12m x 12m raster. The accuracy will surpass that of any global satellite-based elevation model available. WorldDEM is a game-changing disruptive technology and will define a new standard in global elevation models. The German radar satellites TerraSAR-X and TanDEM-X form a high-precision radar interferometer in space and acquire the data basis for the WorldDEM. This mission is performed jointly with the German Aerospace Center (DLR). Airbus DS refines the Digital Surface Model (e.g. editing of acquisition, processing artefacts and water surfaces) or generates a Digital Terrain Model. Three product levels are offered: WorldDEMcore (output of the processing, no editing is applied), WorldDEM™ (guarantees a void-free terrain description and hydrological consistency) and WorldDEM DTM (represents bare Earth elevation). Precise elevation data is the initial foundation of any accurate geospatial product, particularly when the integration of multi-source imagery and data is performed based upon it. Fused data provides for improved reliability, increased confidence and reduced ambiguity. This paper will present the current status of product development activities including methodologies and tool to generate these, like terrain and water bodies editing and DTM generation. In addition, the studies on verification & validation of the WorldDEM products will be presented.
DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.
2017-01-01
For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.
Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area
NASA Astrophysics Data System (ADS)
Zainol Abidin, Ku Hasna Zainurin Ku; Razi, Mohd Adib Mohammad; Bukari, Saifullizan Mohd
2018-04-01
Flood is one type of natural disaster that occurs almost every year in Malaysia. Commonly the lowland areas are the worst affected areas. This kind of disaster is controllable by using an accurate data for proposing any kinds of solutions. Elevation data is one of the data used to produce solutions for flooding. Currently, the research about the application of Digital Elevation Model (DEM) in hydrology was increased where this kind of model will identify the elevation for required areas. University of Tun Hussein Onn Malaysia is one of the lowland areas which facing flood problems on 2006. Therefore, this area was chosen in order to produce DEM which focussed on University Health Centre (PKU) and drainage area around Civil and Environment Faculty (FKAAS). Unmanned Aerial Vehicle used to collect aerial photos data then undergoes a process of generating DEM according to three types of accuracy and quality from Agisoft PhotoScan software. The higher the level of accuracy and quality of DEM produced, the longer time taken to generate a DEM. The reading of the errors created while producing the DEM shows almost 0.01 different. Therefore, it has been identified there are some important parameters which influenced the accuracy of DEM.
NASA Technical Reports Server (NTRS)
Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
Barton, Jonathan S.; Hall, Dorothy K.; Sigurðsson, Oddur; Williams, Richard S.; Smith, Laurence C.; Garvin, James B.; Taylor, Susan; Hardy, Janet
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
Digital terrain tapes: user guide
,
1980-01-01
DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.
Quality assessment of Digital Elevation Model (DEM) in view of the Altiplano hydrological modeling
NASA Astrophysics Data System (ADS)
Satgé, F.; Arsen, A.; Bonnet, M.; Timouk, F.; Calmant, S.; Pilco, R.; Molina, J.; Lavado, W.; Crétaux, J.; HASM
2013-05-01
Topography is crucial data input for hydrological modeling but in many regions of the world, the only way to characterize topography is the use of satellite-based Digital Elevation Models (DEM). In some regions, the quality of these DEMs remains poor and induces modeling errors that may or not be compensated by model parameters tuning. In such regions, the evaluation of these data uncertainties is an important step in the modeling procedure. In this study, which focuses on the Altiplano region, we present the evaluation of the two freely available DEM. The shuttle radar topographic mission (SRTM), a product of the National Aeronautics and Space Administration (NASA) and the Advanced Space Born Thermal Emission and Reflection Global Digital Elevation Map (ASTER GDEM), data provided by the Ministry of Economy, Trade and Industry of Japan (MESI) in collaboration with the NASA, are widely used. While the first represents a resolution of 3 arc seconds (90m) the latter is 1 arc second (30m). In order to select the most reliable DEM, we compared the DEM elevation with high qualities control points elevation. Because of its large spatial coverture (track spaced of 30 km with a measure of each 172 m) and its high vertical accuracy which is less than 15 cm in good weather conditions, the Geoscience Laser Altimeter System (GLAS) on board on the Ice, Cloud and Land elevation Satellite of NASA (ICESat) represent the better solution to establish a high quality elevation database. After a quality check, more than 150 000 ICESat/GLAS measurements are suitable in terms of accuracy for the Altiplano watershed. This data base has been used to evaluate the vertical accuracy for each DEM. Regarding to the full spatial coverture; the comparison has been done for both, all kind of land coverture, range altitude and mean slope.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-05-01
Digital elevation model (DEM) is indispensable for analysis such as topographic feature extraction, ice sheet melting, slope stability analysis, landscape analysis and so on. Such analysis requires a highly accurate DEM. Available DEMs of Antarctic region compiled by using radar altimetry and the Antarctic digital database indicate elevation variations of up to hundreds of meters, which necessitates the generation of local improved DEM. An improved DEM of the Schirmacher Oasis, East Antarctica has been generated by synergistically fusing satellite-derived laser altimetry data from Geoscience Laser Altimetry System (GLAS), Radarsat Antarctic Mapping Project (RAMP) elevation data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data (GDEM). This is a characteristic attempt to generate a DEM of any part of Antarctica by fusing multiple elevation datasets, which is essential to model the ice elevation change and address the ice mass balance. We analyzed a suite of interpolation techniques for constructing a DEM from GLAS, RAMP and ASTER DEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improve the elevation accuracy of DEM from synergistically fused RAMP, GLAS and ASTER point elevation datasets. The DEM presented in this work has a vertical accuracy (≈ 23 m) better than RAMP DEM (≈ 57 m) and ASTER DEM (≈ 64 m) individually. The RAMP DEM and ASTER DEM elevations were corrected using differential GPS elevations as ground reference data, and the accuracy obtained after fusing multitemporal datasets is found to be improved than that of existing DEMs constructed by using RAMP or ASTER alone. This is our second attempt of fusing multitemporal, multisensory and multisource elevation data to generate a DEM of Antarctica, in order to address the ice elevation change and address the ice mass balance. Our approach focuses on the strengths of each elevation data source to produce an accurate elevation model.
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos G.
2017-09-01
A global digital surface model dataset named ALOS Global Digital Surface Model (AW3D30) with a horizontal resolution of approx. 30-meter mesh (1 arcsec) has been released by the Japan Aerospace Exploration Agency (JAXA). The dataset has been compiled with images acquired by the Advanced Land Observing Satellite "DAICHI" (ALOS) and it is published based on the DSM dataset (5-meter mesh version) of the "World 3D Topographic Data", which is the most precise global-scale elevation data at this time, and its elevation precision is also at a world-leading level as a 30-meter mesh version. In this study the accuracy of ALOS AW3D30 was examined. For an area with complex geomorphologic characteristics DSM from ALOS stereo pairs were created with classical photogrammetric techniques. Those DSMs were compared with the ALOS AW3D30. Points of certified elevation collected with DGPS have been used to estimate the accuracy of the DSM. The elevation difference between the two DSMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.
Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.
2001-01-01
A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between cross sections, and can generate working maps across a broad range of scales, for any selected area, and overlayed with easily updated cultural features. Local governments are aggressively collecting very-high-accuracy elevation data for numerous reasons; this not only lowers the cost and increases accuracy of flood maps, but also inherently boosts the level of community involvement in the mapping process. These elevation data are also ideal for hydraulic modeling, should an existing model be judged inadequate.
Geometric correction and digital elevation extraction using multiple MTI datasets
Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.
2007-01-01
Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.
NASA Astrophysics Data System (ADS)
Mouratidis, Antonios
2013-04-01
Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further increase of elevation accuracy in DEMs will have little impact on geomorphological studies. After shortly reviewing the evolution of satellite-based global DEMs, the purpose of this paper is to address their current limitations and challenges from the perspective of a geomorphologist. Subsequently, the implications for geomorphological studies are discussed, with respect to the expected near-future advances in the field, such as the TanDEM-X Global Digital Elevation Model ("WorldDEM", 2014), as well as spaceborne LIDAR (Light Detection and Ranging) approaches (e.g. Lidar Surface Topography/LIST mission, 2016-2020).
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.
2016-01-01
Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.
NASA Astrophysics Data System (ADS)
Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.
2018-04-01
This study is about systematic approach to photogrammetric survey that is applicable in the extraction of elevation data for geophysical surveys in hilly terrains using Unmanned Aerial Vehicles (UAVs). The outcome will be to acquire high-quality geophysical data from areas where elevations vary by locating the best survey lines. The study area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. Seismic refraction surveys were carried out for the modelling of the subsurface for detailed site investigations. Study were carried out to identify the accuracy of the digital elevation model (DEM) produced from an UAV. At 100 m altitude (flying height), over 135 overlapping images were acquired using a DJI Phantom 3 quadcopter. All acquired images were processed for automatic 3D photo-reconstruction using Agisoft PhotoScan digital photogrammetric software, which was applied to all photogrammetric stages. The products generated included a 3D model, dense point cloud, mesh surface, digital orthophoto, and DEM. In validating the accuracy of the produced DEM, the coordinates of the selected ground control point (GCP) of the survey line in the imaging area were extracted from the generated DEM with the aid of Global Mapper software. These coordinates were compared with the GCPs obtained using a real-time kinematic global positioning system. The maximum percentage of difference between GCP’s and photogrammetry survey is 13.3 %. UAVs are suitable for acquiring elevation data for geophysical surveys which can save time and cost.
NASA Astrophysics Data System (ADS)
Cooper, H.; Zhang, C.; Sirianni, M.
2016-12-01
South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.
NASA Astrophysics Data System (ADS)
Arvesen, J. C.; Dotson, R. C.
2014-12-01
The DMS (Digital Mapping System) has been a sensor component of all DC-8 and P-3 IceBridge flights since 2009 and has acquired over 3 million JPEG images over Arctic and Antarctic land and sea ice. The DMS imagery is primarily used for identifying and locating open leads for LiDAR sea-ice freeboard measurements and documenting snow and ice surface conditions. The DMS is a COTS Canon SLR camera utilizing a 28mm focal length lens, resulting in a 10cm GSD and swath of ~400 meters from a nominal flight altitude of 500 meters. Exterior orientation is provided by an Applanix IMU/GPS which records a TTL pulse coincident with image acquisition. Notable for virtually all IceBridge flights is that parallel grids are not flown and thus there is no ability to photogrammetrically tie any imagery to adjacent flight lines. Approximately 800,000 Level-3 DMS Surface Model data products have been delivered to NSIDC, each consisting of a Digital Elevation Model (GeoTIFF DEM) and a co-registered Visible Overlay (GeoJPEG). Absolute elevation accuracy for each individual Elevation Model is adjusted to concurrent Airborne Topographic Mapper (ATM) Lidar data, resulting in higher elevation accuracy than can be achieved by photogrammetry alone. The adjustment methodology forces a zero mean difference to the corresponding ATM point cloud integrated over each DMS frame. Statistics are calculated for each DMS Elevation Model frame and show RMS differences are within +/- 10 cm with respect to the ATM point cloud. The DMS Surface Model possesses similar elevation accuracy to the ATM point cloud, but with the following advantages: · Higher and uniform spatial resolution: 40 cm GSD · 45% wider swath: 435 meters vs. 300 meters at 500 meter flight altitude · Visible RGB co-registered overlay at 10 cm GSD · Enhanced visualization through 3-dimensional virtual reality (i.e. video fly-through) Examples will be presented of the utility of these advantages and a novel use of a cell phone camera for aerial photogrammetry will also be presented.
Accuracy of a high-resolution lidar terrain model under a conifer forest canopy
S.E. Reutebuch; R.J. McGaughey; H.-E. Andersen; W.W. Carson
2003-01-01
Airborne laser scanning systems can provide terrain elevation data for open areas with a vertical accuracy of 15 cm. In this study, a high-resolution digital terrain model (DTM) was produced from high-density lidar data. Vegetation in the 500-ha mountainous study area varied from bare ground to dense 70-year-old conifer forest. Conventional ground survey methods were...
An evaluation of onshore digital elevation models for tsunami inundation modelling
NASA Astrophysics Data System (ADS)
Griffin, J.; Latief, H.; Kongko, W.; Harig, S.; Horspool, N.; Hanung, R.; Rojali, A.; Maher, N.; Fountain, L.; Fuchs, A.; Hossen, J.; Upi, S.; Dewanto, S. E.; Cummins, P. R.
2012-12-01
Tsunami inundation models provide fundamental information about coastal areas that may be inundated in the event of a tsunami along with additional parameters such as flow depth and velocity. This can inform disaster management activities including evacuation planning, impact and risk assessment and coastal engineering. A fundamental input to tsunami inundation models is adigital elevation model (DEM). Onshore DEMs vary widely in resolution, accuracy, availability and cost. A proper assessment of how the accuracy and resolution of DEMs translates into uncertainties in modelled inundation is needed to ensure results are appropriately interpreted and used. This assessment can in turn informdata acquisition strategies depending on the purpose of the inundation model. For example, lower accuracy elevation data may give inundation results that are sufficiently accurate to plan a community's evacuation route but not sufficient to inform engineering of a vertical evacuation shelters. A sensitivity study is undertaken to assess the utility of different available onshore digital elevation models for tsunami inundation modelling. We compare airborne interferometric synthetic aperture radar (IFSAR), ASTER and SRTM against high resolution (<1 m horizontal resolution, < 0.15 m vertical accuracy) LiDAR or stereo-camera data in three Indonesian locations with different coastal morphologies (Padang, West Sumatra; Palu, Central Sulawesi; and Maumere, Flores), using three different computational codes (ANUGA, TUNAMI-N3 and TsunAWI). Tsunami inundation extents modelled with IFSAR are comparable with those modelled with the high resolution datasets and with historical tsunami run-up data. Large vertical errors (> 10 m) and poor resolution of the coastline in the ASTER and SRTM elevation models cause modelled inundation to be much less compared with models using better data and with observations. Therefore we recommend that ASTER and SRTM should not be used for modelling tsunami inundation in order to determine tsunami extent or any other measure of onshore tsunami hazard. We suggest that for certain disaster management applications where the important factor is the extent of inundation, such as evacuation planning, airborne IFSAR provides a good compromise between cost and accuracy; however the representation of flow parameters such as depth and velocity is not sufficient to inform detailed engineering of structures. Differences in modelled inundation extent between digital terrain models (DTM) and digital surface models (DSM) for LiDAR, high resolution stereo-camera and airborne IFSAR data are greater than differences between the data types. The presence of trees and buildings as solid elevation in the DSM leads to underestimated inundation extents compared with observations, while removal of these features in the DTM causes more extensive inundation. Further work is needed to resolve whether DTM or DSM should be used and, in particular for DTM, how and at what spatial scale roughness should be parameterized to appropriately account for the presence of buildings and vegetation. We also test model mesh resolutions up to 0.8 m but find that there are only negligible changes in inundation extent between 0.8 and 25 m mesh resolution, even using the highest resolution elevation data.
Analysis of ArcticDEM orthorectification for polar navigational traverses
NASA Astrophysics Data System (ADS)
Menio, E. C.; Deeb, E. J.; Weale, J.; Courville, Z.; Tracy, B.; Cloutier, M. D.; Cothren, J. D.; Liu, J.
2017-12-01
The availability and accessibility of high-resolution satellite imagery allows operational support teams to visually assess physical risks along traverse routes before and during the field season. In support of operations along the Greenland Inland Traverse (GrIT), DigitalGlobe's WorldView 0.5m resolution panchromatic imagery is analyzed to identify and digitize crevasse features along the route from Thule Air Force Base to Summit Station, Greenland. In the spring of 2016, field teams reported up to 150 meters of offset between the location of crevasse features on the ground and the location of the same feature on the imagery provided. Investigation into this issue identified the need to orthorectify imagery—use digital elevation models (DEMs) to correct viewing geometry distortions—to improve navigational accuracy in the field. It was previously thought that orthorectification was not necessary for applications in relatively flat terrain such as ice sheets. However, the surface elevations on the margins of the Greenland Ice Sheet vary enough to cause distortions in imagery, if taken obliquely. As is standard for requests, the Polar Geospatial Center (PGC) provides orthorectified imagery using the MEaSUREs Greenland Ice Mapping Project (GIMP) 30m digital elevation model. Current, higher-resolution elevation datasets, such as the ArcticDEM (2-5m resolution) and WorldView stereopair DEMs (2-3m resolution), are available for use in orthorectification. This study examines three heavily crevassed areas along the GrIT traverse, as identified in 2015 and 2016 imagery. We extracted elevation profiles along the GrIT route from each of the three DEMs: GIMP, ArcticDEM, and WorldView stereopair mosaic. Results show the courser GIMP data deviating significantly from the ArcticDEM and WorldView data, at points by up to 80m, which is seen as offset of features in plan view. In-situ Ground Penetrating Radar (GPR) surveys of crevasse crossings allow for evaluation of geopositional accuracy of each resulting orthorectified photo and a quantitative analysis of plan view offset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less
Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data
NASA Technical Reports Server (NTRS)
Bryant, Scott
2009-01-01
A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.
NASA Astrophysics Data System (ADS)
Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.
2016-12-01
Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.
Christiaens, Véronique; De Bruyn, Hugo; Thevissen, Eric; Koole, Sebastiaan; Dierens, Melissa; Cosyn, Jan
2018-01-01
The accuracy of analogue and especially digital intra-oral radiography in assessing interdental bone level needs further documentation. The aim of this study was to compare clinical and radiographic bone level assessment to intra-surgical bone level registration (1) and to identify the clinical variables rendering interdental bone level assessment inaccurate (2). The study sample included 49 interdental sites in 17 periodontitis patients. Evaluation methods included vertical relative probing attachment level (RAL-V), analogue and digital intra-oral radiography and bone sounding without and with flap elevation. The latter was considered the true bone level. Five examiners evaluated all radiographs. Significant underestimation of the true bone level was observed for all evaluation methods pointing to 2.7 mm on average for analogue radiography, 2.5 mm for digital radiography, 1.8 mm for RAL-V and 0.6 mm for bone sounding without flap elevation (p < 0.001). Radiographic underestimation of the true bone level was higher in the (pre)molar region (p ≤ 0.047) and increased with defect depth (p < 0.001). Variation between clinicians was huge (range analogue radiography 2.2-3.2 mm; range digital radiography 2.1-3.0 mm). All evaluation methods significantly underestimated the true bone level. Bone sounding was most accurate, whereas intra-oral radiographs were least accurate. Deep periodontal defects in the (pre)molar region were most underrated by intra-oral radiography. Bone sounding had the highest accuracy in assessing interdental bone level.
Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States
Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.
2012-01-01
The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.
NASA Astrophysics Data System (ADS)
Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong
2018-01-01
To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.
Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems
NASA Astrophysics Data System (ADS)
El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.
2012-07-01
Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.
Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data
NASA Astrophysics Data System (ADS)
Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.
2017-05-01
The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.
Processing of 3-Dimensional Flash Lidar Terrain Images Generated From an Airborne Platform
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Pierrottet, Diego; Amzajerdian, Farzin; Busch, George; Vanek, Michael; Reisse, Robert
2009-01-01
Data from the first Flight Test of the NASA Langley Flash Lidar system have been processed. Results of the analyses are presented and discussed. A digital elevation map of the test site is derived from the data, and is compared with the actual topography. The set of algorithms employed, starting from the initial data sorting, and continuing through to the final digital map classification is described. The accuracy, precision, and the spatial and angular resolution of the method are discussed.
NASA Astrophysics Data System (ADS)
Jarihani, B.
2015-12-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that, in the absence of high-precision and high resolution DEM data, ASTER GDEM or SRTM DEM can be used to extract common morphometric relationship which are widely used for hydrological and geomorphological modelling.
Assessing Accuracy in Varying LIDAR Data Point Densities in Digital Elevation Maps
2008-09-01
23 1. MOLA ...pentagon for a circular field-of-view that is centered on nadir (Dubayah 5)........................................23 Figure 13. Using MOLA data...through June of 2000, the MOLA Science Team has produced very high resolution topographic shade maps of Mars. This figure is from 0 to 360 degrees E
Generation and performance assessment of the global TanDEM-X digital elevation model
NASA Astrophysics Data System (ADS)
Rizzoli, Paola; Martone, Michele; Gonzalez, Carolina; Wecklich, Christopher; Borla Tridon, Daniela; Bräutigam, Benjamin; Bachmann, Markus; Schulze, Daniel; Fritz, Thomas; Huber, Martin; Wessel, Birgit; Krieger, Gerhard; Zink, Manfred; Moreira, Alberto
2017-10-01
The primary objective of the TanDEM-X mission is the generation of a global, consistent, and high-resolution digital elevation model (DEM) with unprecedented global accuracy. The goal is achieved by exploiting the interferometric capabilities of the two twin SAR satellites TerraSAR-X and TanDEM-X, which fly in a close orbit formation, acting as an X-band single-pass interferometer. Between December 2010 and early 2015 all land surfaces have been acquired at least twice, difficult terrain up to seven or eight times. The acquisition strategy, data processing, and DEM calibration and mosaicking have been systematically monitored and optimized throughout the entire mission duration, in order to fulfill the specification. The processing of all data has finally been completed in September 2016 and this paper reports on the final performance of the TanDEM-X global DEM and presents the acquisition and processing strategy which allowed to obtain the final DEM quality. The results confirm the outstanding global accuracy of the delivered product, which can be now utilized for both scientific and commercial applications.
Validation Study on Alos Prism Dsm Mosaic and Aster Gdem 2
NASA Astrophysics Data System (ADS)
Tadono, T.; Takaku, J.; Shimada, M.
2012-07-01
This study aims to evaluate height accuracy of two datasets obtained by spaceborne optical instruments of a digital elevation data for a large-scale area. The digital surface model (DSM) was generated by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed 'Daichi'), and the global digital elevation model (DEM) version 2 (GDEM-2) was derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard NASA's TERRA satellite. The test site of this study was the entire country of Bhutan, which is located on the southern slopes of the eastern Himalayas. Bhutan is not a large country, covering about 330 km from east to west, and 170 km from north to south; however, it has large height variation from 200 m to more than 7,000 m. This therefore makes it very interesting for validating digital topographic information in terms of national scale generation as well as wide height range. Regarding the reference data, field surveys were conducted in 2010 and 2011, and collected ground control points by a global positioning system were used for evaluating precise height accuracies in point scale as check points (CPs), with a 3 arc-sec DEM created by the Shuttle Radar Topography Mission (SRTM-3) used to validate the wide region. The results confirmed a root mean square error of 8.1 m for PRISM DSM and 29.4 m for GDEM-2 by CPs.
Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Guo, D.; Cui, T.
2018-05-01
Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.
Chirico, Peter G.
2005-01-01
EXPLANATION The purpose of developing a new 10m resolution digital elevation model (DEM) of the Charleston Region was to more accurately depict geologic structure, surfical geology, and landforms of the Charleston County Region. Previously, many areas northeast and southwest of Charleston were originally mapped with a 20 foot contour interval. As a result, large areas within the National Elevation Dataset (NED) depict flat terraced topography where there was a lack of higher resolution elevation data. To overcome these data voids, the new DEM is supplemented with additional elevation data and break-lines derived from aerial photography and topographic maps. The resultant DEM is stored as a raster grid at uniform 10m horizontal resolution. The elevation model contained in this publication was prodcued utilizing the ANUDEM algorthim. ANUDEM allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the development of the elevation model. A preliminary statistical analysis using over 788 vertical elevation check points, primarily located in the northeastern part of the study area, derived from USGS 7.5 Minute Topographic maps reveals that the final DEM, has a vertical accuracy of ?3.27 meters. A table listing the elevation comparison between the elevation check points and the final DEM is provided.
Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation
NASA Astrophysics Data System (ADS)
Zuo, C.; Xiao, X.; Hou, Q.; Li, B.
2018-05-01
WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.
A new digital elevation model of Antarctica derived from CryoSat-2 altimetry
NASA Astrophysics Data System (ADS)
Slater, Thomas; Shepherd, Andrew; McMillan, Malcolm; Muir, Alan; Gilbert, Lin; Hogg, Anna E.; Konrad, Hannes; Parrinello, Tommaso
2018-05-01
We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m - a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.
Stoker, Jason M.; Tyler, Dean J.; Turnipseed, D. Phil; Van Wilson, K.; Oimoen, Michael J.
2009-01-01
Hurricane Katrina was one of the largest natural disasters in U.S. history. Due to the sheer size of the affected areas, an unprecedented regional analysis at very high resolution and accuracy was needed to properly quantify and understand the effects of the hurricane and the storm tide. Many disparate sources of lidar data were acquired and processed for varying environmental reasons by pre- and post-Katrina projects. The datasets were in several formats and projections and were processed to varying phases of completion, and as a result the task of producing a seamless digital elevation dataset required a high level of coordination, research, and revision. To create a seamless digital elevation dataset, many technical issues had to be resolved before producing the desired 1/9-arc-second (3meter) grid needed as the map base for projecting the Katrina peak storm tide throughout the affected coastal region. This report presents the methodology that was developed to construct seamless digital elevation datasets from multipurpose, multi-use, and disparate lidar datasets, and describes an easily accessible Web application for viewing the maximum storm tide caused by Hurricane Katrina in southeastern Louisiana, Mississippi, and Alabama.
Proposed U.S. Geological Survey standard for digital orthophotos
Hooper, David; Caruso, Vincent
1991-01-01
The U.S. Geological Survey has added the new category of digital orthophotos to the National Digital Cartographic Data Base. This differentially rectified digital image product enables users to take advantage of the properties of current photoimagery as a source of geographic information. The product and accompanying standard were implemented in spring 1991. The digital orthophotos will be quadrangle based and cast on the Universal Transverse Mercator projection and will extend beyond the 3.75-minute or 7.5-minute quadrangle area at least 300 meters to form a rectangle. The overedge may be used for mosaicking with adjacent digital orthophotos. To provide maximum information content and utility to the user, metadata (header) records exist at the beginning of the digital orthophoto file. Header information includes the photographic source type, date, instrumentation used to create the digital orthophoto, and information relating to the DEM that was used in the rectification process. Additional header information is included on transformation constants from the 1927 and 1983 North American Datums to the orthophoto internal file coordinates to enable the user to register overlays on either datum. The quadrangle corners in both datums are also imprinted on the image. Flexibility has been built into the digital orthophoto format for future enhancements, such as the provision to include the corresponding digital elevation model elevations used to rectify the orthophoto. The digital orthophoto conforms to National Map Accuracy Standards and provides valuable mapping data that can be used as a tool for timely revision of standard map products, for land use and land cover studies, and as a digital layer in a geographic information system.
Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington
Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz
2014-01-01
In 2003, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for the Puget Sound region including all of the Poverty Bay 7.5' quadrangle. For a brief description of lidar (LIght Detection And Ranging) and this data acquisition program, see Haugerud and others (2003). This new DEM has a horizontal resolution and accuracy of 6 ft (2 m) and vertical accuracy of approximately 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM have facilitated a new interpretation of the geology, especially the distribution and relative age of some surficial deposits.
NASA Astrophysics Data System (ADS)
Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul
2016-06-01
We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of ˜0.1-0.5 m for overlapping, co-registered DEMs (n = 14, 17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.
Initial Everglades Depth Estimation Network (EDEN) Digital Elevation Model Research and Development
Jones, John W.; Price, Susan D.
2007-01-01
Introduction The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). To produce historic and near-real time maps of water depths, the EDEN requires a system-wide digital elevation model (DEM) of the ground surface. Accurate Everglades wetland ground surface elevation data were non-existent before the U.S. Geological Survey (USGS) undertook the collection of highly accurate surface elevations at the regional scale. These form the foundation for EDEN DEM development. This development process is iterative as additional high accuracy elevation data (HAED) are collected, water surfacing algorithms improve, and additional ground-based ancillary data become available. Models are tested using withheld HAED and independently measured water depth data, and by using DEM data in EDEN adaptive management applications. Here the collection of HAED is briefly described before the approach to DEM development and the current EDEN DEM are detailed. Finally future research directions for continued model development, testing, and refinement are provided.
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline
NASA Technical Reports Server (NTRS)
Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor
2010-01-01
Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.
Digital Elevation Model, 0.25 m, Barrow Environmental Observatory, Alaska, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Wilson; Garrett Altmann
This 0.25m horizontal resolution digital elevation model, DEM, was developed from Airborne Laser Altimetry flown by Aerometric Inc, now known as Quantum Spatial, Inc. on 12 July, 2013. One Mission was flown and the data jointly processed with LANL personnel to produce a 0.25m DEM covering a region approximately 2.8km wide and 12.4km long extending from the coast above North Salt Lagoon to south of Gas Well Road. This DEM encompasses a diverse range of hydrologic, geomorphic, geophysical and biological features typical of the Barrow Peninsula. Vertical accuracy at the 95% confidence interval was computed as 0.143m. The coordinate system,more » datum, and geoid for this DEM are UTM Zone 4N, NAD83 (2011), NAVD88 (GEOID09).« less
Assessing land leveling needs and performance with unmanned aerial system
NASA Astrophysics Data System (ADS)
Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel
2018-01-01
Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.
SSTL UK-DMC SLIM-6 data quality assessment
Chander, G.; Saunier, S.; Choate, M.J.; Scaramuzza, P.L.
2009-01-01
Satellite data from the Surrey Satellite Technology Limited (SSTL) United Kingdom (UK) Disaster Monitoring Constellation (DMC) were assessed for geometric and radiometric quality. The UK-DMC Surrey Linear Imager 6 (SLIM-6) sensor has a 32-m spatial resolution and a ground swath width of 640 km. The UK-DMC SLIM-6 design consists of a three-band imager with green, red, and near-infrared bands that are set to similar bandpass as Landsat bands 2, 3, and 4. The UK-DMC data consisted of imagery registered to Landsat orthorectified imagery produced from the GeoCover program. Relief displacements within the UK-DMC SLIM-6 imagery were accounted for by using global 1-km digital elevation models available through the Global Land One-km Base Elevation (GLOBE) Project. Positional accuracy and relative band-to-band accuracy were measured. Positional accuracy of the UK-DMC SLIM-6 imagery was assessed by measuring the imagery against digital orthophoto quadrangles (DOQs), which are designed to meet national map accuracy standards at 1 : 24 000 scales; this corresponds to a horizontal root-mean-square accuracy of about 6 m. The UK-DMC SLIM-6 images were typically registered to within 1.0-1.5 pixels to the DOQ mosaic images. Several radiometric artifacts like striping, coherent noise, and flat detector were discovered and studied. Indications are that the SSTL UK-DMC SLIM-6 data have few artifacts and calibration challenges, and these can be adjusted or corrected via calibration and processing algorithms. The cross-calibration of the UK-DMC SLIM-6 and Landsat 7 Enhanced Thematic Mapper Plus was performed using image statistics derived from large common areas observed by the two sensors.
Scenario-Based Validation of Moderate Resolution DEMs Freely Available for Complex Himalayan Terrain
NASA Astrophysics Data System (ADS)
Singh, Mritunjay Kumar; Gupta, R. D.; Snehmani; Bhardwaj, Anshuman; Ganju, Ashwagosha
2016-02-01
Accuracy of the Digital Elevation Model (DEM) affects the accuracy of various geoscience and environmental modelling results. This study evaluates accuracies of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM Version-2 (GDEM V2), the Shuttle Radar Topography Mission (SRTM) X-band DEM and the NRSC Cartosat-1 DEM V1 (CartoDEM). A high resolution (1 m) photogrammetric DEM (ADS80 DEM), having a high absolute accuracy [1.60 m linear error at 90 % confidence (LE90)], resampled at 30 m cell size was used as reference. The overall root mean square error (RMSE) in vertical accuracy was 23, 73, and 166 m and the LE90 was 36, 75, and 256 m for ASTER GDEM V2, SRTM X-band DEM and CartoDEM, respectively. A detailed error analysis was performed for individual as well as combinations of different classes of aspect, slope, land-cover and elevation zones for the study area. For the ASTER GDEM V2, forest areas with North facing slopes (0°-5°) in the 4th elevation zone (3773-4369 m) showed minimum LE90 of 0.99 m, and barren with East facing slopes (>60°) falling under the 2nd elevation zone (2581-3177 m) showed maximum LE90 of 166 m. For the SRTM DEM, pixels with South-East facing slopes of 0°-5° in the 4th elevation zone covered with forest showed least LE90 of 0.33 m and maximum LE90 of 521 m was observed in the barren area with North-East facing slope (>60°) in the 4th elevation zone. In case of the CartoDEM, the snow pixels in the 2nd elevation zone with South-East facing slopes of 5°-15° showed least LE90 of 0.71 m and maximum LE90 of 1266 m was observed for the snow pixels in the 3rd elevation zone (3177-3773 m) within the South facing slope of 45°-60°. These results can be highly useful for the researchers using DEM products in various modelling exercises.
Preliminary design study of a high resolution meteor radar
NASA Technical Reports Server (NTRS)
Lee, W.; Geller, M. A.
1973-01-01
A design study for a high resolution meteor radar system is carried out with the objective of measuring upper atmospheric winds and particularly studying short period atmospheric waves in the 80 to 120 km altitude region. The transmitter that is to be used emits a peak power of 4 Mw. The system is designed to measure the wind velocity and height of a meteor trail very accurately. This is achieved using a specially developed digital reduction procedure to determine wind velocity and range together with an interferometer for measuring both the azimuth and elevation angles of the region with a long baseline vernier measurement being used to refine the elevation angle measurement. The resultant accuracies are calculated to be + or - 0.9 m/s for the wind, + or - 230 m for the range and + or - 0.12 deg for the elevation angle, giving a height accuracy of + or - 375 m. The prospects for further development of this system are also discussed.
Analysis of RDSS positioning accuracy based on RNSS wide area differential technique
NASA Astrophysics Data System (ADS)
Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei
2013-10-01
The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.
Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction
NASA Astrophysics Data System (ADS)
Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.
2015-12-01
A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional validation techniques are necessary for state-of-the-art flood inundation models. In addition, the semi-automated, unstructured mesh generation process presented herein increases the overall accuracy of simulated storm surge across the floodplain without reliance on hand digitization or sacrificing computational cost.
Lunar Pole Illumination and Communications Statistics Computed from GSSR Elevation Data
NASA Technical Reports Server (NTRS)
Bryant, Scott
2010-01-01
The Goldstone Solar System RADAR (GSSR) group at JPL produced a Digital Elevation Model (DEM) of the lunar south pole using data obtained in 2006. This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This paper uses that Digital Elevation Model to compute average solar illumination and Earth visibility near the lunar south pole. This data quantifies solar power and Earth communications resources at proposed lunar base locations. The elevation data were converted into local terrain horizon masks, then converted into selenographic latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Proposed lunar south pole base sites were examined in detail, with the best site showing multi-year averages of solar power availability of 92% and Direct-To-Earth (DTE) communication availability of about 50%. Results are compared with a theoretical model, and with actual sun and Earth visibility averaged over the years 2009 to 2028. Results for the lunar North pole were computed using the GSSR DEM of the lunar North pole produced in 1997. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.
J. X. Zhang; J. Q. Wu; K. Chang; W. J. Elliot; S. Dun
2009-01-01
The recent modification of the Water Erosion Prediction Project (WEPP) model has improved its applicability to hydrology and erosion modeling in forest watersheds. To generate reliable topographic and hydrologic inputs for the WEPP model, carefully selecting digital elevation models (DEMs) with appropriate resolution and accuracy is essential because topography is a...
Kyongho Son; Christina Tague; Carolyn Hunsaker
2016-01-01
The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in Californiaâs Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...
Two Preliminary SRTM DEMs Within the Amazon Basin
NASA Astrophysics Data System (ADS)
Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.
2002-12-01
Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.
Chirico, Peter G.; Malpeli, Katherine C.; Trimble, Sarah M.
2012-01-01
This study compares the ASTER Global DEM version 1 (GDEMv1) and version 2 (GDEMv2) for two study sites with distinct terrain and land cover characteristics in western Africa. The effects of land cover, slope, relief, and stack number are evaluated through both absolute and relative DEM statistical comparisons. While GDEMv2 at times performed better than GDEMv1, this improvement was not consistent, revealing the complex nature and interaction of terrain and land cover characteristics, which influences the accuracy of GDEM tiles on local and regional scales.
Increasing the UAV data value by an OBIA methodology
NASA Astrophysics Data System (ADS)
García-Pedrero, Angel; Lillo-Saavedra, Mario; Rodriguez-Esparragon, Dionisio; Rodriguez-Gonzalez, Alejandro; Gonzalo-Martin, Consuelo
2017-10-01
Recently, there has been a noteworthy increment of using images registered by unmanned aerial vehicles (UAV) in different remote sensing applications. Sensors boarded on UAVs has lower operational costs and complexity than other remote sensing platforms, quicker turnaround times as well as higher spatial resolution. Concerning this last aspect, particular attention has to be paid on the limitations of classical algorithms based on pixels when they are applied to high resolution images. The objective of this study is to investigate the capability of an OBIA methodology developed for the automatic generation of a digital terrain model of an agricultural area from Digital Elevation Model (DEM) and multispectral images registered by a Parrot Sequoia multispectral sensor board on a eBee SQ agricultural drone. The proposed methodology uses a superpixel approach for obtaining context and elevation information used for merging superpixels and at the same time eliminating objects such as trees in order to generate a Digital Terrain Model (DTM) of the analyzed area. Obtained results show the potential of the approach, in terms of accuracy, when it is compared with a DTM generated by manually eliminating objects.
Korsgaard, Niels J; Nuth, Christopher; Khan, Shfaqat A; Kjeldsen, Kristian K; Bjørk, Anders A; Schomacker, Anders; Kjær, Kurt H
2016-05-10
Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps.
Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987
NASA Astrophysics Data System (ADS)
Korsgaard, Niels J.; Nuth, Christopher; Khan, Shfaqat A.; Kjeldsen, Kristian K.; Bjørk, Anders A.; Schomacker, Anders; Kjær, Kurt H.
2016-05-01
Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps.
The rapid terrain visualization interferometric synthetic aperture radar sensor
NASA Astrophysics Data System (ADS)
Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.
2003-11-01
The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.
Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun
2016-01-01
Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287
Accuracy Validation of Large-scale Block Adjustment without Control of ZY3 Images over China
NASA Astrophysics Data System (ADS)
Yang, Bo
2016-06-01
Mapping from optical satellite images without ground control is one of the goals of photogrammetry. Using 8802 three linear array stereo images (a total of 26406 images) of ZY3 over China, we propose a large-scale and non-control block adjustment method of optical satellite images based on the RPC model, in which a single image is regarded as an adjustment unit to be organized. To overcome the block distortion caused by unstable adjustment without ground control and the excessive accumulation of errors, we use virtual control points created by the initial RPC model of the images as the weighted observations and add them into the adjustment model to refine the adjustment. We use 8000 uniformly distributed high precision check points to evaluate the geometric accuracy of the DOM (Digital Ortho Model) and DSM (Digital Surface Model) production, for which the standard deviations of plane and elevation are 3.6 m and 4.2 m respectively. The geometric accuracy is consistent across the whole block and the mosaic accuracy of neighboring DOM is within a pixel, thus, the seamless mosaic could take place. This method achieves the goal of an accuracy of mapping without ground control better than 5 m for the whole China from ZY3 satellite images.
Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.
2011-01-01
This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).
Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington
Tabor, Rowland W.; Booth, Derek B.
