Sample records for accuracy modulating mutations

  1. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection.

    PubMed

    Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns

    2012-01-03

    Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.

  2. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis.

    PubMed

    Burgener, Elizabeth B; Moss, Richard B

    2018-06-01

    The aim of this study was to describe the newest development in cystic fibrosis (CF) care, CF transmembrane conductance regulator (CFTR) modulator therapies. Phase II results showing CFTR modulator triple therapies are more effective than current CFTR modulators. CFTR modulator therapy targets the protein defective in CF and boosts its function, but the drug must match mutation pathobiology. Ivacaftor, a CFTR potentiator, was the first modulator approved in 2012, with impressive improvement in lung function and other measures of disease in patients with gating and other residual function mutations (∼10% of CF patients). In 2015, the combination of lumacaftor, a CFTR corrector, and ivacaftor was approved for patients homozygous for the F508del mutation (∼40-50% of the CF population) with positive but less impressive clinical response and 10-20% incidence of intolerance. A next-generation CFTR corrector, tezacaftor, with ivacaftor equally effective and better tolerated than lumacaftor, has also received US Food and Drug Administration approval. Novel CFTR correctors, entering Phase 3 trials in triple modulator combination with tezacaftor-ivacaftor, appear substantially more effective for patients who are homozygous for the F508del mutation and can provide benefit for patients with a single F508del mutation. This offers promise of effective CFTR modulator therapy for nearly 90% of CF patients.

  3. Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Walters, Benjamin T.; Janakiraman, Vasantharajan; Stinson, Jeremy; Patapoff, Thomas W.; Fuh, Germaine

    2017-01-01

    Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo. PMID:28057863

  4. Mutations in histone modulators are associated with prolonged survival during azacitidine therapy

    PubMed Central

    Tobiasson, Magnus; McLornan, Donal P.; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Azenkoud, Asmaa Ben; Jädersten, Martin; Lindberg, Greger; Abdulkadir, Hani; Kulasekararaj, Austin; Ungerstedt, Johanna; Lennartsson, Andreas; Ekwall, Karl; Mufti, Ghulam J.; Hellström-Lindberg, Eva

    2016-01-01

    Early therapeutic decision-making is crucial in patients with higher-risk MDS. We evaluated the impact of clinical parameters and mutational profiles in 134 consecutive patients treated with azacitidine using a combined cohort from Karolinska University Hospital (n=89) and from King's College Hospital, London (n=45). While neither clinical parameters nor mutations had a significant impact on response rate, both karyotype and mutational profile were strongly associated with survival from the start of treatment. IPSS high-risk cytogenetics negatively impacted overall survival (median 20 vs 10 months; p<0.001), whereas mutations in histone modulators (ASXL1, EZH2) were associated with prolonged survival (22 vs 12 months, p=0.01). This positive association was present in both cohorts and remained highly significant in the multivariate cox model. Importantly, patients with mutations in histone modulators lacking high-risk cytogenetics showed a survival of 29 months compared to only 10 months in patients with the opposite pattern. While TP53 was negatively associated with survival, neither RUNX1-mutations nor the number of mutations appeared to influence survival in this cohort. We propose a model combining histone modulator mutational screening with cytogenetics in the clinical decision-making process for higher-risk MDS patients eligible for treatment with azacitidine. PMID:26959885

  5. KRAS mutation analysis of washing fluid from endoscopic ultrasound-guided fine needle aspiration improves cytologic diagnosis of pancreatic ductal adenocarcinoma.

    PubMed

    Park, Joo Kyung; Lee, Yoon Jung; Lee, Jong Kyun; Lee, Kyu Taek; Choi, Yoon-La; Lee, Kwang Hyuck

    2017-01-10

    EUS-FNA becomes one of the most important diagnostic modalities for PDACs. However, acquired tissue specimens were sometimes insufficient to make a definite cytological diagnosis. On the other hand, KRAS mutation is the most frequently acquired genetic alteration found more than 90% of PDACs. To investigate the way to improve diagnostic accuracy for PDACs using both cytological examination and KRAS mutation analysis would be a great help. Therefore, the aims of this study were to evaluate usefulness of conventional cytological examination combined with KRAS mutation analysis with modified PCR technology to improve the sensitivity and the accuracy. We enrolled 43 patients with solid pancreatic masses and 86 EUS-FNA specimens were obtained. During the EUS-FNA, the needle catheter was flushed with 2 cc of saline and the washed fluid was collected for KRAS mutation analysis for the first 2 passes; PNAClamp™ KRAS Mutation Detection Kit. There were 46 specimens from the 23 PDACs and 40 specimens from the 20 other pancreatic diseases. The sensitivity, specificity and accuracy were as follows; conventional cytopathologic examination: 63%, 100% and 80%; combination of cytopathologic examination and K-ras mutation analysis: 87%, 100% and 93%. Furthermore, KRAS mutation was detected 11 out of 17 PDAC samples whose cytopathology results were inconclusive. KRAS mutation analysis with PNAClamp™ technique using washing fluid from EUS-FNA along with cytological examination may not only improve the diagnostic accuracy of PDACs, but also establish the platform using genetic analysis which would be helpful as diagnostic modality for PDACs.

  6. Sound source localization identification accuracy: Envelope dependencies.

    PubMed

    Yost, William A

    2017-07-01

    Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.

  7. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology.

    PubMed

    Cantara, Silvia; Capezzone, Marco; Marchisotta, Stefania; Capuano, Serena; Busonero, Giulia; Toti, Paolo; Di Santo, Andrea; Caruso, Giuseppe; Carli, Anton Ferdinando; Brilli, Lucia; Montanaro, Annalisa; Pacini, Furio

    2010-03-01

    Fine-needle aspiration cytology (FNAC) is the gold standard for the differential diagnosis of thyroid nodules but has the limitation of inadequate sampling or indeterminate lesions. We aimed to verify whether search of thyroid cancer-associated protooncogene mutations in cytological samples may improve the diagnostic accuracy of FNAC. One hundred seventy-four consecutive patients undergoing thyroid surgery were submitted to FNAC (on 235 thyroid nodules) that was used for cytology and molecular analysis of BRAF, RAS, RET, TRK, and PPRgamma mutations. At surgery these nodules were sampled to perform the same molecular testing. Mutations were found in 67 of 235 (28.5%) cytological samples. Of the 67 mutated samples, 23 (34.3%) were mutated by RAS, 33 (49.3%) by BRAF, and 11 (16.4%) by RET/PTC. In 88.2% of the cases, the mutation was confirmed in tissue sample. The presence of mutations at cytology was associated with cancer 91.1% of the times and follicular adenoma 8.9% of the time. BRAF or RET/PTC mutations were always associated with cancer, whereas RAS mutations were mainly associated with cancer (74%) but also follicular adenoma (26%). The diagnostic performance of molecular analysis was superior to that of traditional cytology, with better sensitivity and specificity, and the combination of the two techniques further contributed to improve the total accuracy (93.2%), compared with molecular analysis (90.2%) or traditional cytology (83.0%). Our findings demonstrate that molecular analysis of cytological specimens is feasible and that its results in combination with cytology improves the diagnostic performance of traditional cytology.

  8. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  9. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.

  10. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  11. Crystal Genetics, Inc.

    PubMed

    Kermani, Bahram G

    2016-07-01

    Crystal Genetics, Inc. is an early-stage genetic test company, focused on achieving the highest possible clinical-grade accuracy and comprehensiveness for detecting germline (e.g., in hereditary cancer) and somatic (e.g., in early cancer detection) mutations. Crystal's mission is to significantly improve the health status of the population, by providing high accuracy, comprehensive, flexible and affordable genetic tests, primarily in cancer. Crystal's philosophy is that when it comes to detecting mutations that are strongly correlated with life-threatening diseases, the detection accuracy of every single mutation counts: a single false-positive error could cause severe anxiety for the patient. And, more importantly, a single false-negative error could potentially cost the patient's life. Crystal's objective is to eliminate both of these error types.

  12. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data.

    PubMed

    Fan, Yu; Xi, Liu; Hughes, Daniel S T; Zhang, Jianjun; Zhang, Jianhua; Futreal, P Andrew; Wheeler, David A; Wang, Wenyi

    2016-08-24

    Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of mutations in genetically heterogeneous tumor cell populations using next-generation sequencing remains challenging. We develop MuSE ( http://bioinformatics.mdanderson.org/main/MuSE ), Mutation calling using a Markov Substitution model for Evolution, a novel approach for modeling the evolution of the allelic composition of the tumor and normal tissue at each reference base. MuSE adopts a sample-specific error model that reflects the underlying tumor heterogeneity to greatly improve the overall accuracy. We demonstrate the accuracy of MuSE in calling subclonal mutations in the context of large-scale tumor sequencing projects using whole exome and whole genome sequencing.

  13. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.

    PubMed

    Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel

    2007-12-07

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.

  14. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  15. A design of optical modulation system with pixel-level modulation accuracy

    NASA Astrophysics Data System (ADS)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  16. Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots.

    PubMed

    Uddin, Mohammed; Woodbury-Smith, Marc; Chan, Ada J S; Albanna, Ammar; Minassian, Berge; Boelman, Cyrus; Scherer, Stephen W

    2018-03-28

    Mutations within STXBP1 have been associated with a range of neurodevelopmental disorders implicating the pleotropic impact of this gene. Although the frequency of de novo mutations within STXBP1 for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context of de novo STXBP1 mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136 de novo /rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a 'GTA' motif ( P < 0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the 'GTA' mutations are splicing compared to 14.70% (20 out of 136) of all reported mutations within STXBP1 We also noted that 11 of these 14 'GTA' associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis for STXBP1 de novo splicing mutations. Copyright © 2018 Uddin et al.

  17. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.

    PubMed

    Derichs, Nico

    2013-03-01

    Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  18. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    PubMed

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  19. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks

    PubMed Central

    Schrum, Jacob; Miikkulainen, Risto

    2015-01-01

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803

  20. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Muver, a computational framework for accurately calling accumulated mutations.

    PubMed

    Burkholder, Adam B; Lujan, Scott A; Lavender, Christopher A; Grimm, Sara A; Kunkel, Thomas A; Fargo, David C

    2018-05-09

    Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.

  2. Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status

    PubMed Central

    Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth

    2013-01-01

    FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy. PMID:23431389

  3. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  4. The Genomic Evolution of Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    Mutation characteristics. (a) Number of high-confidence somatic mutations across all foci. Non- silent , non- silent mutations; Unique, number of unique...genes harboring a non- silent mutation; Reported, gene reported to be mutated in references 9–12 and 14. (b) Spectrum of unique high confidence somatic...epigenetic and micr- oRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 2011; 30

  5. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein. © 2016 médecine/sciences – Inserm.

  6. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  8. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia

    PubMed Central

    Boulton, Stephen; Akimoto, Madoka; Akbarizadeh, Sam; Melacini, Giuseppe

    2017-01-01

    The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics. PMID:28174302

  9. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  10. Detection of CFTR function and modulation in primary human nasal cell spheroids.

    PubMed

    Brewington, John J; Filbrandt, Erin T; LaRosa, F J; Ostmann, Alicia J; Strecker, Lauren M; Szczesniak, Rhonda D; Clancy, John P

    2018-01-01

    Expansion of CFTR modulators to patients with rare/undescribed mutations will be facilitated by patient-derived models quantifying CFTR function and restoration. We aimed to generate a personalized model system of CFTR function and modulation using non-surgically obtained nasal epithelial cells (NECs). NECs obtained by curettage from healthy volunteers and CF patients were expanded and grown in 3-dimensional culture as spheroids, characterized, and stimulated with cAMP-inducing agents to activate CFTR. Spheroid swelling was quantified as a proxy for CFTR function. NEC spheroids recapitulated characteristics of pseudostratified respiratory epithelia. When stimulated with forskolin/IBMX, spheroids swelled in the presence of functional CFTR, and shrank in its absence. Spheroid swelling quantified mutant CFTR restoration in F508del homozygous cells using clinically available CFTR modulators. NEC spheroids hold promise for understanding rare CFTR mutations and personalized modulator testing to drive evaluation for CF patients with common, rare or undescribed mutations. Portions of this data have previously been presented in abstract form at the 2016 meetings of the American Thoracic Society and the 2016 North American Cystic Fibrosis Conference. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Metastatic site location influences the diagnostic accuracy of ctDNA EGFR- mutation testing in NSCLC patients: a pooled analysis.

    PubMed

    Passiglia, Francesco; Rizzo, Sergio; Rolfo, Christian; Galvano, Antonio; Bronte, Enrico; Incorvaia, Lorena; Listi, Angela; Barraco, Nadia; Castiglia, Marta; Calo, Valentina; Bazan, Viviana; Russo, Antonio

    2018-03-08

    Recent studies evaluated the diagnostic accuracy of circulating tumor DNA (ctDNA) in the detection of epidermal growth factor receptor (EGFR) mutations from plasma of NSCLC patients, overall showing a high concordance as compared to standard tissue genotyping. However it is less clear if the location of metastatic site may influence the ability to identify EGFR mutations in plasma. This pooled analysis aims to evaluate the association between the metastatic site location and the sensitivity of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Data from all published studies, evaluating the sensitivity of plasma-based EGFR-mutation testing, stratified by metastatic site location (extrathoracic (M1b) vs intrathoracic (M1a)) were collected by searching in PubMed, Cochrane Library, American Society of Clinical Oncology, and World Conference of Lung Cancer, meeting proceedings. Pooled Odds ratio (OR) and 95% confidence intervals (95% CIs) were calculated for the ctDNA analysis sensitivity, according to metastatic site location. A total of ten studies, with 1425 patients, were eligible. Pooled analysis showed that the sensitivity of ctDNA-based EGFR-mutation testing is significantly higher in patients with M1b vs M1a disease (OR: 5.09; 95% CIs: 2.93 - 8.84). A significant association was observed for both EGFR-activating (OR: 4.30, 95% CI: 2.35-7.88) and resistant T790M mutations (OR: 11.89, 95% CI: 1.45-97.22), regardless of the use of digital-PCR (OR: 5.85, 95% CI: 3.56-9.60) or non-digital PCR technologies (OR: 2.96, 95% CI: 2.24-3.91). These data suggest that the location of metastatic sites significantly influences the diagnostic accuracy of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  13. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    PubMed

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  14. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients

    PubMed Central

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-01-01

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection. PMID:29719623

  15. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  16. The UMD-p53 database: new mutations and analysis tools.