2017-11-06
This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003).
Object-oriented classification of drumlins from digital elevation models
NASA Astrophysics Data System (ADS)
Saha, Kakoli
Drumlins are common elements of glaciated landscapes which are easily identified by their distinct morphometric characteristics including shape, length/width ratio, elongation ratio, and uniform direction. To date, most researchers have mapped drumlins by tracing contours on maps, or through on-screen digitization directly on top of hillshaded digital elevation models (DEMs). This paper seeks to utilize the unique morphometric characteristics of drumlins and investigates automated extraction of the landforms as objects from DEMs by Definiens Developer software (V.7), using the 30 m United States Geological Survey National Elevation Dataset DEM as input. The Chautauqua drumlin field in Pennsylvania and upstate New York, USA was chosen as a study area. As the study area is huge (approximately covers 2500 sq.km. of area), small test areas were selected for initial testing of the method. Individual polygons representing the drumlins were extracted from the elevation data set by automated recognition, using Definiens' Multiresolution Segmentation tool, followed by rule-based classification. Subsequently parameters such as length, width and length-width ratio, perimeter and area were measured automatically. To test the accuracy of the method, a second base map was produced by manual on-screen digitization of drumlins from topographic maps and the same morphometric parameters were extracted from the mapped landforms using Definiens Developer. Statistical comparison showed a high agreement between the two methods confirming that object-oriented classification for extraction of drumlins can be used for mapping these landforms. The proposed method represents an attempt to solve the problem by providing a generalized rule-set for mass extraction of drumlins. To check that the automated extraction process was next applied to a larger area. Results showed that the proposed method is as successful for the bigger area as it was for the smaller test areas.
Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin
1998-01-01
This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2009-01-01
The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.
Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data
NASA Astrophysics Data System (ADS)
Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim
2018-05-01
The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.
Topographic correction realization based on the CBERS-02B image
NASA Astrophysics Data System (ADS)
Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua
2011-08-01
The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera
NASA Technical Reports Server (NTRS)
Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.
2015-01-01
We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.
1-Meter Digital Elevation Model specification
Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.
2015-10-21
In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.
Cederstrand, J.R.; Rea, A.H.
1995-01-01
This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.
Which DEM is the best for glaciology? -Evaluation of global-scale DEM products-
NASA Astrophysics Data System (ADS)
Nagai, Hiroto; Tadono, Takeo
2017-04-01
Digital elevation models (DEMs) are fundamental geospatial data to study glacier distribution, changes, dynamics, mass balance and various geomorphological conditions. This study evaluates latest global-scale free DEMs in order to clarify their superiority and inferiority in glaciological uses. Three DEMs are now available; the 1-arcsec. product obtained from the Shuttle Radar Topographic Mission (SRTM1), the second version of Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM2), and the first resampled dataset acquired by the Advanced Land observing Satellite, namely ALOS World 3D-30m (AW3D30). These DEMs have common specifications of global coverage (<60°S/N for SRTM1), freely downloadable via internet, and 1-arcsec. ( 30 m) pixel spacing. We carried out quantitative accuracy evaluation and spatial analysis of missing data (i.e. "void") distribution for these DEMs. Elevation values of the three DEMs are validated at check points (CPs), where elevation was measured by Geospatial Information Authority of Japan, in (A) the Japan Alps (as steep mountains with glaciation), in (B) Mt. Fuji (as monotonous hillslope), and in (C) the Tone river basin (as an flat plain). In all study sites, AW3D30 has the smallest errors against the CP elevation values (A: -6.1±8.6 m, B: +0.1±3.9 m, C: +0.1±2.5 m as the mean value and standard deviation of elevation differences). SRTM1 is secondly accurate (A: -17.8±16.3 m, B: +1.3±6.4 m, C: +0.1±3.1 m,), followed by ASTER GDEM2 (A: -13.9±20.8 m, B: -3.9±10.0 m, C: +4.3±3.8 m,). This accuracy differences among the DEMs are greater in steeper terrains (A>B>C). In the Tone river basin, SRTM1 has equivalent accuracy to AW3D30. High resolution (2.5 m) of the original stereo-pair images for AW3D30 (i.e. ALOS PRISM imagery) contributes for the best absolute accuracy. Glaciers on rather flat terrains are usually distributed in higher latitude (e.g. Antarctica and Greenland), where SRTM1 is unable. Glaciers at mid-to-low latitudes glaciers are usually distributed in high and steep mountains, where SRTM1 has lower accuracy than AW3D30. AW3D30 would contributes as a preferable option for glaciology in a global scale. At the tops of high mountains in the Nepal Himalaya, however, AW3D30 has a large area of data missing due to snow cover. This inferiority should be improved by filling with other datasets in the next version. ASTER GDEM2 has less area of data missing in the Nepal Himalaya, which would contribute for coarse uses such as generation of river basin, brief drawing of a topographic map, etc.
Validation of the Aster Global Digital Elevation Model Version 3 Over the Conterminous United States
NASA Astrophysics Data System (ADS)
Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D.
2016-06-01
The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of -1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from -2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.
Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States
Gesch, Dean B.; Oimoen, Michael J.; Danielson, Jeffrey J.; Meyer, David; Halounova, L; Šafář, V.; Jiang, J.; Olešovská, H.; Dvořáček, P.; Holland, D.; Seredovich, V.A.; Muller, J.P.; Pattabhi Rama Rao, E.; Veenendaal, B.; Mu, L.; Zlatanova, S.; Oberst, J.; Yang, C.P.; Ban, Y.; Stylianidis, S.; Voženílek, V.; Vondráková, A.; Gartner, G.; Remondino, F.; Doytsher, Y.; Percivall, George; Schreier, G.; Dowman, I.; Streilein, A.; Ernst, J.
2016-01-01
The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadjadi, S. Y.; Sadeghian, S.
2013-09-01
One of the most significant tools to study many engineering projects is three-dimensional modelling of the Earth that has many applications in the Geospatial Information System (GIS), e.g. creating Digital Train Modelling (DTM). DTM has numerous applications in the fields of sciences, engineering, design and various project administrations. One of the most significant events in DTM technique is the interpolation of elevation to create a continuous surface. There are several methods for interpolation, which have shown many results due to the environmental conditions and input data. The usual methods of interpolation used in this study along with Genetic Algorithms (GA) have been optimised and consisting of polynomials and the Inverse Distance Weighting (IDW) method. In this paper, the Artificial Intelligent (AI) techniques such as GA and Neural Networks (NN) are used on the samples to optimise the interpolation methods and production of Digital Elevation Model (DEM). The aim of entire interpolation methods is to evaluate the accuracy of interpolation methods. Universal interpolation occurs in the entire neighbouring regions can be suggested for larger regions, which can be divided into smaller regions. The results obtained from applying GA and ANN individually, will be compared with the typical method of interpolation for creation of elevations. The resulting had performed that AI methods have a high potential in the interpolation of elevations. Using artificial networks algorithms for the interpolation and optimisation based on the IDW method with GA could be estimated the high precise elevations.
NASA Astrophysics Data System (ADS)
Kiamehr, Ramin
2016-04-01
One arc-second high resolution version of the SRTM model recently published for the Iran by the US Geological Survey database. Digital Elevation Models (DEM) is widely used in different disciplines and applications by geoscientist. It is an essential data in geoid computation procedure, e.g., to determine the topographic, downward continuation (DWC) and atmospheric corrections. Also, it can be used in road location and design in civil engineering and hydrological analysis. However, a DEM is only a model of the elevation surface and it is subject to errors. The most important parts of errors could be comes from the bias in height datum. On the other hand, the accuracy of DEM is usually published in global sense and it is important to have estimation about the accuracy in the area of interest before using of it. One of the best methods to have a reasonable indication about the accuracy of DEM is obtained from the comparison of their height versus the precise national GPS/levelling data. It can be done by the determination of the Root-Mean-Square (RMS) of fitting between the DEM and leveling heights. The errors in the DEM can be approximated by different kinds of functions in order to fit the DEMs to a set of GPS/levelling data using the least squares adjustment. In the current study, several models ranging from a simple linear regression to seven parameter similarity transformation model are used in fitting procedure. However, the seven parameter model gives the best fitting with minimum standard division in all selected DEMs in the study area. Based on the 35 precise GPS/levelling data we obtain a RMS of 7 parameter fitting for SRTM DEM 5.5 m, The corrective surface model in generated based on the transformation parameters and included to the original SRTM model. The result of fitting in combined model is estimated again by independent GPS/leveling data. The result shows great improvement in absolute accuracy of the model with the standard deviation of 3.4 meter.
NASA Astrophysics Data System (ADS)
Yamazaki, D.; Ikeshima, D.; Neal, J. C.; O'Loughlin, F.; Sampson, C. C.; Kanae, S.; Bates, P. D.
2017-12-01
Digital Elevation Models (DEM) are fundamental data for flood modelling. While precise airborne DEMs are available in developed regions, most parts of the world rely on spaceborne DEMs which include non-negligible height errors. Here we show the most accurate global DEM to date at 90m resolution by eliminating major error components from the SRTM and AW3D DEMs. Using multiple satellite data and multiple filtering techniques, we addressed absolute bias, stripe noise, speckle noise and tree height bias from spaceborne DEMs. After the error removal, significant improvements were found in flat regions where height errors were larger than topography variability, and landscapes features such as river networks and hill-valley structures became clearly represented. We found the topography slope of the previous DEMs was largely distorted in most of world major floodplains (e.g. Ganges, Nile, Niger, Mekong) and swamp forests (e.g. Amazon, Congo, Vasyugan). The developed DEM will largely reduce the uncertainty in both global and regional flood modelling.
Integration of aerial remote sensing imaging data in a 3D-GIS environment
NASA Astrophysics Data System (ADS)
Moeller, Matthias S.
2003-03-01
For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.
NASA Astrophysics Data System (ADS)
Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin
2016-04-01
The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (< 1m pixel resolution, 10 by 10 km). The high-resolution information of this dataset was aggregated to datasets of 5 and 10 m scale. The applied classification methods are the Geomorphons approach, an object-based image approach, the topographical position index and a mainly slope based approach. The accuracy of the classification was checked with a location related image dataset obtained in a field survey (n ~ 150) in September 2015. The accuracy of the DEMs was compared to measured DGPS trenches and map-based elevation data. The overall derived accuracy of the landform classification based on the high-resolution DEM with a resolution of 5 m is approximately 70% and on a 10 m resolution >58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.
Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images
NASA Technical Reports Server (NTRS)
Kim, Taemin; Husmann, Kyle; Moratto, Zachary; Nefian, Ara V.
2011-01-01
A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.
NASA Astrophysics Data System (ADS)
Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.
2009-12-01
The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.
a New High-Resolution Elevation Model of Greenland Derived from Tandem-X
NASA Astrophysics Data System (ADS)
Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S.
2016-06-01
In this paper we present for the first time the new digital elevation model (DEM) for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement) mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR) DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite) elevations as ground control points (GCPs) are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.
Application research for 4D technology in flood forecasting and evaluation
NASA Astrophysics Data System (ADS)
Li, Ziwei; Liu, Yutong; Cao, Hongjie
1998-08-01
In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.
GPS-Based Precision Baseline Reconstruction for the TanDEM-X SAR-Formation
NASA Technical Reports Server (NTRS)
Montenbruck, O.; vanBarneveld, P. W. L.; Yoon, Y.; Visser, P. N. A. M.
2007-01-01
The TanDEM-X formation employs two separate spacecraft to collect interferometric Synthetic Aperture Radar (SAR) measurements over baselines of about 1 km. These will allow the generation ofa global Digital Elevation Model (DEM) with an relative vertical accuracy of 2-4 m and a 10 m ground resolution. As part of the ground processing, the separation of the SAR antennas at the time of each data take must be reconstructed with a 1 mm accuracy using measurements from two geodetic grade GPS receivers. The paper discusses the TanDEM-X mission as well as the methods employed for determining the interferometric baseline with utmost precision. Measurements collected during the close fly-by of the two GRACE satellites serve as a reference case to illustrate the processing concept, expected accuracy and quality control strategies.
Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain
2017-02-01
Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km 2 catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.
Das, Sayantan; Patel, Priyank Pravin; Sengupta, Somasis
2016-01-01
With myriad geospatial datasets now available for terrain information extraction and particularly streamline demarcation, there arises questions regarding the scale, accuracy and sensitivity of the initial dataset from which these aspects are derived, as they influence all other parameters computed subsequently. In this study, digital elevation models (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V2), Shuttle Radar Topography Mission (SRTM V4, C-Band, 3 arc-second), Cartosat -1 (CartoDEM 1.0) and topographical maps (R.F. 1:250,000 and 1:50,000), have been used to individually extract and analyze the relief, surface, size, shape and texture properties of a mountainous drainage basin. Nestled inside a mountainous setting, the basin is a semi-elongated one with high relief ratio (>90), steep slopes (25°-30°) and high drainage density (>3.5 km/sq km), as computed from the different DEMs. The basin terrain and stream network is extracted from each DEM, whose morphometric attributes are compared with the surveyed stream networks present in the topographical maps, with resampling of finer DEM datasets to coarser resolutions, to reduce scale-implications during the delineation process. Ground truth verifications for altitudinal accuracy have also been done by a GPS survey. DEMs derived from the 1:50,000 topographical map and ASTER GDEM V2 data are found to be more accurate and consistent in terms of absolute accuracy, than the other generated or available DEM data products, on basis of the morphometric parameters extracted from each. They also exhibit a certain degree of proximity to the surveyed topographical map.
Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.
NASA Astrophysics Data System (ADS)
Santillan, J. R.; Makinano-Santillan, M.
2016-06-01
The ALOS World 3D - 30 m (AW3D30), ASTER Global DEM Version 2 (GDEM2), and SRTM-30 m are Digital Elevation Models (DEMs) that have been made available to the general public free of charge. An important feature of these DEMs is their unprecedented horizontal resolution of 30-m and almost global coverage. The very recent release of these DEMs, particularly AW3D30 and SRTM- 30 m, calls for opportunities for the conduct of localized assessment of the DEM's quality and accuracy to verify their suitability for a wide range of applications in hydrology, geomorphology, archaelogy, and many others. In this study, we conducted a vertical accuracy assessment of these DEMs by comparing the elevation of 274 control points scattered over various sites in northeastern Mindanao, Philippines. The elevations of these control points (referred to the Mean Sea Level, MSL) were obtained through 3rd order differential levelling using a high precision digital level, and their horizontal positions measured using a global positioning system (GPS) receiver. These control points are representative of five (5) land-cover classes namely brushland (45 points), built-up (32), cultivated areas (97), dense vegetation (74), and grassland (26). Results showed that AW3D30 has the lowest Root Mean Square Error (RMSE) of 5.68 m, followed by SRTM-30 m (RMSE = 8.28 m), and ASTER GDEM2 (RMSE = 11.98 m). While all the three DEMs overestimated the true ground elevations, the mean and standard deviations of the differences in elevations were found to be lower in AW3D30 compared to SRTM-30 m and ASTER GDEM2. The superiority of AW3D30 over the other two DEMS was also found to be consistent even under different landcover types, with AW3D30's RMSEs ranging from 4.29 m (built-up) to 6.75 m (dense vegetation). For SRTM-30 m, the RMSE ranges from 5.91 m (built-up) to 10.42 m (brushland); for ASTER GDEM2, the RMSE ranges from 9.27 m (brushland) to 14.88 m (dense vegetation). The results of the vertical accuracy assessment suggest that the AW3D30 is more accurate than SRTM-30 m and ASTER GDEM2, at least for the areas considered in this study. On the other hand, the tendencies of the three DEMs to overestimate true ground elevation can be considered an important finding that users of the DEMs in the Philippines should be aware of, and must be considered into decisions regarding use of these data products in various applications.
NASA Astrophysics Data System (ADS)
Sturm, M.; Nolan, M.; Larsen, C. F.
2014-12-01
A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.
NASA Astrophysics Data System (ADS)
Anderson, E. R.; Griffin, R.; Irwin, D.
2013-12-01
Heavy rains and steep, volcanic slopes in El Salvador cause numerous landslides every year, posing a persistent threat to the population, economy and environment. Although potential debris inundation hazard zones have been delineated using digital elevation models (DEMs), some disparities exist between the simulated zones and actual affected areas. Moreover, these hazard zones have only been identified for volcanic lahars and not the shallow landslides that occur nearly every year. This is despite the availability of tools to delineate a variety of landslide types (e.g., the USGS-developed LAHARZ software). Limitations in DEM spatial resolution, age of the data, and hydrological preprocessing techniques can contribute to inaccurate hazard zone definitions. This study investigates the impacts of using different elevation models and pit filling techniques in the final debris hazard zone delineations, in an effort to determine which combination of methods most closely agrees with observed landslide events. In particular, a national DEM digitized from topographic sheets from the 1970s and 1980s provide an elevation product at a 10 meter resolution. Both natural and anthropogenic modifications of the terrain limit the accuracy of current landslide hazard assessments derived from this source. Global products from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) offer more recent data but at the cost of spatial resolution. New data derived from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in 2013 provides the opportunity to update hazard zones at a higher spatial resolution (approximately 6 meters). Hydrological filling of sinks or pits for current hazard zone simulation has previously been achieved through ArcInfo spatial analyst. Such hydrological processing typically only fills pits and can lead to drastic modifications of original elevation values. Optimized pit filling techniques use both cut and fill operations to minimize modifications of the original DEM. Satellite image interpretation and field surveying provide the baseline upon which to test the accuracy of each model simulation. By outlining areas that could potentially be inundated by debris flows, these efforts can be used to more accurately identify the places and assets immediately exposed to landslide hazards. We contextualize the results of the previous and ongoing efforts into how they may be incorporated into decision support systems. We also discuss if and how these analyses would have provided additional knowledge in the past, and identify specific recommendations as to how they could contribute to a more robust decision support system in the future.
Digital Elevation Model from Non-Metric Camera in Uas Compared with LIDAR Technology
NASA Astrophysics Data System (ADS)
Dayamit, O. M.; Pedro, M. F.; Ernesto, R. R.; Fernando, B. L.
2015-08-01
Digital Elevation Model (DEM) data as a representation of surface topography is highly demanded for use in spatial analysis and modelling. Aimed to that issue many methods of acquisition data and process it are developed, from traditional surveying until modern technology like LIDAR. On the other hands, in a past four year the development of Unamend Aerial System (UAS) aimed to Geomatic bring us the possibility to acquire data about surface by non-metric digital camera on board in a short time with good quality for some analysis. Data collectors have attracted tremendous attention on UAS due to possibility of the determination of volume changes over time, monitoring of the breakwaters, hydrological modelling including flood simulation, drainage networks, among others whose support in DEM for proper analysis. The DEM quality is considered as a combination of DEM accuracy and DEM suitability so; this paper is aimed to analyse the quality of the DEM from non-metric digital camera on UAS compared with a DEM from LIDAR corresponding to same geographic space covering 4 km2 in Artemisa province, Cuba. This area is in a frame of urban planning whose need to know the topographic characteristics in order to analyse hydrology behaviour and decide the best place for make roads, building and so on. Base on LIDAR technology is still more accurate method, it offer us a pattern for test DEM from non-metric digital camera on UAS, whose are much more flexible and bring a solution for many applications whose needs DEM of detail.
Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data
NASA Astrophysics Data System (ADS)
Makineci, H. B.; Karabörk, H.
2016-06-01
Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.
Optimized Global Digital Elevation Data Records (Invited)
NASA Astrophysics Data System (ADS)
Kobrick, M.; Farr, T.; Crippen, R. E.
2009-12-01
The Shuttle Radar Topography Mission (SRTM) used radar interferometry to map the Earth's topography between ±60° latitude - representing 80% of the land surface. The resulting digital elevation models bettered existing topographic data sets (including restricted military data) in accuracy, areal coverage and uniformity by several orders of magnitude, and the resulting data records have found broad application in most of the geosciences, military operations, even Google Earth. Despite their popularity the SRTM data have several limitations, including lack of coverage in polar regions and occasional small voids, or areas of no data in regions of high slope of low radar backscatter. Fortunately additional data sets have become available that, although lacking SRTM's data quality, are sufficient to mitigate many of these limitations. Primary among these is the Global Digital Elevation Model (GDEM) produced from ASTER stereo pairs. The MEaSUREs program is sponsoring an effort to merge these sets to produce and distribute an improved collection of data records that will optimize the topographic data, as well as make available additional non-topographic data products from the SRTM mission. There are four main areas of effort: (1) A systematic program to combine SRTM elevation data with those from other sensors, principally GDEM but also including SPOT stereo, the USGS’s National Elevation Data Set and others, to fill voids in the DEMs according to a prioritized plan, as well as extend the coverage beyond the current 60° latitude limit. (2) Combine the topographic data records with ICESat laser altimeter topography profiles to produce and distribute data records with enhanced ground control. (3) Document the existing SRTM radar image and ancillary data records, as well as generate image mosaics at multiple scales and distribute them via the world wide web. (4) Generate, document and distribute a standard and representative set of SRTM raw radar echo data, along with the appropriate ancillary tracking and pointing data necessary to process the echoes into DEMS using improved algorithms or
Miliaresis, George C
2008-05-15
The U.S. National Landcover Dataset (NLCD) and the U.S National Elevation Dataset (NED) (bare earth elevations) were used in an attempt to assess to what extent the directional and slope dependency of the Shuttle Radar Topography Mission (SRTM) finished digital elevation model is affected by landcover. Four landcover classes: forest, shrubs, grass and snow cover, were included in the study area (Humboldt Range in NW portion of Nevada, USA). Statistics, rose diagrams, and frequency distributions of the elevation differences (NED-SRTM) per landcover class per geographic direction were used. The decomposition of elevation differences on the basis of aspect and slope terrain classes identifies a) over-estimation of elevation by the SRTM instrument along E, NE and N directions (negative elevation difference that decreases linearly with slope) while b) underestimation is evident towards W, SW and S directions (positive elevation difference increasing with slope). The aspect/slope/landcover elevation differences modelling overcome the systematic errors evident in the SRTM dataset and revealed vegetation height information and the snow penetration capability of the SRTM instrument. The linear regression lines per landcover class might provide means of correcting the systematic error (aspect/slope dependency) evident in SRTM dataset.
Miliaresis, George C.
2008-01-01
The U.S. National Landcover Dataset (NLCD) and the U.S National Elevation Dataset (NED) (bare earth elevations) were used in an attempt to assess to what extent the directional and slope dependency of the Shuttle Radar Topography Mission (SRTM) finished digital elevation model is affected by landcover. Four landcover classes: forest, shrubs, grass and snow cover, were included in the study area (Humboldt Range in NW portion of Nevada, USA). Statistics, rose diagrams, and frequency distributions of the elevation differences (NED-SRTM) per landcover class per geographic direction were used. The decomposition of elevation differences on the basis of aspect and slope terrain classes identifies a) over-estimation of elevation by the SRTM instrument along E, NE and N directions (negative elevation difference that decreases linearly with slope) while b) underestimation is evident towards W, SW and S directions (positive elevation difference increasing with slope). The aspect/slope/landcover elevation differences modelling overcome the systematic errors evident in the SRTM dataset and revealed vegetation height information and the snow penetration capability of the SRTM instrument. The linear regression lines per landcover class might provide means of correcting the systematic error (aspect/slope dependency) evident in SRTM dataset. PMID:27879870
NASA Astrophysics Data System (ADS)
Cline, Julia Elaine
2011-12-01
Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.
Baek, S.; Kwoun, Oh-Ig; Braun, Andreas; Lu, Z.; Shum, C.K.
2005-01-01
We present a digital elevation model (DEM) of King Edward VII Peninsula, Sulzberger Bay, West Antarctica, developed using 12 European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes and 24 Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles. We employ differential interferograms from the ERS tandem mission SAR scenes acquired in the austral fall of 1996, and four selected ICESat laser altimetry profiles acquired in the austral fall of 2004, as ground control points (GCPs) to construct an improved geocentric 60-m resolution DEM over the grounded ice region. We then extend the DEM to include two ice shelves using ICESat profiles via Kriging. Twenty additional ICESat profiles acquired in 2003-2004 are used to assess the accuracy of the DEM. After accounting for radar penetration depth and predicted surface changes, including effects due to ice mass balance, solid Earth tides, and glacial isostatic adjustment, in part to account for the eight-year data acquisition discrepancy, the resulting difference between the DEM and ICESat profiles is -0.57 ?? 5.88 m. After removing the discrepancy between the DEM and ICESat profiles for a final combined DEM using a bicubic spline, the overall difference is 0.05 ?? 1.35 m. ?? 2005 IEEE.
Jones, J.W.; Desmond, G.B.; Henkle, C.; Glover, R.
2012-01-01
Accurate topographic data are critical to restoration science and planning for the Everglades region of South Florida, USA. They are needed to monitor and simulate water level, water depth and hydroperiod and are used in scientific research on hydrologic and biologic processes. Because large wetland environments and data acquisition challenge conventional ground-based and remotely sensed data collection methods, the United States Geological Survey (USGS) adapted a classical data collection instrument to global positioning system (GPS) and geographic information system (GIS) technologies. Data acquired with this instrument were processed using geostatistics to yield sub-water level elevation values with centimetre accuracy (??15 cm). The developed database framework, modelling philosophy and metadata protocol allow for continued, collaborative model revision and expansion, given additional elevation or other ancillary data. ?? 2012 Taylor & Francis.
Small catchments DEM creation using Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Gafurov, A. M.
2018-01-01
Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.
NASA Astrophysics Data System (ADS)
Griesbaum, Luisa; Marx, Sabrina; Höfle, Bernhard
2017-07-01
In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3-D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest as well as an accuracy of 0.13 m ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.
Large-baseline InSAR for precise topographic mapping: a framework for TanDEM-X large-baseline data
NASA Astrophysics Data System (ADS)
Pinheiro, Muriel; Reigber, Andreas; Moreira, Alberto
2017-09-01
The global Digital Elevation Model (DEM) resulting from the TanDEM-X mission provides information about the world topography with outstanding precision. In fact, performance analysis carried out with the already available data have shown that the global product is well within the requirements of 10 m absolute vertical accuracy and 2 m relative vertical accuracy for flat to moderate terrain. The mission's science phase took place from October 2014 to December 2015. During this phase, bistatic acquisitions with across-track separation between the two satellites up to 3.6 km at the equator were commanded. Since the relative vertical accuracy of InSAR derived elevation models is, in principle, inversely proportional to the system baseline, the TanDEM-X science phase opened the doors for the generation of elevation models with improved quality with respect to the standard product. However, the interferometric processing of the large-baseline data is troublesome due to the increased volume decorrelation and very high frequency of the phase variations. Hence, in order to fully profit from the increased baseline, sophisticated algorithms for the interferometric processing, and, in particular, for the phase unwrapping have to be considered. This paper proposes a novel dual-baseline region-growing framework for the phase unwrapping of the large-baseline interferograms. Results from two experiments with data from the TanDEM-X science phase are discussed, corroborating the expected increased level of detail of the large-baseline DEMs.
US National Large-scale City Orthoimage Standard Initiative
Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.
2003-01-01
The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.
NASA Astrophysics Data System (ADS)
Moriya, Gentaro; Chikatsu, Hirofumi
2011-07-01
Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.
Magellan: Radar performance and data products
Pettengill, G.H.; Ford, P.G.; Johnson, W.T.K.; Raney, R.K.; Soderblom, L.A.
1991-01-01
The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter-wavelength radar system shared among three data-taking modes. The syntheticaperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format.
NASA Astrophysics Data System (ADS)
Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.
2018-03-01
Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.
Accuracy and eligibility of CBCT to digitize dental plaster casts.
Becker, Kathrin; Schmücker, Ulf; Schwarz, Frank; Drescher, Dieter
2018-05-01
Software-based dental planning requires digital casts and oftentimes cone-beam computed tomography (CBCT) radiography. However, buying a dedicated model digitizing device can be expensive and might not be required. The present study aimed to assess whether digital models derived from CBCT and models digitized using a dedicated optical device are of comparable accuracy. A total of 20 plaster casts were digitized with eight CBCT and five optical model digitizers. Corresponding models were superimposed using six control points and subsequent iterative closest point matching. Median distances were calculated among all registered models. Data were pooled per scanner and model. Boxplots were generated, and the paired t test, a Friedman test, and a post-hoc Nemenyi test were employed for statistical comparison. Results were found significant at p < 0.05. All CBCT devices allowed the digitization of plaster casts, but failed to reach the accuracy of the dedicated model digitizers (p < 0.001). Median distances between CBCT and optically digitized casts were 0.064 + - 0.005 mm. Qualitative differences among the CBCT systems were detected (χ 2 = 78.07, p < 0.001), and one CBCT providing a special plaster cast digitization mode was found superior to the competitors (p < 0.05). CBCT systems failed to reach the accuracy from optical digitizers, but within the limits of the study, accuracy appeared to be sufficient for digital planning and forensic purposes. Most CBCT systems enabled digitization of plaster casts, and accuracy was found sufficient for digital planning and storage purposes.
NASA Astrophysics Data System (ADS)
Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.
2016-06-01
This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.
Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.
2018-03-30
Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite System real-time kinematic survey points for validation, and 1.066 m for Landsat 8 and 1.112 m for WorldView-3 derived bathymetry using over 16,000 and 9,000 lidar bathymetry points, respectively.
Massad, Ido
2018-01-01
Digital Terrain Models (DTMs) used for the representation of the bare earth are produced from elevation data obtained using high-end mapping platforms and technologies. These require the handling of complex post-processing performed by authoritative and commercial mapping agencies. In this research, we aim to exploit user-generated data to produce DTMs by handling massive volumes of position and elevation data collected using ubiquitous smartphone devices equipped with Assisted-GPS sensors. As massive position and elevation data are collected passively and straightforwardly by pedestrians, cyclists, and drivers, it can be transformed into valuable topographic information. Specifically, in dense and concealed built and vegetated areas, where other technologies fail, handheld devices have an advantage. Still, Assisted-GPS measurements are not as accurate as high-end technologies, requiring pre- and post-processing of observations. We propose the development and implementation of a 2D Kalman filter and smoothing on the acquired crowdsourced observations for topographic representation production. When compared to an authoritative DTM, results obtained are very promising in producing good elevation values. Today, open-source mapping infrastructures, such as OpenStreetMap, rely primarily on the global authoritative SRTM (Shuttle Radar Topography Mission), which shows similar accuracy but inferior resolution when compared to the results obtained in this research. Accordingly, our crowdsourced methodology has the capacity for reliable topographic representation production that is based on ubiquitous volunteered user-generated data. PMID:29562627
Validation of "AW3D" Global Dsm Generated from Alos Prism
NASA Astrophysics Data System (ADS)
Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi
2016-06-01
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).
National aerial photography program as a geographic information system resource
Light, Donald L.
1991-01-01
The National Aerial Photography Program (NAPP) is jointly funded by Federal agencies and States that choose to participate in a 50-50 cost sharing cooperative arrangement. The NAPP is designed to acquire black-and-white (B&W) or color infrared (CIR) photography at a scale of 1:40,000. The status of NAPP flying, now going into the first year of its second 5-year cycle, is reviewed to inform the user community of NAPP's coverage. The resolution, geometric quality and flight parameters are used to estimate the system's cartographic potential to produce orthophotoquads, digital elevation models, topographic maps and digital information to meet national map accuracy standards at 1:12,000 and 1:24,000-scale and serve as a geographic information system resource. Also, a technique is presented to compute the optimum scanning spot size (15 ??m) and storage required for converting the B&W or CIR photography to digital, machine-readable pixel form. The resulting digital NAPP data are suitable for a wide variety of new applications, including use in geographic information systems.
Scoping of Flood Hazard Mapping Needs for Coos County, New Hampshire
2006-01-01
Technical Partner DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle...color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data, E911 data, Digital Elevation...the feature types found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map
Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.
Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo
2015-09-16
A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.
High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California
Coons, Tom; Soulard, Christopher E.; Knowles, Noah
2008-01-01
The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.
Chirico, Peter G.; Tanner, Seth D.
2004-01-01
Explanation The purpose of developing a new 10m resolution DEM of the Shenandoah National Park Region was to more accurately depict geologic structure, surfical geology, and landforms of the Shenandoah National Park Region in preparation for automated landform classification. Previously, only a 30m resolution DEM was available through the National Elevation Dataset (NED). During production of the Shenandoah10m DEM of the Park the Geography Discipline of the USGS completed a revised 10m DEM to be included into the NED. However, different methodologies were used to produce the two similar DEMs. The ANUDEM algorithm was used to develop the Shenadoah DEM data. This algorithm allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the elevation model. A statistical analysis using over 800 National Geodetic Survey (NGS) first and second order vertical control points reveals that the Shenandoah10m DEM, produced as a part of the Appalachian Blue Ridge Landscape project, has a vertical accuracy of ?4.87 meters. The metadata for the 10m NED data reports a vertical accuracy of ?7m. A table listing the NGS control points, the elevation comparison, and the RMSE for the Shenandoah10m DEM is provided. The process of automated terrain classification involves developing statistical signatures from the DEM for each type of surficial deposit and landform type. The signature will be a measure of several characteristics derived from the elevation data including slope, aspect, planform curvature, and profile curvature. The quality of the DEM is of critical importance when extracting terrain signatures. The highest possible horizontal and vertical accuracy is required. The more accurate Shenandoah 10m DEM can now be analyzed and integrated with the geologic observations to yield statistical correlations between the two in the development of landform and surface geology mapping projects.
Geocoding of AIRSAR/TOPSAR SAR Data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob
1996-01-01
It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented. As an example an AIRSAR/TOPSAR image acquired in 1994 is geocoded and evaluated in terms of geometric accuracy.
High-resolution Monthly Satellite Precipitation Product over the Conterminous United States
NASA Astrophysics Data System (ADS)
Hashemi, H.; Fayne, J.; Knight, R. J.; Lakshmi, V.
2017-12-01
We present a data set that enhanced the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) monthly product 3B43 in its accuracy and spatial resolution. For this, we developed a correction function to improve the accuracy of TRMM 3B43, spatial resolution of 25 km, by estimating and removing the bias in the satellite data using a ground-based precipitation data set. We observed a strong relationship between the bias and land surface elevation; TRMM 3B43 tends to underestimate the ground-based product at elevations above 1500 m above mean sea level (m.amsl) over the conterminous United States. A relationship was developed between satellite bias and elevation. We then resampled TRMM 3B43 to the Digital Elevation Model (DEM) data set at a spatial resolution of 30 arc second ( 1 km on the ground). The produced high-resolution satellite-based data set was corrected using the developed correction function based on the bias-elevation relationship. Assuming that each rain gauge represents an area of 1 km2, we verified our product against 9,200 rain gauges across the conterminous United States. The new product was compared with the gauges, which have 50, 60, 70, 80, 90, and 100% temporal coverage within the TRMM period of 1998 to 2015. Comparisons between the high-resolution corrected satellite-based data and gauges showed an excellent agreement. The new product captured more detail in the changes in precipitation over the mountainous region than the original TRMM 3B43.
The use of IFSAR data in GIS-based landslide susceptibility evaluation
NASA Astrophysics Data System (ADS)
Floris, M.; Squarzoni, C.; Hundseder, C.; Mason, M.; Genevois, R.
2010-05-01
GIS-based landslide susceptibility evaluation is based on the spatial relationships between landslides and their related factors. The analyses are highly conditioned by precision and accuracy of input factors, in particular landslides identification and characterization. Factors influencing landslide spatial hazard consist of geological, geomorphological, hydrogeological and tectonic features, geomechanical and geotechnical properties, land use and management, and DEM-derived factors (elevation, slope, aspect, curvature, superficial flow). The choice of influencing factors depends on: method of analysis, scale of inputs, aim of the outputs, availability and quality of the input data. Then, the choice can be made a priori, on the bases of an in-deep territorial knowledge and experts' judgements, or by performing statistical analyses, finalized to identify the significance of each of the influencing factor. Due to the large availability of terrain data, spatial models often include DEM-derived factors, but the resolution and accuracy of DEMs influence the final outputs. In this work the relationships between landslides occurred in the volcanic area of the Euganean Hills Regional Park (SE of Padua, Veneto region, Italy) and morphometric factors (slope, aspect and curvature) will be examined through a simple probability method. The use of complex and time consuming mathematical or statistical models is not always recommended, because often simple models can lead to more accurate results. Morphometric input factors are derived from DEMs created from vector elevation data of the regional cartography at 1:5.000 scale and with NEXTMap® data (http://www.intermap.com). NEXTMap® Digital Surface Model (DSM) and Digital Terrain Model (DTM) are generated using Intermap's IFSAR (Interferometric Synthetic Aperture Radar) technology mounted on an aircraft at a flight height of 8500 m above Mean Sea Level and under a side viewing angle of about 45°. The DSM represents the first reflective surface as illuminated by the radar. IFSAR sensors retrieve the mean height of the main scattering elements in a grid cell, known as the scattering phase centre height. The radar return from vegetation usually penetrates to some extend lower than the ‘first' tree canopy height. The DTM is derived from DSM applying a semi-automated process that classifies areas as obstructed (buildings and vegetation) and unobstructed , where the obstructed areas are processed to approximate bald earth. DSM and DTM data present a post spacing of 5 m and a vertical accuracy of 1 m (RMSE) or better in areas of unobstructed flat terrain. IFSAR elevation models are compared with photogrammetrically derived models (topographic map of Veneto Region) for the following aspects: Every elevation point of IFSAR models is derived through a direct measure of the terrain surface, while photogrammetric elevation models are usually compiled through digitalization and interpolation of contour lines. Frequent seam lines are evident in vector maps derived DEMs, compiled during many years, with different specifications and tools. IFSAR 5 m posted DEM's generate a much more detailed description of terrain features. Seamless and homogeneous IFSAR elevation models pave the way to accurate applications like landslides study and risk assessment. The results obtained using the two DEM sources will be compared. The contribution of IFSAR data to the GIS-based spatial analysis of the study area will be tested and discussed.
A method for the measurement and the statistical analysis of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Tavoularis, S. C.
1974-01-01
The instantaneous values of output voltages representing the wind velocity vector and the temperature at different elevations of the 250-foot meteorological tower located at NASA Wallops Flight Center are provided with the three dimensional split-film TSI Model 1080 anemometer system. The output voltages are sampled at a rate of one every 5 milliseconds, digitized and stored on digital magnetic tapes for a time period of approximately 40 minutes, with the use of a specially designed data acqusition system. A new calibration procedure permits the conversion of the digital voltages to the respective values of the temperature and the velocity components in a Cartesian coordinate system connected with the TSI probe with considerable accuracy. Power, cross, coincidence and quadrature spectra of the wind components and the temperature are obtained with the use of the fast Fourier transform. The cosine taper data window and ensemble and frequency smoothing techniques are used to provide smooth estimates of the spectral functions.
Digital Terrain from a Two-Step Segmentation and Outlier-Based Algorithm
NASA Astrophysics Data System (ADS)
Hingee, Kassel; Caccetta, Peter; Caccetta, Louis; Wu, Xiaoliang; Devereaux, Drew
2016-06-01
We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new algorithm on digital surface models (DSMs) for a 9600km2 region around Perth, Australia. This region contains a large mix of land uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40% fewer errors compared to Inpho's Match-T algorithm.
Textured digital elevation model formation from low-cost UAV LADAR/digital image data
NASA Astrophysics Data System (ADS)
Bybee, Taylor C.; Budge, Scott E.
2015-05-01
Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.
Mukul, Manas; Srivastava, Vinee; Jade, Sridevi; Mukul, Malay
2017-01-01
The Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) are used with the consensus view that it has a minimum vertical accuracy of 16 m absolute error at 90% confidence (Root Mean Square Error (RMSE) of 9.73 m) world-wide. However, vertical accuracy of the data decreases with increase in slope and elevation due to presence of large outliers and voids. Therefore, studies using SRTM data “as is”, especially in regions like the Himalaya, are not statistically meaningful. New data from ~200 high-precision static Global Position System (GPS) Independent Check Points (ICPs) in the Himalaya and Peninsular India indicate that only 1-arc X-Band data are usable “as is” in the Himalaya as it has height accuracy of 9.18 m (RMSE). In contrast, recently released (2014–2015) “as-is” 1-arc and widely used 3-arc C-Band data have a height accuracy of RMSE 23.53 m and 47.24 m and need to be corrected before use. Outlier and void filtering improves the height accuracy to RMSE 8 m, 10.14 m, 14.38 m for 1-arc X and C-Band and 3-arc C-Band data respectively. Our study indicates that the C-Band 90 m and 30 m DEMs are well-aligned and without any significant horizontal offset implying that area and length computations using both the datasets have identical values. PMID:28176825
Mosbrucker, Adam
2014-01-01
The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last-return points per square meter. As reported by Watershed Sciences, Inc., vertical accuracy is 10 centimeters (cm) at the 95-percent confidence interval on bare road surfaces; however, over natural terrain, USGS found vertical accuracy to be 10–50 cm. This USGS data series contains the bare-earth lidar data as 1- and 10-meter (m) resolution Esri grid files. Digital-elevation data can be downloaded (1m_DEM.zip and 10m_DEM.zip), as well as a 1-m resolution hillshade image with pyramids (1m_hillshade.zip). These geospatial data files require geographic information system (GIS) software for viewing.
NASA Astrophysics Data System (ADS)
Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing
2017-01-01
This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.
NASA Astrophysics Data System (ADS)
Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios
2017-12-01
The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from EU-DEM at a water basin level, with the use of Geographical Information Systems (GIS).
Mennito, Anthony S; Evans, Zachary P; Lauer, Abigail W; Patel, Ravi B; Ludlow, Mark E; Renne, Walter G
2018-03-01
Clinicians have been slow to adopt digital impression technologies due possibly to perceived technique sensitivities involved in data acquisition. This research has two aims: determine whether scan pattern and sequence affects the accuracy of the three-dimensional (3D) model created from this digital impression and to compare the 5 imaging systems with regards to their scanning accuracy for sextant impressions. Six digital intraoral impression systems were used to scan a typodont sextant with optical properties similar to natural teeth. The impressions were taken using five different scan patterns and the resulting digital models were overlayed on a master digital model to determine the accuracy of each scanner performing each scan pattern. Furthermore, regardless of scan pattern, each digital impression system was evaluated for accuracy to the other systems in this same manner. No differences of significance were noted in the accuracy of 3D models created using six distinct scan patterns with one exception involving the CEREC Omnicam. Planmeca Planscan was determined to be the truest scanner while 3Shape Trios was determined to be the most precise for sextant impression making. Scan pattern does not significantly affect the accuracy of the resulting digital model for sextant scanning. Companies who make digital impression systems often recommend a scan pattern specific for their system. However, every clinical scanning scenario is different and may require a different approach. Knowing how important scan pattern is with regards to accuracy would be helpful for guiding a growing number of practitioners who are utilizing this technology. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Violette
2017-04-01
Most crops in northern China are irrigated, but the topography affects water use, soil erosion, runoff and yields,. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution digital elevation models (DEMs) and for determining the width of irrigation channels, however, has not been assessed. We used a fixed-wing UAV for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. We surveyed 112 ground checkpoints (GCPs) using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed, and ease.
Experimental flights using a small unmanned aircraft system for mapping emergent sandbars
Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd
2015-01-01
The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.
Spatial Resolution Effects of Digital Terrain Models on Landslide Susceptibility Analysis
NASA Astrophysics Data System (ADS)
Chang, K. T.; Dou, J.; Chang, Y.; Kuo, C. P.; Xu, K. M.; Liu, J. K.
2016-06-01
The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.
NASA Astrophysics Data System (ADS)
Estes, M. G., Jr.; Insaf, T.; Crosson, W. L.; Al-Hamdan, M. Z.
2017-12-01
Heat exposure metrics (maximum and minimum daily temperatures,) have a close relationship with human health. While meteorological station data provide a good source of point measurements, temporal and spatially consistent temperature data are needed for health studies. Reanalysis data such as the North American Land Data Assimilation System's (NLDAS) 12-km gridded product are an effort to resolve spatio-temporal environmental data issues; the resolution may be too coarse to accurately capture the effects of elevation, mixed land/water areas, and urbanization. As part of this NASA Applied Sciences Program funded project, the NLDAS 12-km air temperature product has been downscaled to 1-km using MODIS Land Surface Temperature patterns. Limited validation of the native 12-km NLDAS reanalysis data has been undertaken. Our objective is to evaluate the accuracy of both the 12-km and 1-km downscaled products using the US Historical Climatology Network station data geographically dispersed across New York State. Statistical methods including correlation, scatterplots, time series and summary statistics were used to determine the accuracy of the remotely-sensed maximum and minimum temperature products. The specific effects of elevation and slope on remotely-sensed temperature product accuracy were determined with 10-m digital elevation data that were used to calculate percent slope and link with the temperature products at multiple scales. Preliminary results indicate the downscaled temperature product improves accuracy over the native 12-km temperature product with average correlation improvements from 0.81 to 0.85 for minimum and 0.71 to 0.79 for maximum temperatures in 2009. However, the benefits vary temporally and geographically. Our results will inform health studies using remotely-sensed temperature products to determine health risk from excessive heat by providing a more robust assessment of the accuracy of the 12-km NLDAS product and additional accuracy gained from the 1-km downscaled product. Also, the results will be shared with the National Weather Service to determine potential benefits to heat warning systems and evaluated for inclusion in the Centers of Disease Control and Prevention (CDC) Environmental Public Health Tracking Network as a resource for the health community.
Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification
NASA Astrophysics Data System (ADS)
Höhle, J.
2014-09-01
A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.
NASA Astrophysics Data System (ADS)
Betz, Florian; Lauermann, Magdalena; Cyffka, Bernd
2018-04-01
Riparian zones contain important ecosystems with a high biodiversity and relevant ecosystem services. From a process point of view, riparian zones are characterized by the interaction of hydrological, geomorphological and ecological processes. Consequently, their boundary is dynamic and blurred as it depends on not only the local valley morphology but also the hydrological regime. This makes a delineation of riparian zones from digital elevation data a challenging task as it should represent this blurred nature of riparian zone boundaries. While the application of high resolution topography from LIDAR and hydraulic models have become standard in many developed countries, studies and applications in remote areas still commonly rely on the freely available coarse resolution digital elevation models. In this article, we present the delineation of riparian zones from the SRTM-1 elevation model and fuzzy membership functions for the Naryn River in Kyrgyzstan having a length of approximately 700 km. We evaluate the extraction of the underlying channel network as well as the different indicator variables. The maximum user's accuracy for the delineation of riparian zones along the entire Naryn River is 82.14% reflecting the uncertainty arising from the heterogeneity of the riverscape as well as from the quality of the underlying elevation data. Despite the uncertainty, the fuzzy membership approach is considered as an appropriate method for riparian zone delineation as it reflects their dynamic, transitional character and can be used as indicator of connectivity within a riverscape.
Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review.
Ahlholm, Pekka; Sipilä, Kirsi; Vallittu, Pekka; Jakonen, Minna; Kotiranta, Ulla
2018-01-01
To conduct a systematic review to evaluate the evidence of possible benefits and accuracy of digital impression techniques vs. conventional impression techniques. Reports of digital impression techniques versus conventional impression techniques were systematically searched for in the following databases: Cochrane Central Register of Controlled Trials, PubMed, and Web of Science. A combination of controlled vocabulary, free-text words, and well-defined inclusion and exclusion criteria guided the search. Digital impression accuracy is at the same level as conventional impression methods in fabrication of crowns and short fixed dental prostheses (FDPs). For fabrication of implant-supported crowns and FDPs, digital impression accuracy is clinically acceptable. In full-arch impressions, conventional impression methods resulted in better accuracy compared to digital impressions. Digital impression techniques are a clinically acceptable alternative to conventional impression methods in fabrication of crowns and short FDPs. For fabrication of implant-supported crowns and FDPs, digital impression systems also result in clinically acceptable fit. Digital impression techniques are faster and can shorten the operation time. Based on this study, the conventional impression technique is still recommended for full-arch impressions. © 2016 by the American College of Prosthodontists.
Effect of Body Mass Index on Digital Templating for Total Hip Arthroplasty.
Sershon, Robert A; Diaz, Alejandro; Bohl, Daniel D; Levine, Brett R
2017-03-01
Digital templating is becoming more prevalent in orthopedics. Recent investigations report high accuracy using digital templating in total hip arthroplasty (THA); however, the effect of body mass index (BMI) on templating accuracy is not well described. Digital radiographs of 603 consecutive patients (645 hips) undergoing primary THA by a single surgeon were digitally templated using OrthoView (Jacksonville, FL). A 25-mm metallic sphere was used as a calibration marker. Preoperative digital hip templates were compared with the final implant size. Hips were stratified into groups based on BMI: BMI <30 (315), BMI 30-35 (132), BMI 35-40 (97), and BMI >40 (101). Accuracy between templating and final size did not vary by BMI for acetabular or femoral components. Digital templating was within 2 sizes of the final acetabular and femoral implants in 99.1% and 97.1% of cases, respectively. Digital templating is an effective means of predicting the final size of THA components. BMI does not appear to play a major role in altering THA digital templating accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field
Kaartinen, Harri; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Hyyppä, Hannu
2012-01-01
The performance of various mobile laser scanning systems was tested on an established urban test field. The test was connected to the European Spatial Data Research (EuroSDR) project “Mobile Mapping—Road Environment Mapping Using Mobile Laser Scanning”. Several commercial and research systems collected laser point cloud data on the same test field. The system comparisons focused on planimetric and elevation errors using a filtered digital elevation model, poles, and building corners as the reference objects. The results revealed the high quality of the point clouds generated by all of the tested systems under good GNSS conditions. With all professional systems properly calibrated, the elevation accuracy was better than 3.5 cm up to a range of 35 m. The best system achieved a planimetric accuracy of 2.5 cm over a range of 45 m. The planimetric errors increased as a function of range, but moderately so if the system was properly calibrated. The main focus on mobile laser scanning development in the near future should be on the improvement of the trajectory solution, especially under non-ideal conditions, using both improvements in hardware and software. Test fields are relatively easy to implement in built environments and they are feasible for verifying and comparing the performance of different systems and also for improving system calibration to achieve optimum quality.
NASA Astrophysics Data System (ADS)
Bagheri, H.; Schmitt, M.; Zhu, X. X.
2017-05-01
Recently, with InSAR data provided by the German TanDEM-X mission, a new global, high-resolution Digital Elevation Model (DEM) has been produced by the German Aerospace Center (DLR) with unprecedented height accuracy. However, due to SAR-inherent sensor specifics, its quality decreases over urban areas, making additional improvement necessary. On the other hand, DEMs derived from optical remote sensing imagery, such as Cartosat-1 data, have an apparently greater resolution in urban areas, making their fusion with TanDEM-X elevation data a promising perspective. The objective of this paper is two-fold: First, the height accuracies of TanDEM-X and Cartosat-1 elevation data over different land types are empirically evaluated in order to analyze the potential of TanDEM-XCartosat- 1 DEM data fusion. After the quality assessment, urban DEM fusion using weighted averaging is investigated. In this experiment, both weight maps derived from the height error maps delivered with the DEM data, as well as more sophisticated weight maps predicted by a procedure based on artificial neural networks (ANNs) are compared. The ANN framework employs several features that can describe the height residual performance to predict the weights used in the subsequent fusion step. The results demonstrate that especially the ANN-based framework is able to improve the quality of the final DEM through data fusion.
An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition
NASA Astrophysics Data System (ADS)
Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.
2018-04-01
Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.
Daily air temperature interpolated at high spatial resolution over a large mountainous region
Dodson, R.; Marks, D.
1997-01-01
Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.
Geometric Stitching Method for Double Cameras with Weak Convergence Geometry
NASA Astrophysics Data System (ADS)
Zhou, N.; He, H.; Bao, Y.; Yue, C.; Xing, K.; Cao, S.
2017-05-01
In this paper, a new geometric stitching method is proposed which utilizes digital elevation model (DEM)-aided block adjustment to solve relative orientation parameters for dual-camera with weak convergence geometry. A rational function model (RFM) with affine transformation is chosen as the relative orientation model. To deal with the weak geometry, a reference DEM is used in this method as an additional constraint in the block adjustment, which only calculates the planimetry coordinates of tie points (TPs). After that we can use the obtained affine transform coefficients to generate virtual grid, and update rational polynomial coefficients (RPCs) to complete the geometric stitching. Our proposed method was tested on GaoFen-2(GF-2) dual-camera panchromatic (PAN) images. The test results show that the proposed method can achieve an accuracy of better than 0.5 pixel in planimetry and have a seamless visual effect. For regions with small relief, when global DEM with 1 km grid, SRTM with 90 m grid and ASTER GDEM V2 with 30 m grid replaced DEM with 1m grid as elevation constraint it is almost no loss of accuracy. The test results proved the effectiveness and feasibility of the stitching method.
Accuracy of Digital vs. Conventional Implant Impressions
Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.
2015-01-01
The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423
Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
Deng, Mingjun; Li, Jiansong
2017-01-01
The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark
2006-01-01
The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.
A portfolio of products from the rapid terrain visualization interferometric SAR
NASA Astrophysics Data System (ADS)
Bickel, Douglas L.; Doerry, Armin W.
2007-04-01
The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
A multitemporal (1979-2009) land-use/land-cover dataset of the binational Santa Cruz Watershed
2011-01-01
Trends derived from multitemporal land-cover data can be used to make informed land management decisions and to help managers model future change scenarios. We developed a multitemporal land-use/land-cover dataset for the binational Santa Cruz watershed of southern Arizona, United States, and northern Sonora, Mexico by creating a series of land-cover maps at decadal intervals (1979, 1989, 1999, and 2009) using Landsat Multispectral Scanner and Thematic Mapper data and a classification and regression tree classifier. The classification model exploited phenological changes of different land-cover spectral signatures through the use of biseasonal imagery collected during the (dry) early summer and (wet) late summer following rains from the North American monsoon. Landsat images were corrected to remove atmospheric influences, and the data were converted from raw digital numbers to surface reflectance values. The 14-class land-cover classification scheme is based on the 2001 National Land Cover Database with a focus on "Developed" land-use classes and riverine "Forest" and "Wetlands" cover classes required for specific watershed models. The classification procedure included the creation of several image-derived and topographic variables, including digital elevation model derivatives, image variance, and multitemporal Kauth-Thomas transformations. The accuracy of the land-cover maps was assessed using a random-stratified sampling design, reference aerial photography, and digital imagery. This showed high accuracy results, with kappa values (the statistical measure of agreement between map and reference data) ranging from 0.80 to 0.85.
Moura, Renata Vasconcellos; Kojima, Alberto Noriyuki; Saraceni, Cintia Helena Coury; Bassolli, Lucas; Balducci, Ivan; Özcan, Mutlu; Mesquita, Alfredo Mikail Melo
2018-05-01
The increased use of CAD systems can generate doubt about the accuracy of digital impressions for angulated implants. The aim of this study was to evaluate the accuracy of different impression techniques, two conventional and one digital, for implants with and without angulation. We used a polyurethane cast that simulates the human maxilla according to ASTM F1839, and 6 tapered implants were installed with external hexagonal connections to simulate tooth positions 17, 15, 12, 23, 25, and 27. Implants 17 and 23 were placed with 15° of mesial angulation and distal angulation, respectively. Mini cone abutments were installed on these implants with a metal strap 1 mm in height. Conventional and digital impression procedures were performed on the maxillary master cast, and the implants were separated into 6 groups based on the technique used and measurement type: G1 - control, G2 - digital impression, G3 - conventional impression with an open tray, G4 - conventional impression with a closed tray, G5 - conventional impression with an open tray and a digital impression, and G6 - conventional impression with a closed tray and a digital impression. A statistical analysis was performed using two-way repeated measures ANOVA to compare the groups, and a Kruskal-Wallis test was conducted to analyze the accuracy of the techniques. No significant difference in the accuracy of the techniques was observed between the groups. Therefore, no differences were found among the conventional impression and the combination of conventional and digital impressions, and the angulation of the implants did not affect the accuracy of the techniques. All of the techniques exhibited trueness and had acceptable precision. The variation of the angle of the implants did not affect the accuracy of the techniques. © 2018 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Hynek, Bernhard; Binder, Daniel; Boffi, Geo; Schöner, Wolfgang; Verhoeven, Geert
2014-05-01
Terrestrial photogrammetry was the standard method for mapping high mountain terrain in the early days of mountain cartography, until it was replaced by aerial photogrammetry and airborne laser scanning. Modern low-price digital single-lens reflex (DSLR) cameras and highly automatic and cheap digital computer vision software with automatic image matching and multiview-stereo routines suggest the rebirth of terrestrial photogrammetry, especially in remote regions, where airborne surveying methods are expensive due to high flight costs. Terrestrial photogrammetry and modern automated image matching is widely used in geodesy, however, its application in glaciology is still rare, especially for surveying ice bodies at the scale of some km², which is typical for valley glaciers. In August 2013 a terrestrial photogrammetric survey was carried out on Freya Glacier, a 6km² valley glacier next to Zackenberg Research Station in NE-Greenland, where a detailed glacier mass balance monitoring was initiated during the last IPY. Photos with a consumer grade digital camera (Nikon D7100) were taken from the ridges surrounding the glacier. To create a digital elevation model, the photos were processed with the software photoscan. A set of ~100 dGPS surveyed ground control points on the glacier surface was used to georeference and validate the final DEM. Aim of this study was to produce a high resolution and high accuracy DEM of the actual surface topography of the Freya glacier catchment with a novel approach and to explore the potential of modern low-cost terrestrial photogrammetry combined with state-of-the-art automated image matching and multiview-stereo routines for glacier monitoring and to communicate this powerful and cheap method within the environmental research and glacier monitoring community.
Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models
Klouček, Tomáš; Šímová, Petra
2018-01-01
Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km2, covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary. PMID:29844982
Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models.
Lagner, Ondřej; Klouček, Tomáš; Šímová, Petra
2018-01-01
Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km 2 , covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary.
The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation
NASA Astrophysics Data System (ADS)
McDougall, K.; Temple-Watts, P.
2012-07-01
Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage
Monitoring the Urban Tree Cover for Urban Ecosystem Services - The Case of Leipzig, Germany
NASA Astrophysics Data System (ADS)
Banzhaf, E.; Kollai, H.
2015-04-01
Urban dynamics such as (extreme) growth and shrinkage bring about fundamental challenges for urban land use and related changes. In order to achieve a sustainable urban development, it is crucial to monitor urban green infrastructure at microscale level as it provides various urban ecosystem services in neighbourhoods, supporting quality of life and environmental health. We monitor urban trees by means of a multiple data set to get a detailed knowledge on its distribution and change over a decade for the entire city. We have digital orthophotos, a digital elevation model and a digital surface model. The refined knowledge on the absolute height above ground helps to differentiate tree tops. Grounded on an object-based image analysis scheme a detailed mapping of trees in an urbanized environment is processed. Results show high accuracy of tree detection and avoidance of misclassification due to shadows. The study area is the City of Leipzig, Germany. One of the leading German cities, it is home to contiguous community allotments that characterize the configuration of the city. Leipzig has one of the most well-preserved floodplain forests in Europe.
Uavs to Assess the Evolution of Embryo Dunes
NASA Astrophysics Data System (ADS)
Taddia, Y.; Corbau, C.; Zambello, E.; Russo, V.; Simeoni, U.; Russo, P.; Pellegrinelli, A.
2017-08-01
The balance of a coastal environment is particularly complex: the continuous formation of dunes, their destruction as a result of violent storms, the growth of vegetation and the consequent growth of the dunes themselves are phenomena that significantly affect this balance. This work presents an approach to the long-term monitoring of a complex dune system by means of Unmanned Aerial Vehicles (UAVs). Four different surveys were carried out between November 2015 and November 2016. Aerial photogrammetric data were acquired during flights by a DJI Phantom 2 and a DJI Phantom 3 with cameras in a nadiral arrangement. GNSS receivers in Network Real Time Kinematic (NRTK) mode were used to frame models in the European Terrestrial Reference System. Processing of the captured images consisted in reconstruction of a three-dimensional model using the principles of Structure from Motion (SfM). Particular care was necessary due to the vegetation: filtering of the dense cloud, mainly based on slope detection, was performed to minimize this issue. Final products of the SfM approach were represented by Digital Elevation Models (DEMs) of the sandy coastal environment. Each model was validated by comparison through specially surveyed points. Other analyses were also performed, such as cross sections and computing elevation variations over time. The use of digital photogrammetry by UAVs is particularly reliable: fast acquisition of the images, reconstruction of high-density point clouds, high resolution of final elevation models, as well as flexibility, low cost and accuracy comparable with other available techniques.
NASA Astrophysics Data System (ADS)
Leitão, J. P.; de Sousa, L. M.
2018-06-01
Newly available, more detailed and accurate elevation data sets, such as Digital Elevation Models (DEMs) generated on the basis of imagery from terrestrial LiDAR (Light Detection and Ranging) systems or Unmanned Aerial Vehicles (UAVs), can be used to improve flood-model input data and consequently increase the accuracy of the flood modelling results. This paper presents the first application of the MBlend merging method and assesses the impact of combining different DEMs on flood modelling results. It was demonstrated that different raster merging methods can have different and substantial impacts on these results. In addition to the influence associated with the method used to merge the original DEMs, the magnitude of the impact also depends on (i) the systematic horizontal and vertical differences of the DEMs, and (ii) the orientation between the DEM boundary and the terrain slope. The greater water depth and flow velocity differences between the flood modelling results obtained using the reference DEM and the merged DEMs ranged from -9.845 to 0.002 m, and from 0.003 to 0.024 m s-1 respectively; these differences can have a significant impact on flood hazard estimates. In most of the cases investigated in this study, the differences from the reference DEM results were smaller for the MBlend method than for the results of the two conventional methods. This study highlighted the importance of DEM merging when conducting flood modelling and provided hints on the best DEM merging methods to use.
Creating Digital Elevation Model Using a Mobile Device
NASA Astrophysics Data System (ADS)
Durmaz, A. İ.
2017-11-01
DEM (Digital Elevation Models) is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices' GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.
Large-area settlement pattern recognition from Landsat-8 data
NASA Astrophysics Data System (ADS)
Wieland, Marc; Pittore, Massimiliano
2016-09-01
The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.
Digital elevation modeling via curvature interpolation for lidar data
USDA-ARS?s Scientific Manuscript database
Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...
Inter-arch digital model vs. manual cast measurements: Accuracy and reliability.
Kiviahde, Heikki; Bukovac, Lea; Jussila, Päivi; Pesonen, Paula; Sipilä, Kirsi; Raustia, Aune; Pirttiniemi, Pertti
2017-06-28
The purpose of this study was to evaluate the accuracy and reliability of inter-arch measurements using digital dental models and conventional dental casts. Thirty sets of dental casts with permanent dentition were examined. Manual measurements were done with a digital caliper directly on the dental casts, and digital measurements were made on 3D models by two independent examiners. Intra-class correlation coefficients (ICC), a paired sample t-test or Wilcoxon signed-rank test, and Bland-Altman plots were used to evaluate intra- and inter-examiner error and to determine the accuracy and reliability of the measurements. The ICC values were generally good for manual and excellent for digital measurements. The Bland-Altman plots of all the measurements showed good agreement between the manual and digital methods and excellent inter-examiner agreement using the digital method. Inter-arch occlusal measurements on digital models are accurate and reliable and are superior to manual measurements.
Z-Earth: 4D topography from space combining short-baseline stereo and lidar
NASA Astrophysics Data System (ADS)
Dewez, T. J.; Akkari, H.; Kaab, A. M.; Lamare, M. L.; Doyon, G.; Costeraste, J.
2013-12-01
The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel size, they are today regarded as obsolete and inappropriate given the regularly updated sub-meter imagery coming through web services like Google Earth. Two features will thus help meet the current topographic data needs of the Geoscience communities: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and provision for regularly updated topography to tackle earth surface changes in 4D, while retaining the key for success: data availability at no charge. A new space borne instrumental concept called Z-Earth has undergone phase 0 study at CNES, the French space agency to fulfill these aims. The scientific communities backing this proposal are that of natural hazards, glaciology and biomass. The system under study combines a short-baseline native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Acquisition is designed for revisit time better than a year. Intended products not only target single pass digital surface models, color orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverage, but also time series of them. 3D change detection targets centimetre-scale horizontal precision and metric vertical precision, in complement of -now traditional- spectral change detection. To assess the actual concept value, two real-size experiments were carried out. We used sub-meter-scale Pleiades panchromatic stereo-images to generate digital surface models and check them against dense airborne lidar coverages, one heliborne set purposely flown in Corsica (50-100pts/sq.m) and a second one retrieved from OpenTopography.org (~10pts/sq.m.). In Corsica, over a challenging 45-degree-grade tree-covered mountain side, the Pleiades 2-m-grid-posting digital surface model described the topography with a median error of -4.75m +/-2.59m (NMAD). A planimetric bias between both datasets was found to be about 7m to the South. This planimetric misregistration, though well within Pleiades specifications, partly explains the dramatic effect on elevation difference. In the Redmond area (eastern Oregon), a very gentle desert landscape, elevation differences also contained a vertical median bias of -4.02m+/-1.22m (NMAD). Though here, sub-pixel planimetric registration between stereo DSM and lidar coverage was enforced. This real-size experiment hints that sub-meter accuracy for 2-m-grid-posting DSM is an achievable goal when combining stereoimaging and lidar.
NASA Astrophysics Data System (ADS)
Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas
2016-10-01
In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied ;as is; to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.
Mosbrucker, Adam
2015-01-01
The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle and Coldwater Lakes. Final results averaged about two laser last-return points per square meter. As reported by Watershed Sciences, Inc., vertical accuracy is 10 centimeters (cm) at the 95-percent confidence interval on bare road surfaces; however, over natural terrain, USGS found vertical accuracy to be 10–50 cm. This USGS data series contains the bare-earth lidar data as 1- and 10-meter (m) resolution Esri grid files. Digital-elevation data can be downloaded (1m_DEM.zip and 10m_DEM.zip), as well as a 1-m resolution hillshade image with pyramids (1m_hillshade.zip). These geospatial data files require geographic information system (GIS) software for viewing.
Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica
NASA Astrophysics Data System (ADS)
Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi
2017-12-01
A digital elevation model (DEM) is used to estimate ice-flow velocities for an ice sheet and glaciers via Differential Interferometric Synthetic Aperture Radar (DInSAR) processing. The accuracy of DInSAR-derived displacement estimates depends upon the accuracy of the DEM. Therefore, we used stereo optical images, obtained with a panchromatic remote-sensing instrument for stereo mapping (PRISM) sensor mounted onboard the Advanced Land Observing Satellite (ALOS), to produce a new DEM ("PRISM-DEM") of part of the coastal region of Lützow-Holm Bay in Dronning Maud Land, East Antarctica. We verified the accuracy of the PRISM-DEM by comparing ellipsoidal heights with those of existing DEMs and values obtained by satellite laser altimetry (ICESat/GLAS) and Global Navigation Satellite System surveying. The accuracy of the PRISM-DEM is estimated to be 2.80 m over ice sheet, 4.86 m over individual glaciers, and 6.63 m over rock outcrops. By comparison, the estimated accuracy of the ASTER-GDEM, widely used in polar regions, is 33.45 m over ice sheet, 14.61 m over glaciers, and 19.95 m over rock outcrops. For displacement measurements made along the radar line-of-sight by DInSAR, in conjunction with ALOS/PALSAR data, the accuracy of the PRISM-DEM and ASTER-GDEM correspond to estimation errors of <6.3 mm and <31.8 mm, respectively.
NASA Technical Reports Server (NTRS)
Cibula, W. G.
1981-01-01
Four LANDSAT frames, each corresponding to one of the four seasons were spectrally classified and processed using NASA-developed computer programs. One data set was selected or two or more data sets were marged to improve surface cover classifications. Selected areas representing each spectral class were chosen and transferred to USGS 1:62,500 topographic maps for field use. Ground truth data were gathered to verify the accuracy of the classifications. Acreages were computed for each of the land cover types. The application of elevational data to seasonal LANDSAT frames resulted in the separation of high elevation meadows (both with and without recently emergent perennial vegetation) as well as areas in oak forests which have an evergreen understory as opposed to other areas which do not.
Accuracy of five intraoral scanners compared to indirect digitalization.
Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine
2017-06-01
Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.
Olson, Scott A.
2015-01-01
Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewster, S.B.
The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable inmore » making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.« less
Feasibility and Accuracy of Digitizing Edentulous Maxillectomy Defects: A Comparative Study.
Elbashti, Mahmoud E; Hattori, Mariko; Patzelt, Sebastian Bm; Schulze, Dirk; Sumita, Yuka I; Taniguchi, Hisashi
The aim of this study was to evaluate the feasibility and accuracy of using an intraoral scanner to digitize edentulous maxillectomy defects. A total of 20 maxillectomy models with two defect types were digitized using cone beam computed tomography. Conventional and digital impressions were made using silicone impression material and a laboratory optical scanner as well as a chairside intraoral scanner. The 3D datasets were analyzed using 3D evaluation software. Two-way analysis of variance revealed no interaction between defect types and impression methods, and the accuracy of the impression methods was significantly different (P = .0374). Digitizing edentulous maxillectomy defect models using a chairside intraoral scanner appears to be feasible and accurate.
Mapping soil texture classes and optimization of the result by accuracy assessment
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Pásztor, László
2014-05-01
There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. The GlobalSoilMap.net (GSM) project aims to make a new digital soil map of the world using state-of-the-art and emerging technologies for soil mapping and predicting soil properties at fine resolution. Sand, silt and clay are among the mandatory GSM soil properties. Furthermore, soil texture class information is input data of significant agro-meteorological and hydrological models. Our present work aims to compare and evaluate different digital soil mapping methods and variables for producing the most accurate spatial prediction of texture classes in Hungary. In addition to the Hungarian Soil Information and Monitoring System as our basic data, digital elevation model and its derived components, geological database, and physical property maps of the Digital Kreybig Soil Information System have been applied as auxiliary elements. Two approaches have been applied for the mapping process. At first the sand, silt and clay rasters have been computed independently using regression kriging (RK). From these rasters, according to the USDA categories, we have compiled the texture class map. Different combinations of reference and training soil data and auxiliary covariables have resulted several different maps. However, these results consequentially include the uncertainty factor of the three kriged rasters. Therefore we have suited data mining methods as the other approach of digital soil mapping. By working out of classification trees and random forests we have got directly the texture class maps. In this way the various results can be compared to the RK maps. The performance of the different methods and data has been examined by testing the accuracy of the geostatistically computed and the directly classified results. We have used the GSM methodology to assess the most predictive and accurate way for getting the best among the several result maps. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
Diagnostic digital cytopathology: Are we ready yet?
House, Jarret C.; Henderson-Jackson, Evita B.; Johnson, Joseph O.; Lloyd, Mark C.; Dhillon, Jasreman; Ahmad, Nazeel; Hakam, Ardeshir; Khalbuss, Walid E.; Leon, Marino E.; Chhieng, David; Zhang, Xiaohui; Centeno, Barbara A.; Bui, Marilyn M.
2013-01-01
Background: The cytology literature relating to diagnostic accuracy using whole slide imaging is scarce. We studied the diagnostic concordance between glass and digital slides among diagnosticians with different profiles to assess the readiness of adopting digital cytology in routine practice. Materials and Methods: This cohort consisted of 22 de-identified previously screened and diagnosed cases, including non-gynecological and gynecological slides using standard preparations. Glass slides were digitalized using Aperio ScanScope XT (×20 and ×40). Cytopathologists with (3) and without (3) digital experience, cytotechnologists (4) and senior pathology residents (2) diagnosed the digital slides independently first and recorded the results. Glass slides were read and recorded separately 1-3 days later. Accuracy of diagnosis, time to diagnosis and diagnostician's profile were analyzed. Results: Among 22 case pairs and four study groups, correct diagnosis (93% vs. 86%) was established using glass versus digital slides. Both methods more (>95%) accurately diagnosed positive cases than negatives. Cytopathologists with no digital experience were the most accurate in digital diagnosis, even the senior members. Cytotechnologists had the fastest diagnosis time (3 min/digital vs. 1.7 min/glass), but not the best accuracy. Digital time was 1.5 min longer than glass-slide time/per case for cytopathologists and cytotechnologists. Senior pathology residents were slower and less accurate with both methods. Cytopathologists with digital experience ranked 2nd fastest in time, yet last in accuracy for digital slides. Conclusions: There was good overall diagnostic agreement between the digital whole-slide images and glass slides. Although glass slide diagnosis was more accurate and faster, the results of technologists and pathologists with no digital cytology experience suggest that solid diagnostic ability is a strong indicator for readiness of digital adoption. PMID:24392242
NASA Astrophysics Data System (ADS)
Wang, Liang-Jie; Sawada, Kazuhide; Moriguchi, Shuji
2013-01-01
To mitigate the damage caused by landslide disasters, different mathematical models have been applied to predict landslide spatial distribution characteristics. Although some researchers have achieved excellent results around the world, few studies take the spatial resolution of the database into account. Four types of digital elevation model (DEM) ranging from 2 to 20 m derived from light detection and ranging technology to analyze landslide susceptibility in Mizunami City, Gifu Prefecture, Japan, are presented. Fifteen landslide-causative factors are considered using a logistic-regression approach to create models for landslide potential analysis. Pre-existing landslide bodies are used to evaluate the performance of the four models. The results revealed that the 20-m model had the highest classification accuracy (71.9%), whereas the 2-m model had the lowest value (68.7%). In the 2-m model, 89.4% of the landslide bodies fit in the medium to very high categories. For the 20-m model, only 83.3% of the landslide bodies were concentrated in the medium to very high classes. When the cell size decreases from 20 to 2 m, the area under the relative operative characteristic increases from 0.68 to 0.77. Therefore, higher-resolution DEMs would provide better results for landslide-susceptibility mapping.
ASTER Global Digital Elevation Model GDEM
2009-06-29
NASA and Japan Ministry of Economy, Trade and Industry METI released the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER Global Digital Elevation Model GDEM to the worldwide public on June 29, 2009.
Identification and delineation of areas flood hazard using high accuracy of DEM data
NASA Astrophysics Data System (ADS)
Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.
2018-05-01
Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.
Fujisada, H.; Bailey, G.B.; Kelly, Glen G.; Hara, S.; Abrams, M.J.
2005-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the National Aeronautics and Space Administration's Terra spacecraft has an along-track stereoscopic capability using its a near-infrared spectral band to acquire the stereo data. ASTER has two telescopes, one for nadir-viewing and another for backward-viewing, with a base-to-height ratio of 0.6. The spatial resolution is 15 m in the horizontal plane. Parameters such as the line-of-sight vectors and the pointing axis were adjusted during the initial operation period to generate Level-1 data products with a high-quality stereo system performance. The evaluation of the digital elevation model (DEM) data was carried out both by Japanese and U.S. science teams separately using different DEM generation software and reference databases. The vertical accuracy of the DEM data generated from the Level-1A data is 20 m with 95% confidence without ground control point (GCP) correction for individual scenes. Geolocation accuracy that is important for the DEM datasets is better than 50 m. This appears to be limited by the spacecraft position accuracy. In addition, a slight increase in accuracy is observed by using GCPs to generate the stereo data.
Specification for procurement of water-level sensing instrumentation, specification number HIF-I-1
Rapp, D.H.
1982-01-01
This specification is to communicate to instrument manufacturers the U.S. Geological Survey 's requirements. It covers systems for sensing the elevation of the water surface on open channels, rivers, lakes, reservoirs, storm-sewer pipes, and observation wells at Survey data-collection sites. The signal output (mechanical or electrical) must meet the signal input requirements of analog to digital and digital input recorders in use by the Survey. A classification of stage-sensing systems by common characteristics is used to aid Survey people making system selections. These characteristics are (1) system type (contact or noncontact), (2) sensor type and sensing distance, (3) accuracy, (4) range, (5) power requirements, (6) system size and weight, and (7) data output signal. Acceptable system requirements cover system configurations, signal outputs, materials, operation manuals, detailed environmental conditions, calibration procedures, system accuracy, power requirements, installation limitations, maintainability, safety, and workmanship. An outline of the qualification test procedures and failure criteria are also given. The Hydrologic Instrumentation Facility at NSTL Station, Mississippi will test available systems to determine if they meet the specification in this report for inclusion in the Survey 's 'Qualified Products List'. This list will be used for future procurement of water-level sensing systems by the Survey. (USGS)
NASA Technical Reports Server (NTRS)
Albus, James S.
1961-01-01
The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.
NASA Astrophysics Data System (ADS)
Heinrichs, T. A.; Broderson, D.; Johnson, A.; Slife, M.
2014-12-01
This presentation describes the overall program goals and current status of broad scale, statewide orthoimagery and digital elevation model (DEM) projects currently underway in Alaska. As context, it will also describe the history and successes of previous statewide Alaska mapping efforts over the preceding 75 years. A new statewide orthomosaic imagery baselayer at 1:24,000 NMAS accuracy (12.2-meters CE90) is nearing completion. The entire state (1.56 million square kilometers) has been imaged with the SPOT 5 satellite, and a 2.5-meter spatial resolution, multi-spectral, nearly cloud-free, pan-sharpened orthoimage will be produced by mid-2015. A second major project is collection of an improved accuracy DEM statewide. Airborne interferometric synthetic aperture radar (IfSAR) data has been collected for about half of the state of Alaska and completion of the rest of the state is anticipated within a few years. A 5-meter post spacing, 20-foot contour interval accuracy equivalent (3-meter vertical LE90) DEM and radar backscatter intensity image is being delivered. Historic projects to be described include the 1950's USGS Alaska topographic mapping program, one of the largest and most pioneering, challenging, and successful ever undertaken in North America. These historic and current mapping programs have served as both a baselayer framework and as feedstock for science for virtually every geologic, geophysical, and terrestrial natural science project in the state.
Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes
NASA Astrophysics Data System (ADS)
Piermattei, Livia; Carturan, Luca; de Blasi, Fabrizio; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio; Pfeifer, Norbert
2016-05-01
Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1 km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was -0.42 ± 1.72 and 0.03 ± 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between -5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 ± 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively. Technical improvements such as using an aerial platform and/or placing artificial targets could significantly improve the results but run the risk of being more demanding in terms of costs and logistics.
Mass Loss of Larsen B Tributary Glaciers (Antarctic Peninsula) Unabated Since 2002
NASA Technical Reports Server (NTRS)
Berthier, Etienne; Scambos, Ted; Shuman, Christopher A.