    PubMed

    Béroud, Christophe; Soussi, Thierry

    2003-03-01

    The tumor suppressor gene TP53 (p53) is the most extensively studied gene involved in human cancers. More than 1,400 publications have reported mutations of this gene in 150 cancer types for a total of 14,971 mutations. To exploit this huge bulk of data, specific analytic tools were highly warranted. We therefore developed a locus-specific database software called UMD-p53. This database compiles all somatic and germline mutations as well as polymorphisms of the TP53 gene which have been reported in the published literature since 1989, or unpublished data submitted to the database curators. The database is available at www.umd.necker.fr or at http://p53.curie.fr/. In this paper, we describe recent developments of the UMD-p53 database. These developments include new fields and routines. For example, the analysis of putative acceptor or donor splice sites is now automated and gives new insight for the causal role of "silent mutations." Other routines have also been created such as the prescreening module, the UV module, and the cancer distribution module. These new improvements will help users not only for molecular epidemiology and pharmacogenetic studies but also for patient-based studies. To achieve theses purposes we have designed a procedure to check and validate data in order to reach the highest quality data. Copyright 2003 Wiley-Liss, Inc.

  17. Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.

    PubMed

    Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E

    2013-02-12

    High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.

  18. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  19. [SOX10 mutation is relevant to inner ear malformation in patients with Waardenburg syndrome].

    PubMed

    Xu, G Y; Hao, Q Q; Zhong, L L; Ren, W; Yan, Y; Liu, R Y; Li, J N; Guo, W W; Zhao, H; Yang, S M

    2016-11-07

    Objective: To determine the relevance between the SOX 10 mutation and Waardenburg syndrome (WS) accompanied with inner ear abnormality by analyzing the inner ear imaging results and molecular and genetic results of the WS patients with the SOX 10 mutation. Methods: This study included 36 WS in patients during 2001 and 2015 in the department of otorhinolaryngology head and neck surgery, Chinese Peoples's Liberation Army General Hospital. The condition of the inner ear of each patient was assessed by analyzing HRCT scans of the temporal bone and MRI scans of the brain and internal auditory canal. Meanwhile, the possible pathogenic genes of WS, including SOX10, MITF , and PAX 3, were also screened. Patients were divided into two groups according to SOX 10 mutation.The Fisher accuracy test was used to determine statistical difference of inner ear deformation incidence between the two groups. Results: Among all 36 patients, 12 were found to have inner ear abnormality. Most abnormalities were posterior semicircular canal deformations, some accompanied with cochlear deformation and an enlarged vestibule. Among all patients, 9 patients were SOX 10 heterozygous mutation carriers, among which six showed bilateral inner ear abnormality. Fisher accuracy test results suggested a significant correlation between the SOX 10 mutation and inner ear abnormality in WS patients ( P =0.036). Conclusion: This study found that WS patients with the SOX 10 mutation are more likely to have deformed inner ears when compared to WS patients without the SOX 10 mutation.

  20. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.

    PubMed

    Rawat, Puneet; Kumar, Sandeep; Michael Gromiha, M

    2018-06-24

    Newly synthesized polypeptides must pass stringent quality controls in cells to ensure appropriate folding and function. However, mutations, environmental stresses and aging can reduce efficiencies of these controls, leading to accumulation of protein aggregates, amyloid fibrils and plaques. In-vitro experiments have shown that even single amino acid substitutions can drastically enhance or mitigate protein aggregation kinetics. In this work, we have collected a dataset of 220 unique mutations in 25 proteins and classified them as enhancers or mitigators on the basis of their effect on protein aggregation rate. The data were analyzed via machine learning to identify features capable of distinguishing between aggregation rate enhancers and mitigators. Our initial Support Vector Machine (SVM) model separated such mutations with an overall accuracy of 69%. When local secondary structures at the mutation sites were considered, the accuracies further improved by 13-15%. The machine-learnt features are distinct for each secondary structure class at mutation sites. Protein stability and flexibility changes are important features for mutations in α-helices. β-strand propensity, polarity and charge become important when mutations occur in β-strands and ability to form secondary structure, helical tendency and aggregation propensity are important for mutations lying in coils. These results have been incorporated into a sequence-based algorithm (available at http://www.iitm.ac.in/bioinfo/aggrerate-disc/) capable of predicting whether a mutation will enhance or mitigate a protein's aggregation rate. This algorithm will find several applications towards understanding protein aggregation in human diseases, enable in-silico optimization of biopharmaceuticals and enzymes for improved biophysical attributes and de novo design of bio-nanomaterials. Copyright © 2018. Published by Elsevier B.V.

  1. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs.

    PubMed

    Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian; Bräuner-Osborne, Hans; Gloriam, David E

    2017-04-15

    Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. david.gloriam@sund.ku.dk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  2. Breakthrough Therapies: Cystic Fibrosis (CF) Potentiators and Correctors

    PubMed Central

    Solomon, George M.; Marshall, Susan G.; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators is also emphasized. PMID:26097168

  3. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  4. Diagnostic accuracy of droplet digital PCR for detection of EGFR T790M mutation in circulating tumor DNA

    PubMed Central

    Tong, Xiang; Wang, Ye; Wang, Chengdi; Jin, Jing; Tian, Panwen; Li, Weimin

    2018-01-01

    Objectives Although different methods have been established to detect epidermal growth factor receptor (EGFR) T790M mutation in circulating tumor DNA (ctDNA), a wide range of diagnostic accuracy values were reported in previous studies. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for droplet digital PCR (ddPCR) in the diagnosis of EGFR T790M mutation based on ctDNA. Materials and methods A systematic review and meta-analysis were carried out based on resources from Pubmed, Web of Science, Embase and Cochrane Library up to October 11, 2017. Data were extracted to assess the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio (NLR), diagnostic OR (DOR), and areas under the summary receiver-operating characteristic curve (SROC). Results Eleven of 311 studies identified have met the including criteria. The sensitivity and specificity of ddPCR for the detection of T790M mutation in ctDNA ranged from 0.0% to 100.0% and 63.2% to 100.0%, respectively. For the pooled analysis, ddPCR had a performance of 70.1% (95% CI, 62.7%–76.7%) sensitivity, 86.9 % (95% CI, 80.6%–91.7%) specificity, 3.67 (95% CI, 2.33–5.79) PLR, 0.41 (95% CI, 0.32–0.55) NLR, and 10.83 (95% CI, 5.86–20.03) DOR, with the area under the SROC curve being 0.82. Conclusion The ddPCR harbored a good performance for detection of EGFR T790M mutation in ctDNA. PMID:29844700

  5. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  6. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice.

    PubMed

    Campesato, Luís Felipe; Barroso-Sousa, Romualdo; Jimenez, Leandro; Correa, Bruna R; Sabbaga, Jorge; Hoff, Paulo M; Reis, Luiz F L; Galante, Pedro Alexandre F; Camargo, Anamaria A

    2015-10-27

    Cancer gene panels (CGPs) are already used in clinical practice to match tumor's genetic profile with available targeted therapies. We aimed to determine if CGPs could also be applied to estimate tumor mutational load and predict clinical benefit to PD-1 and CTLA-4 checkpoint blockade therapy. Whole-exome sequencing (WES) mutation data obtained from melanoma and non-small cell lung cancer (NSCLC) patients published by Snyder et al. 2014 and Rizvi et al. 2015, respectively, were used to select nonsynonymous somatic mutations occurring in genes included in the Foundation Medicine Panel (FM-CGP) and in our own Institutional Panel (HSL-CGP). CGP-mutational load was calculated for each patient using both panels and was associated with clinical outcomes as defined and reported in the original articles. Higher CGP-mutational load was observed in NSCLC patients presenting durable clinical benefit (DCB) to PD-1 blockade (FM-CGP P=0.03, HSL-CGP P=0.01). We also observed that 69% of patients with high CGP-mutational load experienced DCB to PD-1 blockade, as compared to 20% of patients with low CGP-mutational load (FM-CGP and HSL-CGP P=0.01). Noteworthy, predictive accuracy of CGP-mutational load for DCB was not statistically different from that estimated by WES sequencing (P=0.73). Moreover, a high CGP-mutational load was significantly associated with progression-free survival (PFS) in patients treated with PD-1 blockade (FM-CGP P=0.005, HR 0.27, 95% IC 0.105 to 0.669; HSL-CGP P=0.008, HR 0.29, 95% IC 0.116 to 0.719). Similar associations between CGP-mutational load and clinical benefit to CTLA-4 blockade were not observed. In summary, our data reveals that CGPs can be used to estimate mutational load and to predict clinical benefit to PD-1 blockade, with similar accuracy to that reported using WES.

  7. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    PubMed

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.

  8. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  9. Persistency and flexibility of complex brain networks underlie dual-task interference.

    PubMed

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.

  10. Effects of HCM cTnI Mutation R145G on Troponin Structure and Modulation by PKA Phosphorylation Elucidated by Molecular Dynamics Simulations

    PubMed Central

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J. Andrew

    2015-01-01

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137–147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca2+ handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca2+-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca2+ coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation. PMID:25606687

  11. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations.

    PubMed

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J Andrew

    2015-01-20

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Underestimation of Risk of a BRCA1 or BRCA2 Mutation in Women With High-Grade Serous Ovarian Cancer by BRCAPRO: A Multi-Institution Study

    PubMed Central

    Daniels, Molly S.; Babb, Sheri A.; King, Robin H.; Urbauer, Diana L.; Batte, Brittany A.L.; Brandt, Amanda C.; Amos, Christopher I.; Buchanan, Adam H.; Mutch, David G.; Lu, Karen H.

    2014-01-01

    Purpose Identification of the 10% to 15% of patients with ovarian cancer who have germline BRCA1 or BRCA2 mutations is important for management of both patients and relatives. The BRCAPRO model, which estimates mutation likelihood based on personal and family cancer history, can inform genetic testing decisions. This study's purpose was to assess the accuracy of BRCAPRO in women with ovarian cancer. Methods BRCAPRO scores were calculated for 589 patients with ovarian cancer referred for genetic counseling at three institutions. Observed mutations were compared with those predicted by BRCAPRO. Analysis of variance was used to assess factors impacting BRCAPRO accuracy. Results One hundred eighty (31%) of 589 patients with ovarian cancer tested positive. At BRCAPRO scores less than 40%, more mutations were observed than expected (93 mutations observed v 34.1 mutations expected; P < .001). If patients with BRCAPRO scores less than 10% had not been tested, 51 (28%) of 180 mutations would have been missed. BRCAPRO underestimated the risk for high-grade serous ovarian cancers but overestimated the risk for other histologies (P < .001), underestimation increased as age at diagnosis decreased (P = .02), and model performance varied by institution (P = .02). Conclusion Patients with ovarian cancer classified as low risk by BRCAPRO are more likely to test positive than predicted. The risk of a mutation in patients with low BRCAPRO scores is high enough to warrant genetic testing. This study demonstrates that assessment of family history by a validated model cannot effectively target testing to a high-risk ovarian cancer patient population, which strongly supports the recommendation to offer BRCA1/BRCA2 genetic testing to all patients with high-grade serous ovarian cancer regardless of family history. PMID:24638001

  13. Modulation of Radiogenic Damage by Microgravity: Results From STS-76

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory; Kazarians, Gayane; Schubert, Wayne; Kern, Roger; Schranck, David; Hartman, Philip; Hlavacek, Anthony; Wilde, Honor; Lewicki, Dan; Benton, Eugene; hide

    1999-01-01

    The STS-76 (Shuttle-Mir 3) spaceflight provided an opportunity to test two questions about radiation responses in C. elegans. First, does the absence of gravity modify the dose-response relation for mutation and chromosome aberration and second, what are the features of the mutation spectrum resulting from exposure to cosmic rays? These questions were put to the test in space using the ESA "Biorack" facility which was housed in the Spacehab module aboard shuttle Atlantis. The mission flew in March, 1996 and was a shuttle rendezvous with the Russian space station Mir.

  14. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  15. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  16. Adaptive Local Realignment of Protein Sequences.

    PubMed

    DeBlasio, Dan; Kececioglu, John

    2018-06-11

    While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.

  17. Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection.

    PubMed

    Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus

    2015-03-01

    The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.

  18. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  19. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  20. DNA replication error-induced extinction of diploid yeast.

    PubMed

    Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D

    2014-03-01

    Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.