2012-01-01
Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 201011 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a null test, subtracting DEMs acquired within a few weeks. The overall 2006201011 mass loss rate (9.0 2.1 Gt a-1) is similar to the 2001022006 rate (8.8 1.6 Gt a-1), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the HektoriaGreen glacier basin, having increased by 33 since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.
,
1993-01-01
The Earth Science Information Center (ESIC) distributes digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. Digital cartographic data files may be grouped into four basic types. The first of these, called a Digital Line Graph (DLG), is the line map information in digital form. These data files include information on base data categories, such as transportation, hypsography, hydrography, and boundaries. The second type, called a Digital Elevation Model (DEM), consists of a sampled array of elevations for a number of ground positions at regularly spaced intervals. The third type is Land Use and Land Cover digital data which provides information on nine major classes of land use such as urban, agricultural, or forest as well as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for all known places, features, and areas in the United States identified by a proper name.
NASA Astrophysics Data System (ADS)
Dupuy, Stéphane; Lainé, Gérard; Tassin, Jacques; Sarrailh, Jean-Michel
2013-12-01
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the "Litto3D" coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.
Digital floodplain mapping and an analysis of errors involved
Hamblen, C.S.; Soong, D.T.; Cai, X.
2007-01-01
Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.
Mapping broom snakeweed through image analysis of color-infrared photography and digital imagery.
Everitt, J H; Yang, C
2007-11-01
A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on computer-classified maps of photographic images from two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 88.3%, respectively; whereas, accuracy assessments performed on classified maps from digital images of the same two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 92.8%, respectively. These results indicate that CIR photography and CIR digital imagery combined with image analysis techniques can be used successfully to map broom snakeweed infestations on south Texas rangelands.
Online, On Demand Access to Coastal Digital Elevation Models
NASA Astrophysics Data System (ADS)
Long, J.; Bristol, S.; Long, D.; Thompson, S.
2014-12-01
Process-based numerical models for coastal waves, water levels, and sediment transport are initialized with digital elevation models (DEM) constructed by interpolating and merging bathymetric and topographic elevation data. These gridded surfaces must seamlessly span the land-water interface and may cover large regions where the individual raw data sources are collected at widely different spatial and temporal resolutions. In addition, the datasets are collected from different instrument platforms with varying accuracy and may or may not overlap in coverage. The lack of available tools and difficulties in constructing these DEMs lead scientists to 1) rely on previously merged, outdated, or over-smoothed DEMs; 2) discard more recent data that covers only a portion of the DEM domain; and 3) use inconsistent methodologies to generate DEMs. The objective of this work is to address the immediate need of integrating land and water-based elevation data sources and streamline the generation of a seamless data surface that spans the terrestrial-marine boundary. To achieve this, the U.S. Geological Survey (USGS) is developing a web processing service to format and initialize geoprocessing tasks designed to create coastal DEMs. The web processing service is maintained within the USGS ScienceBase data management system and has an associated user interface. Through the map-based interface, users define a geographic region that identifies the bounds of the desired DEM and a time period of interest. This initiates a query for elevation datasets within federal science agency data repositories. A geoprocessing service is then triggered to interpolate, merge, and smooth the data sources creating a DEM based on user-defined configuration parameters. Uncertainty and error estimates for the DEM are also returned by the geoprocessing service. Upon completion, the information management platform provides access to the final gridded data derivative and saves the configuration parameters for future reference. The resulting products and tools developed here could be adapted to future data sources and projects beyond the coastal environment.
Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau
NASA Astrophysics Data System (ADS)
Satge, Frédéric; Denezine, Matheus; Pillco, Ramiro; Timouk, Franck; Pinel, Sébastien; Molina, Jorge; Garnier, Jérémie; Seyler, Frédérique; Bonnet, Marie-Paule
2016-11-01
Previously available only over the Continental United States (CONUS), the 1 arc-second mesh size (spatial resolution) SRTM-GL1 (Shuttle Radar Topographic Mission - Global 1) product has been freely available worldwide since November 2014. With a relatively small mesh size, this digital elevation model (DEM) provides valuable topographic information over remote regions. SRTM-GL1 is assessed for the first time over the South American Andean Plateau in terms of both the absolute and relative vertical point-to-point accuracies at the regional scale and for different slope classes. For comparison, SRTM-v4 and GDEM-v2 Global DEM version 2 (GDEM-v2) generated by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are also considered. A total of approximately 160,000 ICESat/GLAS (Ice, Cloud and Land Elevation Satellite/Geoscience Laser Altimeter System) data are used as ground reference measurements. Relative error is often neglected in DEM assessments due to the lack of reference data. A new methodology is proposed to assess the relative accuracies of SRTM-GL1, SRTM-v4 and GDEM-v2 based on a comparison with ICESat/GLAS measurements. Slope values derived from DEMs and ICESat/GLAS measurements from approximately 265,000 ICESat/GLAS point pairs are compared using quantitative and categorical statistical analysis introducing a new index: the False Slope Ratio (FSR). Additionally, a reference hydrological network is derived from Google Earth and compared with river networks derived from the DEMs to assess each DEM's potential for hydrological applications over the region. In terms of the absolute vertical accuracy on a global scale, GDEM-v2 is the most accurate DEM, while SRTM-GL1 is more accurate than SRTM-v4. However, a simple bias correction makes SRTM-GL1 the most accurate DEM over the region in terms of vertical accuracy. The relative accuracy results generally did not corroborate the absolute vertical accuracy. GDEM-v2 presents the lowest statistical results based on the relative accuracy, while SRTM-GL1 is the most accurate. Vertical accuracy and relative accuracy are two independent components that must be jointly considered when assessing a DEM's potential. DEM accuracies increased with slope. In terms of hydrological potential, SRTM products are more accurate than GDEM-v2. However, the DEMs exhibit river extraction limitations over the region due to the low regional slope gradient.
Comparison of 7.5-minute and 1-degree digital elevation models
NASA Technical Reports Server (NTRS)
Isaacson, Dennis L.; Ripple, William J.
1995-01-01
We compared two digital elevation models (DEM's) for the Echo Mountain SE quadrangle in the Cascade Mountains of Oregon. Comparisons were made between 7.5-minute (1:24,000-scale) and 1-degree (1:250,000-scale) images using the variables of elevation, slope aspect, and slope gradient. Both visual and statistical differences are presented.
Comparison of 7.5-minute and 1-degree digital elevation models
NASA Technical Reports Server (NTRS)
Isaacson, Dennis L.; Ripple, William J.
1990-01-01
Two digital elevation models are compared for the Echo Mountain SE quadrangle in the Cascade Mountains of Oregon. Comparisons were made between 7.5-minute (1:24,000-scale) and 1-degree (1:250,000-scale) images using the variables of elevation, slope aspect, and slope gradient. Both visual and statistical differences are presented.
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966
Preparation of the Digital Elevation Model for Orthophoto CR Production
NASA Astrophysics Data System (ADS)
Švec, Z.; Pavelka, K.
2016-06-01
The Orthophoto CR is produced in co-operation with the Land Survey Office and the Military Geographical and Hydrometeorological Office. The product serves to ensure a defence of the state, integrated crisis management, civilian tasks in support of the state administration and the local self-government of the Czech Republic as well. It covers the whole area of the Republic and for ensuring its up-to-datedness is reproduced in the biennial period. As the project is countrywide, it keeps the project within the same parameters in urban and rural areas as well. Due to economic reasons it cańt be produced as a true ortophoto because it requires large side and forward overlaps of the aerial photographs and a preparation of the digital surface model instead of the digital terrain model. Use of DTM without some objects of DSM for orthogonalization purposes cause undesirable image deformations in the Orthophoto. There are a few data sets available for forming a suitable elevation model. The principal source should represent DTMs made from data acquired by the airborne laser scanning of the entire area of the Czech Republic that was carried out in the years 2009-2013, the DMR4G in the grid form and the DMR5G in TIN form respectively. It can be replenished by some vector objects (bridges, dams, etc.) taken from the geographic base data of the Czech Republic or obtained by new stereo plotting. It has to be taken into account that the option of applying DSM made from image correlation is also available. The article focuses on the possibilities of DTM supplement for ortogonalization. It looks back to the recent transition from grid to hybrid elevation models, problems that occurred, its solution and getting some practical remarks. Afterwards it assesses the current state and deals with the options for updating the model. Some accuracy analysis are included.
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler
2013-07-01
Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1975-01-01
A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.
Knowing What You Know: Improving Metacomprehension and Calibration Accuracy in Digital Text
ERIC Educational Resources Information Center
Reid, Alan J.; Morrison, Gary R.; Bol, Linda
2017-01-01
This paper presents results from an experimental study that examined embedded strategy prompts in digital text and their effects on calibration and metacomprehension accuracies. A sample population of 80 college undergraduates read a digital expository text on the basics of photography. The most robust treatment (mixed) read the text, generated a…
Fananapazir, Ghaneh; Bashir, Mustafa R; Corwin, Michael T; Lamba, Ramit; Vu, Catherine T; Troppmann, Christoph
2017-03-01
To determine the accuracy of ferumoxytol-enhanced magnetic resonance angiography (MRA) in assessing the severity of transplant renal artery stenosis (TRAS), using digital subtraction angiography (DSA) as the reference standard. Our Institutional Review Board approved this retrospective, Health Insurance Portability and Accountability Act-compliant study. Thirty-three patients with documented clinical suspicion for TRAS (elevated serum creatinine, refractory hypertension, edema, and/or audible bruit) and/or concerning sonographic findings (elevated renal artery velocity and/or intraparenchymal parvus tardus waveforms) underwent a 1.5T MRA with ferumoxytol prior to DSA. All DSAs were independently reviewed by an interventional radiologist and served as the reference standard. The MRAs were reviewed by three readers who were blinded to the ultrasound and DSA findings for the presence and severity of TRAS. Sensitivity, specificity, and accuracy for identifying substantial stenoses (>50%) were determined. Intraclass correlation coefficients (ICCs) were calculated among readers. Mean differences between the percent stenosis from each MRA reader and DSA were calculated. On DSA, a total of 42 stenoses were identified in the 33 patients. The sensitivity, specificity, and accuracy of MRA in detecting substantial stenoses were 100%, 75-87.5%, and 95.2-97.6%, respectively, among the readers. There was excellent agreement among readers as to the percent stenosis (ICC = 0.82). MRA overestimated the degree of stenosis by 3.9-9.6% compared to DSA. Ferumoxytol-enhanced MRA provides high sensitivity, specificity, and accuracy for determining the severity of TRAS. Our results suggest that it can potentially be used as a noninvasive examination following ultrasound to reduce the number of unnecessary conventional angiograms. 3 J. Magn. Reson. Imaging 2017;45:779-785. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Caroti, G.; Camiciottoli, F.; Piemonte, A.; Redini, M.
2013-01-01
The work stems from a joint study between the Laboratory ASTRO (Department of Civil and Industrial Engineering - University of Pisa), the municipality of Pisa and the province of Arezzo on the advanced analysis and use of digital elevation data. Besides, it is framed in the research carried on by ASTRO about the definition of the priority informative layers for emergency management in the territory, as of PRIN 2008. Specifically, this work is in continuity with other already published results concerning rigorous accuracy checks of LIDAR data and testing of the procedures to transform raw data in formats consistent with CTR and survey data. The analysis of sections of riverbed, derived from interpolation by DTMs featuring different grid density with those detected topographically, is presented. Validation by differential GNSS methodology of the DTMs used showed a good overall quality of the model for open, low-sloping areas. Analysis of the sections, however, has shown that the representation of small or high-sloping (ditches, embankments) morphological elements requires a high point density such as in laser scanner surveys, and a small mesh size of the grid. In addition, the correct representation of riverside structures is often hindered by the presence of thick vegetation and poor raw LIDAR data filtering.
Digital versus conventional implant impressions for edentulous patients: accuracy outcomes.
Papaspyridakos, Panos; Gallucci, German O; Chen, Chun-Jung; Hanssen, Stijn; Naert, Ignace; Vandenberghe, Bart
2016-04-01
To compare the accuracy of digital and conventional impression techniques for completely edentulous patients and to determine the effect of different variables on the accuracy outcomes. A stone cast of an edentulous mandible with five implants was fabricated to serve as master cast (control) for both implant- and abutment-level impressions. Digital impressions (n = 10) were taken with an intraoral optical scanner (TRIOS, 3shape, Denmark) after connecting polymer scan bodies. For the conventional polyether impressions of the master cast, a splinted and a non-splinted technique were used for implant-level and abutment-level impressions (4 cast groups, n = 10 each). Master casts and conventional impression casts were digitized with an extraoral high-resolution scanner (IScan D103i, Imetric, Courgenay, Switzerland) to obtain digital volumes. Standard tessellation language (STL) datasets from the five groups of digital and conventional impressions were superimposed with the STL dataset from the master cast to assess the 3D (global) deviations. To compare the master cast with digital and conventional impressions at the implant level, analysis of variance (ANOVA) and Scheffe's post hoc test was used, while Wilcoxon's rank-sum test was used for testing the difference between abutment-level conventional impressions. Significant 3D deviations (P < 0.001) were found between Group II (non-splinted, implant level) and control. No significant differences were found between Groups I (splinted, implant level), III (digital, implant level), IV (splinted, abutment level), and V (non-splinted, abutment level) compared with the control. Implant angulation up to 15° did not affect the 3D accuracy of implant impressions (P > 0.001). Digital implant impressions are as accurate as conventional implant impressions. The splinted, implant-level impression technique is more accurate than the non-splinted one for completely edentulous patients, whereas there was no difference in the accuracy at the abutment level. The implant angulation up to 15° did not affect the accuracy of implant impressions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Online Farsi digit recognition using their upper half structure
NASA Astrophysics Data System (ADS)
Ghods, Vahid; Sohrabi, Mohammad Karim
2015-03-01
In this paper, we investigated the efficiency of upper half Farsi numerical digit structure. In other words, half of data (upper half of the digit shapes) was exploited for the recognition of Farsi numerical digits. This method can be used for both offline and online recognition. Half of data is more effective in speed process, data transfer and in this application accuracy. Hidden Markov model (HMM) was used to classify online Farsi digits. Evaluation was performed by TMU dataset. This dataset contains more than 1200 samples of online handwritten Farsi digits. The proposed method yielded more accuracy in recognition rate.
Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.
1999-01-01
The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.
Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.
2000-01-01
The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.
Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.
1985-01-01
The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors
NASA Astrophysics Data System (ADS)
Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.
2015-12-01
Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.
Combining remote sensing image with DEM to identify ancient Minqin Oasis, northwest of China
NASA Astrophysics Data System (ADS)
Xie, Yaowen
2008-10-01
The developing and desertification process of Minqin oasis is representative in the whole arid area of northwest China. Combining Remote Sensing image with Digital Elevation Model (DEM) can produce the three-dimensional image of the research area which can give prominence to the spatial background of historical geography phenomenon's distribution, providing the conditions for extracting and analyzing historical geographical information thoroughly. This research rebuilds the ancient artificial Oasis based on the three-dimensional images produced by the TM digital Remote Sensing image and DEM created using 1:100000 topographic maps. The result indicates that the whole area of the ancient artificial oasis in Minqin Basin over the whole historical period reaches 321km2, in the form of discontinuous sheet, separated on the two banks of ancient Shiyang River and its branches, namely, Xishawo area, west to modern Minqin Basin and Zhongshawo area, in the center of the oasis. Except for a little of the ancient oasis unceasingly used by later people, most of it became desert. The combination of digital Remote Sensing image and DEM can integrate the advantages of both in identifying ancient oasis and improve the interpreting accuracy greatly.
NASA Astrophysics Data System (ADS)
Purinton, Benjamin; Bookhagen, Bodo
2017-04-01
In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30 m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5 m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000 m of elevation. For the 30 m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12 m TanDEM-X and 5 m ALOS World 3D having < 2 m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10 m DEMs and the 30 m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30 m SRTM-C, 12-30 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X, and 5 m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m/n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5 m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.
NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
Hasan, Emad; Khan, Sadiq Ibrahim; Hong, Yang
2015-10-01
In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta's land and population, this study corrected the DEM's elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM's vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km(2) of cropland, 1280 km(2) of vegetation, 205 km(2) of wetland, 146 km(2) of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km(2) (6%) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM's elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region.
Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions
Pascual-Moscardó, Agustín; Camps, Isabel
2018-01-01
Background The scanner does not measure the dental surface continually. Instead, it generates a point cloud, and these points are then joined to form the scanned object. This approximation will depend on the number of points generated (resolution), which can lead to low accuracy (trueness and precision) when fewer points are obtained. The purpose of this study is to determine the resolution of four intraoral digital imaging systems and to demonstrate the relationship between accuracy and resolution of the intraoral scanner in impressions of a complete dental arch. Material and Methods A master cast of the complete maxillary arch was prepared with different dental preparations. Using four digital impression systems, the cast was scanned inside of a black methacrylate box, obtaining a total of 40 digital impressions from each scanner. The resolution was obtained by dividing the number of points of each digital impression by the total surface area of the cast. Accuracy was evaluated using a three-dimensional measurement software, using the “best alignment” method of the casts with a highly faithful reference model obtained from an industrial scanner. Pearson correlation was used for statistical analysis of the data. Results Of the intraoral scanners, Omnicam is the system with the best resolution, with 79.82 points per mm2, followed by True Definition with 54.68 points per mm2, Trios with 41.21 points per mm2, and iTero with 34.20 points per mm2. However, the study found no relationship between resolution and accuracy of the study digital impression systems (P >0.05), except for Omnicam and its precision. Conclusions The resolution of the digital impression systems has no relationship with the accuracy they achieve in the impression of a complete dental arch. The study found that the Omnicam scanner is the system that obtains the best resolution, and that as the resolution increases, its precision increases. Key words:Trueness, precision, accuracy, resolution, intraoral scanner, digital impression. PMID:29750097
Accuracy and consistency of weights provided by home bathroom scales.
Yorkin, Meredith; Spaccarotella, Kim; Martin-Biggers, Jennifer; Quick, Virginia; Byrd-Bredbenner, Carol
2013-12-17
Self-reported body weight is often used for calculation of Body Mass Index because it is easy to collect. Little is known about sources of error introduced by using bathroom scales to measure weight at home. The objective of this study was to evaluate the accuracy and consistency of digital versus dial-type bathroom scales commonly used for self-reported weight. Participants brought functioning bathroom scales (n=18 dial-type, n=43 digital-type) to a central location. Trained researchers assessed accuracy and consistency using certified calibration weights at 10 kg, 25 kg, 50 kg, 75 kg, 100 kg, and 110 kg. Data also were collected on frequency of calibration, age and floor surface beneath the scale. All participants reported using their scale on hard surface flooring. Before calibration, all digital scales displayed 0, but dial scales displayed a mean absolute initial weight of 0.95 (1.9 SD) kg. Digital scales accurately weighed test loads whereas dial-type scale weights differed significantly (p<0.05). Imprecision of dial scales was significantly greater than that of digital scales at all weights (p<0.05). Accuracy and precision did not vary by scale age. Digital home bathroom scales provide sufficiently accurate and consistent weights for public health research. Reminders to zero scales before each use may further improve accuracy of self-reported weight.
Gan, Ning; Xiong, Yaoyang; Jiao, Ting
2016-01-01
Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable.
Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.
2008-01-01
A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the supervised classification determined that accuracies varied among vegetation classes from 90% to 49%. Causes for low accuracies were similar spectral signatures among vegetation classes. Fuzzy accuracy assessment improved classification accuracies such that Federal mapping standards of 80% accuracies for all classes were met. The scale used to quantify vegetation adequately meets the needs of the stakeholder group. Increasing the scale to meet the U.S. Geological Survey (USGS)-National Park Service (NPS)National Mapping Program's minimum mapping unit of 0.5 ha is unwarranted because this scale would reduce the resolution of some classes (e.g., seep willow/coyote willow would likely be combined with tamarisk). While this would undoubtedly improve classification accuracies, it would not provide the community-level information about vegetation change that would benefit stakeholders. The identification of vegetation classes should follow NPS mapping approaches to complement the national effort and should incorporate the alternative analysis for community identification that is being incorporated into newer NPS mapping efforts. National Vegetation Classification is followed in this report for association- to formation-level categories. Accuracies could be improved by including more environmental variables such as stage elevation in the classification process and incorporating object-based classification methods. Another approach that may address the heterogeneous species issue and classification is to use spectral mixing analysis to estimate the fractional cover of species within each pixel and better quantify the cover of individual species that compose a cover class. Varying flights to capture vegetation at different times of the year might also help separate some vegetation classes, though the cost may be prohibitive. Lastly, photointerpretation instead of automated mapping could be tried. Photointerpretation would likely not improve accuracies in this case, howev
NASA Astrophysics Data System (ADS)
Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.
2012-07-01
It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic characteristics may be evaluated to get an indication for other situations. As to the assessment of the altimetric accuracy, we are going to do more analysis with points obtained under the forest canopy in order to be able to assess the real accuracy of the DTM in areas with forest cover. Studies that focus the development of new methodologies for obtaining Digital Elevation Models (DEM) are very important, especially in large scales, seeking to generate data with cost-benefit's advantages. This way, topographic features can be obtained for wider areas of our country, meeting the needs of most studies and activities related to the representation of these kind of data.
NASA Astrophysics Data System (ADS)
Muskett, R. R.; Lingle, C. S.; Echelmeyer, K. A.; Valentine, V. B.; Elsberg, D.
2001-12-01
Bagley Ice Valley, in the St. Elias and Chugach Mountains of south-central Alaska, is an integral part of the largest connected glacierized terrain on the North American continent. From the flow divide between Mt. Logan and Mt. St. Elias, Bagley Ice Valley flows west-northwest for some 90 km down a slope of less than 1o, at widths up to 15 km, to a saddle-gap where it turns south-west to become Bering Glacier. During 4-13 September 2000, an airborne survey of Bagley Ice Valley was performed by Intermap Technologies, Inc., using their Star-3i X-band SAR interferometer. The resulting digital elevation model (DEM) covers an area of 3243 km2. The DEM elevations are orthometric heights, in meters above the EGM96 geoid. The horizontal locations of the 10-m postings are with respect to the WGS84 ellipsoid. On 26 August 2000, 9 to 18 days prior to the Intermap Star-3i survey, a small-aircraft laser altimeter profile was acquired along the central flow line for validation. The laser altimeter data consists of elevations above the WGS84 ellipsoid and orthometric heights above GEOID99-Alaska. Assessment of the accuracy of the Intermap Star-3i DEM was made by comparison of both the DEM orthometric heights and elevations above the WGS84 ellipsoid with the laser altimeter data. Comparison of the orthometric heights showed an average difference of 5.4 +/- 1.0 m (DEM surface higher). Comparison of elevations above the WGS84 ellipsoid showed an average difference of -0.77 +/- 0.93 m (DEM surface lower). This indicates that the X-band Star-3i interferometer was penetrating the glacier surface by an expected small amount. The WGS84 comparison is well within the 3 m RMS accuracy quoted for GT-3 DEM products. Snow accumulation may have occurred, however, on Bagley Ice Valley between 26 August and 4-13 September 2000. This will be estimated using a mass balance model and used to correct the altimeter-derived surface heights. The new DEM of Bagley Ice Valley will provide a reference surface of high accuracy for glaciological and geodetic research using ICEsat and small-aircraft laser altimeter profiling of this glaciologically important region of south-central Alaska.
NASA Technical Reports Server (NTRS)
Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.
1991-01-01
Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.
NASA Astrophysics Data System (ADS)
Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.
2013-12-01
The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.
A comparative appraisal of hydrological behavior of SRTM DEM at catchment level
NASA Astrophysics Data System (ADS)
Sharma, Arabinda; Tiwari, K. N.
2014-11-01
The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for hydrological analysis provided any error/uncertainty therein is being properly evaluated and characterized.
Summary of the Validation of the Second Version of the Aster Gdem
NASA Astrophysics Data System (ADS)
Meyer, D. J.; Tachikawa, T.; Abrams, M.; Crippen, R.; Krieger, T.; Gesch, D.; Carabajal, C.
2012-07-01
On October 17, 2011, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released the second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). The first version of the ASTER GDEM, released on June 29, 2009, was compiled from over 1.2 million scene-based DEMs covering land surfaces between 83°N and 83°S latitudes. The second version (GDEM2) incorporates 260,000 additional scenes to improve coverage, a smaller correlation kernel to yield higher spatial resolution, and improved water masking. As with GDEM1, US and Japanese partners collaborated to validate GDEM2. Its absolute accuracy was within -0.20 meters on average when compared against 18,000 geodetic control points over the conterminous US (CONUS), with an accuracy of 17 meters at the 95% confidence level. The Japan study noted the GDEM2 differed from the 10-meter national elevation grid by -0.7 meters over bare areas, and by 7.4 meters over forested areas. The CONUS study noted a similar result, with the GDEM2 determined to be about 8 meters above the 1 arc-second US National Elevation Database (NED) over most forested areas, and more than a meter below NED over bare areas. A global ICESat study found the GDEM2 to be on average within 3 meters of altimeter-derived control. The Japan study noted a horizontal displacement of 0.23 pixels in GDEM2. A study from the US National Geospatial Intelligence Agency also determined horizontal displacement and vertical accuracy as compared to the 1 arc-second Shuttle Radar Topography Mission DEM. US and Japanese studies estimated the horizontal resolution of the GDEM2 to be between 71 and 82 meters. Finally, the number of voids and artifacts noted in GDEM1 were substantially reduced in GDEM2.
Semi-automated extraction of landslides in Taiwan based on SPOT imagery and DEMs
NASA Astrophysics Data System (ADS)
Eisank, Clemens; Hölbling, Daniel; Friedl, Barbara; Chen, Yi-Chin; Chang, Kang-Tsung
2014-05-01
The vast availability and improved quality of optical satellite data and digital elevation models (DEMs), as well as the need for complete and up-to-date landslide inventories at various spatial scales have fostered the development of semi-automated landslide recognition systems. Among the tested approaches for designing such systems, object-based image analysis (OBIA) stepped out to be a highly promising methodology. OBIA offers a flexible, spatially enabled framework for effective landslide mapping. Most object-based landslide mapping systems, however, have been tailored to specific, mainly small-scale study areas or even to single landslides only. Even though reported mapping accuracies tend to be higher than for pixel-based approaches, accuracy values are still relatively low and depend on the particular study. There is still room to improve the applicability and objectivity of object-based landslide mapping systems. The presented study aims at developing a knowledge-based landslide mapping system implemented in an OBIA environment, i.e. Trimble eCognition. In comparison to previous knowledge-based approaches, the classification of segmentation-derived multi-scale image objects relies on digital landslide signatures. These signatures hold the common operational knowledge on digital landslide mapping, as reported by 25 Taiwanese landslide experts during personal semi-structured interviews. Specifically, the signatures include information on commonly used data layers, spectral and spatial features, and feature thresholds. The signatures guide the selection and implementation of mapping rules that were finally encoded in Cognition Network Language (CNL). Multi-scale image segmentation is optimized by using the improved Estimation of Scale Parameter (ESP) tool. The approach described above is developed and tested for mapping landslides in a sub-region of the Baichi catchment in Northern Taiwan based on SPOT imagery and a high-resolution DEM. An object-based accuracy assessment is conducted by quantitatively comparing extracted landslide objects with landslide polygons that were visually interpreted by local experts. The applicability and transferability of the mapping system are evaluated by comparing initial accuracies with those achieved for the following two tests: first, usage of a SPOT image from the same year, but for a different area within the Baichi catchment; second, usage of SPOT images from multiple years for the same region. The integration of the common knowledge via digital landslide signatures is new in object-based landslide studies. In combination with strategies to optimize image segmentation this may lead to a more objective, transferable and stable knowledge-based system for the mapping of landslides from optical satellite data and DEMs.
Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang
2010-01-01
We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Effect of data compression on diagnostic accuracy in digital hand and chest radiography
NASA Astrophysics Data System (ADS)
Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita
1992-05-01
Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.
Krahenbuhl, Jason T; Cho, Seok-Hwan; Irelan, Jon; Bansal, Naveen K
2016-08-01
Little peer-reviewed information is available regarding the accuracy and precision of the occlusal contact reproduction of digitally mounted stereolithographic casts. The purpose of this in vitro study was to evaluate the accuracy and precision of occlusal contacts among stereolithographic casts mounted by digital occlusal registrations. Four complete anatomic dentoforms were arbitrarily mounted on a semi-adjustable articulator in maximal intercuspal position and served as the 4 different simulated patients (SP). A total of 60 digital impressions and digital interocclusal registrations were made with a digital intraoral scanner to fabricate 15 sets of mounted stereolithographic (SLA) definitive casts for each dentoform. After receiving a total of 60 SLA casts, polyvinyl siloxane (PVS) interocclusal records were made for each set. The occlusal contacts for each set of SLA casts were measured by recording the amount of light transmitted through the interocclusal records. To evaluate the accuracy between the SP and their respective SLA casts, the areas of actual contact (AC) and near contact (NC) were calculated. For precision analysis, the coefficient of variation (CoV) was used. The data was analyzed with t tests for accuracy and the McKay and Vangel test for precision (α=.05). The accuracy analysis showed a statistically significant difference between the SP and the SLA cast of each dentoform (P<.05). For the AC in all dentoforms, a significant increase was found in the areas of actual contact of SLA casts compared with the contacts present in the SP (P<.05). Conversely, for the NC in all dentoforms, a significant decrease was found in the occlusal contact areas of the SLA casts compared with the contacts in the SP (P<.05). The precision analysis demonstrated the different CoV values between AC (5.8 to 8.8%) and NC (21.4 to 44.6%) of digitally mounted SLA casts, indicating that the overall precision of the SLA cast was low. For the accuracy evaluation, statistically significant differences were found between the occlusal contacts of all digitally mounted SLA casts groups, with an increase in AC values and a decrease in NC values. For the precision assessment, the CoV values of the AC and NC showed the digitally articulated cast's inability to reproduce the uniform occlusal contacts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Temporal Data Fusion Approaches to Remote Sensing-Based Wetland Classification
NASA Astrophysics Data System (ADS)
Montgomery, Joshua S. M.
This thesis investigates the ecology of wetlands and associated classification in prairie and boreal environments of Alberta, Canada, using remote sensing technology to enhance classification of wetlands in the province. Objectives of the thesis are divided into two case studies, 1) examining how satellite borne Synthetic Aperture Radar (SAR), optical (RapidEye & SPOT) can be used to evaluate surface water trends in a prairie pothole environment (Shepard Slough); and 2) investigating a data fusion methodology combining SAR, optical and Lidar data to characterize wetland vegetation and surface water attributes in a boreal environment (Utikuma Regional Study Area (URSA)). Surface water extent and hydroperiod products were derived from SAR data, and validated using optical imagery with high accuracies (76-97% overall) for both case studies. High resolution Lidar Digital Elevation Models (DEM), Digital Surface Models (DSM), and Canopy Height Model (CHM) products provided the means for data fusion to extract riparian vegetation communities and surface water; producing model accuracies of (R2 0.90) for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to field and optical validation data. Integration of Alberta and Canadian wetland classifications systems used to classify and determine economic value of wetlands into the methodology produced thematic maps relevant for policy and decision makers for potential wetland monitoring and policy development.
Classification of permafrost active layer depth from remotely sensed and topographic evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddle, D.R.; Franklin, S.E.
1993-04-01
The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to thismore » study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth.« less
Estimating River Surface Elevation From ArcticDEM
NASA Astrophysics Data System (ADS)
Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.
2018-04-01
ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.
Optical digitizing and strategies to combine different views of an optical sensor
NASA Astrophysics Data System (ADS)
Duwe, Hans P.
1997-09-01
Non-contact digitization of objects and surfaces with optical sensors based on fringe or pattern projection in combination with a CCD-camera allows a representation of surfaces with pointclouds equals x, y, z data points. To digitize the total surface of an object, it is necessary to combine the different measurement data obtained by the optical sensor from different views. Depending on the size of the object and the required accuracy of the measured data, different sensor set-ups with handling system or a combination of linear and rotation axes are described. Furthermore, strategies to match the overlapping pointclouds of a digitized object are introduced. This is very important especially for the digitization of large objects like 1:1 car models, etc. With different sensor sizes, it is possible to digitize small objects like teeth, crowns, inlays, etc. with an overall accuracy of 20 micrometer as well as large objects like car models, with a total accuracy of 0.5 mm. The various applications in the field of optical digitization are described.
Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Excep...
Effects of a cochlear implant simulation on immediate memory in normal-hearing adults
Burkholder, Rose A.; Pisoni, David B.; Svirsky, Mario A.
2012-01-01
This study assessed the effects of stimulus misidentification and memory processing errors on immediate memory span in 25 normal-hearing adults exposed to degraded auditory input simulating signals provided by a cochlear implant. The identification accuracy of degraded digits in isolation was measured before digit span testing. Forward and backward digit spans were shorter when digits were degraded than when they were normal. Participants’ normal digit spans and their accuracy in identifying isolated digits were used to predict digit spans in the degraded speech condition. The observed digit spans in degraded conditions did not differ significantly from predicted digit spans. This suggests that the decrease in memory span is related primarily to misidentification of digits rather than memory processing errors related to cognitive load. These findings provide complementary information to earlier research on auditory memory span of listeners exposed to degraded speech either experimentally or as a consequence of a hearing-impairment. PMID:16317807
Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.
Ender, Andreas; Mehl, Albert
2013-02-01
A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (P<.001). Digital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (P<.001). More systematic deviations of the digital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.
2018-05-01
A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.
Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)
NASA Technical Reports Server (NTRS)
Schmalz, Tyler; Ryan, Jack
2011-01-01
Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.
A NEW INSAR DERIVED DEM OF BLACK RAPIDS GLACIER
NASA Astrophysics Data System (ADS)
Shugar, D. H.; Rabus, B.; Clague, J. J.
2009-12-01
We have constructed a new digital elevation model representing the 1995 surface of surge-type Black Rapids Glacier and the surrounding central Alaska Range, using ERS-1/2 repeat-pass interferometry. First, we isolated the topographic phase from three interferograms with contrasting perpendicular baselines. Next we attempted to automatically unwrap this topographic phase but encountered numerous errors due to the terrain containing areas of poor coherence from fringe aliasing, radar layover or shadow. We then consistently corrected these persistent phase-unwrapping errors in all three interferograms using an iterative semi-automated approach that capitalizes on the multi-baseline nature of the data set. Over the surface of Black Rapids Glacier, the accuracy of the new DEM is estimated at better than +/- 12 m. Ground-surveyed spot elevations from 1995 corroborate this accuracy estimate. Comparison of the new DEM with a 1951 U.S. Geological Survey topographic map, and with ground survey data from other years, shows the gradual return of Black Rapids Glacier to pre-surge conditions. In the 44-year period between 1951 and 1995 the observed average steepening of the longitudinal profile is ~0.6°. The maximum elevation changes in the ablation and accumulation zones are -256 m and +75 m, respectively, suggesting corresponding average rates of elevation change of about -5.8 m/yr and +1.7 m/yr. These rates are 1.5-2 times higher than those indicated by the ground survey spot elevation measurements over the period 1975 to 2005. Considering the significant overlap of the two periods of measurement, the inferred average rates for 1951-1975 would have to be very large (-7.5 m/yr and +2.3 m/yr, respectively) for these two findings to be consistent. A second comparison with the recently released ASTER G-DEM (data from 2001) led to no glaciologically usable results due to major artifacts in the ASTER G-DEM. We therefore conclude that the 1951 U.S. Geological Survey map and the ASTER G-DEM both appear biased over the Black Rapids Glacier surface and caution is advised when using either for quantitative estimates of elevation change over the glacier surface.
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-En; Huang, Wen-Jeng; Chang, Ping-Yu; Lo, Wei
2016-04-01
An unmanned aerial vehicle (UAV) with a digital camera is an efficient tool for geologists to investigate structure patterns in the field. By setting ground control points (GCPs), UAV-based photogrammetry provides high-quality and quantitative results such as a digital surface model (DSM) and orthomosaic and elevational images. We combine the elevational outcrop 3D model and a digital surface model together to analyze the structural characteristics of Sanyi active fault in Houli-Fengyuan area, western Taiwan. Furthermore, we collect resistivity survey profiles and drilling core data in the Fengyuan District in order to build the subsurface fault geometry. The ground sample distance (GSD) of an elevational outcrop 3D model is 3.64 cm/pixel in this study. Our preliminary result shows that 5 fault branches are distributed 500 meters wide on the elevational outcrop and the width of Sanyi fault zone is likely much great than this value. Together with our field observations, we propose a structural evolution model to demonstrate how the 5 fault branches developed. The resistivity survey profiles show that Holocene gravel was disturbed by the Sanyi fault in Fengyuan area.
Larsen, C.F.; Motyka, R.J.; Arendt, A.A.; Echelmeyer, K.A.; Geissler, P.E.
2007-01-01
The digital elevation model (DEM) from the 2000 Shuttle Radar Topography Mission (SRTM) was differenced from a composite DEM based on air photos dating from 1948 to 1987 to detennine glacier volume changes in southeast Alaska and adjoining Canada. SRTM accuracy was assessed at ??5 in through comparison with airborne laser altimetry and control locations measured with GPS. Glacier surface elevations lowered over 95% of the 14,580 km2 glacier-covered area analyzed, with some glaciers thinning as much as 640 in. A combination of factors have contributed to this wastage, including calving retreats of tidewater and lacustrine glaciers and climate change. Many glaciers in this region are particularly sensitive to climate change, as they have large areas at low elevations. However, several tidewater glaciers that had historically undergone calving retreats are now expanding and appear to be in the advancing stage of the tidewater glacier cycle. The net average rate of ice loss is estimated at 16.7 ?? 4.4 km3/yr, equivalent to a global sea level rise contribution of 0.04 ?? 0.01 mm/yr. Copyright 2007 by the American Geophysical Union.
Glacier-specific elevation changes in western Alaska
NASA Astrophysics Data System (ADS)
Paul, Frank; Le Bris, Raymond
2013-04-01
Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0.65 m / year) are very similar to the mean of the lake-calving and tidewater glaciers (about -0.6 m / year), but much more negative than for the land-terminating glaciers (about -0.24 m / year). The two mass balance glaciers are thus well representative for the entire region, but not for their own class. The different ways of considering positive elevation changes (e.g. setting them to zero or no data) influence the total values, but has otherwise little impact on the results (e.g. the correction factors are similar). The massive elevation loss of Columbia Glacier (-2.8 m / year) is exceptional and strongly influences the statistics when area-weighting is used to determine the regional mean. For the entire region this method yields more negative values for land-terminating and tidewater glaciers than the arithmetically averaged values, but for the lake-calving glaciers both are about the same.
Accuracy and consistency of weights provided by home bathroom scales
2013-01-01
Background Self-reported body weight is often used for calculation of Body Mass Index because it is easy to collect. Little is known about sources of error introduced by using bathroom scales to measure weight at home. The objective of this study was to evaluate the accuracy and consistency of digital versus dial-type bathroom scales commonly used for self-reported weight. Methods Participants brought functioning bathroom scales (n = 18 dial-type, n = 43 digital-type) to a central location. Trained researchers assessed accuracy and consistency using certified calibration weights at 10 kg, 25 kg, 50 kg, 75 kg, 100 kg, and 110 kg. Data also were collected on frequency of calibration, age and floor surface beneath the scale. Results All participants reported using their scale on hard surface flooring. Before calibration, all digital scales displayed 0, but dial scales displayed a mean absolute initial weight of 0.95 (1.9 SD) kg. Digital scales accurately weighed test loads whereas dial-type scale weights differed significantly (p < 0.05). Imprecision of dial scales was significantly greater than that of digital scales at all weights (p < 0.05). Accuracy and precision did not vary by scale age. Conclusions Digital home bathroom scales provide sufficiently accurate and consistent weights for public health research. Reminders to zero scales before each use may further improve accuracy of self-reported weight. PMID:24341761
Comprehension of synthetic speech and digitized natural speech by adults with aphasia.
Hux, Karen; Knollman-Porter, Kelly; Brown, Jessica; Wallace, Sarah E
2017-09-01
Using text-to-speech technology to provide simultaneous written and auditory content presentation may help compensate for chronic reading challenges if people with aphasia can understand synthetic speech output; however, inherent auditory comprehension challenges experienced by people with aphasia may make understanding synthetic speech difficult. This study's purpose was to compare the preferences and auditory comprehension accuracy of people with aphasia when listening to sentences generated with digitized natural speech, Alex synthetic speech (i.e., Macintosh platform), or David synthetic speech (i.e., Windows platform). The methodology required each of 20 participants with aphasia to select one of four images corresponding in meaning to each of 60 sentences comprising three stimulus sets. Results revealed significantly better accuracy given digitized natural speech than either synthetic speech option; however, individual participant performance analyses revealed three patterns: (a) comparable accuracy regardless of speech condition for 30% of participants, (b) comparable accuracy between digitized natural speech and one, but not both, synthetic speech option for 45% of participants, and (c) greater accuracy with digitized natural speech than with either synthetic speech option for remaining participants. Ranking and Likert-scale rating data revealed a preference for digitized natural speech and David synthetic speech over Alex synthetic speech. Results suggest many individuals with aphasia can comprehend synthetic speech options available on popular operating systems. Further examination of synthetic speech use to support reading comprehension through text-to-speech technology is thus warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Heathfield, D.; Walker, I. J.; Grilliot, M. J.
2016-12-01
The recent emergence of terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) as mapping platforms in geomorphology research has allowed for expedited acquisition of high spatial and temporal resolution, three-dimensional topographic datasets. TLS provides dense 3D `point cloud' datasets that require careful acquisition strategies and appreciable post-processing to produce accurate digital elevation models (DEMs). UAS provide overlapping nadir and oblique imagery that can be analysed using Structure from Motion (SfM) photogrammetry software to provide accurate, high-resolution orthophoto mosaics and accurate digital surface models (DSMs). Both methods yield centimeter to decimeter scale accuracy, depending on various hardware and field acquisition considerations (e.g., camera resolution, flight height, on-site GNSS control, etc.). Combined, the UAS-SfM workflow provides a comparable and more affordable solution to the more expensive TLS or aerial LiDAR methods. This paper compares and contrasts SfM and TLS survey methodologies and related workflow costs and benefits as used to quantify and examine seasonal beach-dune erosion and recovery processes at a site (Calvert Island) on British Columbia's central coast in western Canada. Seasonal SfM- and TLS-derived DEMs were used to quantify spatial patterns of surface elevation change, geomorphic responses, and related significant sediment volume changes. Cluster maps of positive (depositional) and negative (erosional) change are analysed to detect and interpret the geomorphic and sediment budget responses following an erosive water level event during winter 2016 season (Oct. 2015 - Apr. 2016). Vantage cameras also provided qualitative data on the frequency and magnitude of environmental drivers (e.g., tide, wave, wind forcing) of erosion and deposition events during the observation period. In addition, we evaluate the costs, time expenditures, and accuracy considerations for both SfM and TLS methodologies.
Classification of vegetation in an open landscape using full-waveform airborne laser scanner data
NASA Astrophysics Data System (ADS)
Alexander, Cici; Deák, Balázs; Kania, Adam; Mücke, Werner; Heilmeier, Hermann
2015-09-01
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels - Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) - based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen's kappa coefficient, κ). The accuracies at Levels 2-4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.
NASA Astrophysics Data System (ADS)
Delikaraoglou, D.; Mintourakis, I.; Kallianou, F.
2009-04-01
With the realization of the Shuttle Radar Topographic Mission (SRTM) and the free distribution of its global elevation dataset with 3 arcsec (90 m) resolution and less than 16 m vertical accuracy, together with the availability of the higher resolution (30 m) and accuracy (10 m) Digital Terrain Models (DTM) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), these two valuable sources of uniform DEM data represent a revolution in the world of terrain modelling. DEMs are an important source of data for the generation of high resolution geoids since they provide the high-frequency content of the gravity field spectrum and are suitable for the computation of terrain effects to gravity and indirect effects to the geoid, thus allowing the combination of global geopotential models, local gravity anomalies and information about the earth's topography (represented by a given DEM). However, although such models are available for land, there are no readily accessible Digital Bathymetry Models (DBMs) of equivalent quality for the coastal and oceanic regions. Most of the global DBM's (e.g. ETOPO1, SRTM30, and GEBCO global bathymetric grid) are compilations of heterogeneous data with medium resolution and accuracy. This prevents to exploit the potential of the recent high resolution (1 arcmin) marine free-air gravity anomalies datasets derived from satellite altimetry (such as the DNSC08, and the Sandwell & Smith v18.1 (S&Sv18.1) global solutions) in conjunction with such global DBM's. Fortunately, for some regions, recently have become available DBM's of much better accuracy and resolution, such as the DBM of 1 km resolution for many regions of the Mediterranean Sea which is distributed by IFREMER, the French Research Institute for Exploitation of the Sea. The scope of this study is to use this latest regional DBM in combination with the newly available DNSC08 and SSV18.1 global marine free-air gravity anomalies datasets for marine and near shore geoid modelling of archipelagic (island) areas. We have concentrated in two test regions: (a) the Catalano-Balearic Sea (South of Spain in the NW Meditteranean), where adequate marine and land gravity data allow a detailed evaluation of our processing methodologies and their results and, (b) the Aegean Sea where the presence of many islands in varying distances from the mainland Greece and located on the continental shelf and/or divided by steep sea floor topography present some unique challenges for any high resolution geoid modelling efforts. For both test regions, we generated a combined DEM (C-DEM) using the IFREMER and SRTM 30 arcsec bathymetric data for the sea areas and SRTM 3 arcsec data for the surrounding land areas. In this contribution, we discuss various computational aspects relating to the so-called "Direct Topographical Effect" (DTE) and the "Indirect Topographical Effect" (ITE), the two most significant topographical effects that have to be evaluated when a precise geoid is being compiled. In addition, we outline the evaluation and the impact of the results obtained, especially with regard to the differences in the geoid models when different elevation data are used, and point out the main limitations and possibilities for further improvements in the use of the aforementioned satellite and terrestrial data for regional and local geoid mapping in coastal and island regions. Keywords: IFREMER, SRTM, terrain effects, free-air gravity anomalies, geoid modelling,Digital Bathymetry Models.
Reconstruction of time-varying tidal flat topography using optical remote sensing imageries
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn
2017-09-01
Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.
NASA Astrophysics Data System (ADS)
Leitão, João P.; Moy de Vitry, Matthew; Scheidegger, Andreas; Rieckermann, Jörg
2016-04-01
Precise and detailed digital elevation models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM, such as airplane light detection and ranging (lidar) DEMs and point and contour maps, remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of unmanned aerial vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, 14 UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch, and (iv) weather conditions. In addition, we compared the best-quality UAV DEM to a conventional lidar-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to lidar-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g. buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional lidar-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is their flexibility that enables more frequent, local, and affordable elevation data updates, allowing, for example, to capture different tree foliage conditions.
Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros
2014-01-01
When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601
Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan
2009-01-01
Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data. PMID:22573971
Gan, Ning; Xiong, Yaoyang; Jiao, Ting
2016-01-01
Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable. PMID:27383409
NASA Astrophysics Data System (ADS)
Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas
2013-04-01
The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared by Bulgaria and Greece, was selected as the case study area, because of its importance to the regional and national economy of Greece and because of the numerous flood events recorded in the past. The results of the simulation processing demonstrated the importance of high resolution relief models for estimating the potential flood hazard zones in order to mitigate the catastrophe caused, both in economic and environmental terms, by this type of extreme event.
NASA Astrophysics Data System (ADS)
Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe
1999-07-01
In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite-platforms or aircraft-platforms. To achieve the highest horizontal accuracy requirements stated in ICAO Annex 14 for runway centerlines (0.50 meters), at the present moment only images acquired from aircraft based sensors can be used as source data. Still, ground reference by GCP (Ground Control-points) is obligatory. A DEM (Digital Elevation Model) can be created automatically in the photogrammetric process. It can be used as highly accurate elevation model for the airport area. The final verification of airport data is accomplished by independent surveyed runway- and taxiway- control-points. The concept of generation airport-data by means of remote sensing and photogrammetry was tested with the Stuttgart/Germany airport. The results proved that the final accuracy was within the accuracy specification defined by ICAO Annex 14.
Hein, L R
2001-10-01
A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.
Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.
1987-01-01
Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.
The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. Anmore » example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).« less
Existing methods for improving the accuracy of digital-to-analog converters
NASA Astrophysics Data System (ADS)
Eielsen, Arnfinn A.; Fleming, Andrew J.
2017-09-01
The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.
Two high accuracy digital integrators for Rogowski current transducers.
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
Two high accuracy digital integrators for Rogowski current transducers
NASA Astrophysics Data System (ADS)
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
Bell, M R; Britson, P J; Chu, A; Holmes, D R; Bresnahan, J F; Schwartz, R S
1997-01-01
We describe a method of validation of computerized quantitative coronary arteriography and report the results of a new UNIX-based quantitative coronary arteriography software program developed for rapid on-line (digital) and off-line (digital or cinefilm) analysis. The UNIX operating system is widely available in computer systems using very fast processors and has excellent graphics capabilities. The system is potentially compatible with any cardiac digital x-ray system for on-line analysis and has been designed to incorporate an integrated database, have on-line and immediate recall capabilities, and provide digital access to all data. The accuracy (mean signed differences of the observed minus the true dimensions) and precision (pooled standard deviations of the measurements) of the program were determined x-ray vessel phantoms. Intra- and interobserver variabilities were assessed from in vivo studies during routine clinical coronary arteriography. Precision from the x-ray phantom studies (6-In. field of view) for digital images was 0.066 mm and for digitized cine images was 0.060 mm. Accuracy was 0.076 mm (overestimation) for digital images compared to 0.008 mm for digitized cine images. Diagnostic coronary catheters were also used for calibration; accuracy.varied according to size of catheter and whether or not they were filled with iodinated contrast. Intra- and interobserver variabilities were excellent and indicated that coronary lesion measurements were relatively user-independent. Thus, this easy to use and very fast UNIX based program appears to be robust with optimal accuracy and precision for clinical and research applications.
Digital image analysis: improving accuracy and reproducibility of radiographic measurement.
Bould, M; Barnard, S; Learmonth, I D; Cunningham, J L; Hardy, J R
1999-07-01
To assess the accuracy and reproducibility of a digital image analyser and the human eye, in measuring radiographic dimensions. We experimentally compared radiographic measurement using either an image analyser system or the human eye with digital caliper. The assessment of total hip arthroplasty wear from radiographs relies on both the accuracy of radiographic images and the accuracy of radiographic measurement. Radiographs were taken of a slip gauge (30+/-0.00036 mm) and slip gauge with a femoral stem. The projected dimensions of the radiographic images were calculated by trigonometry. The radiographic dimensions were then measured by blinded observers using both techniques. For a single radiograph, the human eye was accurate to 0.26 mm and reproducible to +/-0.1 mm. In comparison the digital image analyser system was accurate to 0.01 mm with a reproducibility of +/-0.08 mm. In an arthroplasty model, where the dimensions of an object were corrected for magnification by the known dimensions of a femoral head, the human eye was accurate to 0.19 mm, whereas the image analyser system was accurate to 0.04 mm. The digital image analysis system is up to 20 times more accurate than the human eye, and in an arthroplasty model the accuracy of measurement increases four-fold. We believe such image analysis may allow more accurate and reproducible measurement of wear from standard follow-up radiographs.
Marghalani, Amin; Weber, Hans-Peter; Finkelman, Matthew; Kudara, Yukio; El Rafie, Khaled; Papaspyridakos, Panos
2018-04-01
To the authors' knowledge, while accuracy outcomes of the TRIOS scanner have been compared with conventional impressions, no available data are available regarding the accuracy of digital scans with the Omnicam and True Definition scanners versus conventional impressions for partially edentulous arches. The purpose of this in vitro study was to compare the accuracy of digital implant scans using 2 different intraoral scanners (IOSs) with that of conventional impressions for partially edentulous arches. Two partially edentulous mandibular casts with 2 implant analogs with a 30-degree angulation from 2 different implant systems (Replace Select RP; Nobel Biocare and Tissue level RN; Straumann) were used as controls. Sixty digital models were made from these 2 definitive casts in 6 different groups (n=10). Splinted implant-level impression procedures followed by digitization were used to produce the first 2 groups. The next 2 groups were produced by digital scanning with Omnicam. The last 2 groups were produced by digital scanning with the True Definition scanner. Accuracy was evaluated by superimposing the digital files of each test group onto the digital file of the controls with inspection software. The difference in 3-dimensional (3D) deviations (median ±interquartile range) among the 3 impression groups for Nobel Biocare was statistically significant among all groups (P<.001), except for the Omnicam (20 ±4 μm) and True Definition (15 ±6 μm) groups; the median ±interquartile range for the conventional group was 39 ±18 μm. The difference in 3D deviations among the 3 impression groups for Straumann was statistically significant among all groups (P=.003), except for the conventional impression (22 ±5 μm) and True Definition (17 ±5 μm) groups; the median ±interquartile range for the Omnicam group was 26 ±15 μm. The difference in 3D deviations between the 2 implant systems was significant for the Omnicam (P=.011) and conventional (P<.001) impression techniques but not for the True Definition technique (P=.247). Within the limitations of this study, both the impression technique and the implant system affected accuracy. The True Definition technique had the fewest 3D deviations compared with the other 2 techniques; however, the accuracy of all impression techniques was within clinically acceptable levels, and not all differences were statistically significant. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Rath, Timo; Tontini, Gian E; Nägel, Andreas; Vieth, Michael; Zopf, Steffen; Günther, Claudia; Hoffman, Arthur; Neurath, Markus F; Neumann, Helmut
2015-10-22
Distal diminutive colorectal polyps are common and accurate endoscopic prediction of hyperplastic or adenomatous polyp histology could reduce procedural time, costs and potential risks associated with the resection. Within this study we assessed whether digital chromoendoscopy can accurately predict the histology of distal diminutive colorectal polyps according to the ASGE PIVI statement. In this prospective cohort study, 224 consecutive patients undergoing screening or surveillance colonoscopy were included. Real time histology of 121 diminutive distal colorectal polyps was evaluated using high-definition endoscopy with digital chromoendoscopy and the accuracy of predicting histology with digital chromoendoscopy was assessed. The overall accuracy of digital chromoendoscopy for prediction of adenomatous polyp histology was 90.1 %. Sensitivity, specificity, positive and negative predictive values were 93.3, 88.7, 88.7, and 93.2 %, respectively. In high-confidence predictions, the accuracy increased to 96.3 % while sensitivity, specificity, positive and negative predictive values were calculated as 98.1, 94.4, 94.5, and 98.1 %, respectively. Surveillance intervals with digital chromoendoscopy were correctly predicted with >90 % accuracy. High-definition endoscopy in combination with digital chromoendoscopy allowed real-time in vivo prediction of distal colorectal polyp histology and is accurate enough to leave distal colorectal polyps in place without resection or to resect and discard them without pathologic assessment. This approach has the potential to reduce costs and risks associated with the redundant removal of diminutive colorectal polyps. ClinicalTrials NCT02217449.
Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps
NASA Astrophysics Data System (ADS)
Zlinszky, A.
2009-04-01
Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown that the topography of the lake floor has not changed measurably in the last hundred years. The bathymetric contours of Lake Balaton depicted on the georeferenced Krieger-map were digitized and overlain on the present-day DEM of the lake floor. The elevation profile of these lines was used to calculate the original elevation of the water level of the lake with the accuracy of one meter. The height of the water table around the lake depends closely on the water level of the lake, but wetlands can retain water and thus sustain a higher water table in the tributary valleys than in the lake itself. In order to measure the elevation of the water table around the lake, the borders of the water-logged areas on the southern shore of the lake were also digitized from the sheets of the First Military Survey and traced on a DEM of the hills on the southern side of the lake. The elevation of the water level in these wetlands was calculated based on these profiles. The water level in some valleys adjoining the lake is significantly higher than the water level of the lake itself, which shows that the water balance of these wetlands was mostly independent of the fluctuation of the lake. Some other large wetlands have borders that are in the same elevation as the shores of the lake itself, which shows that these wetlands are in close connection with the lake. The mapping of these historic wetland properties provides a valuable guide for future habitat restoration efforts.
Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel
The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.
Ender, Andreas; Mehl, Albert
2015-01-01
To investigate the accuracy of conventional and digital impression methods used to obtain full-arch impressions by using an in-vitro reference model. Eight different conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; and irreversible hydrocolloid, ALG) and digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; and Lava COS, LAV) full-arch impressions were obtained from a reference model with a known morphology, using a highly accurate reference scanner. The impressions obtained were then compared with the original geometry of the reference model and within each test group. A point-to-point measurement of the surface of the model using the signed nearest neighbour method resulted in a mean (10%-90%)/2 percentile value for the difference between the impression and original model (trueness) as well as the difference between impressions within a test group (precision). Trueness values ranged from 11.5 μm (VSE) to 60.2 μm (POE), and precision ranged from 12.3 μm (VSE) to 66.7 μm (POE). Among the test groups, VSE, VSES, and CER showed the highest trueness and precision. The deviation pattern varied with the impression method. Conventional impressions showed high accuracy across the full dental arch in all groups, except POE and ALG. Conventional and digital impression methods show differences regarding full-arch accuracy. Digital impression systems reveal higher local deviations of the full-arch model. Digital intraoral impression systems do not show superior accuracy compared to highly accurate conventional impression techniques. However, they provide excellent clinical results within their indications applying the correct scanning technique.
Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.
1987-01-01
A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular databases, such as the U.S. Department of Agriculture's SCS/S015 (Soil Survey Staff, 1983), to archive the large amounts of information that are collected in conjunction with mapping of natural resources in an easily retrievable manner.During the past 4 years the U.S. Geological Survey's EROS Data Center, in a cooperative effort with the Bureau of Land Management (BLM) and the Soil Conservation Service (SCS), developed a procedure that uses spatial and tabular databases to generate elevation, slope, aspect, and spectral map products that can be used during soil premapping. The procedure results in tabular data, residing in a database management system, that are indexed to the final soil delineations and help quantify soil map unit composition.The procedure was developed and tested on soil surveys on over 600 000 ha in Wyoming, Nevada, and Idaho. A transfer of technology from the EROS Data Center to the BLM will enable the Denver BLM Service Center to use this procedure in soil survey operations on BLM lands. Also underway is a cooperative effort between the EROS Data Center and SCS to define and evaluate maps that can be produced as derivatives of digital elevation data for 7.5-min quadrangle areas, such as those used during the premapping stage of the soil surveys mentioned above, the idea being to make such products routinely available.The procedure emphasizes the applications of digital elevation and spectral data to order-three soil surveys on rangelands, and will:Incorporate digital terrain and spectral data into a spatial database for soil surveys.Provide hardcopy products (that can be generated from digital elevation model and spectral data) that are useful during the soil pre-mapping process.Incorporate soil premaps into a spatial database that can be accessed during the soil survey process along with terrain and spectral data.Summarize useful quantitative information for soil mapping and for making interpretations for resource management.
Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV
NASA Astrophysics Data System (ADS)
Khatiwada, Bikalpa; Budge, Scott E.
2017-05-01
Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.
[Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].
Krimmel, M; Kluba, S; Dietz, K; Reinert, S
2005-03-01
The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.
`Dem DEMs: Comparing Methods of Digital Elevation Model Creation
NASA Astrophysics Data System (ADS)
Rezza, C.; Phillips, C. B.; Cable, M. L.
2017-12-01
Topographic details of Europa's surface yield implications for large-scale processes that occur on the moon, including surface strength, modification, composition, and formation mechanisms for geologic features. In addition, small scale details presented from this data are imperative for future exploration of Europa's surface, such as by a potential Europa Lander mission. A comparison of different methods of Digital Elevation Model (DEM) creation and variations between them can help us quantify the relative accuracy of each model and improve our understanding of Europa's surface. In this work, we used data provided by Phillips et al. (2013, AGU Fall meeting, abs. P34A-1846) and Schenk and Nimmo (2017, in prep.) to compare DEMs that were created using Ames Stereo Pipeline (ASP), SOCET SET, and Paul Schenk's own method. We began by locating areas of the surface with multiple overlapping DEMs, and our initial comparisons were performed near the craters Manannan, Pwyll, and Cilix. For each region, we used ArcGIS to draw profile lines across matching features to determine elevation. Some of the DEMs had vertical or skewed offsets, and thus had to be corrected. The vertical corrections were applied by adding or subtracting the global minimum of the data set to create a common zero-point. The skewed data sets were corrected by rotating the plot so that it had a global slope of zero and then subtracting for a zero-point vertical offset. Once corrections were made, we plotted the three methods on one graph for each profile of each region. Upon analysis, we found relatively good feature correlation between the three methods. The smoothness of a DEM depends on both the input set of images and the stereo processing methods used. In our comparison, the DEMs produced by SOCET SET were less smoothed than those from ASP or Schenk. Height comparisons show that ASP and Schenk's model appear similar, alternating in maximum height. SOCET SET has more topographic variability due to its decreased smoothing, which is borne out by preliminary offset calculations. In the future, we plan to expand upon this preliminary work with more regions of Europa, continue quantifying the height differences and relative accuracy of each method, and generate more DEMs to expand our available comparison regions.
Sim, Ji-Young; Jang, Yeon; Kim, Woong-Chul; Kim, Hae-Young; Lee, Dong-Hwan; Kim, Ji-Hwan
2018-03-31
This study aimed to evaluate and compare the accuracy. A reference model was prepared with three prepared teeth for three types of restorations: single crown, 3-unit bridge, and inlay. Stone models were fabricated from conventional impressions. Digital impressions of the reference model were created using an intraoral scanner (digital models). Physical models were fabricated using a three-dimensional (3D) printer. Reference, stone, and 3D printed models were subsequently scanned using an industrial optical scanner; files were exported in a stereolithography file format. All datasets were superimposed using 3D analysis software to evaluate the accuracy of the complete arch and trueness of the preparations. One-way and two-way analyses of variance (ANOVA) were performed to compare the accuracy among the three model groups and evaluate the trueness among the three types of preparation. For the complete arch, significant intergroup differences in precision were observed for the three groups (p<.001). However, no significant difference in trueness was found between the stone and digital models (p>.05). 3D printed models had the poorest accuracy. A two-way ANOVA revealed significant differences in trueness among the model groups (p<.001) and types of preparation (p<.001). Digital models had smaller root mean square values of trueness of the complete arch and preparations than stone models. However, the accuracy of the complete arch and trueness of the preparations of 3D printed models were inferior to those of the other groups. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Wilk, Brian L
2015-01-01
Over the course of the past two to three decades, intraoral digital impression systems have gained acceptance due to high accuracy and ease of use as they have been incorporated into the fabrication of dental implant restorations. The use of intraoral digital impressions enables the clinician to produce accurate restorations without the unpleasant aspects of traditional impression materials and techniques. This article discusses the various types of digital impression systems and their accuracy compared to traditional impression techniques. The cost, time, and patient satisfaction components of both techniques will also be reviewed.
A hierarchical network-based algorithm for multi-scale watershed delineation
NASA Astrophysics Data System (ADS)
Castronova, Anthony M.; Goodall, Jonathan L.
2014-11-01
Watershed delineation is a process for defining a land area that contributes surface water flow to a single outlet point. It is a commonly used in water resources analysis to define the domain in which hydrologic process calculations are applied. There has been a growing effort over the past decade to improve surface elevation measurements in the U.S., which has had a significant impact on the accuracy of hydrologic calculations. Traditional watershed processing on these elevation rasters, however, becomes more burdensome as data resolution increases. As a result, processing of these datasets can be troublesome on standard desktop computers. This challenge has resulted in numerous works that aim to provide high performance computing solutions to large data, high resolution data, or both. This work proposes an efficient watershed delineation algorithm for use in desktop computing environments that leverages existing data, U.S. Geological Survey (USGS) National Hydrography Dataset Plus (NHD+), and open source software tools to construct watershed boundaries. This approach makes use of U.S. national-level hydrography data that has been precomputed using raster processing algorithms coupled with quality control routines. Our approach uses carefully arranged data and mathematical graph theory to traverse river networks and identify catchment boundaries. We demonstrate this new watershed delineation technique, compare its accuracy with traditional algorithms that derive watershed solely from digital elevation models, and then extend our approach to address subwatershed delineation. Our findings suggest that the open-source hierarchical network-based delineation procedure presented in the work is a promising approach to watershed delineation that can be used summarize publicly available datasets for hydrologic model input pre-processing. Through our analysis, we explore the benefits of reusing the NHD+ datasets for watershed delineation, and find that the our technique offers greater flexibility and extendability than traditional raster algorithms.
NASA Astrophysics Data System (ADS)
Pai, H.; Tyler, S.
2017-12-01
Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.
Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul
2013-01-01
Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.
Filling the voids in the SRTM elevation model — A TIN-based delta surface approach
NASA Astrophysics Data System (ADS)
Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas
The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.
Characterization of a 16-Bit Digitizer for Lidar Data Acquisition
NASA Technical Reports Server (NTRS)
Williamson, Cynthia K.; DeYoung, Russell J.
2000-01-01
A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.
Mills, Anne M; Gradecki, Sarah E; Horton, Bethany J; Blackwell, Rebecca; Moskaluk, Christopher A; Mandell, James W; Mills, Stacey E; Cathro, Helen P
2018-01-01
Prior work has shown that digital images and microscopic slides can be interpreted with comparable diagnostic accuracy. Although accuracy has been well-validated, the interpretative time for digital images has scarcely been studied and concerns about efficiency remain a major barrier to adoption. We investigated the efficiency of digital pathology when compared with glass slide interpretation in the diagnosis of surgical pathology biopsy and resection specimens. Slides were pulled from 510 surgical pathology cases from 5 organ systems (gastrointestinal, gynecologic, liver, bladder, and brain). Original diagnoses were independently confirmed by 2 validating pathologists. Diagnostic slides were scanned using the Philips IntelliSite Pathology Solution. Each case was assessed independently on digital and optical by 3 reading pathologists, with a ≥6 week washout period between modalities. Reading pathologists recorded assessment times for each modality; digital times included time to load the case. Diagnostic accuracy was determined based on whether a rendered diagnosis differed significantly from the original diagnosis. Statistical analysis was performed to assess for differences in interpretative times across modalities. All 3 reading pathologists showed comparable diagnostic accuracy across optical and digital modalities (mean major discordance rates with original diagnosis: 4.8% vs. 4.4%, respectively). Mean assessment times ranged from 1.2 to 9.1 seconds slower on digital versus optical. The slowest reader showed a significant learning effect during the course of the study so that digital assessment times decreased over time and were comparable with optical times by the end of the series. Organ site and specimen type did not significantly influence differences in interpretative times. In summary, digital image reading times compare favorably relative to glass slides across a variety of organ systems and specimen types. Mean increase in assessment time is 4 seconds/case. This time can be minimized with experience and may be further balanced by the improved ease of electronic chart access allowed by digital slide viewing, as well as quantitative assessments which can be expedited on digital images.
Comparison of digital elevation models for aquatic data development.
Sharon Clarke; Kelly Burnett
2003-01-01
Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and commonly used in analyzing aquatic systems. However, these DEMs are of relatively coarse resolution, were inconsistently produced (i.e., Level 1 versus Level 2 DEMs), and lack drainage enforcement. Such issues may hamper efforts to accurately model...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Restoration Of MEX SRC Images For Improved Topography: A New Image Product
NASA Astrophysics Data System (ADS)
Duxbury, T. C.
2012-12-01
Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.
Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal
2009-01-01
We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.
Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring
NASA Astrophysics Data System (ADS)
Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing
2018-05-01
To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.
Effect of high altitude on blood glucose meter performance.
Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan
2002-01-01
Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments.
Publications - DDS 4 | Alaska Division of Geological & Geophysical Surveys
Datasets of Alaska: Alaska Division of Geological & Geophysical Surveys Digital Data Series 4, http ; Alaska Statewide Maps; Alaska, State of; Digital Elevation Model; Digital Surface Model (DSM); Geologic
Assessment of HRSC Digital Terrain Models Produced for the South Polar Residual Cap
NASA Astrophysics Data System (ADS)
Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
The current Digital Terrain Models available for Mars consist of NASA MOLA (Mars Orbital Laser Altimeter) Digital Terrain Models with an average resolution of 112 m/ pixel (512 pixels/degree) for the polar region. The ESA/DLR High Resolution Stereo Camera is currently orbiting Mars and mapping its surface, 98% with resolution of ≤100 m/pixel and better and 100% at lower resolution [1]. It is possible to produce Digital Terrain Models from HRSC images using various methods. In this study, the method developed on Kim and Muller [2] which uses the VICAR open source program together with photogrammetry sofrware from DLR (Deutschen Zentrums für Luft- und Raumfahrt) with image matching based on the GOTCHA (Gruen-Otto-Chau) algorithm [3]. Digital Terrain Models have been processed over the South Pole with emphasis on areas around South Polar Residual Cap from High Resolution Stereo Camera images [4]. Digital Terrain Models have been produced for 31 orbits out of 149 polar orbits available. This study analyses the quality of the DTMs including an assessment of accuracy of elevations using the MOLA MEGDR (Mission Experiment Gridded Data Records) which has roughly 42 million MOLA PEDR (Precision Experiment Data Records) points between latitudes of 78 o -90 o S. The issues encountered in the production of Digital Terrain Models will be described and the statistical results and assessment method will be presented. The resultant DTMs will be accessible via http://i-Mars.eu/web-GIS References: [1] Neukum, G. et. al, 2004. Mars Express: The Scientific Payload pp. 17-35. [2] Kim, J.-R. and J.-P. Muller. 2009. PSS vol. 57, pp. 2095-2112. [3] Shin, D. and J.-P. Muller. 2012. Pattern Recognition, 45(10), 3795 -3809. [4] Putri, A.R. D., et al., Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 463-469 Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n ˚ 607379. The first author would like to acknowledge support for her studies from Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, Republic of Indonesia. The authors would also like to thank Alexander Dumke (Freie Universitaet Berlin) for providing the EXTORI exterior orientation elements which were critical in the production of accuracy geolocations.
The Effect of Pixel Size on the Accuracy of Orthophoto Production
NASA Astrophysics Data System (ADS)
Kulur, S.; Yildiz, F.; Selcuk, O.; Yildiz, M. A.
2016-06-01
In our country, orthophoto products are used by the public and private sectors for engineering services and infrastructure projects, Orthophotos are particularly preferred due to faster and are more economical production according to vector digital photogrammetric production. Today, digital orthophotos provide an expected accuracy for engineering and infrastructure projects. In this study, the accuracy of orthophotos using pixel sizes with different sampling intervals are tested for the expectations of engineering and infrastructure projects.
Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir
2014-01-01
Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318
Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...
2015-03-25
Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less
Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon
Davis, Philip A.; Staid, Matthew I.; Plescia, Jeffrey B.; Johnson, Jeffrey R.
2002-01-01
This study examined various types of remote-sensing data that have been acquired during a 12-month period over a portion of the Colorado River corridor to determine the type of data and conditions for data acquisition that provide the optimum classification results for mapping riparian vegetation. Issues related to vegetation mapping included time of year, number and positions of wavelength bands, and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data. Image data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites containing riparian vegetation. Results show that digitally acquired data produce higher and more consistent classification accuracies for mapping vegetation units than do film products. The highest accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, that did not include short-wave infrared bands, produced comparable mapping results. The four-band subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm. Use of only three of these bands that simulate digital CIR sensors produced accuracies for several vegetation units that were 10% lower than those obtained using the full multispectral data set. Classification tests using band ratios produced lower accuracies than those using band reflectance for scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film scanning process, whereas calibrated multispectral data produced similar classification accuracies using band reflectance and band ratios. This suggests that the intrinsic band reflectance of the vegetation is more important than inter-band reflectance differences in attaining high mapping accuracies. These results also indicate that radiometrically calibrated sensors that record a wide range of radiance produce superior results and that such sensors should be used for monitoring purposes. When texture (spatial variance) at near-infrared wavelength is combined with spectral data in classification, accuracy increased most markedly (20-30%) for the highest resolution (11-cm) CIR film data, but decreased in its effect on accuracy in lower-resolution multi-spectral image data; a result observed in previous studies (Franklin and McDermid 1993, Franklin et al. 2000, 2001). While many classification unit accuracies obtained from the 11-cm film CIR band with texture data were in fact higher than those produced using the 100-cm, nine-band multispectral data with texture, the 11-cm film CIR data produced much lower accuracies than the 100-cm multispectral data for the more sparsely populated vegetation units due to saturation of picture elements during the film scanning process in vegetation units with a high proportion of alluvium. Overall classification accuracies obtained from spectral band and texture data range from 36% to 78% for all databases considered, from 57% to 71% for the 11-cm film CIR data, and from 54% to 78% for the 100-cm multispectral data. Classification results obtained from 20-cm film CIR band and texture data, which were produced by applying a Gaussian filter to the 11-cm film CIR data, showed increases in accuracy due to texture that were similar to those observed using the original 11-cm film CIR data. This suggests that data can be collected at the lower resolution and still retain the added power of vegetation texture. Classification accuracies for the riparian vegetation units examined in this study do not appear to be influenced by season of data acquisition, although data acquired under direct sunlight produced higher overall accuracies than data acquired under overcast conditions. The latter observation, in addition to the importance of band reflectance for classification, implies that data should be acquired near summer solstice when sun elevation and reflectance is highest and when shadows cast by steep canyon walls are minimized.
ICESat laser altimetry over small mountain glaciers
NASA Astrophysics Data System (ADS)
Treichler, Désirée; Kääb, Andreas
2016-09-01
Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional estimate agrees well with the heterogeneous but overall negative in situ glacier mass balance observed in the area.
NASA Astrophysics Data System (ADS)
Onojeghuo, Alex Okiemute; Onojeghuo, Ajoke Ruth
2017-07-01
This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.
Sweetkind, Donald S.
2017-09-08
As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.
Matrix-vector multiplication using digital partitioning for more accurate optical computing
NASA Technical Reports Server (NTRS)
Gary, C. K.
1992-01-01
Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.
Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment
NASA Technical Reports Server (NTRS)
Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.
2012-01-01
Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.
Google Earth elevation data extraction and accuracy assessment for transportation applications
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications. PMID:28445480
Google Earth elevation data extraction and accuracy assessment for transportation applications.
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications.
Digital radiographic imaging transfer: comparison with plain radiographs.
Averch, T D; O'Sullivan, D; Breitenbach, C; Beser, N; Schulam, P G; Moore, R G; Kavoussi, L R
1997-04-01
Advances in digital imaging and computer display technology have allowed development of clinical teleradiographic systems. There are limited data assessing the effectiveness of such systems when applied to urologic pathology. In an effort to appraise the effectiveness of teleradiology in identifying renal calculi, the accuracy of findings on transmitted radiographic images were compared with those made when viewing the actual plain film. Plain films (KUB) were obtained from 26 patients who presented to the radiology department to rule out urinary calculous disease. The films were digitalized by a radiograph scanner into ARCNEMA-2 file format, compressed by a NASA algorithm, and transferred via a 28.8-kbps modern over standard telephone lines to a remote section 25 miles away, where they were decompressed and viewed on a 1600 x 1200-pixel monitor. Two attending urologists and two endourologic fellows were randomized to read either the transmitted image or the original radiograph with minimal clinical history provided. Of the 26 plain radiographic films, 24 were correctly interpreted by the fellows and 25 by the attending physicians (92% and 96% accuracy, respectively) for a total accuracy of 94% with no statistical difference (p = 0.16). After compression, all but one of the digital images were transferred successfully. The attending physicians correctly interpreted 24 of the 25 digital images (96%), whereas the fellows were correct on 21 interpretations (84%), resulting in a total 90% accuracy with a significant difference between the groups (p < or = 0.04). Overall, no statistical difference between the interpretations of the plain film and the digital image was revealed (p = 0.21). Using available technology, KUB images can be transmitted to a remote site, and the location of a stone can be determined correctly. Higher accuracy is demonstrated by experienced surgeons.
F. Pan; M. Stieglitz; R.B. McKane
2012-01-01
Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Except for slope, none of the other topographic characteristics can be calculated until the flow...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidsmeier, T.; Koehl, R.; Lanham, R.
2008-07-15
The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method.more » Additional possible improvements suggested by the new digital method are also raised. (author)« less
Alcan, Toros; Ceylanoğlu, Cenk; Baysal, Bekir
2009-01-01
To investigate the effects of different storage periods of alginate impressions on digital model accuracy. A total of 105 impressions were taken from a master model with three different brands of alginates and were poured into stone models in five different storage periods. In all, 21 stone models were poured and immediately were scanned, and 21 digital models were prepared. The remaining 84 impressions were poured after 1, 2, 3, and 4 days, respectively. Five linear measurements were made by three researchers on the master model, the stone models, and the digital models. Time-dependent deformation of alginate impressions at different storage periods and the accuracy of traditional stone models and digital models were evaluated separately. Both the stone models and the digital models were highly correlated with the master model. Significant deformities in the alginate impressions were noted at different storage periods of 1 to 4 days. Alginate impressions of different brands also showed significant differences between each other on the first, third, and fourth days. Digital orthodontic models are as reliable as traditional stone models and probably will become the standard for orthodontic clinical use. Storing alginate impressions in sealed plastic bags for up to 4 days caused statistically significant deformation of alginate impressions, but the magnitude of these deformations did not appear to be clinically relevant and had no adverse effect on digital modeling.
Gesch, Dean B.; Oimoen, Michael J.; Evans, Gayla A.
2014-01-01
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the U.S. Geological Survey. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, U.S. island territories, Mexico, and Canada. The NED is derived from diverse source datasets that are processed to a specification with consistent resolutions, coordinate system, elevation units, and horizontal and vertical datums. The NED serves as the elevation layer of The National Map, and it provides basic elevation information for earth science studies and mapping applications in the United States and most of North America. An important part of supporting scientific and operational use of the NED is provision of thorough dataset documentation including data quality and accuracy metrics. The focus of this report is on the vertical accuracy of the NED and on comparison of the NED with other similar large-area elevation datasets, namely data from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).
ArcticDEM Validation and Accuracy Assessment
NASA Astrophysics Data System (ADS)
Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.
2017-12-01
ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration, suggesting that there is no sensor bias between platforms, and all data is suitable for analysis without further correction. Here we will present accuracy assessments, observations and comparisons over diverse terrain in parts of Alaska and Greenland.