  1. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation. PMID:24260324

  2. The role of serum erythropoietin level and JAK2 V617F allele burden in the diagnosis of polycythaemia vera.

    PubMed

    Ancochea, Agueda; Alvarez-Larrán, Alberto; Morales-Indiano, Cristian; García-Pallarols, Francesc; Martínez-Avilés, Luz; Angona, Anna; Senín, Alicia; Bellosillo, Beatriz; Besses, Carles

    2014-11-01

    Low serum erythropoietin (EPO) is a minor criterion of Polycythaemia Vera (PV) but its diagnostic usefulness relies on studies performed before the discovery of JAK2 V617F mutation. The objective of the present study was to evaluate the diagnostic accuracy of serum EPO and JAK2 V617F allele burden as markers of PV as well as the combination of different diagnostic criteria in 287 patients (99 with PV, 137 with Essential Thrombocythaemia and 51 with non-clonal erythrocytosis). Low EPO showed good diagnostic accuracy as a marker for PV, with the area under the curve (AUC) of the chemiluminescent-enhanced enzyme immunoassay (CEIA) being better than that of radioimmunoassay (RIA) (0·87 and 0·76 for CEIA and RIA, respectively). JAK2 V617F quantification displayed an excellent diagnostic accuracy, with an AUC of 0·95. A haematocrit >52% (males) or >48% (females) plus the presence of the JAK2 V617F mutation had a sensitivity and specificity of 79% and 97%, respectively. Adding low EPO or the JAK2 V617F allele burden did not improve the diagnostic accuracy for PV whereas the inclusion of both improved the sensitivity up to 83% and maintaining 96% specificity. Haematocrit and qualitative JAK2 V617F mutation allow a reliable diagnosis of PV. Incorporation of EPO and/or JAK2 V617F mutant load does not improve the diagnostic accuracy. © 2014 John Wiley & Sons Ltd.

  3. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    PubMed

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  5. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function

    PubMed Central

    Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.

    2009-01-01

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126

  6. In vivo levels of S-adenosylmethionine modulate C:G to T:A mutations associated with repeat-induced point mutation in Neurospora crassa.

    PubMed

    Rosa, Alberto Luis; Folco, Hernán Diego; Mautino, Mario Ricardo

    2004-04-14

    In Neurospora crassa, the mutagenic process termed repeat-induced point mutation (RIP) inactivates duplicated DNA sequences during the sexual cycle by the introduction of C:G to T:A transition mutations. In this work, we have used a collection of N. crassa strains exhibiting a wide range of cellular levels of S-adenosylmethionine (AdoMet), the universal donor of methyl groups, to explore whether frequencies of RIP are dependent on the cellular levels of this metabolite. Mutant strains met-7 and eth-1 carry mutations in genes of the AdoMet pathway and have low levels of AdoMet. Wild type strains with high levels of AdoMet were constructed by introducing a chimeric transgene of the AdoMet synthetase (AdoMet-S) gene fused to the constitutive promoter trpC from Aspergillus nidulans. Crosses of these strains against tester duplications of the pan-2 and am genes showed that frequencies of RIP, as well as the total number of C:G to T:A transition mutations found in randomly selected am(RIP) alleles, are inversely correlated to the cellular level of AdoMet. These results indicate that AdoMet modulates the biochemical pathway leading to RIP.

  7. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.

    PubMed

    Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.

  8. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP).

    PubMed

    Lessard, Christian B; Cottrell, Barbara A; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E; Koo, Edward H

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  9. Daily modulation of the speed-accuracy trade-off.

    PubMed

    Gueugneau, Nicolas; Pozzo, Thierry; Darlot, Christian; Papaxanthis, Charalambos

    2017-07-25

    Goal-oriented arm movements are characterized by a balance between speed and accuracy. The relation between speed and accuracy has been formalized by Fitts' law and predicts a linear increase in movement duration with task constraints. Up to now this relation has been investigated on a short-time scale only, that is during a single experimental session, although chronobiological studies report that the motor system is shaped by circadian rhythms. Here, we examine whether the speed-accuracy trade-off could vary during the day. Healthy adults carried out arm-pointing movements as accurately and fast as possible toward targets of different sizes at various hours of the day, and variations in Fitts' law parameters were scrutinized. To investigate whether the potential modulation of the speed-accuracy trade-off has peripheral and/or central origins, a motor imagery paradigm was used as well. Results indicated a daily (circadian-like) variation for the durations of both executed and mentally simulated movements, in strictly controlled accuracy conditions. While Fitts' law was held for the whole sessions of the day, the slope of the relation between movement duration and task difficulty expressed a clear modulation, with the lowest values in the afternoon. This variation of the speed-accuracy trade-off in executed and mental movements suggests that, beyond execution parameters, motor planning mechanisms are modulated during the day. Daily update of forward models is discussed as a potential mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.

    PubMed

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D

    2016-10-01

    TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.

  11. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma

    PubMed Central

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie

    2016-01-01

    Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%. PMID:27840695

  12. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer.

    PubMed

    Guibert, N; Hu, Y; Feeney, N; Kuang, Y; Plagnol, V; Jones, G; Howarth, K; Beeler, J F; Paweletz, C P; Oxnard, G R

    2018-04-01

    Genomic analysis of plasma cell-free DNA is transforming lung cancer care; however, available assays are limited by cost, turnaround time, and imperfect accuracy. Here, we study amplicon-based plasma next-generation sequencing (NGS), rather than hybrid-capture-based plasma NGS, hypothesizing this would allow sensitive detection and monitoring of driver and resistance mutations in advanced non-small cell lung cancer (NSCLC). Plasma samples from patients with NSCLC and a known targetable genotype (EGFR, ALK/ROS1, and other rare genotypes) were collected while on therapy and analyzed blinded to tumor genotype. Plasma NGS was carried out using enhanced tagged amplicon sequencing of hotspots and coding regions from 36 genes, as well as intronic coverage for detection of ALK/ROS1 fusions. Diagnostic accuracy was compared with plasma droplet digital PCR (ddPCR) and tumor genotype. A total of 168 specimens from 46 patients were studied. Matched plasma NGS and ddPCR across 120 variants from 80 samples revealed high concordance of allelic fraction (R2 = 0.95). Pretreatment, sensitivity of plasma NGS for the detection of EGFR driver mutations was 100% (30/30), compared with 87% for ddPCR (26/30). A full spectrum of rare driver oncogenic mutations could be detected including sensitive detection of ALK/ROS1 fusions (8/9 detected, 89%). Studying 25 patients positive for EGFR T790M that developed resistance to osimertinib, 15 resistance mechanisms could be detected including tertiary EGFR mutations (C797S, Q791P) and mutations or amplifications of non-EGFR genes, some of which could be detected pretreatment or months before progression. This blinded analysis demonstrates the ability of amplicon-based plasma NGS to detect a full range of targetable genotypes in NSCLC, including fusion genes, with high accuracy. The ability of plasma NGS to detect a range of preexisting and acquired resistance mechanisms highlights its potential value as an alternative to single mutation digital PCR-based plasma assays for personalizing treatment of TKI resistance in lung cancer.

  13. Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context.

    PubMed

    Khalifa, M B; Weidenhaupt, M; Choulier, L; Chatellier, J; Rauffer-Bruyère, N; Altschuh, D; Vernet, T

    2000-01-01

    The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi-conservative amino acid replacements at the VH-VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE instrument. The substitutions introduced at the VH-VL interface had no significant effects on k(a) but showed small, significant effects on k(d). Mutations in the VH module affected k(d) not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation F(L37)L-Q(L38)L, alone or in combination with other mutations, consistently decreased k(d) about two-fold in Fab 145P. Other mutations in the VL module had no effect on k(d) in 145P, but always decreased k(d) in 1F1h. Moreover, in both systems, small-magnitude non-additive effects on k(d) were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes. Copyright 2000 John Wiley & Sons, Ltd.

  14. Multiple Mutations Modulate the Function of Dihydrofolate Reductase in Trimethoprim-Resistant Streptococcus pneumoniae

    PubMed Central

    Maskell, Jeffrey P.; Sefton, Armine M.; Hall, Lucinda M. C.

    2001-01-01

    Trimethoprim resistance in Streptococcus pneumoniae can be conferred by a single amino acid substitution (I100-L) in dihydrofolate reductase (DHFR), but resistant clinical isolates usually carry multiple DHFR mutations. DHFR genes from five trimethoprim-resistant isolates from the United Kingdom were compared to susceptible isolates and used to transform a susceptible control strain (CP1015). All trimethoprim-resistant isolates and transformants contained the I100-L mutation. The properties of DHFRs from transformants with different combinations of mutations were compared. In a transformant with only the I100-L mutation (R12/T2) and a D92-A mutation also found in the DHFRs of susceptible isolates, the enzyme was much more resistant to trimethoprim inhibition (50% inhibitory concentration [IC50], 4.2 μM) than was the DHFR from strain CP1015 (IC50, 0.09 μM). However, Km values indicated a lower affinity for the enzyme's natural substrates (Km for dihydrofolate [DHF], 3.1 μM for CP1015 and 27.5 μM for R12/T2) and a twofold decrease in the specificity constant. In transformants with additional mutations in the C-terminal portion of the enzyme, Km values for DHF were reduced (9.2 to 15.2 μM), indicating compensation for the lower affinity generated by I100-L. Additional mutations in the N-terminal portion of the enzyme were associated with up to threefold-increased resistance to trimethoprim (IC50 of up to 13.7 μM). It is postulated that carriage of the mutation M53-I—which, like I100-L, corresponds to a trimethoprim binding site in the Escherichia coli DHFR—is responsible for this increase. This study demonstrates that although the I100-L mutation alone may give rise to trimethoprim resistance, additional mutations serve to enhance resistance and modulate the effects of existing mutations on the affinity of DHFR for its natural substrates. PMID:11257022

  15. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  16. PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation.

    PubMed

    Davis, Thomas B; Yang, Mingli; Schell, Michael J; Wang, Heiman; Ma, Le; Pledger, W Jack; Yeatman, Timothy J

    2018-06-18

    Colorectal cancer (CRC) growth and progression is frequently driven by RAS pathway activation through upstream growth factor receptor activation or through mutational activation of KRAS or BRAF. Here we describe an additional mechanism by which the RAS pathway may be modulated in CRC. PTPRS, a receptor-type protein tyrosine phosphatase, appears to regulate RAS pathway activation through ERK. PTPRS modulates ERK phosphorylation and subsequent translocation to the nucleus. Native mutations in PTPRS, present in ~10% of CRC, may reduce its phosphatase activity while increasing ERK activation and downstream transcriptional signaling.

  17. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    PubMed

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  18. Clinico-pathological nomogram for predicting BRAF mutational status of metastatic colorectal cancer.

    PubMed

    Loupakis, Fotios; Moretto, Roberto; Aprile, Giuseppe; Muntoni, Marta; Cremolini, Chiara; Iacono, Donatella; Casagrande, Mariaelena; Ferrari, Laura; Salvatore, Lisa; Schirripa, Marta; Rossini, Daniele; De Maglio, Giovanna; Fasola, Gianpiero; Calvetti, Lorenzo; Pilotto, Sara; Carbognin, Luisa; Fontanini, Gabriella; Tortora, Giampaolo; Falcone, Alfredo; Sperduti, Isabella; Bria, Emilio

    2016-01-12

    In metastatic colorectal cancer (mCRC), BRAFV600E mutation has been variously associated to specific clinico-pathological features. Two large retrospective series of mCRC patients from two Italian Institutions were used as training-set (TS) and validation-set (VS) for developing a nomogram predictive of BRAFV600E status. The model was internally and externally validated. In the TS, data from 596 mCRC patients were gathered (RAS wild-type (wt) 281 (47.1%); BRAFV600E mutated 54 (9.1%)); RAS and BRAFV600E mutations were mutually exclusive. In the RAS-wt population, right-sided primary (odds ratio (OR): 7.80, 95% confidence interval (CI) 3.05-19.92), female gender (OR: 2.90, 95% CI 1.14-7.37) and mucinous histology (OR: 4.95, 95% CI 1.90-12.90) were independent predictors of BRAFV600E mutation, with high replication at internal validation (100%, 93% and 98%, respectively). A predictive nomogram was calculated: patients with the highest score (right-sided primary, female and mucinous) had a 81% chance to bear a BRAFV600E-mutant tumour; accuracy measures: AUC=0.812, SE:0.034, sensitivity:81.2%; specificity:72.1%. In the VS (508 pts, RAS wt: 262 (51.6%), BRAFV600E mutated: 49 (9.6%)), right-sided primary, female gender and mucinous histology were confirmed as independent predictors of BRAFV600E mutation with high accuracy. Three simple and easy-to-collect characteristics define a useful nomogram for predicting BRAF status in mCRC with high specificity and sensitivity.

  19. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    PubMed

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  20. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia.

    PubMed

    Mar, Brenton G; Bullinger, Lars B; McLean, Kathleen M; Grauman, Peter V; Harris, Marian H; Stevenson, Kristen; Neuberg, Donna S; Sinha, Amit U; Sallan, Stephen E; Silverman, Lewis B; Kung, Andrew L; Lo Nigro, Luca; Ebert, Benjamin L; Armstrong, Scott A

    2014-03-24

    Relapsed paediatric acute lymphoblastic leukaemia (ALL) has high rates of treatment failure. Epigenetic regulators have been proposed as modulators of chemoresistance, here, we sequence genes encoding epigenetic regulators in matched diagnosis-remission-relapse ALL samples. We find significant enrichment of mutations in epigenetic regulators at relapse with recurrent somatic mutations in SETD2, CREBBP, MSH6, KDM6A and MLL2, mutations in signalling factors are not enriched. Somatic alterations in SETD2, including frameshift and nonsense mutations, are present at 12% in a large de novo ALL patient cohort. We conclude that the enrichment of mutations in epigenetic regulators at relapse is consistent with a role in mediating therapy resistance.

  1. Finding of IDH1 R132H mutation in histologically non-neoplastic glial tissue changes surgical strategies, a case report.