Chen, Hu; Yang, Xu; Chen, Litong; Wang, Yong; Sun, Yuchun
2016-01-01
The objective was to establish and evaluate a method for manufacture of custom trays for edentulous jaws using computer aided design and fused deposition modeling (FDM) technologies. A digital method for design the custom trays for edentulous jaws was established. The tissue surface data of ten standard mandibular edentulous plaster models, which was used to design the digital custom tray in a reverse engineering software, were obtained using a 3D scanner. The designed tray was printed by a 3D FDM printing device. Another ten hand-made custom trays were produced as control. The 3-dimentional surface data of models and custom trays was scanned to evaluate the accuracy of reserved impression space, while the difference between digitally made trays and hand-made trays were analyzed. The digitally made custom trays achieved a good matching with the mandibular model, showing higher accuracy than the hand-made ones. There was no significant difference of the reserved space between different models and its matched digitally made trays. With 3D scanning, CAD and FDM technology, an efficient method of custom tray production was established, which achieved a high reproducibility and accuracy. PMID:26763620
Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav
To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent demonstrated acceptable passive fit for 11 out of 20 casts and 18 out of 20 casts for the digital and conventional methods, respectively (P = .01). Definitive casts fabricated using the digital impression approach were less accurate than those fabricated from the conventional impression approach for this simulated clinical scenario. A significant number of definitive casts generated by the digital technique did not meet clinically acceptable accuracy for the fabrication of a multiple implant-supported restoration.
NASA Astrophysics Data System (ADS)
Themistocleous, K.; Agapiou, A.; Papadavid, G.; Christoforou, M.; Hadjimitsis, D. G.
2015-10-01
This paper focuses on the use of Unmanned Aerial Vehicles (UAVs) over the study area of Pissouri in Cyprus to document the sloping landscapes of the area. The study area has been affected by overgrazing, which has led to shifts in the vegetation patterns and changing microtopography of the soil. The UAV images were used to generate digital elevation models (DEMs) to examine the changes in microtopography. Next to that orthophotos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos will be used to detect the occurrence of catastrophic shifts and mechanisms for desertification in the study area due to overgrazing. This study is part of the "CASCADE- Catastrophic shifts in dryland" project.
Woo, Isa; Storesund,; Takekawa, John Y.; Gardiner, Rachel J.; Ehret,
2009-01-01
The Tolay Creek Watershed drains approximately 3,520 ha along the northern edge of San Francisco Bay. Surrounded by a mosaic of open space conservation easements and public wildlife areas, it is one of the only watersheds in this urbanized estuary that is protected from its headwaters to the bay. Tolay Lake is a seasonal, spring-fed lake found in the upper watershed that historically extended over 120 ha. Although the lakebed was farmed since the early 1860s, the majority of the lakebed was recently acquired by the Sonoma County Regional Parks Department to restore its natural habitat values. As part of the restoration planning process, we produced a digital elevation model (DEM) of the historic extent of Tolay Lake by integrating terrestrial LiDAR (light detection and ranging) and stereo photogrammetry datasets, and real-time kinematic (RTK) global positioning system (GPS) surveys. We integrated the data, generated a DEM of the lakebed and upland areas, and analyzed errors. The accuracy of the composite DEM was verified using spot elevations obtained from the RTK GPS. Thus, we found that by combining photogrammetry, terrestrial LiDAR, and RTK GPS, we created an accurate baseline elevation map to use in watershed restoration planning and design.
NASA Astrophysics Data System (ADS)
Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros
2017-10-01
The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.
Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.
2017-03-23
Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.
NASA Astrophysics Data System (ADS)
Nagy, Gergely; Blázi, György; Hegyi, Gergely; Török, János
2016-02-01
Second-to-fourth digit ratio is a widely investigated sexually dimorphic morphological trait in human studies and could reliably indicate the prenatal steroid environment. Conducting manipulative experiments to test this hypothesis comes up against ethical limits in humans. However, oviparous tetrapods may be excellent models to experimentally investigate the effects of prenatal steroids on offspring second-to-fourth digit ratio. In this field study, we injected collared flycatcher ( Ficedula albicollis) eggs with physiological doses of testosterone. Fledglings from eggs with elevated yolk testosterone, regardless of their sex, had longer second digits on their left feet than controls, while the fourth digit did not differ between groups. Therefore, second-to-fourth digit ratio was higher in the testosterone-injected group, but only on the left foot. This is the first study which shows experimentally that early testosterone exposure can affect second-to-fourth digit ratio in a wild population of a passerine bird.
Digital line graphs from 1:24,000-scale maps
,
1990-01-01
The Earth Science Information Centers (ESIC) distribute digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. Digital cartographic data flles are grouped into four basic types. The first of these, called a Digital Line . Graph (DLG), is line map information in digital form. These data files include information on planimetric base categories, such as transportation, hydrography, and boundaries. The second type, called a Digital Elevation Model (DEM), consists of a sampled array of elevations for a number of ground positions that are usually at regularly spaced intervals. The third type is Land Use and Land Cover digital data, which provides information on nine major classes of land use such as urban, agricultural, or forest as wen as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for all known places, features, and areas in the United States identified by a proper name.
Digital line graphs from 1:100,000-scale maps
,
1989-01-01
The National Cartographic Information Center (NCIC) distributes digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. Digital cartographic data files may be grouped into four basic types. The first of these, called a Digital Line Graph (DLG), is line map information in digital form. These data files include information on planimetric base categories, such as transportation, hydrography, and boundaries. The second form, called a Digital Elevation Model (OEM), consists of a sampled array of elevations for ground positions that are usually, but not always, at regularly spaced intervals. The third type is Land Use and Land Cover digital data, which provides information on nine major classes of land use such as urban, agricultural, or forest as well as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for known places, features, and areas in the United States identified by a proper name.
Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori
2017-07-26
The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.
"Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines
ERIC Educational Resources Information Center
Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken
2011-01-01
Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
High resolution remote sensing missions of a tethered satellite
NASA Technical Reports Server (NTRS)
Vetrella, S.; Moccia, A.
1986-01-01
The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.
Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying
2017-01-01
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759
Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C
2018-03-01
Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder internal rotation, and elbow flexion. However, digital photography was only more precise than goniometry for measurements of elbow flexion. Overall digital photography shows equivalent accuracy to visual estimation and goniometry, but with higher precision than visual estimation. Copyright © 2017. Published by Elsevier B.V.
Next-Generation NATO Reference Mobility Model (NG-NRMM)
2016-05-11
facilitate comparisons between vehicle design candidates and to assess the mobility of existing vehicles under specific scenarios. Although NRMM has...of different deployed platforms in different areas of operation and routes Improved flexibility as a design and procurement support tool through...Element Method DEM Digital Elevation Model DIL Driver in the Loop DP Drawbar Pull Force DOE Design of Experiments DTED Digital Terrain Elevation Data
NASA Technical Reports Server (NTRS)
Kim, H.; Swain, P. H.
1991-01-01
A method of classifying multisource data in remote sensing is presented. The proposed method considers each data source as an information source providing a body of evidence, represents statistical evidence by interval-valued probabilities, and uses Dempster's rule to integrate information based on multiple data source. The method is applied to the problems of ground-cover classification of multispectral data combined with digital terrain data such as elevation, slope, and aspect. Then this method is applied to simulated 201-band High Resolution Imaging Spectrometer (HIRIS) data by dividing the dimensionally huge data source into smaller and more manageable pieces based on the global statistical correlation information. It produces higher classification accuracy than the Maximum Likelihood (ML) classification method when the Hughes phenomenon is apparent.
Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor
Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan
2012-01-01
We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966
US GeoData Available Through the Internet
,
2000-01-01
The U.S. Geological Survey (USGS) offers certain US GeoData data sets through the Internet. They can be retrieved using the World Wide Web or anonymous File Transfer Protocol (FTP). The data bases and their directory paths are as follows: * 1:24,000-scale digital line graph data in SDTS format (/pub/data/DLG/24K) * 1:2,000,000-scale digital line graph data in SDTS format (/pub/data/DLG/2M) * 1:100,000-scale digital line graph data (/pub/data/DLG/100K) * 1:100,000-scale land use and land cover data (/pub/data/LULC/100K) * 1:250,000-scale land use and land cover data (/pub/data/LULC/250K) * 1:24,000-scale digital elevation data (/pub/data/DEM/7.5min) * 1-degree digital elevation model data (/pub/data/DEM/250)
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature
1988-05-01
The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image
Topobathymetric model of Mobile Bay, Alabama
Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.
2013-01-01
Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations were made to these input data. The NGDC hydrographic, multibeam, and trackline surveys were transformed from mean low water (MLW) or mean lower low water (MLLW) to NAVD 88 using VDatum (http://vdatum.noaa.gov). VDatum is a tool developed by the National Geodetic Survey (NGS) that performs transformations among tidal, ellipsoid-based, geoid-based, and orthometric datums using calibrated hydrodynamic models. The vertical accuracy of the input topographic data varied depending on the input source. Because the input elevation data were derived primarily from lidar, the vertical accuracy ranges from 6 to 20 centimeters in root mean square error (RMSE). he horizontal datum of the Mobile Bay topobathymetric model is the North American Datum of 1983 (NAD 83), geographic coordinates. All the topographic and bathymetric datasets were originally referenced to NAD 83, and no transformations were made to the input data. The bathymetric surveys were downloaded referenced to NAD 83 geographic, and therefore no horizontal transformations were required. The topbathymetric model of Mobile Bay and detailed metadata can be obtained from the USGS Web sites: http://nationalmap.gov/.
Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.
Generation of topographic terrain models utilizing synthetic aperture radar and surface level data
NASA Technical Reports Server (NTRS)
Imhoff, Marc L. (Inventor)
1991-01-01
Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2012 CFR
2012-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2011 CFR
2011-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2010 CFR
2010-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2014 CFR
2014-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2013 CFR
2013-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C
2017-09-07
Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.
NASA Astrophysics Data System (ADS)
Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio
2014-05-01
Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs, allows to obtain high-resolution DEMs which enable good mass balance estimations on glaciers with similar characteristics.
NASA Astrophysics Data System (ADS)
Starek, M. J.; Fernandez-diaz, J.; Pan, Z.; Glennie, C. L.; Shrestha, R. L.; Gibeaut, J. C.; Singhania, A.
2013-12-01
Researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and field-based survey of the Redfish Bay State Scientific Area to investigate the capabilities of shallow water bathymetric lidar for benthic mapping. Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purposes of protecting and studying the native seagrasses. The mapped region is very shallow (< 1 m in most locations) and consists of a variety of benthic cover including sandy bottom, oyster reef, subaqueous vegetation, and submerged structures. For this survey, UH acquired high resolution (2.5 shots per square meter) bathymetry data using their new Optech Aquarius 532 nm green lidar. The field survey conducted by CMGL used an airboat to collect in-situ radiometer measurements, GPS position, depth, and ground-truth data of benthic type at over 80 locations within the bay. The return signal of an Aquarius lidar pulse is analyzed in real time by a hardware-based constant fraction discriminator (CFD) to detect returns from the surface and determine ranges (x,y,z points). This approach is commonly called discrete-return ranging, and Aquarius can record up to 4 returns per an emitted laser pulse. In contrast, full-waveform digitization records the incoming energy of an emitted pulse by sampling it at very high-frequency. Post-processing algorithms can then be applied to detect returns (ranges) from the digitized waveform. For this survey, a waveform digitizer was simultaneously operated to record the return waveforms at a rate of 1GHz with 12 bit dynamic range. High-resolution digital elevation models (DEMs) of the topo-bathymetry were derived from the discrete-return and full-waveform data to evaluate the relative and absolute accuracy using the collected ground-truth data. Results of this evaluation will be presented including an overview of the method used to extract peaks from the waveform data. Potential advantages and disadvantages of the different ranging modes in terms of observed accuracy, increased processing load, and information gain will also be discussed.
Zhang, Hui-Rong; Yin, Le-Feng; Liu, Yan-Li; Yan, Li-Yi; Wang, Ning; Liu, Gang; An, Xiao-Li; Liu, Bin
2018-04-01
The aim of this study is to build a digital dental model with cone beam computed tomography (CBCT), to fabricate a virtual model via 3D printing, and to determine the accuracy of 3D printing dental model by comparing the result with a traditional dental cast. CBCT of orthodontic patients was obtained to build a digital dental model by using Mimics 10.01 and Geomagic studio software. The 3D virtual models were fabricated via fused deposition modeling technique (FDM). The 3D virtual models were compared with the traditional cast models by using a Vernier caliper. The measurements used for comparison included the width of each tooth, the length and width of the maxillary and mandibular arches, and the length of the posterior dental crest. 3D printing models had higher accuracy compared with the traditional cast models. The results of the paired t-test of all data showed that no statistically significant difference was observed between the two groups (P>0.05). Dental digital models built with CBCT realize the digital storage of patients' dental condition. The virtual dental model fabricated via 3D printing avoids traditional impression and simplifies the clinical examination process. The 3D printing dental models produced via FDM show a high degree of accuracy. Thus, these models are appropriate for clinical practice.
NASA Astrophysics Data System (ADS)
Kubalska, J. L.; Preuss, R.
2013-12-01
Digital Surface Models (DSM) are used in GIS data bases as single product more often. They are also necessary to create other products such as3D city models, true-ortho and object-oriented classification. This article presents results of DSM generation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes the configuration of images matching process, which ensures high accuracy and minimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.
NASA Technical Reports Server (NTRS)
Warner, Timothy A.; Campagna, David J.; Levandowski, Don W.; Cetin, Haluk; Evans, Carla S.
1991-01-01
A 10 x 13-km area in Quetico Provincial Park, Canada has been studied using a digital elevation model to separate different drainage classes and to examine the influence of site factors and lithology on vegetation. Landsat Thematic Mapper data have been classified into six forest classes of varying deciduous-coniferous cover through nPDF, a procedure based on probability density functions. It is shown that forests growing on mafic lithologies are enriched in deciduous species, compared to those growing on granites. Of the forest classes found on mafics, the highest coniferous component was on north facing slopes, and the highest deciduous component on south facing slopes. Granites showed no substantial variation between site classes. The digital elevation derived site data is considered to be an important tool in geobotanical investigations.
A three-dimensional evaluation of a laser scanner and a touch-probe scanner.
Persson, Anna; Andersson, Matts; Oden, Agneta; Sandborgh-Englund, Gunilla
2006-03-01
The fit of a dental restoration depends on quality throughout the entire manufacturing process. There is difficulty in assessing the surface topography of an object with a complex form, such as teeth, since there is no exact reference form. The purpose of this study was to determine the repeatability and relative accuracy of 2 dental surface digitization devices. A computer-aided design (CAD) technique was used for evaluation to calculate and present the deviations 3-dimensionally. Ten dies of teeth prepared for complete crowns were fabricated in presintered yttria-stabilized tetragonal zirconia (Y-TZP). The surfaces were digitized 3 times each with an optical or mechanical digitizer. The number of points in the point clouds from each reading were calculated and used as the CAD reference model (CRM). Alignments were performed by registration software that works by minimizing a distance criterion. In color-difference maps, the distribution of the discrepancies between the surfaces in the CRM and the 3-dimensional surface models was identified and located. The repeatability of both scanners was within 10 microm, based on SD and absolute mean values. The qualitative evaluation resulted in an even distribution of the deviations in the optical digitizer, whereas the dominating part of the surfaces in the mechanical digitizer showed no deviations. The relative accuracy of the 2 surface digitization devices was within +/- 6 microm, based on median values. The repeatability of the optical digitizer was comparable with the mechanical digitization device, and the relative accuracy was similar.
NASA Astrophysics Data System (ADS)
Purinton, Benjamin; Bookhagen, Bodo
2017-04-01
Geomorphologists use digital elevation models (DEMs) to quantify changes in topography - often without rigorous accuracy assessments. In this study we validate and compare elevation accuracy and derived geomorphic metrics from the current generation of satellite-derived DEMs on the southern Central Andean Plateau. The average elevation of 3.7 km, diverse topography and relief, lack of vegetation, and clear skies create ideal conditions for remote sensing in this study area. DEMs at resolutions of 5-30 m are sourced from open-access, research agreement, and commercial outlets, with a focus on the 30 m SRTM-C, 30 m ASTER GDEM2, 12 m TanDEM-X, and 5 m ALOS World 3D data. In addition to these edited products, manually generated DEMs included 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and a 30 m stacked ASTER L1A stereopair DEM. We assessed vertical accuracy by comparing standard deviations (SD) of the DEM elevation versus 307,509 differential GPS (dGPS) measurements with < 0.5 m vertical accuracy, acquired across 4,000 m of elevation. Vertical SD was 3.33 m, 9.48 m, 6.93 m, 1.97 m, 2.02-3.83 m, and 1.64 m for the 30 m SRTM-C, 30 m ASTER GDEM2, 30 m stacked ASTER, 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs, and 5 m ALOS World 3D, respectively. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the high performance across these attributes of the 30 m SRTM-C, 12 m TanDEM-X, and 5 m ALOS World 3D DEMs. The 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and the 30 m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and the stacked ASTER DEMs). We selected the high quality 30 m SRTM-C, 12 m TanDEM-X, and 5 m ALOS World 3D for geomorphic metric comparison in a 66 sqkm catchment with a clear river knickpoint. For trunk channel profiles analyzed with chi plots, consistent m/n values of 0.49-0.57 were found regardless of DEM resolution or SD. Hillslopes were analyzed upstream and downstream of the knickpoint by calculating slope and curvature distributions and plotting slope, curvature, and drainage area to assess the hillslope-to-valley transition. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. To assess DEM noise and periodicity in the landscape we employed a Fourier analysis to identify DEM frequencies and their spectral power. The optical 5 m ALOS World 3D DEM shows high-frequency noise in 2-8 pixel steps, with no corresponding landscape features in this highly diffusive, vegetation-free environment. Finally, we explore the geomorphometric potential of the higher-quality 12 m TanDEM-X DEM through a hillslope length and surface roughness assessment across steep environmental, climatic and topographic gradients in the Quebrada del Toro catchment, west of Salta, Argentina.
Height Error Correction for the New SRTM Elevation Product
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Simard, Marc; Buckley, Sean; Shimada, Joanne; Gurrola, Eric; Martin, Jan; Hensley, Scott; Rosen, Paul
2013-01-01
The Shuttle Radar Topography Mission (SRTM), carrying a single-pass interferometric synthetic aperture radar(SAR) instrument, collected a global elevation data set, which has been widely used in scientific, military and commercial communities. In the new proposed NASA SRTM reprocessing task, the SRTM elevation data is going to be processed at higher spatial resolution and with improved height accuracy. Upon completion, the improved SRTM product will be freely available. This paper describes the calibration approaches for reduction of elevation ripple effects and height accuracy improvements.
Feasibility of a GNSS-Probe for Creating Digital Maps of High Accuracy and Integrity
NASA Astrophysics Data System (ADS)
Vartziotis, Dimitris; Poulis, Alkis; Minogiannis, Alexandros; Siozos, Panayiotis; Goudas, Iraklis; Samson, Jaron; Tossaint, Michel
The “ROADSCANNER” project addresses the need for increased accuracy and integrity Digital Maps (DM) utilizing the latest developments in GNSS, in order to provide the required datasets for novel applications, such as navigation based Safety Applications, Advanced Driver Assistance Systems (ADAS) and Digital Automotive Simulations. The activity covered in the current paper is the feasibility study, preliminary tests, initial product design and development plan for an EGNOS enabled vehicle probe. The vehicle probe will be used for generating high accuracy, high integrity and ADAS compatible digital maps of roads, employing a multiple passes methodology supported by sophisticated refinement algorithms. Furthermore, the vehicle probe will be equipped with pavement scanning and other data fusion equipment, in order to produce 3D road surface models compatible with standards of road-tire simulation applications. The project was assigned to NIKI Ltd under the 1st Call for Ideas in the frame of the ESA - Greece Task Force.
Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration
NASA Astrophysics Data System (ADS)
Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian
2018-01-01
In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.
Tomita, Yuki; Uechi, Jun; Konno, Masahiro; Sasamoto, Saera; Iijima, Masahiro; Mizoguchi, Itaru
2018-04-17
We compared the accuracy of digital models generated by desktop-scanning of conventional impression/plaster models versus intraoral scanning. Eight ceramic spheres were attached to the buccal molar regions of dental epoxy models, and reference linear-distance measurement were determined using a contact-type coordinate measuring instrument. Alginate (AI group) and silicone (SI group) impressions were taken and converted into cast models using dental stone; the models were scanned using desktop scanner. As an alternative, intraoral scans were taken using an intraoral scanner, and digital models were generated from these scans (IOS group). Twelve linear-distance measurement combinations were calculated between different sphere-centers for all digital models. There were no significant differences among the three groups using total of six linear-distance measurements. When limited to five lineardistance measurement, the IOS group showed significantly higher accuracy compared to the AI and SI groups. Intraoral scans may be more accurate compared to scans of conventional impression/plaster models.
Accuracy of a Digital Weight Scale Relative to the Nintendo Wii in Measuring Limb Load Asymmetry
Kumar, NS Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah
2014-01-01
[Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry. PMID:25202181
Accuracy of a digital weight scale relative to the nintendo wii in measuring limb load asymmetry.
Kumar, Ns Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah
2014-08-01
[Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry.
Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.
2014-01-01
This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.
Influence of Elevation Data Source on 2D Hydraulic Modelling
NASA Astrophysics Data System (ADS)
Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław
2016-08-01
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
Low-head hydropower assessment of the Brazilian State of São Paulo
Artan, Guleid A.; Cushing, W. Matthew; Mathis, Melissa L.; Tieszen, Larry L.
2014-01-01
This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40 percent, 60 percent, and 90 percent were made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Quinn; Jerry Mauck; Richard Bockhorst
The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.
NASA Astrophysics Data System (ADS)
Tarquini, S.; Nannipieri, L.; Favalli, M.; Fornaciai, A.; Vinci, S.; Doumaz, F.
2012-04-01
Digital elevation models (DEMs) are fundamental in any kind of environmental or morphological study. DEMs are obtained from a variety of sources and generated in several ways. Nowadays, a few global-coverage elevation datasets are available for free (e.g., SRTM, http://www.jpl.nasa.gov/srtm; ASTER, http://asterweb.jpl.nasa.gov/). When the matrix of a DEM is used also for computational purposes, the choice of the elevation dataset which better suits the target of the study is crucial. Recently, the increasing use of DEM-based numerical simulation tools (e.g. for gravity driven mass flows), would largely benefit from the use of a higher resolution/higher accuracy topography than those available at planetary scale. Similar elevation datasets are neither easily nor freely available for all countries worldwide. Here we introduce a new web resource which made available for free (for research purposes only) a 10 m-resolution DEM for the whole Italian territory. The creation of this elevation dataset was presented by Tarquini et al. (2007). This DEM was obtained in triangular irregular network (TIN) format starting from heterogeneous vector datasets, mostly consisting in elevation contour lines and elevation points derived from several sources. The input vector database was carefully cleaned up to obtain an improved seamless TIN refined by using the DEST algorithm, thus improving the Delaunay tessellation. The whole TINITALY/01 DEM was converted in grid format (10-m cell size) according to a tiled structure composed of 193, 50-km side square elements. The grid database consists of more than 3 billions of cells and occupies almost 12 GB of disk memory. A web-GIS has been created (http://tinitaly.pi.ingv.it/ ) where a seamless layer of images in full resolution (10 m) obtained from the whole DEM (both in color-shaded and anaglyph mode) is open for browsing. Accredited navigators are allowed to download the elevation dataset.
Land use and land cover digital data from 1:250,000- and 1:100,000- scale maps
,
1990-01-01
The Earth Science Information Centers (ESIC) distribute digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. The data files are grouped into four basic types. The first type, called a Digital Line Graph (DLG), is line map information in digital form. These data files include information on planimetric base categories, such as transportation, hydrography, and boundaries. The second type, called a Digital Elevation Model (DEM), consists of a sampled array of elevations for ground positions that are usually at regularly spaced intervals. The third type, Land Use and Land Cover digital data, provide information on nine major classes of land use such as urban, agricultural, or forest as well as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for known places, features, and areas in the United States identified by a proper name.
O'Brien, M J; Takahashi, M; Brugal, G; Christen, H; Gahm, T; Goodell, R M; Karakitsos, P; Knesel, E A; Kobler, T; Kyrkou, K A; Labbe, S; Long, E L; Mango, L J; McGoogan, E; Oberholzer, M; Reith, A; Winkler, C
1998-01-01
Optical digital imaging and its related technologies have applications in cytopathology that encompass training and education, image analysis, diagnosis, report documentation and archiving, and telecommunications. Telecytology involves the use of telecommunications to transmit cytology images for the purposes of diagnosis, consultation or education. This working paper provides a mainly informational overview of optical digital imaging and summarizes current technologic resources and applications and some of the ethical and legal implications of the use of these new technologies in cytopathology. Computer hardware standards for optical digital imagery will continue to be driven mainly by commercial interests and nonmedical imperatives, but professional organizations can play a valuable role in developing recommendations or standards for digital image sampling, documentation, archiving, authenticity safeguards and teleconsultation protocols; in addressing patient confidentiality and ethical, legal and informed consent issues; and in providing support for quality assurance and standardization of digital image-based testing. There is some evidence that high levels of accuracy for telepathology diagnosis can be achieved using existing dynamic systems, which may also be applicable to telecytology consultation. Static systems for both telepathology and telecytology, which have the advantage of considerably lower cost, appear to have lower levels of accuracy. Laboratories that maintain digital image databases should adopt practices and protocols that ensure patient confidentiality. Individuals participating in telecommunication of digital images for diagnosis should be properly qualified, meet licensing requirements and use procedures that protect patient confidentiality. Such individuals should be cognizant of the limitations of the technology and employ quality assurance practices that ensure the validity and accuracy of each consultation. Even in an informal teleconsultation setting one should define the extent of participation and be mindful of potential malpractice liability. Digital imagery applications will continue to present new opportunities and challenges. Position papers such as this are directed toward assisting the profession to stay informed and in control of these applications in the laboratory. Telecytology is an area in particular need of studies of good quality to provide data on factors affecting accuracy. New technologic approaches to addressing the issue of selective sampling in static image consultation are needed. The use of artificial intelligence software as an adjunct to enhance the accuracy and reproducibility of cytologic diagnosis of digital images in routine and consultation settings deserves to be pursued. Other telecytology-related issues that require clarification and the adoption of workable guidelines include interstate licensure and protocols to define malpractice liability.
Major, Jon J.; Mosbrucker, Adam; Spicer, Kurt R.; Crisafulli, Charles; Dale, V.
2018-01-01
Exceptional sediment yields persist in Toutle River valley more than 30 years after the major 1980 eruption of Mount St. Helens. Differencing of decadal-scale digital elevation models shows the elevated load comes largely from persistent lateral channel erosion across the debris-avalanche deposit. Since the mid-1980s, rates of channel-bed-elevation change have diminished, and magnitudes of lateral erosion have outpaced those of channel incision. A digital elevation model of difference from 1999 to 2009 shows erosion across the debris-avalanche deposit is more spatially distributed compared to a model from 1987 to 1999, in which erosion was strongly focused along specific reaches of the channel.
Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation
NASA Astrophysics Data System (ADS)
Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan
2015-02-01
A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.
Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2017-04-01
In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.
Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System
NASA Astrophysics Data System (ADS)
Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.
2018-02-01
We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.
Digital Elevation Model Correction for the thalweg values of Obion River system, TN
NASA Astrophysics Data System (ADS)
Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.
2016-12-01
Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.
Assessment of the most recent satellite based digital elevation models of Egypt
NASA Astrophysics Data System (ADS)
Rabah, Mostafa; El-Hattab, Ahmed; Abdallah, Mohamed
2017-12-01
Digital Elevation Model (DEM) is crucial to a wide range of surveying and civil engineering applications worldwide. Some of the DEMs such as ASTER, SRTM1 and SRTM3 are freely available open source products. In order to evaluate the three DEMs, the contribution of EGM96 are removed and all DEMs heights are becoming ellipsoidal height. This step was done to avoid the errors occurred due to EGM96. 601 points of observed ellipsoidal heights compared with the three DEMs, the results show that the SRTM1 is the most accurate one, that produces mean height difference and standard deviations equal 2.89 and ±8.65 m respectively. In order to increase the accuracy of SRTM1 in EGYPT, a precise Global Geopotential Model (GGM) is needed to convert the SRTM1 ellipsoidal height to orthometric height, so that, we quantify the precision of most-recent released GGM (five models). The results show that, the GECO model is the best fit global models over Egypt, which produces a standard deviation of geoid undulation differences equals ±0.42 m over observed 17 HARN GPS/leveling stations. To confirm an enhanced DEM in EGYPT, the two orthometric height models (SRTM1 ellipsoidal height + EGM96) and (SRTM1 ellipsoidal height + GECO) are assessment with 17 GPS/leveling stations and 112 orthometric height stations, the results show that the estimated height differences between the SRTM1 before improvements and the enhanced model are at rate of 0.44 m and 0.06 m respectively.
A new morphology algorithm for shoreline extraction from DEM data
NASA Astrophysics Data System (ADS)
Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad
2013-03-01
Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.
NASA Astrophysics Data System (ADS)
Wang, Y.
2011-01-01
The direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2
,
2000-01-01
The U.S. Geological Survey's (USGS) Earth Explorer Web site provides access to millions of land-related products, including the following: Satellite images from Landsat, advanced very high resolution radiometer (AVHRR), and Corona data sets. Aerial photographs from the National Aerial Photography Program, NASA, and USGS data sets. Digital cartographic data from digital elevation models, digital line graphs, digital raster graphics, and digital orthophoto quadrangles. USGS paper maps Digital, film, and paper products are available, and many products can be previewed before ordering.
International Digital Elevation Model Service (IDEMS): A Revived IAG Service
NASA Astrophysics Data System (ADS)
Kelly, K. M.; Hirt, C., , Dr; Kuhn, M.; Barzaghi, R.
2017-12-01
A newly developed International Digital Elevation Model Service (IDEMS) is now available under the umbrella of the International Gravity Field Service of the International Association of Geodesy. Hosted and operated by Environmental Systems Research Institute (Esri) (http://www.esri.com/), the new IDEMS website is available at: https://idems.maps.arcgis.com/home/index.html. IDEMS provides a focus for distribution of data and information about various digital elevation models, including spherical-harmonic models of Earth's global topography and lunar and planetary DEM. Related datasets, such as representation of inland water within DEMs, and relevant software which are available in the public domain are also provided. Currently, IDEMS serves as repository of links to providers of global terrain and bathymetry, terrain related Earth models and datasets such as digital elevation data services managed and maintained by Esri (Terrain and TopoBathy), Bedmap2-Ice thickness and subglacial topographic model of Antarctica and Ice, Cloud, and Land Elevation ICESat/GLAS Data, as well as planetary terrain data provided by PDS Geosciences Node at Washington University, St. Louis. These services provide online access to a collection of multi-resolution and multi-source elevation and bathymetry data, including metadata and source information. In addition to IDEMS current holdings of terrestrial and planetary DEMs, some topography related products IDEMS may include in future are: dynamic ocean topography, 3D crustal density models, Earth's dynamic topography, etc. IDEMS may also consider terrain related products such as quality assessments, global terrain corrections, global height anomaly-to-geoid height corrections and other geodesy-relevant studies and products. IDEMS encourages contributions to the site from the geodetic community in any of the product types listed above. Please contact the authors if you would like to contribute or recommend content you think appropriate for IDEMS.
What is a Dune: Developing AN Automated Approach to Extracting Dunes from Digital Elevation Models
NASA Astrophysics Data System (ADS)
Taylor, H.; DeCuir, C.; Wernette, P. A.; Taube, C.; Eyler, R.; Thopson, S.
2016-12-01
Coastal dunes can absorb storm surge and mitigate inland erosion caused by elevated water levels during a storm. In order to understand how a dune responds to and recovers from a storm, it is important that we can first identify and differentiate the beach and dune from the rest of the landscape. Current literature does not provide a consistent definition of what the dune features (e.g. dune toe, dune crest) are or how they can be extracted. The purpose of this research is to develop enhanced approaches to extracting dunes from a digital elevation model (DEM). Manual delineation, convergence index, least-cost path, relative relief, and vegetation abundance were compared and contrasted on a small area of Padre Island National Seashore (PAIS), Preliminary results indicate that the method used to extract the dune greatly affects our interpretation of how the dune changes. The manual delineation method was time intensive and subjective, while the convergence index approach was useful to easily identify the dune crest through maximum and minimum values. The least-cost path method proved to be time intensive due to data clipping; however, this approach resulted in continuous geomorphic landscape features (e.g. dune toe, dune crest). While the relative relief approach shows the most features in multi resolution, it is difficult to assess the accuracy of the extracted features because extracted features appear as points that can vary widely in their location from one meter to the next. The vegetation approach was greatly impacted by the seasonal and annual fluctuations of growth but is advantageous in historical change studies because it can be used to extract consistent dune formation from historical aerial imagery. Improving our ability to more accurately assess dune response and recovery to a storm will enable coastal managers to more accurately predict how dunes may respond to future climate change scenarios.
Maratt, Joseph D; Srinivasan, Ramesh C; Dahl, William J; Schilling, Peter L; Urquhart, Andrew G
2012-08-01
As digital radiography becomes more prevalent, several systems for digital preoperative planning have become available. The purpose of this study was to evaluate the accuracy and efficiency of an inexpensive, cloud-based digital templating system, which is comparable with acetate templating. However, cloud-based templating is substantially faster and more convenient than acetate templating or locally installed software. Although this is a practical solution for this particular medical application, regulatory changes are necessary before the tremendous advantages of cloud-based storage and computing can be realized in medical research and clinical practice. Copyright 2012, SLACK Incorporated.
Accuracy Assessment of Crown Delineation Methods for the Individual Trees Using LIDAR Data
NASA Astrophysics Data System (ADS)
Chang, K. T.; Lin, C.; Lin, Y. C.; Liu, J. K.
2016-06-01
Forest canopy density and height are used as variables in a number of environmental applications, including the estimation of biomass, forest extent and condition, and biodiversity. The airborne Light Detection and Ranging (LiDAR) is very useful to estimate forest canopy parameters according to the generated canopy height models (CHMs). The purpose of this work is to introduce an algorithm to delineate crown parameters, e.g. tree height and crown radii based on the generated rasterized CHMs. And accuracy assessment for the extraction of volumetric parameters of a single tree is also performed via manual measurement using corresponding aerial photo pairs. A LiDAR dataset of a golf course acquired by Leica ALS70-HP is used in this study. Two algorithms, i.e. a traditional one with the subtraction of a digital elevation model (DEM) from a digital surface model (DSM), and a pit-free approach are conducted to generate the CHMs firstly. Then two algorithms, a multilevel morphological active-contour (MMAC) and a variable window filter (VWF), are implemented and used in this study for individual tree delineation. Finally, experimental results of two automatic estimation methods for individual trees can be evaluated with manually measured stand-level parameters, i.e. tree height and crown diameter. The resulting CHM generated by a simple subtraction is full of empty pixels (called "pits") that will give vital impact on subsequent analysis for individual tree delineation. The experimental results indicated that if more individual trees can be extracted, tree crown shape will became more completely in the CHM data after the pit-free process.
1988-01-01
these patterns had to be arranged in one of a number of spatial data formats. To a computer, electronic " noise " created by errant impulses in the...quality photographs can be deblurred using digital image manipulation techniques. The special congressional committee investigating the...capability. UNAMACE errors were of two kinds. Electronic noise recorded along with digital elevation data created false elevations . Also , UNAMACE could
Digital elevation data as an aid to land use and land cover classification
Colvocoresses, Alden P.
1981-01-01
In relatively well mapped areas such as the United States and Europe, digital data can be developed from topographic maps or from the stereo aerial photographic movie. For poorer mapped areas (which involved most of the world's land areas), a satellite designed to obtain stereo data offers the best hope for a digital elevation database. Such a satellite, known as Mapsat, has been defined by the U.S. Geological Survey. Utilizing modern solid state technology, there is no reason why such stereo data cannot be acquired simultaneously with the multispectral response, thus simplifying the overall problem of land use and land cover classification.
NASA Technical Reports Server (NTRS)
Junkin, B. G. (Principal Investigator)
1979-01-01
A method is presented for the processing and analysis of digital topography data that can subsequently be entered in an interactive data base in the form of slope, slope length, elevation, and aspect angle. A discussion of the data source and specific descriptions of the data processing software programs are included. In addition, the mathematical considerations involved in the registration of raw digitized coordinate points to the UTM coordinate system are presented. Scale factor considerations are also included. Results of the processing and analysis are illustrated using the Shiprock and Gallup Quadrangle test data.
Algorithms and methodology used in constructing high-resolution terrain databases
NASA Astrophysics Data System (ADS)
Williams, Bryan L.; Wilkosz, Aaron
1998-07-01
This paper presents a top-level description of methods used to generate high-resolution 3D IR digital terrain databases using soft photogrammetry. The 3D IR database is derived from aerial photography and is made up of digital ground plane elevation map, vegetation height elevation map, material classification map, object data (tanks, buildings, etc.), and temperature radiance map. Steps required to generate some of these elements are outlined. The use of metric photogrammetry is discussed in the context of elevation map development; and methods employed to generate the material classification maps are given. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems. A discussion is also presented on database certification which consists of validation, verification, and accreditation procedures followed to certify that the developed databases give a true representation of the area of interest, and are fully compatible with the targeted digital simulators.
Ramos Brito, Ana Caroline; Verner, Francielle Silvestre; Junqueira, Rafael Binato; Yamasaki, Mayra Cristina; Queiroz, Polyane Mazucato; Freitas, Deborah Queiroz; Oliveira-Santos, Christiano
2017-04-01
This study compared the detection of fractured instruments in root canals with and without filling by periapical radiographs from 3 digital systems and cone-beam computed tomographic (CBCT) images with different resolutions. Thirty-one human molars (80 canals) were used. Root canals were divided into the following groups: the control group, without fillings; the fracture group, without fillings and with fractured files; the fill group, filled; and the fill/fracture group, filled and with fractured files. Digital radiographs in ortho-, mesio-, and distoradial directions were performed in 2 semidirect systems (VistaScan [Dürr Dental, Beitigheim-Bissinger, Germany] and Express [Instrumentarium Imaging, Tuusula, Finland]) and a direct system (SnapShot [Instrumentarium Imaging]). CBCT images were acquired with 0.085-mm and 0.2-mm voxel sizes. All images were assessed and reassessed by 4 observers for the presence or absence of fractured files on a 5-point scale. The sensitivity, specificity, and accuracy were calculated. In the absence of filling, accuracy values were high, and there were no statistical differences among the radiographic techniques, different digital systems, or the different CBCT voxels sizes. In the presence of filling, the accuracy of periapical radiographs was significantly higher than CBCT images. In general, SnapShot showed higher accuracy than VistaScan and Express. Periapical radiographs in 1 incidence were accurate for the detection of fractured endodontic instruments inside the root canal in the absence or presence of filling, suggesting that this technique should be the first choice as well as the direct digital radiographic system. In the presence of filling, the decision to perform a CBCT examination must take into consideration its low accuracy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth
NASA Astrophysics Data System (ADS)
Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus
2013-03-01
Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2011-07-01
The results of major planets' and Moon's ephemerides smoothing by cubic polynomials are presented. Considered ephemerides are DE405, DE406, DE408, DE421, DE423 and DE722. The goal of the smoothig is an elimination of discontinu-ous behavior of interpolated coordinates and their derivatives at the junctions of adjacent interpolation intervals when calculations are made with 34-digit decimal accuracy. The reason of such a behavior is a limited 16-digit decimal accuracy of coefficients in ephemerides for interpolating Chebyshev's polynomials. Such discontinuity of perturbing bodies' coordinates signifi-cantly reduces the advantages of 34-digit calculations because the accuracy of numerical integration of asteroids' motion equations increases in this case just by 3 orders to compare with 16-digit calculations. It is demonstrated that the cubic-polynomial smoothing of ephemerides results in elimination of jumps of perturbing bodies' coordinates and their derivatives. This leads to increasing of numerical integration accuracy by 7-9 orders. All calculations in this work were made with 34-digit decimal accuracy on the computer cluster "Skif Cyberia" of Tomsk State University.