    PubMed

    Søndergaard, Christian Baastrup; Scheie, David; Sehested, Astrid Marie; Skjøth-Rasmussen, Jane

    2017-07-01

    In 2016, the WHO classification of diffuse astrocytoma began to include isocitrate dehydrogenase (IDH) mutation in addition to histology. We here demonstrate a case where a 14-year-old boy presented with a parietal tumor with no histological evidence of neoplasia but with an IDH1 mutation. Due to the IDH1 R132H mutation, the patient was diagnosed with diffuse astrocytoma WHO grade II and underwent successful gross total resection of this near-eloquently located tumor. This case exemplifies how inclusion of immunohistochemistry in tumor classification alters surgical strategy and might improve accuracy and time to diagnosis.

  2. Dynamic Accuracy of Inertial Magnetic Sensor Modules

    DTIC Science & Technology

    2016-12-01

    and the cost of the YEI 3-space data-logging sensor was justified. C. PREVIOUS WORK In [7], Jeremy Cookson built a low-cost pendulum with an optical...encoder to test the dynamic accuracy of MARG sensor modules. The pendulum was designed in order to execute dynamic, repeatable tests in a single...3DM-GX1 and 3DM-GX3-25 sensors. In [8], Leslie Landry developed similar repeatable tests and utilized the pendulum to test the dynamic accuracy of

  3. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  4. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  5. Optimization-based scatter estimation using primary modulation for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Ma, Jingchen; Zhao, Jun, E-mail: junzhao

    Purpose: Scatter reduces the image quality in computed tomography (CT), but scatter correction remains a challenge. A previously proposed primary modulation method simultaneously obtains the primary and scatter in a single scan. However, separating the scatter and primary in primary modulation is challenging because it is an underdetermined problem. In this study, an optimization-based scatter estimation (OSE) algorithm is proposed to estimate and correct scatter. Methods: In the concept of primary modulation, the primary is modulated, but the scatter remains smooth by inserting a modulator between the x-ray source and the object. In the proposed algorithm, an objective function ismore » designed for separating the scatter and primary. Prior knowledge is incorporated in the optimization-based framework to improve the accuracy of the estimation: (1) the primary is always positive; (2) the primary is locally smooth and the scatter is smooth; (3) the location of penumbra can be determined; and (4) the scatter-contaminated data provide knowledge about which part is smooth. Results: The simulation study shows that the edge-preserving weighting in OSE improves the estimation accuracy near the object boundary. Simulation study also demonstrates that OSE outperforms the two existing primary modulation algorithms for most regions of interest in terms of the CT number accuracy and noise. The proposed method was tested on a clinical cone beam CT, demonstrating that OSE corrects the scatter even when the modulator is not accurately registered. Conclusions: The proposed OSE algorithm improves the robustness and accuracy in scatter estimation and correction. This method is promising for scatter correction of various kinds of x-ray imaging modalities, such as x-ray radiography, cone beam CT, and the fourth-generation CT.« less

  6. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer

    PubMed Central

    Li, Xuefei; Zhou, Caicun

    2017-01-01

    Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024

  7. Static and dynamic 18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status.

    PubMed

    Verger, Antoine; Stoffels, Gabriele; Bauer, Elena K; Lohmann, Philipp; Blau, Tobias; Fink, Gereon R; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2018-03-01

    The molecular features isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion have gained major importance for both glioma typing and prognosis and have, therefore, been integrated in the World Health Organization (WHO) classification in 2016. The aim of this study was to characterize static and dynamic O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) PET parameters in gliomas with or without IDH mutation or 1p/19q co-deletion. Ninety patients with newly diagnosed and untreated gliomas with a static and dynamic 18 F-FET PET scan prior to evaluation of tumor tissue according to the 2016 WHO classification were identified retrospectively. Mean and maximum tumor-to-brain ratios (TBR mean/max ), as well as dynamic parameters (time-to-peak and slope) of 18 F-FET uptake were calculated. Sixteen (18%) oligodendrogliomas (IDH mutated, 1p/19q co-deleted), 27 (30%) astrocytomas (IDH mutated only), and 47 (52%) glioblastomas (IDH wild type only) were identified. TBR mean , TBR max , TTP and slope discriminated between IDH mutated astrocytomas and IDH wild type glioblastomas (P < 0.01). TBR mean showed the best diagnostic performance (cut-off 1.95; sensitivity, 89%; specificity, 67%; accuracy, 81%). None of the parameters discriminated between oligodendrogliomas (IDH mutated, 1p/19q co-deleted) and glioblastomas or astrocytomas. Furthermore, TBR mean , TBR max , TTP, and slope discriminated between gliomas with and without IDH mutation (p < 0.01). The best diagnostic performance was obtained for the combination of TTP with TBR max or slope (accuracy, 73%). Data suggest that static and dynamic 18 F-FET PET parameters may allow determining non-invasively the IDH mutation status. However, IDH mutated and 1p/19q co-deleted oligodendrogliomas cannot be differentiated from glioblastomas and astrocytomas by 18 F-FET PET.

  8. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653

  9. Identifying candidate driver genes by integrative ovarian cancer genomics data

    NASA Astrophysics Data System (ADS)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  10. Impact of mutations on the allosteric conformational equilibrium

    PubMed Central

    Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej

    2012-01-01

    Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330

  11. Structural and functional characterization of the product of disease-related factor H gene conversion.

    PubMed

    Herbert, Andrew P; Kavanagh, David; Johansson, Conny; Morgan, Hugh P; Blaum, Bärbel S; Hannan, Jonathan P; Barlow, Paul N; Uhrín, Dušan

    2012-03-06

    Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.

  12. Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1 , are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention. Copyright © 2017 American Society for Microbiology.

  13. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    PubMed

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  14. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations

    PubMed Central

    Pérez, Paula Soledad; Sevic, Ina; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy. PMID:29738548

  15. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  16. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  17. Ion Channel Modulators in Cystic Fibrosis.

    PubMed

    Gentzsch, Martina; Mall, Marcus A

    2018-05-08

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cAMP-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacological modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. In this review, we focus on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel (ENaC) as additional targets in CF lung disease. Further, we discuss how patient-derived precision medicine models may aid the translation of emerging next generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF. Copyright © 2018. Published by Elsevier Inc.

  18. Breast Cancer Recognition Using a Novel Hybrid Intelligent Method

    PubMed Central

    Addeh, Jalil; Ebrahimzadeh, Ata

    2012-01-01

    Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945

  19. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress

    PubMed Central

    Barron, Martin J.; Smith, Claire E.L.; Poulter, James A.; Mighell, Alan J.; Inglehearn, Chris F.; Brown, Catriona J.; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J.

    2017-01-01

    Abstract ‘Amelogenesis imperfecta’ (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. PMID:28334996

  20. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress.

    PubMed

    Brookes, Steven J; Barron, Martin J; Smith, Claire E L; Poulter, James A; Mighell, Alan J; Inglehearn, Chris F; Brown, Catriona J; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J

    2017-05-15

    'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. © The Author 2017. Published by Oxford University Press.

  1. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    PubMed

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Ramón y Cajal, Teresa; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K; Toland, Amanda E; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Greene, Mark H; Mai, Phuong L; Nussbaum, Robert L; Andrulis, Irene L; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Barkardottir, Rosa B; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R; Hogervorst, Frans B L; van der Hout, Annemarie H; Seynaeve, Caroline; van der Luijt, Rob B; Ligtenberg, Marjolijn J L; Devilee, Peter; Wijnen, Juul T; Rookus, Matti A; Meijers-Heijboer, Hanne E J; Blok, Marinus J; van den Ouweland, Ans M W; Aalfs, Cora M; Rodriguez, Gustavo C; Phillips, Kelly-Anne A; Piedmonte, Marion; Nerenstone, Stacy R; Bae-Jump, Victoria L; O'Malley, David M; Ratner, Elena S; Schmutzler, Rita K; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M; Miron, Alex; Neuhausen, Susan L; Terry, Mary Beth; Chung, Wendy K; Daly, Mary B; Goldgar, David E; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elisabeth J; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K; Olah, Edith; Narod, Steven A; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N; Hamann, Ute; Spurdle, Amanda B; Healey, Sue; Weitzel, Jeffrey N; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Sinilnikova, Olga M; Maxwell, Christopher A; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J; Antoniou, Antonis C; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  2. A Coarse-Grained Elastic Network Atom Contact Model and Its Use in the Simulation of Protein Dynamics and the Prediction of the Effect of Mutations

    PubMed Central

    Frappier, Vincent; Najmanovich, Rafael J.

    2014-01-01

    Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations. PMID:24762569

  3. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    PubMed

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  4. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia

    PubMed Central

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-01-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×109/l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR. PMID:28450924

  5. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia.

    PubMed

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-03-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×10 9 /l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

  6. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate.

    PubMed

    Partin, K M; Fleck, M W; Mayer, M L

    1996-11-01

    AMPA receptor GluRA subunits with mutations at position 750, a residue shown previously to control allosteric regulation by cyclothiazide, were analyzed for modulation of deactivation and desensitization by cyclothiazide, aniracetam, and thiocyanate. Point mutations from Ser to Asn, Ala, Asp, Gly, Gln, Met, Cys, Thr, Leu, Val, and Tyr were constructed in GluRAflip. The last four of these mutants were not functional; S750D was active only in the presence of cyclothiazide, and the remaining mutants exhibited altered rates of deactivation and desensitization for control responses to glutamate, and showed differential modulation by cyclothiazide and aniracetam. Results from kinetic analysis are consistent with aniracetam and cyclothiazide acting via distinct mechanisms. Our experiments demonstrate for the first time the functional importance of residue 750 in regulating intrinsic channel-gating kinetics and emphasize the biological significance of alternative splicing in the M3-M4 extracellular loop.

  7. Optical integration of SPO mirror modules in the ATHENA telescope

    NASA Astrophysics Data System (ADS)

    Valsecchi, G.; Marioni, F.; Bianucci, G.; Zocchi, F. E.; Gallieni, D.; Parodi, G.; Ottolini, M.; Collon, M.; Civitani, M.; Pareschi, G.; Spiga, D.; Bavdaz, M.; Wille, E.

    2017-08-01

    ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase.

  8. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  9. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer.

    PubMed

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-06-08

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors.

  10. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer

    PubMed Central

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors. PMID:27338477

  11. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    PubMed

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  12. Accuracy of screening women at familial risk of breast cancer without a known gene mutation: Individual patient data meta-analysis.

    PubMed

    Phi, Xuan-Anh; Houssami, Nehmat; Hooning, Maartje J; Riedl, Christopher C; Leach, Martin O; Sardanelli, Francesco; Warner, Ellen; Trop, Isabelle; Saadatmand, Sepideh; Tilanus-Linthorst, Madeleine M A; Helbich, Thomas H; van den Heuvel, Edwin R; de Koning, Harry J; Obdeijn, Inge-Marie; de Bock, Geertruida H

    2017-11-01

    Women with a strong family history of breast cancer (BC) and without a known gene mutation have an increased risk of developing BC. We aimed to investigate the accuracy of screening using annual mammography with or without magnetic resonance imaging (MRI) for these women outside the general population screening program. An individual patient data (IPD) meta-analysis was conducted using IPD from six prospective screening trials that had included women at increased risk for BC: only women with a strong familial risk for BC and without a known gene mutation were included in this analysis. A generalised linear mixed model was applied to estimate and compare screening accuracy (sensitivity, specificity and predictive values) for annual mammography with or without MRI. There were 2226 women (median age: 41 years, interquartile range 35-47) with 7478 woman-years of follow-up, with a BC rate of 12 (95% confidence interval 9.3-14) in 1000 woman-years. Mammography screening had a sensitivity of 55% (standard error of mean [SE] 7.0) and a specificity of 94% (SE 1.3). Screening with MRI alone had a sensitivity of 89% (SE 4.6) and a specificity of 83% (SE 2.8). Adding MRI to mammography increased sensitivity to 98% (SE 1.8, P < 0.01 compared to mammography alone) but lowered specificity to 79% (SE 2.7, P < 0.01 compared with mammography alone). In this population of women with strong familial BC risk but without a known gene mutation, in whom BC incidence was high both before and after age 50, adding MRI to mammography substantially increased screening sensitivity but also decreased its specificity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Feasibility and accuracy of molecular testing in specimens obtained with small biopsy forceps: comparison with the results of surgical specimens.

    PubMed

    Oki, Masahide; Yatabe, Yasushi; Saka, Hideo; Kitagawa, Chiyoe; Kogure, Yoshihito; Ichihara, Shu; Moritani, Suzuko

    2015-01-01

    During bronchoscopy, small biopsy forceps are increasingly used for the diagnosis of peripheral pulmonary lesions. However, it is unclear whether the formalin-fixed paraffin-embedded specimens sampled with the small biopsy forceps are suitable for the determination of genotypes which become indispensable for the management decision regarding patients with non-small cell lung cancer. The aim of this study was to evaluate the feasibility and accuracy of molecular testing in the specimens obtained with 1.5-mm small biopsy forceps. We examined specimens in 91 patients, who were enrolled in our previous 3 studies on the usefulness of thin bronchoscopes and given a diagnosis of non-small cell lung cancer by bronchoscopy with the 1.5-mm biopsy forceps, and then underwent surgical resection. An experienced pathologist examined paraffin-embedded specimens obtained by bronchoscopic biopsy or surgical resection in a blind fashion on epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements and KRAS mutations. Twenty-five (27%), 2 (2%) and 5 (5%) patients had an EGFR mutation, ALK rearrangement and KRAS mutation, respectively, based on the results in surgical specimens. EGFR, ALK and KRAS testing with bronchoscopic specimens was feasible in 82 (90%), 86 (95%) and 83 (91%) patients, respectively. If molecular testing was feasible, the accuracy of EGFR, ALK and KRAS testing with bronchoscopic specimens for the results with surgical specimens was 98, 100 and 98%, respectively. The results of molecular testing in the formalin-fixed paraffin-embedded specimens obtained with the small forceps, in which the genotype could be evaluated, correlated well with those in surgically resected specimens.

  14. Splicing Modulation as a Potential Treatment for Vemurafenib-Resistant Melanoma | Center for Cancer Research

    Cancer.gov

    Over half of melanomas contain mutations in the serine/threonine kinase BRAF. The most common mutation, BRAF(V600E), leads to excessive activation of the MAPK proliferation pathway. Vemurafenib is a potent kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumors. Patients initially respond to treatment with vemurafenib, but inevitably develop

  15. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene.

    PubMed

    Silva, Bruno; Pita, Lina; Gomes, Susana; Gonçalves, João; Faustino, Paula

    2014-12-01

    Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.

  16. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  17. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    He, Xiangyu; Zhu, Xiaoyu; Wang, Xuexiang; Wang, Wei; Dai, Yu; Yan, Qingfeng

    2013-01-01

    The phenotypic manifestations of mitochondrial DNA (mtDNA) mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R) or P(R) 454) mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R))), the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S)), mto2(P(S)) and MTO2(P(R))). The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R)) strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  19. Research on accuracy analysis of laser transmission system based on Zemax and Matlab

    NASA Astrophysics Data System (ADS)

    Chen, Haiping; Liu, Changchun; Ye, Haixian; Xiong, Zhao; Cao, Tingfen

    2017-05-01

    Laser transmission system is important in high power solid-state laser facilities and its function is to transfer and focus the light beam in accordance with the physical function of the facility. This system is mainly composed of transmission mirror modules and wedge lens module. In order to realize the precision alignment of the system, the precision alignment of the system is required to be decomposed into the allowable range of the calibration error of each module. The traditional method is to analyze the error factors of the modules separately, and then the linear synthesis is carried out, and the influence of the multi-module and multi-factor is obtained. In order to analyze the effect of the alignment error of each module on the beam center and focus more accurately, this paper aims to combine with the Monte Carlo random test and ray tracing, analyze influence of multi-module and multi-factor on the center of the beam, and evaluate and optimize the results of accuracy decomposition.

  20. SPOP mutation leads to genomic instability in prostate cancer

    PubMed Central

    Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S

    2015-01-01

    Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986

  1. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders

    PubMed Central

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Àlex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications. PMID:24605182

  2. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders.

    PubMed

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Alex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.

  3. Boomerang: A method for recursive reclassification.

    PubMed

    Devlin, Sean M; Ostrovnaya, Irina; Gönen, Mithat

    2016-09-01

    While there are many validated prognostic classifiers used in practice, often their accuracy is modest and heterogeneity in clinical outcomes exists in one or more risk subgroups. Newly available markers, such as genomic mutations, may be used to improve the accuracy of an existing classifier by reclassifying patients from a heterogenous group into a higher or lower risk category. The statistical tools typically applied to develop the initial classifiers are not easily adapted toward this reclassification goal. In this article, we develop a new method designed to refine an existing prognostic classifier by incorporating new markers. The two-stage algorithm called Boomerang first searches for modifications of the existing classifier that increase the overall predictive accuracy and then merges to a prespecified number of risk groups. Resampling techniques are proposed to assess the improvement in predictive accuracy when an independent validation data set is not available. The performance of the algorithm is assessed under various simulation scenarios where the marker frequency, degree of censoring, and total sample size are varied. The results suggest that the method selects few false positive markers and is able to improve the predictive accuracy of the classifier in many settings. Lastly, the method is illustrated on an acute myeloid leukemia data set where a new refined classifier incorporates four new mutations into the existing three category classifier and is validated on an independent data set. © 2016, The International Biometric Society.

  4. Boomerang: A Method for Recursive Reclassification

    PubMed Central

    Devlin, Sean M.; Ostrovnaya, Irina; Gönen, Mithat

    2016-01-01

    Summary While there are many validated prognostic classifiers used in practice, often their accuracy is modest and heterogeneity in clinical outcomes exists in one or more risk subgroups. Newly available markers, such as genomic mutations, may be used to improve the accuracy of an existing classifier by reclassifying patients from a heterogenous group into a higher or lower risk category. The statistical tools typically applied to develop the initial classifiers are not easily adapted towards this reclassification goal. In this paper, we develop a new method designed to refine an existing prognostic classifier by incorporating new markers. The two-stage algorithm called Boomerang first searches for modifications of the existing classifier that increase the overall predictive accuracy and then merges to a pre-specified number of risk groups. Resampling techniques are proposed to assess the improvement in predictive accuracy when an independent validation data set is not available. The performance of the algorithm is assessed under various simulation scenarios where the marker frequency, degree of censoring, and total sample size are varied. The results suggest that the method selects few false positive markers and is able to improve the predictive accuracy of the classifier in many settings. Lastly, the method is illustrated on an acute myeloid leukemia dataset where a new refined classifier incorporates four new mutations into the existing three category classifier and is validated on an independent dataset. PMID:26754051

  5. Genotype imputation in a coalescent model with infinitely-many-sites mutation

    PubMed Central

    Huang, Lucy; Buzbas, Erkan O.; Rosenberg, Noah A.

    2012-01-01

    Empirical studies have identified population-genetic factors as important determinants of the properties of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a simple coalescent model of three sequences that we use to explore the theoretical basis for the influence of these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation. Employing a demographic model in which two populations diverged at a given time in the past, we derive the approximate expectation and variance of imputation accuracy in a study sequence sampled from one of the two populations, choosing between two reference sequences, one sampled from the same population as the study sequence and the other sampled from the other population. We show that under this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the markers in a chromosomal region that are genotyped, and the time to divergence between the study and reference populations. Each of these effects derives largely from an increase in information available for determining the reference sequence that is genetically most similar to the sequence targeted for imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in the target using a reference sequence from the same population as the target rather than from the other population. Together with a growing body of empirical investigations of genotype imputation in diverse human populations, our modeling framework lays a foundation for extending imputation techniques to novel populations that have not yet been extensively examined. PMID:23079542

  6. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  7. Epilepsy-causing mutations in Kv7.2 C-terminus affect binding and functional modulation by calmodulin.

    PubMed

    Ambrosino, Paolo; Alaimo, Alessandro; Bartollino, Silvia; Manocchio, Laura; De Maria, Michela; Mosca, Ilaria; Gomis-Perez, Carolina; Alberdi, Araitz; Scambia, Giovanni; Lesca, Gaetan; Villarroel, Alvaro; Taglialatela, Maurizio; Soldovieri, Maria Virginia

    2015-09-01

    Mutations in the KCNQ2 gene, encoding for voltage-gated Kv7.2K(+) channel subunits, are responsible for early-onset epileptic diseases with widely-diverging phenotypic presentation, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy. In the present study, Kv7.2 BFNS-causing mutations (W344R, L351F, L351V, Y362C, and R553Q) have been investigated for their ability to interfere with calmodulin (CaM) binding and CaM-induced channel regulation. To this aim, semi-quantitative (Far-Western blotting) and quantitative (Surface Plasmon Resonance and dansylated CaM fluorescence) biochemical assays have been performed to investigate the interaction of CaM with wild-type or mutant Kv7.2 C-terminal fragments encompassing the CaM-binding domain; in parallel, mutation-induced changes in CaM-dependent Kv7.2 or Kv7.2/Kv7.3 current regulation were investigated by patch-clamp recordings in Chinese Hamster Ovary (CHO) cells co-expressing Kv7.2 or Kv7.2/Kv7.3 channels and CaM or CaM1234 (a CaM isoform unable to bind Ca(2+)). The results obtained suggest that each BFNS-causing mutation prompts specific biochemical and/or functional consequences; these range from slight alterations in CaM affinity which did not translate into functional changes (L351V), to a significant reduction in the affinity and functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss without significant alteration in CaM affinity (W344R). CaM overexpression increased Kv7.2 and Kv7.2/Kv7.3 current levels, and partially (R553Q) or fully (L351F) restored normal channel function, providing a rationale pathogenetic mechanism for mutation-induced channel dysfunction in BFNS, and highlighting the potentiation of CaM-dependent Kv7.2 modulation as a potential therapeutic approach for Kv7.2-related epilepsies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. pmx: Automated protein structure and topology generation for alchemical perturbations

    PubMed Central

    Gapsys, Vytautas; Michielssens, Servaas; Seeliger, Daniel; de Groot, Bert L

    2015-01-01

    Computational protein design requires methods to accurately estimate free energy changes in protein stability or binding upon an amino acid mutation. From the different approaches available, molecular dynamics-based alchemical free energy calculations are unique in their accuracy and solid theoretical basis. The challenge in using these methods lies in the need to generate hybrid structures and topologies representing two physical states of a system. A custom made hybrid topology may prove useful for a particular mutation of interest, however, a high throughput mutation analysis calls for a more general approach. In this work, we present an automated procedure to generate hybrid structures and topologies for the amino acid mutations in all commonly used force fields. The described software is compatible with the Gromacs simulation package. The mutation libraries are readily supported for five force fields, namely Amber99SB, Amber99SB*-ILDN, OPLS-AA/L, Charmm22*, and Charmm36. PMID:25487359

  9. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  10. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their full potential in capturing clinical outcomes. PMID:25811838

  11. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  12. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    PubMed Central

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S.; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Cajal, Teresa Ramón y; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K.; Toland, Amanda E.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Greene, Mark H.; Mai, Phuong L.; Nussbaum, Robert L.; Andrulis, Irene L.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Barkardottir, Rosa B.; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V.; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M.; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R.; Hogervorst, Frans B. L.; van der Hout, Annemarie H.; Seynaeve, Caroline; van der Luijt, Rob B.; Ligtenberg, Marjolijn J. L.; Devilee, Peter; Wijnen, Juul T.; Rookus, Matti A.; Meijers-Heijboer, Hanne E. J.; Blok, Marinus J.; van den Ouweland, Ans M. W.; Aalfs, Cora M.; Rodriguez, Gustavo C.; Phillips, Kelly-Anne A.; Piedmonte, Marion; Nerenstone, Stacy R.; Bae-Jump, Victoria L.; O'Malley, David M.; Ratner, Elena S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J.; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A.; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M.; Miron, Alex; Neuhausen, Susan L.; Terry, Mary Beth; Chung, Wendy K.; Daly, Mary B.; Goldgar, David E.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elisabeth J.; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K.; Olah, Edith; Narod, Steven A.; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N.; Hamann, Ute; Spurdle, Amanda B.; Healey, Sue; Weitzel, Jeffrey N.; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Maxwell, Christopher A.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J.; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F.; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J.; Antoniou, Antonis C.; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 – 1.15, p = 1.9 x 10−4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 – 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients’ survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers. PMID:25830658

  13. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  14. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy.

    PubMed

    Ma, Leyuan; Boucher, Jeffrey I; Paulsen, Janet; Matuszewski, Sebastian; Eide, Christopher A; Ou, Jianhong; Eickelberg, Garrett; Press, Richard D; Zhu, Lihua Julie; Druker, Brian J; Branford, Susan; Wolfe, Scot A; Jensen, Jeffrey D; Schiffer, Celia A; Green, Michael R; Bolon, Daniel N

    2017-10-31

    Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics. Published under the PNAS license.

  15. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  16. Significance of duon mutations in cancer genomes

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  17. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. On the neural implementation of the speed-accuracy trade-off

    PubMed Central

    Standage, Dominic; Blohm, Gunnar; Dorris, Michael C.

    2014-01-01

    Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This phenomenon is referred to as the speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and the data from these studies are well characterized within the framework of bounded integration. According to this framework, decision makers accumulate noisy evidence until the running total for one of the alternatives reaches a bound. Lower and higher bounds favor speed and accuracy respectively, each at the expense of the other. Studies addressing the neural implementation of these computations are a recent development in neuroscience. In this review, we describe the experimental and theoretical evidence provided by these studies. We structure the review according to the framework of bounded integration, describing evidence for (1) the modulation of the encoding of evidence under conditions favoring speed or accuracy, (2) the modulation of the integration of encoded evidence, and (3) the modulation of the amount of integrated evidence sufficient to make a choice. We discuss commonalities and differences between the proposed neural mechanisms, some of their assumptions and simplifications, and open questions for future work. We close by offering a unifying hypothesis on the present state of play in this nascent research field. PMID:25165430

  19. On the neural implementation of the speed-accuracy trade-off.

    PubMed

    Standage, Dominic; Blohm, Gunnar; Dorris, Michael C

    2014-01-01

    Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This phenomenon is referred to as the speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and the data from these studies are well characterized within the framework of bounded integration. According to this framework, decision makers accumulate noisy evidence until the running total for one of the alternatives reaches a bound. Lower and higher bounds favor speed and accuracy respectively, each at the expense of the other. Studies addressing the neural implementation of these computations are a recent development in neuroscience. In this review, we describe the experimental and theoretical evidence provided by these studies. We structure the review according to the framework of bounded integration, describing evidence for (1) the modulation of the encoding of evidence under conditions favoring speed or accuracy, (2) the modulation of the integration of encoded evidence, and (3) the modulation of the amount of integrated evidence sufficient to make a choice. We discuss commonalities and differences between the proposed neural mechanisms, some of their assumptions and simplifications, and open questions for future work. We close by offering a unifying hypothesis on the present state of play in this nascent research field.