A design of optical modulation system with pixel-level modulation accuracy
NASA Astrophysics Data System (ADS)
Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu
2018-01-01
Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.
High accuracy digital aging monitor based on PLL-VCO circuit
NASA Astrophysics Data System (ADS)
Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang
2015-01-01
As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.
A minimax technique for time-domain design of preset digital equalizers using linear programming
NASA Technical Reports Server (NTRS)
Vaughn, G. L.; Houts, R. C.
1975-01-01
A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.
Metric Aspects of Digital Images and Digital Image Processing.
1984-09-01
produced in a reconstructed digital image. Synthesized aerial photographs were formed by processing a combined elevation and orthophoto data base. These...brightness values h1 and Iion b) a line equation whose two parameters are calculated h12, along with tile borderline that separates the two intensity
Quantitative comparison of the application accuracy between NDI and IGT tracking systems
NASA Astrophysics Data System (ADS)
Li, Qinghang; Zamorano, Lucia J.; Jiang, Charlie Z. W.; Gong, JianXing; Diaz, Fernando
1999-07-01
The application accuracy is a crucial factor for the stereotactic surgical localization system in which space digitization system is one of the most important part of equipment. In this study we compared the application accuracy of using the OPTOTRAK space digitization system (OPTOTRAK 3020, Northern Digital, Waterloo, CAN) and FlashPoint Model 3000 and 5000 3-D digitizer systems (FlashPoint Model 3000 and 5000, Image Guided Surgery Technology Inc., Boulder, CO 80301, USA) for interactive localization of intracranial lesions. A phantom was mounted with the implantable frameless marker system (Fischer- Leibinger, Freiburg, Germany) which randomly distributed markers on the surface of the phantom. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points were used as the deviation from the `true point'. The mean square root was calculated to show the sum of vectors. A paired t-test was used to analyze results. The results of the phantom showed that the mean square roots were 0.76 +/- 0.54 mm for the OPTOTRAK system and 1.23 +/- 0.53 mm for FlashPoint Model 3000 3-D digitizer system and 1.00 +/- 0.42 mm for FlashPoint Model 3000 3-D digitizer system in the 1 mm sections of CT scan. This preliminary results showed that there is no significant difference between two tracking systems. Both of them can be used for image guided surgery procedure.
NASA Astrophysics Data System (ADS)
Rantz, William Gene
This study examined whether pilots completed airplane digital or paper checklists more accurately when they received post-flight graphic and verbal feedback. Participants were 6 college student pilots with instrument rating. The task consisted of flying flight patterns using a Frasca 241 Flight Training Device which emulates a Cirrus SR20 aircraft. The main dependent variable was the number of checklist items completed correctly per flight. An alternating treatment, multiple baseline design across pairs with reversal, was used. During baseline, the average percent of correctly completed items per flight varied considerably across participants, ranging from 13% to 57% for traditional paper checklists and ranging from 11% to 67% for digital checklists. Checklist performance increased to an average of 90% for paper checklist and an average of 89% for digital checklists after participants were given feedback and praise, and continued to improve to an average of nearly 100% for paper checklists and an average of 99% for digital checklists after the feedback and praise were removed. A slight decrement in performance was observed during a post-experiment probe between 60--90 days. Visual inspection and statistical analysis of the data suggest that paper checklist accuracy does not differ significantly from digital checklist accuracy. The results suggest that graphic feedback and praise can be used to increase the extent to which pilots use both digital and paper checklists accurately during normal workload conditions.
Three-dimensional reconstruction of Roman coins from photometric image sets
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay; Moitinho de Almeida, Vera; Hess, Mona
2017-01-01
A method is presented for increasing the spatial resolution of the three-dimensional (3-D) digital representation of coins by combining fine photometric detail derived from a set of photographic images with accurate geometric data from a 3-D laser scanner. 3-D reconstructions were made of the obverse and reverse sides of two ancient Roman denarii by processing sets of images captured under directional lighting in an illumination dome. Surface normal vectors were calculated by a "bounded regression" technique, excluding both shadow and specular components of reflection from the metallic surface. Because of the known difficulty in achieving geometric accuracy when integrating photometric normals to produce a digital elevation model, the low spatial frequencies were replaced by those derived from the point cloud produced by a 3-D laser scanner. The two datasets were scaled and registered by matching the outlines and correlating the surface gradients. The final result was a realistic rendering of the coins at a spatial resolution of 75 pixels/mm (13-μm spacing), in which the fine detail modulated the underlying geometric form of the surface relief. The method opens the way to obtain high quality 3-D representations of coins in collections to enable interactive online viewing.
Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.
2013-01-01
The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.
Nielsen, Martha G.; Dudley, Robert W.
2013-01-01
Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.
A seamless, high-resolution digital elevation model (DEM) of the north-central California coast
Foxgrover, Amy C.; Barnard, Patrick L.
2012-01-01
A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.
The effects of wavelet compression on Digital Elevation Models (DEMs)
Oimoen, M.J.
2004-01-01
This paper investigates the effects of lossy compression on floating-point digital elevation models using the discrete wavelet transform. The compression of elevation data poses a different set of problems and concerns than does the compression of images. Most notably, the usefulness of DEMs depends largely in the quality of their derivatives, such as slope and aspect. Three areas extracted from the U.S. Geological Survey's National Elevation Dataset were transformed to the wavelet domain using the third order filters of the Daubechies family (DAUB6), and were made sparse by setting 95 percent of the smallest wavelet coefficients to zero. The resulting raster is compressible to a corresponding degree. The effects of the nulled coefficients on the reconstructed DEM are noted as residuals in elevation, derived slope and aspect, and delineation of drainage basins and streamlines. A simple masking technique also is presented, that maintains the integrity and flatness of water bodies in the reconstructed DEM.
Digital image analysis in pathology: benefits and obligation.
Laurinavicius, Arvydas; Laurinaviciene, Aida; Dasevicius, Darius; Elie, Nicolas; Plancoulaine, Benoît; Bor, Catherine; Herlin, Paulette
2012-01-01
Pathology has recently entered the era of personalized medicine. This brings new expectations for the accuracy and precision of tissue-based diagnosis, in particular, when quantification of histologic features and biomarker expression is required. While for many years traditional pathologic diagnosis has been regarded as ground truth, this concept is no longer sufficient in contemporary tissue-based biomarker research and clinical use. Another major change in pathology is brought by the advancement of virtual microscopy technology enabling digitization of microscopy slides and presenting new opportunities for digital image analysis. Computerized vision provides an immediate benefit of increased capacity (automation) and precision (reproducibility), but not necessarily the accuracy of the analysis. To achieve the benefit of accuracy, pathologists will have to assume an obligation of validation and quality assurance of the image analysis algorithms. Reference values are needed to measure and control the accuracy. Although pathologists' consensus values are commonly used to validate these tools, we argue that the ground truth can be best achieved by stereology methods, estimating the same variable as an algorithm is intended to do. Proper adoption of the new technology will require a new quantitative mentality in pathology. In order to see a complete and sharp picture of a disease, pathologists will need to learn to use both their analogue and digital eyes.
Digital image transformation and rectification of spacecraft and radar images
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1985-01-01
The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.
Miri, Shimasadat; Mehralizadeh, Sandra; Sadri, Donya; Motamedi, Mahmood Reza Kalantar
2015-01-01
Purpose This study evaluated the diagnostic accuracy of the reverse contrast mode in intraoral digital radiography for the detection of proximal dentinal caries, in comparison with the original digital radiographs. Materials and Methods Eighty extracted premolars with no clinically apparent caries were selected, and digital radiographs of them were taken separately in standard conditions. Four observers examined the original radiographs and the same radiographs in the reverse contrast mode with the goal of identifying proximal dentinal caries. Microscopic sections 5 µm in thickness were prepared from the teeth in the mesiodistal direction. Four slides prepared from each sample used as the diagnostic gold standard. The data were analyzed using SPSS (α=0.05). Results Our results showed that the original radiographs in order to identify proximal dentinal caries had the following values for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, respectively: 72.5%, 90%, 87.2%, 76.5%, and 80.9%. For the reverse contrast mode, however, the corresponding values were 63.1%, 89.4%, 87.1%, 73.5%, and 78.8%, respectively. The sensitivity of original digital radiograph for detecting proximal dentinal caries was significantly higher than that of reverse contrast mode (p<0.05). However, no statistically significant differences were found regarding specificity, positive predictive value, negative predictive value, or accuracy (p>0.05). Conclusion The sensitivity of the original digital radiograph for detecting proximal dentinal caries was significantly higher than that of the reversed contrast images. However, no statistically significant differences were found between these techniques regarding specificity, positive predictive value, negative predictive value, or accuracy. PMID:26389055
Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; Young, Steven D.
2005-01-01
In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.
Giménez, Beatriz; Pradíes, Guillermo; Martínez-Rus, Francisco; Özcan, Mutlu
2015-01-01
To evaluate the accuracy of two digital impression systems based on the same technology but different postprocessing correction modes of customized software, with consideration of several clinical parameters. A maxillary master model with six implants located in the second molar, second premolar, and lateral incisor positions was fitted with six cylindrical scan bodies. Scan bodies were placed at different angulations or depths apical to the gingiva. Two experienced and two inexperienced operators performed scans with either 3D Progress (MHT) or ZFX Intrascan (Zimmer Dental). Five different distances between implants (scan bodies) were measured, yielding five data points per impression and 100 per impression system. Measurements made with a high-accuracy three-dimensional coordinate measuring machine (CMM) of the master model acted as the true values. The values obtained from the digital impressions were subtracted from the CMM values to identify the deviations. The differences between experienced and inexperienced operators and implant angulation and depth were compared statistically. Experience of the operator, implant angulation, and implant depth were not associated with significant differences in deviation from the true values with both 3D Progress and ZFX Intrascan. Accuracy in the first scanned quadrant was significantly better with 3D Progress, but ZFX Intrascan presented better accuracy in the full arch. Neither of the two systems tested would be suitable for digital impression of multiple-implant prostheses. Because of the errors, further development of both systems is required.
Hybrid acousto-optic and digital equalization for microwave digital radio channels
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Vanderlugt, A.
1990-11-01
Digital radio transmission systems use complex modulation schemes that require powerful signal-processing techniques to correct channel distortions and to minimize BERs. This paper proposes combining the computation power of acoustooptic processing and the accuracy of digital processing to produce a hybrid channel equalizer that exceeds the performance of digital equalization alone. Analysis shows that a hybrid equalizer for 256-level quadrature amplitude modulation (QAM) performs better than a digital equalizer for 64-level QAM.
NASA Technical Reports Server (NTRS)
Li, Q.; Zamorano, L.; Jiang, Z.; Gong, J. X.; Pandya, A.; Perez, R.; Diaz, F.
1999-01-01
Application accuracy is a crucial factor for stereotactic surgical localization systems, in which space digitization camera systems are one of the most critical components. In this study we compared the effect of the OPTOTRAK 3020 space digitization system and the FlashPoint Model 3000 and 5000 3D digitizer systems on the application accuracy for interactive localization of intracranial lesions. A phantom was mounted with several implantable frameless markers which were randomly distributed on its surface. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points represented the deviation from the "true point." The root mean square (RMS) was calculated to show the differences, and a paired t-test was used to analyze the results. The results with the phantom showed that, for 1-mm sections of CT scans, the RMS was 0.76 +/- 0. 54 mm for the OPTOTRAK system, 1.23 +/- 0.53 mm for the FlashPoint Model 3000 3D digitizer system, and 1.00 +/- 0.42 mm for the FlashPoint Model 5000 system. These preliminary results showed that there is no significant difference between the three tracking systems, and, from the quality point of view, they can all be used for image-guided surgery procedures. Copyright 1999 Wiley-Liss, Inc.
Li, Q; Zamorano, L; Jiang, Z; Gong, J X; Pandya, A; Perez, R; Diaz, F
1999-01-01
Application accuracy is a crucial factor for stereotactic surgical localization systems, in which space digitization camera systems are one of the most critical components. In this study we compared the effect of the OPTOTRAK 3020 space digitization system and the FlashPoint Model 3000 and 5000 3D digitizer systems on the application accuracy for interactive localization of intracranial lesions. A phantom was mounted with several implantable frameless markers which were randomly distributed on its surface. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points represented the deviation from the "true point." The root mean square (RMS) was calculated to show the differences, and a paired t-test was used to analyze the results. The results with the phantom showed that, for 1-mm sections of CT scans, the RMS was 0.76 +/- 0. 54 mm for the OPTOTRAK system, 1.23 +/- 0.53 mm for the FlashPoint Model 3000 3D digitizer system, and 1.00 +/- 0.42 mm for the FlashPoint Model 5000 system. These preliminary results showed that there is no significant difference between the three tracking systems, and, from the quality point of view, they can all be used for image-guided surgery procedures. Copyright 1999 Wiley-Liss, Inc.
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
Predicting Individual Characteristics from Digital Traces on Social Media: A Meta-Analysis.
Settanni, Michele; Azucar, Danny; Marengo, Davide
2018-04-01
The increasing utilization of social media provides a vast and new source of user-generated ecological data (digital traces), which can be automatically collected for research purposes. The availability of these data sets, combined with the convergence between social and computer sciences, has led researchers to develop automated methods to extract digital traces from social media and use them to predict individual psychological characteristics and behaviors. In this article, we reviewed the literature on this topic and conducted a series of meta-analyses to determine the strength of associations between digital traces and specific individual characteristics; personality, psychological well-being, and intelligence. Potential moderator effects were analyzed with respect to type of social media platform, type of digital traces examined, and study quality. Our findings indicate that digital traces from social media can be studied to assess and predict theoretically distant psychosocial characteristics with remarkable accuracy. Analysis of moderators indicated that the collection of specific types of information (i.e., user demographics), and the inclusion of different types of digital traces, could help improve the accuracy of predictions.
NASA Astrophysics Data System (ADS)
Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.
2017-06-01
Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.
Surface elevation and mass changes of all Swiss glaciers 1980-2010
NASA Astrophysics Data System (ADS)
Fischer, M.; Huss, M.; Hoelzle, M.
2015-03-01
Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.07 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 1.76 km3.
Surface elevation and mass changes of all Swiss glaciers 1980-2010
NASA Astrophysics Data System (ADS)
Fischer, M.; Huss, M.; Hoelzle, M.
2014-08-01
Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 Digital Elevation Models (DEMs) for which the source data over glacierized areas was acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008-2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition date of the source data used, resulting mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700-2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.03 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 0.97 km3.
Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel
2017-01-01
The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.
NASA Astrophysics Data System (ADS)
Maurer, Joshua; Rupper, Summer
2015-10-01
Declassified historical imagery from the Hexagon spy satellite database has near-global coverage, yet remains a largely untapped resource for geomorphic change studies. Unavailable satellite ephemeris data make DEM (digital elevation model) extraction difficult in terms of time and accuracy. A new fully-automated pipeline for DEM extraction and image orthorectification is presented which yields accurate results and greatly increases efficiency over traditional photogrammetric methods, making the Hexagon image database much more appealing and accessible. A 1980 Hexagon DEM is extracted and geomorphic change computed for the Thistle Creek Landslide region in the Wasatch Range of North America to demonstrate an application of the new method. Surface elevation changes resulting from the landslide show an average elevation decrease of 14.4 ± 4.3 m in the source area, an increase of 17.6 ± 4.7 m in the deposition area, and a decrease of 30.2 ± 5.1 m resulting from a new roadcut. Two additional applications of the method include volume estimates of material excavated during the Mount St. Helens volcanic eruption and the volume of net ice loss over a 34-year period for glaciers in the Bhutanese Himalayas. These results show the value of Hexagon imagery in detecting and quantifying historical geomorphic change, especially in regions where other data sources are limited.
NASA Astrophysics Data System (ADS)
Li, Bang-Jian; Wang, Quan-Bao; Duan, Deng-Ping; Chen, Ji-An
2018-05-01
Intensity saturation can cause decorrelation phenomenon and decrease the measurement accuracy in digital image correlation (DIC). In the paper, the grey intensity adjustment strategy is proposed to improve the measurement accuracy of DIC considering the effect of intensity saturation. First, the grey intensity adjustment strategy is described in detail, which can recover the truncated grey intensities of the saturated pixels and reduce the decorrelation phenomenon. The simulated speckle patterns are then employed to demonstrate the efficacy of the proposed strategy, which indicates that the displacement accuracy can be improved by about 40% by the proposed strategy. Finally, the true experimental image is used to show the feasibility of the proposed strategy, which indicates that the displacement accuracy can be increased by about 10% by the proposed strategy.
Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland
NASA Astrophysics Data System (ADS)
Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.
2014-12-01
Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18″N, 68°29'47″W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.
High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations
NASA Astrophysics Data System (ADS)
Yue, Linwei; Shen, Huanfeng; Zhang, Liangpei; Zheng, Xianwei; Zhang, Fan; Yuan, Qiangqiang
2017-01-01
The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission (SRTM-1) data have been released globally, covering over 80% of the Earth's land surface (60°N-56°S). However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from being directly used without further processing. In this paper, we propose a method to generate a seamless DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2 data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to 2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also extracted for the data assessment.
Investigation of Error Patterns in Geographical Databases
NASA Technical Reports Server (NTRS)
Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)
2002-01-01
The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
NASA Astrophysics Data System (ADS)
Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F. I.; Levai, C. M.; Negrutiu, M. L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; Podoleanu, A. Gh.
2016-03-01
Digital impressions were introduced to overcome some of the obstacles due to traditional impression materials and techniques. The aim of this in vitro study is to compare the accuracy of all ceramic crowns obtained with digital impression and CAD-CAM technology with the accuracy of those obtained with conventional impression techniques. Two groups of 10 crowns each have been considered. The digital data obtained from Group 1 have been processed and the all-ceramic crowns were milled with a CAD/CAM technology (CEREC MCX, Sirona). The all ceramic crowns in Group 2 were obtained with the classical technique of pressing (emax, Ivoclar, Vivadent). The evaluation of the marginal adaptation was performed with Time Domain Optical Coherence Tomography (TD OCT), working at a wavelength of 1300 nm. Tri-dimensional (3D) reconstructions of the selected areas were obtained. Based on the findings in this study, one may conclude that the marginal accuracy of all ceramic crowns fabricated with digital impression and the CAD/CAM technique is superior to the conventional impression technique.
Comparative analysis of autofocus functions in digital in-line phase-shifting holography.
Fonseca, Elsa S R; Fiadeiro, Paulo T; Pereira, Manuela; Pinheiro, António
2016-09-20
Numerical reconstruction of digital holograms relies on a precise knowledge of the original object position. However, there are a number of relevant applications where this parameter is not known in advance and an efficient autofocusing method is required. This paper addresses the problem of finding optimal focusing methods for use in reconstruction of digital holograms of macroscopic amplitude and phase objects, using digital in-line phase-shifting holography in transmission mode. Fifteen autofocus measures, including spatial-, spectral-, and sparsity-based methods, were evaluated for both synthetic and experimental holograms. The Fresnel transform and the angular spectrum reconstruction methods were compared. Evaluation criteria included unimodality, accuracy, resolution, and computational cost. Autofocusing under angular spectrum propagation tends to perform better with respect to accuracy and unimodality criteria. Phase objects are, generally, more difficult to focus than amplitude objects. The normalized variance, the standard correlation, and the Tenenbaum gradient are the most reliable spatial-based metrics, combining computational efficiency with good accuracy and resolution. A good trade-off between focus performance and computational cost was found for the Fresnelet sparsity method.
Using Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.; Williams, N. P.
1997-01-01
Long Valley caldera, California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of approximately 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and approximately 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about 1 cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data indicates uplift occurred, but filtering is required to remove vegetation effects. Although research continues to utilize the full potential of laser altimetry data, the results constitute a successful demonstration that the technique may be used to perform geodetic monitoring of surface topographic change.
Using Laser Altimetry to Detect Topographic Change in Long Valley Caldera, California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Blair, J. B.
1997-01-01
Long Valley caldera California, is a site of extensive volcanism, persistent seismicity, and uplift of a resurgent dome, currently at a rate of about 3 cm/year. Airborne laser altimetry was used to determine the surface topography of the region in 1993. A repeat mission occurred in 1995. Three different laser altimeters were flown, dubbed ATLAS, SLICER and RASCAL. Data processing consists of the combination of the aircraft trajectory and attitude data with the laser range, the determination of an atmospheric delay, laser pulse timing errors, laser system biases, and data geolocation to obtain the position of the laser spot on the ground. Results showed that using the ATLAS and SLICER instruments, the elevation of an overflown lake is determined to precisions of 3.3 cm and 2.9 cm from altitudes of 500 m and 3 km above the ground, and about 10 cm using the RASCAL instrument from 500 m above ground. Comparison with tide gauge data showed the laser measurements are able to resolve centimeter-level changes in the lake elevation over time. Repeat pass analysis of tracks over flat surfaces indicate no systematic biases affect the measurement procedure of the ATLAS and SLICER instruments. Comparison of GPS and laser-derived elevations of easily-identifiable features in the caldera confirm the horizontal accuracy of the measurement is within the diameter of the laser footprint, and vertical accuracy is within the error inherent in the measurement. Crossover analysis shows that the standard error of the means at track intersection points within the caldera, and dome (i.e., where zero and close to the maximum amount of uplift is expected) are about I cm, indicating elevation change at the 3 cm/year level should be detectable. We demonstrate one of the powerful advantages of scanning laser altimetry over other remote sensing techniques; the straightforward creation of precise digital elevation maps of overflown terrain. Initial comparison of the 1993-1995 data indicates uplift occurred, but filtering is required to remove vegetation effects. Although research continues to utilize the full potential of laser altimetry data, the results constitute a successful demonstration that the technique may be used to perform geodetic monitoring of surface topographic change.
Accuracy of Digital Impressions and Fitness of Single Crowns Based on Digital Impressions
Yang, Xin; Lv, Pin; Liu, Yihong; Si, Wenjie; Feng, Hailan
2015-01-01
In this study, the accuracy (precision and trueness) of digital impressions and the fitness of single crowns manufactured based on digital impressions were evaluated. #14-17 epoxy resin dentitions were made, while full-crown preparations of extracted natural teeth were embedded at #16. (1) To assess precision, deviations among repeated scan models made by intraoral scanner TRIOS and MHT and model scanner D700 and inEos were calculated through best-fit algorithm and three-dimensional (3D) comparison. Root mean square (RMS) and color-coded difference images were offered. (2) To assess trueness, micro computed tomography (micro-CT) was used to get the reference model (REF). Deviations between REF and repeated scan models (from (1)) were calculated. (3) To assess fitness, single crowns were manufactured based on TRIOS, MHT, D700 and inEos scan models. The adhesive gaps were evaluated under stereomicroscope after cross-sectioned. Digital impressions showed lower precision and better trueness. Except for MHT, the means of RMS for precision were lower than 10 μm. Digital impressions showed better internal fitness. Fitness of single crowns based on digital impressions was up to clinical standard. Digital impressions could be an alternative method for single crowns manufacturing. PMID:28793417
Earth observation data based rapid flood-extent modelling for tsunami-devastated coastal areas
NASA Astrophysics Data System (ADS)
Hese, Sören; Heyer, Thomas
2016-04-01
Earth observation (EO)-based mapping and analysis of natural hazards plays a critical role in various aspects of post-disaster aid management. Spatial very high-resolution Earth observation data provide important information for managing post-tsunami activities on devastated land and monitoring re-cultivation and reconstruction. The automatic and fast use of high-resolution EO data for rapid mapping is, however, complicated by high spectral variability in densely populated urban areas and unpredictable textural and spectral land-surface changes. The present paper presents the results of the SENDAI project, which developed an automatic post-tsunami flood-extent modelling concept using RapidEye multispectral satellite data and ASTER Global Digital Elevation Model Version 2 (GDEM V2) data of the eastern coast of Japan (captured after the Tohoku earthquake). In this paper, the authors developed both a bathtub-modelling approach and a cost-distance approach, and integrated the roughness parameters of different land-use types to increase the accuracy of flood-extent modelling. Overall, the accuracy of the developed models reached 87-92%, depending on the analysed test site. The flood-modelling approach was explained and results were compared with published approaches. We came to the conclusion that the cost-factor-based approach reaches accuracy comparable to published results from hydrological modelling. However the proposed cost-factor approach is based on a much simpler dataset, which is available globally.
Artillery Engagement Simulation
1980-05-01
coordinate* of the burst point to 10 meter accuracy (4 digit number). 7. Press R/S. Calculator will run for approximately one second and display the...northing coordinate* of the burst point to 10 meter accuracy (4 digit number). 8. If it is not desired to send azimuth and distance instructions to the...Now Delhi 1 USA Agey for Aviation Safety, Ft Rucker. ATTN: Educ Advisor I Pars Rsch Ofc, Libary , AKA. Israel Defense Forces I USA Aviation Sch. Ft
An Alternative Approach of Coastal Sea-Level Observation from Remote Sensing Imageries
NASA Astrophysics Data System (ADS)
Peng, H. Y.; Tseng, K. H.; Chung-Yen, K.; Lin, T. H.; Liao, W. H.; Chen, C. F.
2017-12-01
Coastal sea level can be observed as waterline changes along a coastal digital elevation model (DEM). However, most global DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM with 30 m resolution, provide limited coverage over coastal area due to the impermeability of radar signal over water and the lack of low-tide coincidence. Therefore, we aim to extend to coverage of SRTM DEM for the determination of intertidal zone and to monitor sea-level changes along the entire coastline of Taiwan (>1200km). We firstly collect historical cloud-free images since the 1980s, including Landsat series, SPOT series and Sentinel-2, and then calculate the Modified Normalized Difference Water Index (MNDWI) to identify water pixels. After computing water appearance probability of each pixel, it is converted into actual elevation by introducing the DTU10 tide model for high tide and low tide boundaries. A coastal DEM of intertidal zone is reconstructed and the accuracy is at 50 cm level as compared with in situ DEM built by an unmanned aerial vehicle (UAV). Finally, we use this product to define the up-to-date intertidal zone and estimate sea-level changes by using remote sensing snapshots.
NASA Astrophysics Data System (ADS)
Noh, Myoung-Jong; Howat, Ian M.
2018-02-01
The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.
Analysis of GOES imagery and digitized data for the SEV-UPS period, August 1979
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Burke, H. H. K.; Barnes, J. C.
1981-01-01
In support of the Southeastern Virginia Urban Plume Study (SEV-UPS), GOES satellite imagery was analyzed for the month of August 1979. The analyzed GOES images provide an additional source of meteorological input useful in the evaluation of air quality data collected during the month long period of the SEV-UPS experiment. In addition to the imagery analysis, GOES digitized data were analyzed for the period of August 6 to 11, during which a regional haze pattern was detectable in the imagery. The results of the study indicate that the observed haze patterns correspond closely with areas shown in surface based measurements to have reduced visibilities and elevated pollution levels. Moreover, the results of the analysis of digitized data indicate that digital reflectance counts can be directly related to haze intensity both over land and ocean. The model results agree closely with the observed GOES digital reflectance counts, providing further indication that satellite remote sensing can be a useful tool for monitoring regional elevated pollution episodes.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Two sets of LANDSAT data referring to the orbit 150 and row 28 were selected with illumination parameters varying from 43 deg to 64 deg for azimuth and from 30 deg to 36 deg for solar elevation respectively. IMAGE-100 system permitted the digital processing of LANDSAT data. Original images were transformed by means of digital filtering so as to enhance their spatial features. The resulting images were used to obtain an unsupervised classification of relief units. Topographic variables (declivity, altitude, relief range and slope length) were used to identify the true relief units existing on the ground. The LANDSAT over pass data show that digital processing is highly affected by illumination geometry, and there is no correspondence between relief units as defined by spectral features and those resulting from topographic features.
Precision and Accuracy of a Digital Impression Scanner in Full-Arch Implant Rehabilitation.
Pesce, Paolo; Pera, Francesco; Setti, Paolo; Menini, Maria
To evaluate the accuracy and precision of a digital scanner used to scan four implants positioned according to an immediate loading implant protocol and to assess the accuracy of an aluminum framework fabricated from a digital impression. Five master casts reproducing different edentulous maxillae with four tilted implants were used. Four scan bodies were screwed onto the low-profile abutments, and a digital intraoral scanner was used to perform five digital impressions of each master cast. To assess trueness, a metal framework of the best digital impression was produced with computer-aided design/computer-assisted manufacture (CAD/CAM) technology and passive fit was assessed with the Sheffield test. Gaps between the frameworks and the implant analogs were measured with a stereomicroscope. To assess precision, three-dimensional (3D) point cloud processing software was used to measure the deviations between the five digital impressions of each cast by producing a color map. The deviation values were grouped in three classes, and differences were assessed between class 2 (representing lower discrepancies) and the assembled classes 1 and 3 (representing the higher negative and positive discrepancies, respectively). The frameworks showed a mean gap of < 30 μm (range: 2 to 47 μm). A statistically significant difference was found between the two groups by the 3D point cloud software, with higher frequencies of points in class 2 than in grouped classes 1 and 3 (P < .001). Within the limits of this in vitro study, it appears that a digital impression may represent a reliable method for fabricating full-arch implant frameworks with good passive fit when tilted implants are present.
The availability of surface elevation data for the Marshall Islands has been identified as a "massive" data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are nee...
The availability of surface elevation data for the Marshall Islands has been identified as a “massive” data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are need...
Bean, Melanie K; Raynor, Hollie A; Thornton, Laura M; Sova, Alexandra; Dunne Stewart, Mary; Mazzeo, Suzanne E
2018-04-12
Scientifically sound methods for investigating dietary consumption patterns from self-serve salad bars are needed to inform school policies and programs. To examine the reliability and validity of digital imagery for determining starting portions and plate waste of self-serve salad bar vegetables (which have variable starting portions) compared with manual weights. In a laboratory setting, 30 mock salads with 73 vegetables were made, and consumption was simulated. Each component (initial and removed portion) was weighed; photographs of weighed reference portions and pre- and post-consumption mock salads were taken. Seven trained independent raters visually assessed images to estimate starting portions to the nearest ¼ cup and percentage consumed in 20% increments. These values were converted to grams for comparison with weighed values. Intraclass correlations between weighed and digital imagery-assessed portions and plate waste were used to assess interrater reliability and validity. Pearson's correlations between weights and digital imagery assessments were also examined. Paired samples t tests were used to evaluate mean differences (in grams) between digital imagery-assessed portions and measured weights. Interrater reliabilities were excellent for starting portions and plate waste with digital imagery. For accuracy, intraclass correlations were moderate, with lower accuracy for determining starting portions of leafy greens compared with other vegetables. However, accuracy of digital imagery-assessed plate waste was excellent. Digital imagery assessments were not significantly different from measured weights for estimating overall vegetable starting portions or waste; however, digital imagery assessments slightly underestimated starting portions (by 3.5 g) and waste (by 2.1 g) of leafy greens. This investigation provides preliminary support for use of digital imagery in estimating starting portions and plate waste from school salad bars. Results might inform methods used in empirical investigations of dietary intake in schools with self-serve salad bars. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.
2018-04-01
Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.
The effects of solar incidence angle over digital processing of LANDSAT data
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
A technique to extract the topography modulation component from digital data is described. The enhancement process is based on the fact that the pixel contains two types of information: (1) reflectance variation due to the target; (2) reflectance variation due to the topography. In order to enhance the signal variation due to topography, the technique recommends the extraction from original LANDSAT data of the component resulting from target reflectance. Considering that the role of topographic modulation over the pixel information will vary with solar incidence angle, the results of this technique of digital processing will differ from one season to another, mainly in highly dissected topography. In this context, the effects of solar incidence angle over the topographic modulation technique were evaluated. Two sets of MSS/LANDSAT data, with solar elevation angles varying from 22 to 41 deg were selected to implement the digital processing at the Image-100 System. A secondary watershed (Rio Bocaina) draining into Rio Paraiba do Sul (Sao Paulo State) was selected as a test site. The results showed that the technique used was more appropriate to MSS data acquired under higher Sun elevation angles. Topographic modulation components applied to low Sun elevation angles lessens rather than enhances topography.
NASA Astrophysics Data System (ADS)
Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk
2017-10-01
Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.
Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.
2018-01-01
Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000 km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.
Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis
NASA Astrophysics Data System (ADS)
Chang, C. H.; Chan, H. C.; Chen, B. A.
2016-12-01
Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.
space Radar Image of Long Valley, California
1999-05-01
An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. http://photojournal.jpl.nasa.gov/catalog/PIA01749
Guy, Kristy K.; Plant, Nathaniel G.
2014-01-01
This Data Series Report contains lidar elevation data collected on July 12 and 14, 2013, for Dauphin Island, Alabama, and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Classified point cloud data—data points described in three dimensions—in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 1 meter (m) or less. The USGS surveyed points within the project area from July 14–23, 2013, for use in ground control and accuracy assessment. Photo Science, Inc., calculated a vertical root mean square error (RMSEz) of 0.012 m by comparing 10 surveyed points to an interpolated elevation surface of unclassified lidar data. The USGS also checked the data using 80 surveyed points and unclassified lidar point elevation data and found an RMSEz of 0.073 m. The project specified an RMSEz of 0.0925 m or less. The lidar survey was acquired to document the short- and long-term changes of several different barrier island systems. Specifically, this survey supports detailed studies of Chandeleur and Dauphin Islands that resolve annual changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.
Giménez, Beatriz; Özcan, Mutlu; Martínez-Rus, Francisco; Pradíes, Guillermo
2015-10-01
To evaluate the accuracy of a digital impression system considering clinical parameters. A master model with 6 implants (27, 25, 22, 12, 15, and 17) was fitted with polyether ether ketone scan bodies. Implant no. 25 was placed with 30° mesial angulation and no. 15 with 30° distal angulation in relation to the vertical plane (y axis). Implant no. 22 was placed at 2 mm and no. 12 placed 4 mm below the gingiva. Experienced (n = 2) and inexperienced (n = 2) operators performed the scanning (CEREC system). Measurements involved 5 distances (27-25, 27-22, 27-12, 27-15, 27-17). Measurements with coordinated measuring machine of the master model acted as the true values. The experience of the operator affected the accuracy. Operator 3 (inexperienced) performed better than the rest. Angulation and implant depth did not affect the accuracy results. The position of the camera affected the accuracy of the system. The first scanned quadrant had significantly smaller error, -17 ± 26.3 μm, than the second quadrant, -116 ± 103 μm. Digital impressions with CEREC Bluecam system can be a feasible alternative for challenging cases where angulation and depth of the implants are present. The accuracy of the CEREC system for the first scanned quadrant is high, and it decreases when completing a full arch.
In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions.
Ender, Andreas; Attin, Thomas; Mehl, Albert
2016-03-01
Digital impression systems have undergone significant development in recent years, but few studies have investigated the accuracy of the technique in vivo, particularly compared with conventional impression techniques. The purpose of this in vivo study was to investigate the precision of conventional and digital methods for complete-arch impressions. Complete-arch impressions were obtained using 5 conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; digitized scannable vinylsiloxanether, VSES-D; and irreversible hydrocolloid, ALG) and 7 digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; Lava COS, LAV; Lava True Definition Scanner, T-Def; 3Shape Trios, TRI; and 3Shape Trios Color, TRC) techniques. Impressions were made 3 times each in 5 participants (N=15). The impressions were then compared within and between the test groups. The cast surfaces were measured point-to-point using the signed nearest neighbor method. Precision was calculated from the (90%-10%)/2 percentile value. The precision ranged from 12.3 μm (VSE) to 167.2 μm (ALG), with the highest precision in the VSE and VSES groups. The deviation pattern varied distinctly according to the impression method. Conventional impressions showed the highest accuracy across the complete dental arch in all groups, except for the ALG group. Conventional and digital impression methods differ significantly in the complete-arch accuracy. Digital impression systems had higher local deviations within the complete arch cast; however, they achieve equal and higher precision than some conventional impression materials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Ellakwa, A; Elnajar, S; Littlefair, D; Sara, G
2018-05-03
The aim of the current study is to develop a novel method to investigate the accuracy of 3D scanners and digital articulation systems. An upper and a lower poured stone model were created by taking impression of fully dentate male (fifty years old) participant. Titanium spheres were added to the models to allow for an easily recognisable geometric shape for measurement after scanning and digital articulation. Measurements were obtained using a Coordinate Measuring Machine to record volumetric error, articulation error and clinical effect error. Three scanners were compared, including the Imetric 3D iScan d104i, Shining 3D AutoScan-DS100 and 3Shape D800, as well as their respective digital articulation software packages. Stoneglass Industries PDC digital articulation system was also applied to the Imetric scans for comparison with the CMM measurements. All the scans displayed low volumetric error (p⟩0.05), indicating that the scanners themselves had a minor contribution to the articulation and clinical effect errors. The PDC digital articulation system was found to deliver the lowest average errors, with good repeatability of results. The new measuring technique in the current study was able to assess the scanning and articulation accuracy of the four systems investigated. The PDC digital articulation system using Imetric scans was recommended as it displayed the lowest articulation error and clinical effect error with good repeatability. The low errors from the PDC system may have been due to its use of a 3D axis for alignment rather than the use of a best fit. Copyright© 2018 Dennis Barber Ltd.
Leung, Ming Yin; Lo, John; Leung, Yiu Yan
2016-11-01
Three-dimensional (3D) images are taken with positioning devices to ensure a patient's stability, which, however, place the patient's head into a random orientation. Reorientation of images to the natural head position (NHP) is necessary for appropriate assessment of dentofacial deformities before any surgical planning. The aim of this study was to review the literature systematically to identify and evaluate the various modalities available to record the NHP in 3 dimensions and to compare their accuracy. A systematic literature search of the PubMed, Cochrane Library and Embase databases, with no limitations on publication time or language, was performed in July 2015. The search and evaluations of articles were performed in 4 rounds. The methodologies, accuracies, advantages, and limitations of various modalities to record NHP were examined. Eight articles were included in the final review. Six modalities to record NHP were identified, namely 1) stereophotogrammetry, 2) facial markings along laser lines, 3) clinical photographs and the pose from orthography and scaling with iterations (POSIT) algorithm, 4) digital orientation sensing, 5) handheld 3D camera measuring system, and 6) laser scanning. Digital orientation sensing had good accuracy, with mean angular differences from the reference within 1° (0.07 ± 0.49° and 0.12 ± 0.54°, respectively). Laser scanning was shown to be comparable to digital orientation sensing. The method involving clinical photographs and the POSIT algorithm was reported to have good accuracy, with mean angular differences for pitch, roll, and yaw within 1° (-0.17 ± 0.50°). Stereophotogrammetry was reported to have the highest reliability, with mean angular deviations in pitch, roll, and yaw for active and passive stereophotogrammetric devices within 0.1° (0.004771 ± 0.045645° and 0.007572 ± 0.079088°, respectively). This systematic review showed that recording the NHP in 3 dimensions with a digital orientation sensor has good accuracy. Laser scanning was found to have comparable accuracy to digital orientation sensing, but routine clinical use was limited by its high cost and low portability. Stereophotogrammetry and the method using a single clinical photograph and the POSIT algorithm were potential alternatives. Nevertheless, clinical trials are needed to verify their applications in patients. Preferably, digital orientation sensor should be used as a reference for comparison with new proposed methods of recording the NHP in future research. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Bai, Y X
2016-06-01
Three-dimensional(3D)digital technology has been widely used in the field of orthodontics in clinical examination, diagnosis, treatment and curative effect evaluation. 3D digital technology greatly improves the accuracy of diagnosis and treatment, and provides effective means for personalized orthodontic treatment. This review focuses on the application of 3D digital technology in the field of orthodontics.