  20. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian; Robertson, Amy; Jonkman, Jason

    2016-08-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  1. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.

    2016-07-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  2. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  3. GNQ-209P Mutation in Metastatic Uveal Melanoma and Treatment Outcome.

    PubMed

    Abdel Karim, Nagla; Eldessouki, Ihab; Taftaf, Ahmad; Ayham, Deeb; Gaber, Ola; Makramalla, Abouelmagd; Correa, Zelia M

    2018-01-01

    Metastatic prognosis in uveal melanoma is assessed by gene expression profiling (GEP) testing of the tumor cells, usually obtained by fine needle aspiration (FNA). GEP has demonstrated high accuracy in distinguishing class I and II tumors, both having different metastatic potential. Transcriptomic studies identified distinct mutations including somatic mutations in GNAQ and GNA11 , detected in more than 80%, and contribute to the upregulation of the mitogen-activated protein kinase (MAPK) pathway and the development of uveal melanoma (UM). The role of these mutations in treatment selection and possible benefit from targeted therapy are somewhat unclear. However, until the discovery of novel agents, local versus systemic therapies remain options for treatment that can still be considered for disease control in certain cases. We report a series of patients with metastatic UM with distinct mutational profiles. One had significant liver metastases with proven GNQ-209P mutation on tissue biopsy while peripheral blood molecular profiling did not show these mutations. The other three cases had no GNQ-209P mutation. All cases received nab-paclitaxel (Abraxane) as a treatment drug, and we record their responses to treatment and their molecular-profiling results.

  4. Predicting the impact of mutations on the specific activity of Bacillus thermocatenulatus lipase using a combined approach of docking and molecular dynamics.

    PubMed

    Yukselen, Onur; Timucin, Emel; Sezerman, Ugur

    2016-10-01

    Lipases are important biocatalysts owing to their ability to catalyze diverse reactions with exceptional substrate specificities. A combined docking and molecular dynamics (MD) approach was applied to study the chain-length selectivity of Bacillus thermocatenulatus lipase (BTL2) towards its natural substrates (triacylglycerols). A scoring function including electrostatic, van der Waals (vdW) and desolvation energies along with conformational entropy was developed to predict the impact of mutation. The native BTL2 and its 6 mutants (F17A, V175A, V175F, D176F, T178V and I320F) were experimentally analyzed to determine their specific activities towards tributyrin (C4) or tricaprylin (C8), which were used to test our approach. Our scoring methodology predicted the chain-length selectivity of BTL2 with 85.7% (6/7) accuracy with a positive correlation between the calculated scores and the experimental activity values (r = 0.82, p = 0.0004). Additionally, the impact of mutation on activity was predicted with 75% (9/12) accuracy. The described study represents a fast and reliable approach to accurately predict the effect of mutations on the activity and selectivity of lipases and also of other enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Direct Detection of Drug-Resistant Hepatitis B Virus in Serum Using a Dendron-Modified Microarray

    PubMed Central

    Kim, Doo Hyun; Kang, Hong Seok; Hur, Seong-Suk; Sim, Seobo; Ahn, Sung Hyun; Park, Yong Kwang; Park, Eun-Sook; Lee, Ah Ram; Park, Soree; Kwon, So Young; Lee, Jeong-Hoon

    2018-01-01

    Background/Aims Direct sequencing is the gold standard for the detection of drug-resistance mutations in hepatitis B virus (HBV); however, this procedure is time-consuming, labor-intensive, and difficult to adapt to high-throughput screening. In this study, we aimed to develop a dendron-modified DNA microarray for the detection of genotypic resistance mutations and evaluate its efficiency. Methods The specificity, sensitivity, and selectivity of dendron-modified slides for the detection of representative drug-resistance mutations were evaluated and compared to those of conventional slides. The diagnostic accuracy was validated using sera obtained from 13 patients who developed viral breakthrough during lamivudine, adefovir, or entecavir therapy and compared with the accuracy of restriction fragment mass polymorphism and direct sequencing data. Results The dendron-modified slides significantly outperformed the conventional microarray slides and were able to detect HBV DNA at a very low level (1 copy/μL). Notably, HBV mutants could be detected in the chronic hepatitis B patient sera without virus purification. The validation of our data revealed that this technique is fully compatible with sequencing data of drug-resistant HBV. Conclusions We developed a novel diagnostic technique for the simultaneous detection of several drug-resistance mutations using a dendron-modified DNA microarray. This technique can be directly applied to sera from chronic hepatitis B patients who show resistance to several nucleos(t)ide analogues. PMID:29271185

  6. BRAF mutation testing in solid tumors: a methodological comparison.

    PubMed

    Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J

    2014-09-01

    Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    PubMed

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    PubMed Central

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context. PMID:25693800

  9. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients.

    PubMed

    Boj, Sylvia F; Vonk, Annelotte M; Statia, Marvin; Su, Jinyi; Vries, Robert R G; Beekman, Jeffrey M; Clevers, Hans

    2017-02-11

    Recently-developed cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs correct surface expression and/or function of the mutant CFTR channel in subjects with cystic fibrosis (CF). Identification of subjects that may benefit from these drugs is challenging because of the extensive heterogeneity of CFTR mutations, as well as other unknown factors that contribute to individual drug efficacy. Here, we describe a simple and relatively rapid assay for measuring individual CFTR function and response to CFTR modulators in vitro. Three dimensional (3D) epithelial organoids are grown from rectal biopsies in standard organoid medium. Once established, the organoids can be bio-banked for future analysis. For the assay, 30-80 organoids are seeded in 96-well plates in basement membrane matrix and are then exposed to drugs. One day later, the organoids are stained with calcein green, and forskolin-induced swelling is monitored by confocal live cell microscopy at 37 °C. Forskolin-induced swelling is fully CFTR-dependent and is sufficiently sensitive and precise to allow for discrimination between the drug responses of individuals with different and even identical CFTR mutations. In vitro swell responses correlate with the clinical response to therapy. This assay provides a cost-effective approach for the identification of drug-responsive individuals, independent of their CFTR mutations. It may also be instrumental in the development of future CFTR modulators.

  10. Evaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter

    PubMed Central

    Shinzato, Amanda; Lerario, Antonio M.; Lin, Chin J.; Danilovic, Debora S.; Marui, Suemi; Trarbach, Ericka B.

    2015-01-01

    Background DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). Material/Methods DNA and RNA samples were obtained from hyperplastic thyroid glands of 60 patients (54 females) with benign MNG. DREAM mutations were evaluated by PCR and direct automatic sequencing, whereas relative quantification of mRNA was performed by real-time PCR. Over- and under-expression were defined as a 2-fold increase and decrease in comparison to normal thyroid tissue, respectively. RQ M (relative quantification mean); SD (standard deviation). Results DREAM expression was detected in all nodules evaluated. DREAM mRNA was overexpressed in 31.7% of MNG (RQ M=6.26; SD=5.08), whereas 53.3% and 15% had either normal (RQ M=1.16; SD=0.46) or underexpression (RQ M=0.30; SD=0.10), respectively. Regarding DREAM mutations analysis, only previously described intronic polymorphisms were observed. Conclusions We report DREAM gene expression in the hyperplastic thyroid gland of MNG patients. However, DREAM expression did not vary significantly, and was somewhat underexpressed in most patients, suggesting that DREAM upregulation does not significantly affect nodular development in human goiter. PMID:26319784

  11. De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder.

    PubMed

    Snijders Blok, Lot; Hiatt, Susan M; Bowling, Kevin M; Prokop, Jeremy W; Engel, Krysta L; Cochran, J Nicholas; Bebin, E Martina; Bijlsma, Emilia K; Ruivenkamp, Claudia A L; Terhal, Paulien; Simon, Marleen E H; Smith, Rosemarie; Hurst, Jane A; McLaughlin, Heather; Person, Richard; Crunk, Amy; Wangler, Michael F; Streff, Haley; Symonds, Joseph D; Zuberi, Sameer M; Elliott, Katherine S; Sanders, Victoria R; Masunga, Abigail; Hopkin, Robert J; Dubbs, Holly A; Ortiz-Gonzalez, Xilma R; Pfundt, Rolph; Brunner, Han G; Fisher, Simon E; Kleefstra, Tjitske; Cooper, Gregory M

    2018-05-08

    Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.

  12. Systematic reconstruction of autism biology from massive genetic mutation profiles

    PubMed Central

    Zhang, Chaolin; Jiang, Yong-hui

    2018-01-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3′,5′-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein–coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity. PMID:29651456

  13. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    PubMed

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  14. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx; Wall, Jonathan S.; González Andrade, Martín

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stabilitymore » and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.« less

  15. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  16. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    PubMed

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  17. Use of whole genome sequencing in surveillance of drug resistant tuberculosis.

    PubMed

    McNerney, Ruth; Zignol, Matteo; Clark, Taane G

    2018-05-01

    The threat of resistance to anti-tuberculosis drugs is of global concern. Current efforts to monitor resistance rely on phenotypic testing where cultured bacteria are exposed to critical concentrations of the drugs. Capacity for such testing is low in TB endemic countries. Drug resistance is caused by mutations in the Mycobacterium tuberculosis genome and whole genome sequencing to detect these mutations offers an alternative means of assessing resistance. Areas covered: The challenges of assessing TB drug resistance are discussed. Progress in elucidating the M. tuberculosis resistome and evidence of the accuracy of next generation sequencing for detecting resistance is reviewed. Expert Commentary: There are considerable advantages to using next generation sequencing for TB drug resistance surveillance. Accuracy is high for detecting resistance to the major first-line drugs but is currently lower for the second-line drugs due to our incomplete knowledge regarding resistance causing mutations. With the advances in sequencing technology and the opportunity to replace phenotypic drug susceptibility testing with safer and more cost effective methods it would appear that the question is when to implement. Current bottlenecks are sample extraction to allow whole genome sequencing directly from sputum and the lack of bioinformatics expertise in some TB endemic countries.

  18. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.

    PubMed

    Char, Si Nian; Neelakandan, Anjanasree K; Nahampun, Hartinio; Frame, Bronwyn; Main, Marcy; Spalding, Martin H; Becraft, Philip W; Meyers, Blake C; Walbot, Virginia; Wang, Kan; Yang, Bing

    2017-02-01

    CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease-based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium-delivered CRISPR/Cas9 for high-frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4-reductase or anthocyaninless genes (a1 and a4). T 0 transgenic events carrying mono- or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi-II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T 1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target-specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  20. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  1. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  3. Digital detection of endonuclease mediated gene disruption in the HIV provirus

    PubMed Central

    Sedlak, Ruth Hall; Liang, Shu; Niyonzima, Nixon; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Greninger, Alexander L.; Weber, Nicholas D.; Boissel, Sandrine; Scharenberg, Andrew M.; Cheng, Anqi; Magaret, Amalia; Bumgarner, Roger; Stone, Daniel; Jerome, Keith R.

    2016-01-01

    Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field. PMID:26829887

  4. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.

    PubMed

    Usmanova, Dinara R; Bogatyreva, Natalya S; Ariño Bernad, Joan; Eremina, Aleksandra A; Gorshkova, Anastasiya A; Kanevskiy, German M; Lonishin, Lyubov R; Meister, Alexander V; Yakupova, Alisa G; Kondrashov, Fyodor A; Ivankov, Dmitry N

    2018-05-02

    Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta, and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here. ivankov13@gmail.com. Supplementary data are available at Bioinformatics online.

  5. Hereditary medullary thyroid carcinoma: the management dilemma.

    PubMed

    Zhou, Ping; Liu, Jian; Cheng, Shao-Wen; Wang, Bing; Yang, Rong; Peng, Ling

    2012-06-01

    Hereditary medullary thyroid carcinoma (hereditary MTC) is a rare malignancy, accounting for 25-30% of all MTC. It occurs as part of multiple endocrine neoplasia type 2 (MEN 2). Autosomal dominant gain-of-function mutations in the RET proto-oncogene is the cause of the disease, in which the common mutations are codons 609, 611, 618, 620, 630, 634 and 918. In recent years, the spectrum of RET gene mutations has changed. The classical mutations reduced, whereas the less aggressive mutations increased. Hereditary MTC is a time-dependent disease. Stages of the disorder at diagnosis can significantly influence survival rates. Based on the genotype-phenotype, RET mutations have been classified into four risk levels by American Thyroid Association (ATA) at 2009. The classification system guides the hereditary MTC management, including risk assessment, biochemical screenings and surgical intervention. Though the application of genetic testing and codon-specific phenotypes in hereditary MTC diagnosis is effective with high accuracy, there are some difficulties in implementing RET gene testing as a routine for MTC diagnosis. And most of carriers with RET mutations did not undergo thyroidectomy at the age recommended by the ATA guidelines. The aim of the study is to review the hereditary MTC and discuss the management dilemma.

  6. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  7. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    PubMed

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  8. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  9. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  10. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations.

    PubMed

    Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A

    2014-07-01

    X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.

  11. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    PubMed

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates. Copyright © 2014. Published by Elsevier Ltd.

  12. Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT.

    PubMed

    Chen, Shang-Wen; Lin, Chien-Yu; Ho, Cheng-Man; Chang, Ya-Sian; Yang, Shu-Fen; Kao, Chia-Hung; Chang, Jan-Gowth

    2015-08-01

    The aim of this study was to understand the association between various genetic mutation and (18)F-FDG PET-related parameters in patients with colorectal cancer (CRC). One hundred three CRC patients who had undergone preoperative PET/CTs were included in this study. Several PET/CT-related parameters, including SUV(max), and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width (TW) were measured. Using high-resolution melting methods for genetic mutation analysis, tumor- and PET/CT-related parameters were correlated with various genetic alterations including TP53, KRAS, APC, BRAF, and PIK3CA. Mann-Whitney U test and logistic regression analysis were carried out for this analysis. Genetic alterations in TP53, KRAS, and APC were found in 41 (40%), 34 (33%), and 27 (26%) of tumors, respectively. PIK3CA and BRAF were exhibited by 5 and 4 of the patients with CRC. TP53 mutants exhibited higher SUV(max). The odds ratio was 1.28 (P = 0.04; 95% confidence interval, 1.01-1.61). Tumors with a mutated KRAS had an increased accumulation of FDG using a 40% threshold level for maximal uptake of TW (TW(40%)), whereas the odds ratio was 1.15 (P = 0.001; 95% confidence interval, 1.06-1.24). The accuracy of SUV(max) greater than 10 in predicting TP53 mutation was 60%, whereas that for TW(40%) for KRAS was 61%. Increased SUV(max) and TW(40%) were associated in CRC tumors with TP53 and KRAS mutations, respectively. Further studies are required because of the low predictive accuracy.

  13. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens

    PubMed Central

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-01-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701

  14. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens.

    PubMed

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-08-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.

  15. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  16. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  17. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  18. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae, more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...

  19. Improved darunavir genotypic mutation score predicting treatment response for patients infected with HIV-1 subtype B and non-subtype B receiving a salvage regimen.

    PubMed

    De Luca, Andrea; Flandre, Philippe; Dunn, David; Zazzi, Maurizio; Wensing, Annemarie; Santoro, Maria Mercedes; Günthard, Huldrych F; Wittkop, Linda; Kordossis, Theodoros; Garcia, Federico; Castagna, Antonella; Cozzi-Lepri, Alessandro; Churchill, Duncan; De Wit, Stéphane; Brockmeyer, Norbert H; Imaz, Arkaitz; Mussini, Cristina; Obel, Niels; Perno, Carlo Federico; Roca, Bernardino; Reiss, Peter; Schülter, Eugen; Torti, Carlo; van Sighem, Ard; Zangerle, Robert; Descamps, Diane

    2016-05-01

    The objective of this study was to improve the prediction of the impact of HIV-1 protease mutations in different viral subtypes on virological response to darunavir. Darunavir-containing treatment change episodes (TCEs) in patients previously failing PIs were selected from large European databases. HIV-1 subtype B-infected patients were used as the derivation dataset and HIV-1 non-B-infected patients were used as the validation dataset. The adjusted association of each mutation with week 8 HIV RNA change from baseline was analysed by linear regression. A prediction model was derived based on best subset least squares estimation with mutational weights corresponding to regression coefficients. Virological outcome prediction accuracy was compared with that from existing genotypic resistance interpretation systems (GISs) (ANRS 2013, Rega 9.1.0 and HIVdb 7.0). TCEs were selected from 681 subtype B-infected and 199 non-B-infected adults. Accompanying drugs were NRTIs in 87%, NNRTIs in 27% and raltegravir or maraviroc or enfuvirtide in 53%. The prediction model included weighted protease mutations, HIV RNA, CD4 and activity of accompanying drugs. The model's association with week 8 HIV RNA change in the subtype B (derivation) set was R(2) = 0.47 [average squared error (ASE) = 0.67, P < 10(-6)]; in the non-B (validation) set, ASE was 0.91. Accuracy investigated by means of area under the receiver operating characteristic curves with a binary response (above the threshold value of HIV RNA reduction) showed that our final model outperformed models with existing interpretation systems in both training and validation sets. A model with a new darunavir-weighted mutation score outperformed existing GISs in both B and non-B subtypes in predicting virological response to darunavir. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. AtNUDT7, a Negative Regulator of Basal Immunity in Arabidopsis, Modulates Two Distinct Defense Response Pathways and Is Involved in Maintaining Redox Homeostasis1[C][OA

    PubMed Central

    Ge, Xiaochun; Li, Guo-Jing; Wang, Sheng-Bing; Zhu, Huifen; Zhu, Tong; Wang, Xun; Xia, Yiji

    2007-01-01

    Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca2+. Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation. PMID:17660350

  1. Microenvironmental Regulation by Fibrillin-1

    PubMed Central

    Sengle, Gerhard; Tsutsui, Ko; Keene, Douglas R.; Tufa, Sara F.; Carlson, Eric J.; Charbonneau, Noe L.; Ono, Robert N.; Sasaki, Takako; Wirtz, Mary K.; Samples, John R.; Fessler, Liselotte I.; Fessler, John H.; Sekiguchi, Kiyotoshi; Hayflick, Susan J.; Sakai, Lynn Y.

    2012-01-01

    Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes. PMID:22242013

  2. The voltage-sensor quartet

    PubMed Central

    Bankston, J. R.; Kass, R. S.

    2009-01-01

    Decoding the workings of voltage-gated sodium channels is crucial because their mutation leads to severe disease and their activity is modulated by toxins and drugs. An innovative approach now allows such investigations. PMID:19005542

  3. Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms

    PubMed Central

    Tidwell, Timothy; Wechsler, Jeremy; Nayak, Ramesh C.; Trump, Lisa; Salipante, Stephen J.; Cheng, Jerry C.; Donadieu, Jean; Glaubach, Taly; Corey, Seth J.; Grimes, H. Leighton; Lutzko, Carolyn; Cancelas, Jose A.

    2014-01-01

    Hereditary neutropenia is usually caused by heterozygous germline mutations in the ELANE gene encoding neutrophil elastase (NE). How mutations cause disease remains uncertain, but two hypotheses have been proposed. In one, ELANE mutations lead to mislocalization of NE. In the other, ELANE mutations disturb protein folding, inducing an unfolded protein response in the endoplasmic reticulum (ER). In this study, we describe new types of mutations that disrupt the translational start site. At first glance, they should block translation and are incompatible with either the mislocalization or misfolding hypotheses, which require mutant protein for pathogenicity. We find that start-site mutations, instead, force translation from downstream in-frame initiation codons, yielding amino-terminally truncated isoforms lacking ER-localizing (pre) and zymogen-maintaining (pro) sequences, yet retain essential catalytic residues. Patient-derived induced pluripotent stem cells recapitulate hematopoietic and molecular phenotypes. Expression of the amino-terminally deleted isoforms in vitro reduces myeloid cell clonogenic capacity. We define an internal ribosome entry site (IRES) within ELANE and demonstrate that adjacent mutations modulate IRES activity, independently of protein-coding sequence alterations. Some ELANE mutations, therefore, appear to cause neutropenia via the production of amino-terminally deleted NE isoforms rather than by altering the coding sequence of the full-length protein. PMID:24184683

  4. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud.

  5. Modulation of HIV Protease Flexibility by the T80N Mutation

    PubMed Central

    Zhou, Hao; Li, Shangyang; Badger, John; Nalivaika, Ellen; Cai, Yufeng; Foulkes-Murzycki, Jennifer; Schiffer, Celia; Makowski, Lee

    2015-01-01

    The flexibility of HIV protease plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80 which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle scattering (WAXS) data was measured for a series of HIV protease variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared to the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, so as to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIV protease and is critical to catalytic function. PMID:25488402

  6. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis

    PubMed Central

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine MA; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-01-01

    Background: We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Methods: Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. Results: In BRCA1/2 mutation carriers of all ages (BRCA1=1219 and BRCA2=732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P>0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Conclusions: Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering. PMID:26908327

  7. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    PubMed

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  8. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  9. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  10. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis.

    PubMed

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine M A; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-03-15

    We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. In BRCA1/2 mutation carriers of all ages (BRCA1 = 1,219 and BRCA2 = 732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P > 0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽ 40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering.

  11. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World.

    PubMed

    Doss, C George Priya; Alasmar, Dima R; Bux, Reem I; Sneha, P; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-11-17

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations.

  12. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  13. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  14. Development of Fuel Shuffling Module for PHISICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti

    2013-06-01

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less

  15. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetz, R.; Dover, K; Laezza, F

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel bindingmore » in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.« less

  16. Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meineke, Birthe; Shuman, Stewart, E-mail: s-shuman@ski.mskcc.org

    2012-06-05

    Breakage of tRNA by Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection. Expression of EcoPrrC is cytocidal in yeast, signifying that PrrC ribotoxicity crosses phylogenetic domain boundaries. EcoPrrC consists of an N-terminal NTPase module that resembles ABC transporters and a C-terminal nuclease module that is sui generis. PrrC homologs are prevalent in many other bacteria. Here we report that Haemophilus influenzae PrrC is toxic in E. coli and yeast. To illuminate structure-activity relations, we conducted a new round of mutational analysis of EcoPrrC guided by primary structure conservation among toxic PrrC homologs. Wemore » indentify 17 candidate active site residues in the NTPase module that are essential for toxicity in yeast when EcoPrrC is expressed at high gene dosage. Their functions could be educed by integrating mutational data with the atomic structure of the transition-state complex of a homologous ABC protein.« less

  17. Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)

    NASA Technical Reports Server (NTRS)

    Frederick, L. W.; Mcalister, H. A.

    1975-01-01

    The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.

  18. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured.

  19. Validation of the PVSyst Performance Model for the Concentrix CPV Technology

    NASA Astrophysics Data System (ADS)

    Gerstmaier, Tobias; Gomez, María; Gombert, Andreas; Mermoud, André; Lejeune, Thibault

    2011-12-01

    The accuracy of the two-stage PVSyst model for the Concentrix CPV Technology is determined by comparing modeled to measured values. For both stages, i) the module model and ii) the power plant model, the underlying approaches are explained and methods for obtaining the model parameters are presented. The performance of both models is quantified using 19 months of outdoor measurements for the module model and 9 months of measurements at four different sites for the power plant model. Results are presented by giving statistical quantities for the model accuracy.

  20. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome

    PubMed Central

    Query, Charles C.; Konarska, Maria M.

    2012-01-01

    Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3′ splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast. PMID:22408182

  1. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo

    PubMed Central

    Eyboulet, Fanny; Wydau-Dematteis, Sandra; Eychenne, Thomas; Alibert, Olivier; Neil, Helen; Boschiero, Claire; Nevers, Marie-Claire; Volland, Hervé; Cornu, David; Redeker, Virginie; Werner, Michel; Soutourina, Julie

    2015-01-01

    Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. PMID:26240385

  2. A Self-Instructional Course in Student Financial Aid Administration. Module 13: Verification. Second Edition.

    ERIC Educational Resources Information Center

    Washington Consulting Group, Inc., Washington, DC.

    Module 13 of the 17-module self-instructional course on student financial aid administration (designed for novice financial aid administrators and other institutional personnel) focuses on the verification procedure for checking the accuracy of applicant data used in making financial aid awards. The full course provides an introduction to the…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, W.-P.; Frey, Teryl K.

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis andmore » showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.« less

  4. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations

    PubMed Central

    Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert

    2013-01-01

    Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854

  5. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma.

    PubMed

    Paek, Se Hyun; Kim, Byung Seup; Kang, Kyung Ho; Kim, Hee Sung

    2017-11-13

    The BRAF V600E mutation is highly specific for papillary thyroid carcinoma (PTC). A test for this mutation can increase the diagnostic accuracy of fine-needle aspiration cytology (FNAC), but a considerably high false-negative rate for the BRAF V600E mutation on FNAC has been reported. In this study, we investigated the risk factors associated with false-negative BRAF V600E mutation results on FNAC. BRAF V600E mutation results of 221 PTC nodules between December 2011 and June 2013 were retrospectively reviewed. BRAF V600E mutation results on both preoperative FNAC and postoperative formalin-fixed, paraffin-embedded (FFPE) samples were compared. We investigated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BRAF V600E mutation results on FNAC. And, we identified the risk factors associated with false-negative results. Of 221 PTC nodules, 150 (67.9%) on FNAC and 185 (83.7%) on FFPE samples were BRAF V600E mutation positive. The sensitivity, specificity, PPV, and NPV for BRAF V600E mutation testing with FNAC were 80.5, 97.2, 99.3, and 49.3%, respectively. Thirty-six (16.3%) BRAF V600E mutation-negative nodules on FNAC were mutation positive on FFPE sample analysis. Risk factors for these false-negative results were age, indeterminate FNAC results (nondiagnostic, atypia of undetermined significance (AUS), and findings suspicious for PTC), and PTC subtype. False-negative rate of BRAF mutation testing with FNAC for thyroid nodules is increased in cases of old age, indeterminate FNAC pathology results, and certain PTC subtypes. Therapeutic surgery can be considered for these cases. A well-designed prospective study with informed consent of patients will be essential for more informative results.

  6. Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy.