Scoping of Flood Hazard Mapping Needs for Merrimack County, New Hampshire
2006-01-01
DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM Digital Terrain Model FBFM Flood Boundary and Floodway Map FEMA Federal...discussed available data and coverages within New Hampshire (for example, 2003 National Agriculture Imag- ery Program (NAIP) color Digital Orthophoto ... orthophotos providing improved base map accuracy. NH GRANIT is presently converting the standard, paper FIRMs and Flood Boundary and Floodway maps (FBFMs
ERIC Educational Resources Information Center
Greve, Kevin W.; Springer, Steven; Bianchini, Kevin J.; Black, F. William; Heinly, Matthew T.; Love, Jeffrey M.; Swift, Douglas A.; Ciota, Megan A.
2007-01-01
This study examined the sensitivity and false-positive error rate of reliable digit span (RDS) and the WAIS-III Digit Span (DS) scaled score in persons alleging toxic exposure and determined whether error rates differed from published rates in traumatic brain injury (TBI) and chronic pain (CP). Data were obtained from the files of 123 persons…
Construction of a 3-arcsecond digital elevation model for the Gulf of Maine
Twomey, Erin R.; Signell, Richard P.
2013-01-01
A system-wide description of the seafloor topography is a basic requirement for most coastal oceanographic studies. The necessary detail of the topography obviously varies with application, but for many uses, a nominal resolution of roughly 100 m is sufficient. Creating a digital bathymetric grid with this level of resolution can be a complex procedure due to a multiplicity of data sources, data coverages, datums and interpolation procedures. This report documents the procedures used to construct a 3-arcsecond (approximately 90-meter grid cell size) digital elevation model for the Gulf of Maine (71°30' to 63° W, 39°30' to 46° N). We obtained elevation and bathymetric data from a variety of American and Canadian sources, converted all data to the North American Datum of 1983 for horizontal coordinates and the North American Vertical Datum of 1988 for vertical coordinates, used a combination of automatic and manual techniques for quality control, and interpolated gaps using a surface-fitting routine.
Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms
NASA Astrophysics Data System (ADS)
Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.
2013-12-01
The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital elevation models. No elevation models currently exist that provide global coverage at a sufficient resolution, so several regional models have been mosaicked together to produce global databases. In locations where multiple data sets are available, evaluations have been made to determine the optimal source for the databases, primarily based on resolution and accuracy. Separate procedures for calculating relief were developed for high latitude (>60N/S) regions in order to take advantage of polar stereographic projections. An additional method for generating the databases was developed for use over Antarctica, such that high resolution, regional elevation models can be easily incorporated as they become available in the future. The SRM is used to facilitate DEM and DRM production by defining those regions that are ocean and sea ice. Ocean and sea ice elevation values are defined by the geoid, while relief is set to a constant value. Results presented will include the details of data source selection, the methodologies used to create the databases, and the final versions of both the DEM and DRM databases. Companion presentations by McGarry, et al. and Carabajal, et al. describe the ATLAS onboard Receiver Algorithms and the database verification, respectively.
NASA Astrophysics Data System (ADS)
Rogers, Jeffrey N.
High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.
Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R
1996-01-01
It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.
The ASTER Global Digital Elevation Model (GDEM) -for societal benefit -
NASA Astrophysics Data System (ADS)
Hato, M.; Tsu, H.; Tachikawa, T.; Abrams, M.; Bailey, B.
2009-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the Ministry of Economy, Trade and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA) under the agreement of contribution to GEOSS and a public release was started on June 29th. ASTER GDEM can be downloaded to users from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA’s Land Processes Distributed Active Archive Center (LP DAAC) free of charge. The ASTER instrument was built by METI and launched onboard NASA’s Terra spacecraft in December 1999. It has an along-track stereoscopic capability using its near infrared spectral band (NIR) and its nadir-viewing and backward-viewing telescopes to acquire stereo image data with a base-to-height ratio of 0.6. The ASTER GDEM was produced by applying newly-developed automated algorithm to more than 1.2 million NIR data Produced DEMs of all scene data was stacked after cloud masking and finally partitioned into 1° x 1°unit (called ‘tile’) data for convenience of distribution and handling by users. Before start of public distribution, ERSDAC and USGS/NASA together with many volunteers did validation and characterization by using a preliminary product of the ASTER GDEM. As a result of validation, METI and NASA evaluated that Version 1 of the ASTER GDEM has enough quality to be used as “experimental” or “research grade” data and consequently decided to release it. The ASTER GDEM covering almost all land area of from 83N to 83S on the earth represents as an important contribution to the global earth observation community. We will show our effort of development of ASTER GDEM and its accuracy and character.
Shuttle radar DEM hydrological correction for erosion modelling in small catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca
2016-04-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei
2017-09-01
This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.
NASA Astrophysics Data System (ADS)
Rieke-Zapp, D.; Tecklenburg, W.; Peipe, J.; Hastedt, H.; Haig, Claudia
Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems-Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25 μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras.
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
NASA Astrophysics Data System (ADS)
Tzanou, E. A.; Vergos, G. S.
2012-04-01
The combined use of Geographic Information Systems and recent high-resolution Digital Elevation Models (DEMs) from Remote Sensing imagery offers a unique opportunity to study the hydrological properties of basin and catchment dynamics and derive the hydrological features of specific regions of various spatial scales. Until recently, the availability of global DEMs was restricted to low-resolution and accuracy models, e.g., ETOPO5, ETOPO2 and GTOPO30, compared to local Digital Terrain Models (DTMs) derived from photogrammetric methods and offered usually in the form of topographic maps of various scales. The advent of the SRTM and ASTER missions, offer some new tools and opportunities in order to use their data within a GIS to study the hydrological properties of basins and consequently validate their performance both amongst each other, as well as in terms of the results derived from a local DTM. The present work focuses on the use of the recent SRTM v2 90 m and ASTER v2 30 m DEMs along with the national 500 m DTM generated by the Hellenic Military Geographic Service (HMGS), within a GIS in order to assess their performance in determining the hydrological properties of basins. To this respect, the ArcHydro extension tool of ArcGIS v9.3 and HEC-GeoRAS v4.3 have been exploited to determine the hydrographic data of the basins under study which are located in Northern Greece. The hydrological characteristics refer to stream geometry, curve number, flooding areas, etc. as well as the topographic characteristics of the basin itself, such as aspect, hillshade, slope e.t.c..
Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi
2010-05-01
The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.
McKenzie, Grant; Janowicz, Krzysztof
2017-01-01
Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.
Kenney, Terry A.
2010-01-01
Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.
Pakkala, T; Kuusela, L; Ekholm, M; Wenzel, A; Haiter-Neto, F; Kortesniemi, M
2012-01-01
In clinical practice, digital radiographs taken for caries diagnostics are viewed on varying types of displays and usually in relatively high ambient lighting (room illuminance) conditions. Our purpose was to assess the effect of room illuminance and varying display types on caries diagnostic accuracy in digital dental radiographs. Previous studies have shown that the diagnostic accuracy of caries detection is significantly better in reduced lighting conditions. Our hypothesis was that higher display luminance could compensate for this in higher ambient lighting conditions. Extracted human teeth with approximal surfaces clinically ranging from sound to demineralized were radiographed and evaluated by 3 observers who detected carious lesions on 3 different types of displays in 3 different room illuminance settings ranging from low illumination, i.e. what is recommended for diagnostic viewing, to higher illumination levels corresponding to those found in an average dental office. Sectioning and microscopy of the teeth validated the presence or absence of a carious lesion. Sensitivity, specificity and accuracy were calculated for each modality and observer. Differences were estimated by analyzing the binary data assuming the added effects of observer and modality in a generalized linear model. The observers obtained higher sensitivities in lower illuminance settings than in higher illuminance settings. However, this was related to a reduction in specificity, which meant that there was no significant difference in overall accuracy. Contrary to our hypothesis, there were no significant differences between the accuracy of different display types. Therefore, different displays and room illuminance levels did not affect the overall accuracy of radiographic caries detection. Copyright © 2012 S. Karger AG, Basel.
Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori
2011-01-01
In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.
Elevation correction factor for absolute pressure measurements
NASA Technical Reports Server (NTRS)
Panek, Joseph W.; Sorrells, Mark R.
1996-01-01
With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.
NASA Technical Reports Server (NTRS)
Wu, Sherman S. C.; Howington, Annie-Elpis
1987-01-01
The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation.
NASA Astrophysics Data System (ADS)
Beck, Faith R.; Lind, R. Paul; Smith, James A.
2018-04-01
Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.
Registering Thematic Mapper imagery to digital elevation models
NASA Technical Reports Server (NTRS)
Frew, J.
1984-01-01
The problems encountered when attempting to register Landsat Thematic Mapper (TM) data to U.S. geological survey digital elevation models (DEMs) are examined. It is shown that TM and DEM data are not available in the same map projection, necessitating geometric transformation of one of the data type, that the TM data are not accurately located in their nominal projection, and that TM data have higher resolution than most DEM data, but oversampling the DEM data to TM resolution introduces systematic noise. Further work needed in this area is discussed.
South San Francisco Bay, California
Dartnell, Peter; Gibbons, Helen
2007-01-01
View eastward. Elevations in mapped area color coded: purple (approx 15 m below sea level) to red-orange (approx 90 m above sea level). South San Francisco Bay is very shallow, with a mean water depth of 2.7 m (8.9 ft). Trapezoidal depression near San Mateo Bridge is where sediment has been extracted for use in cement production and as bay fill. Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Distance across bottom of image approx 11 km (7 mi); vertical exaggeration 1.5X.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Thematic and positional accuracy assessment of digital remotely sensed data
Russell G. Congalton
2007-01-01
Accuracy assessment or validation has become a standard component of any land cover or vegetation map derived from remotely sensed data. Knowing the accuracy of the map is vital to any decisionmaking performed using that map. The process of assessing the map accuracy is time consuming and expensive. It is very important that the procedure be well thought out and...
Vandenberghe, Bart; Corpas, Livia; Bosmans, Hilde; Yang, Jie; Jacobs, Reinhilde
2011-08-01
The aim of this study was the determination of image accuracy and quality for periodontal diagnosis using various X-ray generators with conventional and digital radiographs. Thirty-one in vitro periodontal defects were evaluated on intraoral conventional (E-, F/E-speed) and digital images (three indirect, two direct sensors). Standardised radiographs were made with an alternating current (AC), a high-frequency (HF) and a direct current (DC) X-ray unit at rising exposure times (20-160 ms with 20-ms interval) with a constant kV of 70. Three observers assessed bone levels for comparison to the gold standard. Lamina dura, contrast, trabecularisation, crater and furcation involvements were evaluated. Irrespective X-ray generator-type, measurement deviations increased at higher exposure times for solid-state, but decreased for photostimulable storage phosphor (PSP) systems. Accuracy for HF or DC was significantly higher than AC (p < 0.0001), especially at low exposure times. At 0.5- to 1-mm clinical deviation, 27-53% and 32-55% dose savings were demonstrated when using HF or DC generators compared to AC, but only for PSP. No savings were found for solid-state sensors, indicating their higher sensitivity. The use of digital sensors compared to film allowed 15-90% dose savings using the AC tube, whilst solid-state sensors allowed approximately 50% savings compared to PSP, depending on tube type and threshold level.. Accuracy of periodontal diagnosis increases when using HF or DC generators and/or digital receptors with adequate diagnostic information at lower exposure times.
Kihara, Takuya; Yoshimi, Yuki; Taji, Tsuyoshi; Murayama, Takeshi; Tanimoto, Kotaro; Nikawa, Hiroki
2016-08-01
For orthodontic treatment, it is important to assess the dental morphology, as well as the position and inclination of teeth. The aim of this article was to develop an efficient and accurate method for the three-dimensional (3D) imaging of the maxillary and mandibular dental morphology by measuring interocclusal records using an optical scanner. The occlusal and incisal morphology of participants was registered in the intercuspal position using a hydrophilic vinyl polysiloxane and digitized into 3D models using an optical scanner. Impressions were made of the maxilla and mandible in alginate materials in order to fabricate plaster models and created into 3D models using the optical scanner based on the principal triangulation method. The occlusal and incisal areas of the interocclusal records were retained. The buccal and lingual areas were added to these regions entirely by the 3D model of the plaster model. The accuracy of this method was evaluated for each tooth, with the dental cast 3D models used as controls. The 3D model created from the interocclusal record and the plaster model of the dental morphology was analysed in 3D software. The difference between the controls and the 3D models digitized from the interocclusal records was 0.068±0.048mm, demonstrating the accuracy of this method. The presence of severe crowding may compromise the ability to separate each tooth and digitize the dental morphology. The digitization method in this study provides sufficient accuracy to visualize the dental morphology, as well as the position and inclination of these teeth. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Menem, R; Barngkgei, I; Beiruti, N; Al Haffar, I; Joury, Easter
2017-04-01
The aim of this in vivo study was to test the diagnostic accuracy of a pen-type laser fluorescence (LFpen) device in detecting approximal caries lesions, in posterior permanent teeth, at the cavitation and non-cavitation thresholds, and compare it with that of digital bitewing radiography. Thirty patients (aged 18-37), who attended the Faculty of Dentistry at Damascus University for a dental examination, were consecutively screened. Ninety approximal surfaces of posterior permanent teeth without frank cavitations, enamel hypoplasia or restorations were selected and examined using the LFpen (DIAGNOdent pen) and digital bitewing radiography. The reference standard was the visual-tactile inspection, after performing temporary tooth separation, using orthodontic rubber rings, placed for 7 days. The status of included approximal surfaces was recorded as intact/sound, with white/brown spots or cavitated. One trained examiner performed all examinations. There were statistically significant differences in LFpen readings between the three types of approximal surface status (P < 0.001). The optimal cut-off values for detecting approximal caries lesions in posterior permanent teeth were >16 and 8 at the cavitation and non-cavitation thresholds respectively. The sensitivity, specificity and accuracy (measured by the area under the receiver-operating characteristic curve) were 100, 85 and 95 and 92, 90 and 95% at the cavitation and non-cavitation thresholds respectively. The intra-class correlation coefficient for intra-examiner reliability was 0.95. The diagnostic accuracy of the LFpen was significantly higher than that of digital bitewing radiography (P < 0.001). The LFpen's diagnostic performance was accurate and significantly better than digital bitewing radiography in detecting approximal caries lesions, in posterior permanent teeth.
Rajpara, S M; Botello, A P; Townend, J; Ormerod, A D
2009-09-01
Dermoscopy improves diagnostic accuracy of the unaided eye for melanoma, and digital dermoscopy with artificial intelligence or computer diagnosis has also been shown useful for the diagnosis of melanoma. At present there is no clear evidence regarding the diagnostic accuracy of dermoscopy compared with artificial intelligence. To evaluate the diagnostic accuracy of dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis and to compare the diagnostic accuracy of the different dermoscopic algorithms with each other and with digital dermoscopy/artificial intelligence for the detection of melanoma. A literature search on dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis was performed using several databases. Titles and abstracts of the retrieved articles were screened using a literature evaluation form. A quality assessment form was developed to assess the quality of the included studies. Heterogeneity among the studies was assessed. Pooled data were analysed using meta-analytical methods and comparisons between different algorithms were performed. Of 765 articles retrieved, 30 studies were eligible for meta-analysis. Pooled sensitivity for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%; P = 0.076). Pooled specificity for dermoscopy was significantly better than artificial intelligence (86% vs. 79%; P < 0.001). Pooled diagnostic odds ratio was 51.5 for dermoscopy and 57.8 for artificial intelligence, which were not significantly different (P = 0.783). There were no significance differences in diagnostic odds ratio among the different dermoscopic diagnostic algorithms. Dermoscopy and artificial intelligence performed equally well for diagnosis of melanocytic skin lesions. There was no significant difference in the diagnostic performance of various dermoscopy algorithms. The three-point checklist, the seven-point checklist and Menzies score had better diagnostic odds ratios than the others; however, these results need to be confirmed by a large-scale high-quality population-based study.
The Accuracy and Reproducibility of Linear Measurements Made on CBCT-derived Digital Models.
Maroua, Ahmad L; Ajaj, Mowaffak; Hajeer, Mohammad Y
2016-04-01
To evaluate the accuracy and reproducibility of linear measurements made on cone-beam computed tomography (CBCT)-derived digital models. A total of 25 patients (44% female, 18.7 ± 4 years) who had CBCT images for diagnostic purposes were included. Plaster models were obtained and digital models were extracted from CBCT scans. Seven linear measurements from predetermined landmarks were measured and analyzed on plaster models and the corresponding digital models. The measurements included arch length and width at different sites. Paired t test and Bland-Altman analysis were used to evaluate the accuracy of measurements on digital models compared to the plaster models. Also, intraclass correlation coefficients (ICCs) were used to evaluate the reproducibility of the measurements in order to assess the intraobserver reliability. The statistical analysis showed significant differences on 5 out of 14 variables, and the mean differences ranged from -0.48 to 0.51 mm. The Bland-Altman analysis revealed that the mean difference between variables was (0.14 ± 0.56) and (0.05 ± 0.96) mm and limits of agreement between the two methods ranged from -1.2 to 0.96 and from -1.8 to 1.9 mm in the maxilla and the mandible, respectively. The intraobserver reliability values were determined for all 14 variables of two types of models separately. The mean ICC value for the plaster models was 0.984 (0.924-0.999), while it was 0.946 for the CBCT models (range from 0.850 to 0.985). Linear measurements obtained from the CBCT-derived models appeared to have a high level of accuracy and reproducibility.
A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology
Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi
2015-01-01
Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187
A novel multi-digital camera system based on tilt-shift photography technology.
Sun, Tao; Fang, Jun-Yong; Zhao, Dong; Liu, Xue; Tong, Qing-Xi
2015-03-31
Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product.
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
ERIC Educational Resources Information Center
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.
ERIC Educational Resources Information Center
Caceci, Marco S.
1984-01-01
Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…
ERIC Educational Resources Information Center
White, Andy
2005-01-01
Purpose: This paper aims to use two case studies of digital archives designed by library and information professionals and historians to highlight the twin issues of academic authenticity and accuracy of digital representations. Design/methodology/approach: Using secondary literature, the author established a hypothesis about the way in which…
Determination of the accuracy and operating constants in a digitally biased ring core magnetometer
Green, A.W.
1990-01-01
By using a very stable voltage reference and a high precision digital-to-analog converter to set bias in digital increments, the inherently high stability and accuracy of a ring core magnetometer can be significantly enhanced. In this case it becomes possible to measure not only variations about the bias level, but to measure the entire value of the field along each magnetometer sensing axis in a nearly absolute sense. To accomplish this, one must accurately determine the value of the digital bias increment for each axis, the zero field offset value for each axis, the scale values, and the transfer coefficients (or nonorthogonality angles) for pairs of axes. This determination can be carried out very simply, using only the Earth's field, a proton magnetometer, and a tripod-mounted fixture which is capable of rotations about two axes that are mutually perpendicular to the Earth's magnetic field vector. ?? 1990.
On The Calculation Of Derivatives From Digital Information
NASA Astrophysics Data System (ADS)
Pettett, Christopher G.; Budney, David R.
1982-02-01
Biomechanics analysis frequently requires cinematographic studies as a first step toward understanding the essential mechanics of a sport or exercise. In order to understand the exertion by the athlete, cinematography is used to establish the kinematics from which the energy exchanges can be considered and the equilibrium equations can be studied. Errors in the raw digital information necessitate smoothing of the data before derivatives can be obtained. Researchers employ a variety of curve-smoothing techniques including filtering and polynomial spline methods. It is essential that the researcher understands the accuracy which can be expected in velocities and accelerations obtained from smoothed digital information. This paper considers particular types of data inherent in athletic motion and the expected accuracy of calculated velocities and accelerations using typical error distributions in the raw digital information. Included in this paper are high acceleration, impact and smooth motion types of data.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis
2016-04-01
This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM
Markon, Carl J.
1988-01-01
Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.
Raghunath, Vignesh; Braxton, Melissa O.; Gagnon, Stephanie A.; Brunyé, Tad T.; Allison, Kimberly H.; Reisch, Lisa M.; Weaver, Donald L.; Elmore, Joann G.; Shapiro, Linda G.
2012-01-01
Context: Digital pathology has the potential to dramatically alter the way pathologists work, yet little is known about pathologists’ viewing behavior while interpreting digital whole slide images. While tracking pathologist eye movements when viewing digital slides may be the most direct method of capturing pathologists’ viewing strategies, this technique is cumbersome and technically challenging to use in remote settings. Tracking pathologist mouse cursor movements may serve as a practical method of studying digital slide interpretation, and mouse cursor data may illuminate pathologists’ viewing strategies and time expenditures in their interpretive workflow. Aims: To evaluate the utility of mouse cursor movement data, in addition to eye-tracking data, in studying pathologists’ attention and viewing behavior. Settings and Design: Pathologists (N = 7) viewed 10 digital whole slide images of breast tissue that were selected using a random stratified sampling technique to include a range of breast pathology diagnoses (benign/atypia, carcinoma in situ, and invasive breast cancer). A panel of three expert breast pathologists established a consensus diagnosis for each case using a modified Delphi approach. Materials and Methods: Participants’ foveal vision was tracked using SensoMotoric Instruments RED 60 Hz eye-tracking system. Mouse cursor movement was tracked using a custom MATLAB script. Statistical Analysis Used: Data on eye-gaze and mouse cursor position were gathered at fixed intervals and analyzed using distance comparisons and regression analyses by slide diagnosis and pathologist expertise. Pathologists’ accuracy (defined as percent agreement with the expert consensus diagnoses) and efficiency (accuracy and speed) were also analyzed. Results: Mean viewing time per slide was 75.2 seconds (SD = 38.42). Accuracy (percent agreement with expert consensus) by diagnosis type was: 83% (benign/atypia); 48% (carcinoma in situ); and 93% (invasive). Spatial coupling was close between eye-gaze and mouse cursor positions (highest frequency ∆x was 4.00px (SD = 16.10), and ∆y was 37.50px (SD = 28.08)). Mouse cursor position moderately predicted eye gaze patterns (Rx = 0.33 and Ry = 0.21). Conclusions: Data detailing mouse cursor movements may be a useful addition to future studies of pathologists’ accuracy and efficiency when using digital pathology. PMID:23372984
Raghunath, Vignesh; Braxton, Melissa O; Gagnon, Stephanie A; Brunyé, Tad T; Allison, Kimberly H; Reisch, Lisa M; Weaver, Donald L; Elmore, Joann G; Shapiro, Linda G
2012-01-01
Digital pathology has the potential to dramatically alter the way pathologists work, yet little is known about pathologists' viewing behavior while interpreting digital whole slide images. While tracking pathologist eye movements when viewing digital slides may be the most direct method of capturing pathologists' viewing strategies, this technique is cumbersome and technically challenging to use in remote settings. Tracking pathologist mouse cursor movements may serve as a practical method of studying digital slide interpretation, and mouse cursor data may illuminate pathologists' viewing strategies and time expenditures in their interpretive workflow. To evaluate the utility of mouse cursor movement data, in addition to eye-tracking data, in studying pathologists' attention and viewing behavior. Pathologists (N = 7) viewed 10 digital whole slide images of breast tissue that were selected using a random stratified sampling technique to include a range of breast pathology diagnoses (benign/atypia, carcinoma in situ, and invasive breast cancer). A panel of three expert breast pathologists established a consensus diagnosis for each case using a modified Delphi approach. Participants' foveal vision was tracked using SensoMotoric Instruments RED 60 Hz eye-tracking system. Mouse cursor movement was tracked using a custom MATLAB script. Data on eye-gaze and mouse cursor position were gathered at fixed intervals and analyzed using distance comparisons and regression analyses by slide diagnosis and pathologist expertise. Pathologists' accuracy (defined as percent agreement with the expert consensus diagnoses) and efficiency (accuracy and speed) were also analyzed. Mean viewing time per slide was 75.2 seconds (SD = 38.42). Accuracy (percent agreement with expert consensus) by diagnosis type was: 83% (benign/atypia); 48% (carcinoma in situ); and 93% (invasive). Spatial coupling was close between eye-gaze and mouse cursor positions (highest frequency ∆x was 4.00px (SD = 16.10), and ∆y was 37.50px (SD = 28.08)). Mouse cursor position moderately predicted eye gaze patterns (Rx = 0.33 and Ry = 0.21). Data detailing mouse cursor movements may be a useful addition to future studies of pathologists' accuracy and efficiency when using digital pathology.
NASA Astrophysics Data System (ADS)
Snavely, Rachel A.
Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.
NASA Astrophysics Data System (ADS)
Xiong, L.; Wang, G.; Wessel, P.
2017-12-01
Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3cm×3cm) to handprint (e.g., 10cm×10cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain portable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem and implement an anti-aliasing procedure of regridding dense TLS data. The TLS data collected in the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as anti-aliasing filters. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.
NASA Astrophysics Data System (ADS)
Chow, Candace; Twele, André; Martinis, Sandro
2016-10-01
Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.
NASA Astrophysics Data System (ADS)
Xiong, Lin.; Wang, Guoquan; Wessel, Paul
2017-03-01
Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3 cm×3 cm) to handprint (e.g., 10 cm×10 cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain manageable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing caused by downsampling have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem of regridding dense TLS data. The TLS data collected from the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as an anti-aliasing filter. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with two different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.
Quantification of mammalian tumor cell state plasticity with digital holographic cytometry
NASA Astrophysics Data System (ADS)
Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.
2018-02-01
Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2002-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2003-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
NASA Astrophysics Data System (ADS)
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
The effect of flight altitude to data quality of fixed-wing UAV imagery: case study in Murcia, Spain
NASA Astrophysics Data System (ADS)
Anders, Niels; Keesstra, Saskia; Cammeraat, Erik
2014-05-01
Unmanned Aerial System (UAS) are becoming popular tools in the geosciences due to improving technology and processing techniques. They can potentially fill the gap between spaceborne or manned aircraft remote sensing and terrestrial remote sensing, both in terms of spatial and temporal resolution. In this study we tested a fixed-wing Unmanned Aerial System (UAS) for the application of digital landscape analysis. The focus was to analyze the effect of flight altitude and the effect to accuracy and detail of the produced digital elevation models, derived terrain properties and orthophotos. The aircraft was equipped with a Panasonic GX1 16MP pocket camera with 20 mm lens to capture normal JPEG RGB images. Images were processed using Agisoft Photoscan Pro which includes the structure-from-motion and multiview stereopsis algorithms. The test area consisted of small abandoned agricultural fields in semi-arid Murcia in southeastern Spain. The area was severely damaged after a destructive rainfall event, including damaged check dams, rills, deep gully incisions and piping. Results suggest that careful decisions on flight altitude are essential to find a balance between the area coverage, ground sampling distance, UAS ground speed, camera processing speed and the accurate registration of specific soil erosion features of interest.
Skinner, Kenneth D.
2011-01-01
High-quality elevation data in riverine environments are important for fisheries management applications and the accuracy of such data needs to be determined for its proper application. The Experimental Advanced Airborne Research LiDAR (Light Detection and Ranging)-or EAARL-system was used to obtain topographic and bathymetric data along the Deadwood and South Fork Boise Rivers in west-central Idaho. The EAARL data were post-processed into bare earth and bathymetric raster and point datasets. Concurrently with the EAARL surveys, real-time kinematic global positioning system surveys were made in three areas along each of the rivers to assess the accuracy of the EAARL elevation data in different hydrogeomorphic settings. The accuracies of the EAARL-derived raster elevation values, determined in open, flat terrain, to provide an optimal vertical comparison surface, had root mean square errors ranging from 0.134 to 0.347 m. Accuracies in the elevation values for the stream hydrogeomorphic settings had root mean square errors ranging from 0.251 to 0.782 m. The greater root mean square errors for the latter data are the result of complex hydrogeomorphic environments within the streams, such as submerged aquatic macrophytes and air bubble entrainment; and those along the banks, such as boulders, woody debris, and steep slopes. These complex environments reduce the accuracy of EAARL bathymetric and topographic measurements. Steep banks emphasize the horizontal location discrepancies between the EAARL and ground-survey data and may not be good representations of vertical accuracy. The EAARL point to ground-survey comparisons produced results with slightly higher but similar root mean square errors than those for the EAARL raster to ground-survey comparisons, emphasizing the minimized horizontal offset by using interpolated values from the raster dataset at the exact location of the ground-survey point as opposed to an actual EAARL point within a 1-meter distance. The average error for the wetted stream channel surface areas was -0.5 percent, while the average error for the wetted stream channel volume was -8.3 percent. The volume of the wetted river channel was underestimated by an average of 31 percent in half of the survey areas, and overestimated by an average of 14 percent in the remainder of the survey areas. The EAARL system is an efficient way to obtain topographic and bathymetric data in large areas of remote terrain. The elevation accuracy of the EAARL system varies throughout the area depending upon the hydrogeomorphic setting, preventing the use of a single accuracy value to describe the EAARL system. The elevation accuracy variations should be kept in mind when using the data, such as for hydraulic modeling or aquatic habitat assessments.
Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain
2017-10-02
This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.
Applications of deep convolutional neural networks to digitized natural history collections.
Schuettpelz, Eric; Frandsen, Paul B; Dikow, Rebecca B; Brown, Abel; Orli, Sylvia; Peters, Melinda; Metallo, Adam; Funk, Vicki A; Dorr, Laurence J
2017-01-01
Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.
NASA Technical Reports Server (NTRS)
Ungar, Stephen G.; Merry, Carolyn J.; Mckim, Harlan L.; Irish, Richard; Miller, Michael S.
1988-01-01
A simulated data set was used to evaluate techniques for extracting topography from side-looking satellite systems for an area of northwest Washington state. A negative transparency orthophotoquad was digitized at a spacing of 85 microns, resulting in an equivalent ground distance of 9.86 m between pixels and a radiometric resolution of 256 levels. A bilinear interpolation was performed on digital elevation model data to generate elevation data at a 9.86-m resolution. The nominal orbital characteristics and geometry of the SPOT satellite were convoluted with the data to produce simulated panchromatic HRV digital stereo imagery for three different orbital paths and techniques for reconstructing topographic data were developed. Analyses with the simulated HRV data and other data sets show that the method is effective.
Alsharbaty, Mohammed Hussein M; Alikhasi, Marzieh; Zarrati, Simindokht; Shamshiri, Ahmed Reza
2018-02-09
To evaluate the accuracy of a digital implant impression technique using a TRIOS 3Shape intraoral scanner (IOS) compared to conventional implant impression techniques (pick-up and transfer) in clinical situations. Thirty-six patients who had two implants (Implantium, internal connection) ranging in diameter between 3.8 and 4.8 mm in posterior regions participated in this study after signing a consent form. Thirty-six reference models (RM) were fabricated by attaching two impression copings intraorally, splinted with autopolymerizing acrylic resin, verified by sectioning through the middle of the index, and rejoined again with freshly mixed autopolymerizing acrylic resin pattern (Pattern Resin) with the brush bead method. After that, the splinted assemblies were attached to implant analogs (DANSE) and impressed with type III dental stone (Gypsum Microstone) in standard plastic die lock trays. Thirty-six working casts were fabricated for each conventional impression technique (i.e., pick-up and transfer). Thirty-six digital impressions were made with a TRIOS 3Shape IOS. Eight of the digitally scanned files were damaged; 28 digital scan files were retrieved to STL format. A coordinate-measuring machine (CMM) was used to record linear displacement measurements (x, y, and z-coordinates), interimplant distances, and angular displacements for the RMs and conventionally fabricated working casts. CATIA 3D evaluation software was used to assess the digital STL files for the same variables as the CMM measurements. CMM measurements made on the RMs and conventionally fabricated working casts were compared with 3D software measurements made on the digitally scanned files. Data were statistically analyzed using the generalized estimating equation (GEE) with an exchangeable correlation matrix and linear method, followed by the Bonferroni method for pairwise comparisons (α = 0.05). The results showed significant differences between the pick-up and digital groups in all of the measured variables (p < 0.001). Concerning the transfer and digital groups, the results were statistically significant in angular displacement (p < 0.001), distance measurements (p = 0.01), and linear displacement (p = 0.03); however, between the pick-up and transfer groups, there was no statistical significance in all of the measured variables (interimplant distance deviation, linear displacement, and angular displacement deviations). According to the results of this study, the digital implant impression technique had the least accuracy. Based on the study outcomes, distance and angulation errors associated with the intraoral digital implant impressions were too large to fabricate well-fitting restorations for partially edentulous patients. The pick-up implant impression technique was the most accurate, and the transfer technique revealed comparable accuracy to it. © 2018 by the American College of Prosthodontists.
Accuracy of intraoral data acquisition in comparison to the conventional impression.
Luthardt, R G; Loos, R; Quaas, S
2005-10-01
The achievable accuracy is a decisive parameter for the comparison of direct intraoral digitization with the conventional impression. The objective of the study was therefore to compare the accuracy of the reproduction of a model situation by intraoral digitization vs. the conventional procedure consisting of impression taking, model production, and extraoral digitization. Proceeding from a die model with a prepared tooth 16, the reference data set of the teeth 15, 16 and 17 was produced with an established procedure by means ofextraoral digitization. For the simulated intraoral data acquisition of the master model (Cerec 3D camera, Sirona, Bensheim), the camera was fastened on a stand for the measurement and the teeth digitized seven times each in defined views (occlusal, and in each case inclined by 20 degrees, from the mesio-proximal, disto-proximal, vestibular and oral aspect). Matching was automated (comparative data sets B1-B5). A clinically perfect one-step putty-and-wash impression was taken from the starting model. The model produced under defined conditions was digitized extraorally five times (digi-SCAN, comparative data sets C1-C5). The data sets B1-B5 and C1-C5 were assigned to the reference data set by means of best-fit matching and the root of the mean quadratic deviation (RMS; root mean square) calculated. The deviations were visualized, and mean positive, negative and absolute deviations calculated. The mean RMS was 27.9 microm (B1-B5) or 18.8 microm (C1-C5). The mean deviations for the prepared tooth were 18 microm/-17 microm (B1-B5) and 9 microm /-9 microm (C1-C5). For tooth 15, the mean deviations were 22 microm/-19 microm (B1-B5) and 15 microm/-16 microm (C1-C5). The intraoral method showed good results with deviations from the CAD starting model of approx. 17 microm, related to the prepared tooth 16. On the whole, in this in-vitro study, extraoral digitization with impression taking and model production showed higher accuracy than intraoral digitization. Since the inaccuracies in the conventional impression under real clinical conditions may be higher than the values determined above, a comparison under clinical conditions should be performed subsequently.
Production tolerance of additive manufactured polymeric objects for clinical applications.
Braian, Michael; Jimbo, Ryo; Wennerberg, Ann
2016-07-01
To determine the production tolerance of four commercially available additive manufacturing systems. By reverse engineering annex A and B from the ISO_12836;2012, two geometrical figures relevant to dentistry was obtained. Object A specifies the measurement of an inlay-shaped object and B a multi-unit specimen to simulate a four-unit bridge model. The objects were divided into x, y and z measurements, object A was divided into a total of 16 parameters and object B was tested for 12 parameters. The objects were designed digitally and manufactured by professionals in four different additive manufacturing systems; each system produced 10 samples of each objects. For object A, three manufacturers presented an accuracy of <100μm and one system showed an accuracy of <20μm. For object B, all systems presented an accuracy of <100μm, and most parameters were <40μm. The standard deviation for most parameters were <40μm. The growing interest and use of intra-oral digitizing systems stresses the use of computer aided manufacturing of working models. The additive manufacturing techniques has the potential to help us in the digital workflow. Thus, it is important to have knowledge about production accuracy and tolerances. This study presents a method to test additive manufacturing units for accuracy and repeatability. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Cristache, Corina Marilena; Gurbanescu, Silviu
2017-01-01
of this study was to evaluate the accuracy of a stereolithographic template, with sleeve structure incorporated into the design, for computer-guided dental implant insertion in partially edentulous patients. Sixty-five implants were placed in twenty-five consecutive patients with a stereolithographic surgical template. After surgery, digital impression was taken and 3D inaccuracy of implants position at entry point, apex, and angle deviation was measured using an inspection tool software. Mann-Whitney U test was used to compare accuracy between maxillary and mandibular surgical guides. A p value < .05 was considered significant. Mean (and standard deviation) of 3D error at the entry point was 0.798 mm (±0.52), at the implant apex it was 1.17 mm (±0.63), and mean angular deviation was 2.34 (±0.85). A statistically significant reduced 3D error was observed at entry point p = .037, at implant apex p = .008, and also in angular deviation p = .030 in mandible when comparing to maxilla. The surgical template used has proved high accuracy for implant insertion. Within the limitations of the present study, the protocol for comparing a digital file (treatment plan) with postinsertion digital impression may be considered a useful procedure for assessing surgical template accuracy, avoiding radiation exposure, during postoperative CBCT scanning.
NASA Technical Reports Server (NTRS)
Klemas, V.; Bartlett, D.; Rogers, R.; Reed, L.
1974-01-01
Digital analysis of ERTS-1 imagery was used in an attempt to map and inventory the significant ecological communities of Delaware's coastal zone. Eight vegetation and land use discrimination classes were selected: (1) phragmites communis (Giant Reed grass); (2) spartina alterniflora (Salt marsh cord grass); (3) spartina patens (Salt marsh hay); (4) shallow water and exposed mud; (5) deep water (2 meters); (6) forest; (7) agriculture; and (8) exposed sand and concrete. Canonical analysis showed that classification accuracy was quite good with spartina alterniflora, exposed sand-concrete, and forested land - all discriminated with between 94% and 100% accuracy. The shallow water-mud and deep water categories were classified with accuracies of 88% and 93% respectively. Phragmites communis showed a classification accuracy of 83% with all confusion occurring with spartina patens which may be due to use of mixed stands of these species as training sets. Discrimination of spartina patens was very poor (accuracy 52%).
NASA Technical Reports Server (NTRS)
Aldrich, Serena R.
1999-01-01
The purpose of my project was to convert a topographical map into digital form so that the data can be manipulated and easily accessed in the field. With the data in this particular format, Dr. Sever and his colleagues can highlight the specific features of the landscape that they require for their research of the ancient Mayan civilization. Digital elevation models (DEMs) can also be created from the digitized contour features adding another dimension to their research.