    PubMed

    Luo, Z; Li, X; Zhu, M; Tang, J; Li, Z; Zhou, X; Song, G; Liu, Z; Zhou, H; Zhang, W

    2017-01-01

    Essentials Required warfarin doses for mechanical heart valves vary greatly. A two-stage extreme phenotype design was used to identify novel warfarin dose associated mutation. We identified a group of variants significantly associated with extreme warfarin dose. Four novel identified mutations account for 2.2% of warfarin dose discrepancies. Background The variation among patients in warfarin response complicates the management of warfarin therapy, and an improper therapeutic dose usually results in serious adverse events. Objective To use a two-stage extreme phenotype strategy in order to discover novel warfarin dose-associated mutations in heart valve replacement patients. Patients/method A total of 1617 stable-dose patients were enrolled and divided randomly into two cohorts. Stage I patients were genotyped into three groups on the basis of VKORC1-1639G>A and CYP2C9*3 polymorphisms; only patients with the therapeutic dose at the upper or lower 5% of each genotype group were selected as extreme-dose patients for resequencing of the targeted regions. Evaluation of the accuracy of the sequence data and the potential value of the stage I-identified significant mutations were conducted in a validation cohort of 420 subjects. Results A group of mutations were found to be significantly associated with the extreme warfarin dose. The validation work finally identified four novel mutations, i.e. DNMT3A rs2304429 (24.74%), CYP1A1 rs3826041 (47.35%), STX1B rs72800847 (7.01%), and NQO1 rs10517 (36.11%), which independently and significantly contributed to the overall variability in the warfarin dose. After addition of these four mutations, the estimated regression equation was able to account for 56.2% (R 2 Adj = 0.562) of the overall variability in the warfarin maintenance dose, with a predictive accuracy of 62.4%. Conclusion Our study provides evidence linking genetic variations in STX1B, DNMT3A and CYP1A1 to warfarin maintenance dose. The newly identified mutations together account for 2.2% of warfarin dose discrepancy. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  7. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura.

    PubMed

    Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo

    2015-10-01

    NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  9. Estimation and enhancement of real-time software reliability through mutation analysis

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.

    1992-01-01

    A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.

  10. Clinical significance of somatic mutation in unexplained blood cytopenia

    PubMed Central

    Gallì, Anna; Travaglino, Erica; Ambaglio, Ilaria; Rizzo, Ettore; Molteni, Elisabetta; Elena, Chiara; Ferretti, Virginia Valeria; Catricalà, Silvia; Bono, Elisa; Todisco, Gabriele; Bianchessi, Antonio; Rumi, Elisa; Zibellini, Silvia; Pietra, Daniela; Boveri, Emanuela; Camaschella, Clara; Toniolo, Daniela; Papaemmanuil, Elli; Ogawa, Seishi; Cazzola, Mario

    2017-01-01

    Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms. PMID:28424163

  11. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  12. The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-12-01

    Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness-related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.

  13. Placebo-suggestion modulates conflict resolution in the Stroop Task.

    PubMed

    Magalhães De Saldanha da Gama, Pedro A; Slama, Hichem; Caspar, Emilie A; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a "brain wave" machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion's contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.

  14. Placebo-Suggestion Modulates Conflict Resolution in the Stroop Task

    PubMed Central

    Caspar, Emilie A.; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a “brain wave” machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion’s contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion. PMID:24130735

  15. The OmpL porin does not modulate redox potential in the periplasmic space of Escherichia coli.

    PubMed

    Sardesai, Abhijit A; Genevaux, Pierre; Schwager, Françoise; Ang, Debbie; Georgopoulos, Costa

    2003-04-01

    The Escherichia coli DsbA protein is the major oxidative catalyst in the periplasm. Dartigalongue et al. (EMBO J., 19, 5980-5988, 2000) reported that null mutations in the ompL gene of E.coli fully suppress all phenotypes associated with dsbA mutants, i.e. sensitivity to the reducing agent dithiothreitol (DTT) and the antibiotic benzylpenicillin, lack of motility, reduced alkaline phosphatase activity and mucoidy. They showed that OmpL is a porin and hypothesized that ompL null mutations exert their suppressive effect by preventing efflux of a putative oxidizing-reducing compound into the medium. We have repeated these experiments using two different ompL null alleles in at least three different E.coli K-12 genetic backgrounds and have failed to reproduce any of the ompL suppressive effects noted above. Also, we show that, contrary to earlier results, ompL null mutations alone do not result in partial DTT sensitivity or partial motility, nor do they appreciably affect bacterial growth rates or block propagation of the male-specific bacteriophage M13. Thus, our findings clearly demonstrate that ompL plays no perceptible role in modulating redox potential in the periplasm of E.coli.

  16. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    PubMed

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Microfluidic Purification and Concentration of Malignant Pleural Effusions for Improved Molecular and Cytomorphological Diagnostics

    PubMed Central

    Go, Derek E.; Talati, Ish; Ying, Yong; Rao, Jianyu; Kulkarni, Rajan P.; Di Carlo, Dino

    2013-01-01

    Evaluation of pleural fluids for metastatic cells is a key component of diagnostic cytopathology. However, a large background of smaller leukocytes and/or erythrocytes can make accurate diagnosis difficult and reduce specificity in identification of mutations of interest for targeted anti-cancer therapies. Here, we describe an automated microfluidic system (Centrifuge Chip) which employs microscale vortices for the size-based isolation and concentration of cancer cells and mesothelial cells from a background of blood cells. We are able to process non-diluted pleural fluids at 6 mL/min and enrich target cells significantly over the background; we achieved improved purity in all patient samples analyzed. The resulting isolated and viable cells are readily available for immunostaining, cytological analysis, and detection of gene mutations. To demonstrate the utility towards aiding companion diagnostics, we also show improved detection accuracy of KRAS gene mutations in lung cancer cells processed using the Centrifuge Chip, leading to an increase in the area under the curve (AUC) of the receiver operating characteristic from 0.90 to 0.99. The Centrifuge Chip allows for rapid concentration and processing of large volumes of bodily fluid samples for improved cytological diagnosis and purification of cells of interest for genetic testing, which will be helpful for enhancing diagnostic accuracy. PMID:24205153

  18. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.

    PubMed

    Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.

  19. Phosphorylation of Mutationally Introduced Tyrosine in the Activation Loop of HER2 Confers Gain-of-Function Activity

    PubMed Central

    Hu, Zexi; Wan, Xiaobo; Hao, Rui; Zhang, Heng; Li, Li; Li, Lin; Xie, Qiang; Wang, Peng; Gao, Yibo; Chen, She; Wei, Min; Luan, Zhidong; Zhang, Aiqun; Huang, Niu; Chen, Liang

    2015-01-01

    Amplification, overexpression, and somatic mutation of the HER2 gene have been reported to play a critical role in tumorigenesis of various cancers. The HER2 H878Y mutation was recently reported in 11% of hepatocellular carcinoma (HCC) patients. However, its functional impact on the HER2 protein and its role in tumorigenesis has not been determined. Here, we show that HER2 H878Y is a gain-of-function mutation. Y878 represents a phosphorylation site, and phospho-Y878 interacts with R898 residue to stabilize the active conformation of HER2, thereby enhancing its kinase activity. H878Y mutant is transforming and the transformed cells are sensitive to HER2 kinase inhibitors. Thus, our study reveals the following novel mechanism underlying the tumorigenic function of the HER2 H878Y mutation: the introduction of a tyrosine residue into the kinase activation loop via mutagenesis modulates the conformation of the kinase, thereby enhancing its activity. PMID:25853726

  20. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    PubMed

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  1. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    PubMed

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Invasive advance of an advantageous mutation: nucleation theory.

    PubMed

    O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas

    2006-12-01

    For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.

  3. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  4. Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.

    PubMed

    Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi

    2017-01-01

    Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Color correction pipeline optimization for digital cameras

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Bruna, Arcangelo R.; Naccari, Filippo; Schettini, Raimondo

    2013-04-01

    The processing pipeline of a digital camera converts the RAW image acquired by the sensor to a representation of the original scene that should be as faithful as possible. There are mainly two modules responsible for the color-rendering accuracy of a digital camera: the former is the illuminant estimation and correction module, and the latter is the color matrix transformation aimed to adapt the color response of the sensor to a standard color space. These two modules together form what may be called the color correction pipeline. We design and test new color correction pipelines that exploit different illuminant estimation and correction algorithms that are tuned and automatically selected on the basis of the image content. Since the illuminant estimation is an ill-posed problem, illuminant correction is not error-free. An adaptive color matrix transformation module is optimized, taking into account the behavior of the first module in order to alleviate the amplification of color errors. The proposed pipelines are tested on a publicly available dataset of RAW images. Experimental results show that exploiting the cross-talks between the modules of the pipeline can lead to a higher color-rendition accuracy.

  6. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer

    PubMed Central

    Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C.

    2016-01-01

    Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AI). We developed ultra-high sensitivity multiplexed digital PCR assays for ESR1 mutations in circulating tumor DNA (ctDNA) and used these to investigate the clinical relevance and origin of ESR1 mutations in a cohort of 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies, and could be assessed in samples shipped at room temperature in preservative tubes without loss of accuracy. ESR1 mutations were found exclusively in patients with estrogen receptor positive breast cancer previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy (HR 3.1, 95%CI 1.9-23.1, log rank p=0.0041). ESR1 mutation prevalence differed markedly between patients that were first exposed to AI during the adjuvant and metastatic settings (5.8% (3/52) vs 36.4% (16/44) respectively, p=0.0002). In an independent cohort, ESR1 mutations were identified in 0% (0/32, 95%CI 0-10.9%) tumor biopsies taken after progression on adjuvant AI. In a patient with serial samples taken during metastatic treatment, ESR1 mutation was selected during metastatic AI therapy, to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI therapy, but are commonly selected by therapy for metastatic disease, providing evidence that the mechanisms of resistance to targeted therapy may be substantially different between the treatment of micro-metastatic and overt metastatic cancer. PMID:26560360

  7. Direct position determination for digital modulation signals based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding

    2018-04-01

    The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.

  8. Culture modulates the brain response to human expressions of emotion: electrophysiological evidence.

    PubMed

    Liu, Pan; Rigoulot, Simon; Pell, Marc D

    2015-01-01

    To understand how culture modulates on-line neural responses to social information, this study compared how individuals from two distinct cultural groups, English-speaking North Americans and Chinese, process emotional meanings of multi-sensory stimuli as indexed by both behaviour (accuracy) and event-related potential (N400) measures. In an emotional Stroop-like task, participants were presented face-voice pairs expressing congruent or incongruent emotions in conditions where they judged the emotion of one modality while ignoring the other (face or voice focus task). Results indicated that while both groups were sensitive to emotional differences between channels (with lower accuracy and higher N400 amplitudes for incongruent face-voice pairs), there were marked group differences in how intruding facial or vocal cues affected accuracy and N400 amplitudes, with English participants showing greater interference from irrelevant faces than Chinese. Our data illuminate distinct biases in how adults from East Asian versus Western cultures process socio-emotional cues, supplying new evidence that cultural learning modulates not only behaviour, but the neurocognitive response to different features of multi-channel emotion expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inhibitory Ah Receptor-Androgen Receptor Crosstalk in Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    Balk,S.P. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59:2511-2515, 1999. 5. Ris...expression, 24-hydroxylase activity, and inhibition of growth hydrocarbon receptor modulators ( SARMs ) for treatment of breast by lca,25-dihydroxyvitamin D3...Safe, A. McDougal, M.S. Gupta, K. Ramamoorthy, Selective Ah [20] D.M. Peehl, R.J. Skowronski, G.K. Leung, S.T. Wong, T.A. Stamey, receptor modulators

  10. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats.

    PubMed

    Chen, Tao; Hutts, Robert C; Mei, Nan; Liu, Xiaoli; Bishop, Michelle E; Shelton, Sharon; Manjanatha, Mugimane G; Aidoo, Anane

    2005-06-01

    A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.

  11. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  12. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    PubMed

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (<2%) of IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  13. Sarcomere protein gene mutations and inherited heart disease: a beta-cardiac myosin heavy chain mutation causing endocardial fibroelastosis and heart failure.

    PubMed

    Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G

    2006-01-01

    Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.

  14. Multi-Stage Target Tracking with Drift Correction and Position Prediction

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ren, Keyan; Hou, Yibin

    2018-04-01

    Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.

  15. An improved PSO-SVM model for online recognition defects in eddy current testing

    NASA Astrophysics Data System (ADS)

    Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin

    2013-12-01

    Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.

  16. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  17. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

    PubMed

    Sancho, Rosa M; Law, Bernard M H; Harvey, Kirsten

    2009-10-15

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.

  18. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

    PubMed Central

    Sancho, Rosa M.; Law, Bernard M.H.; Harvey, Kirsten

    2009-01-01

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2–DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2–DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2–DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2–DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease. PMID:19625296

  19. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification

    PubMed Central

    Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  20. Mutation of SIMPLE in Charcot–Marie–Tooth 1C alters production of exosomes

    PubMed Central

    Zhu, Hong; Guariglia, Sara; Yu, Raymond Y. L.; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing

    2013-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546

  1. Mutations causing syndromic autism define an axis of synaptic pathophysiology.

    PubMed

    Auerbach, Benjamin D; Osterweil, Emily K; Bear, Mark F

    2011-11-23

    Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.

  2. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  3. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  4. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    PubMed

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  5. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks

    PubMed Central

    Ertosun, Mehmet Günhan; Rubin, Daniel L.

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository. PMID:26958289

  6. Taking time to feel our body: Steady increases in heartbeat perception accuracy and decreases in alexithymia over 9 months of contemplative mental training.

    PubMed

    Bornemann, Boris; Singer, Tania

    2017-03-01

    The ability to accurately perceive signals from the body has been shown to be important for physical and psychological health as well as understanding one's emotions. Despite the importance of this skill, often indexed by heartbeat perception accuracy (HBPa), little is known about its malleability. Here, we investigated whether contemplative mental practice can increase HBPa. In the context of a 9-month mental training study, the ReSource Project, two matched cohorts (n = 77 and n = 79) underwent three training modules of 3 months' duration that targeted attentional and interoceptive abilities (Presence module), socio-affective (Affect module), and socio-cognitive (Perspective module) abilities. A third cohort (n = 78) underwent 3 months of practice (Affect module) and a retest control group (n = 84) did not undergo any training. HBPa was measured with a heartbeat tracking task before and after each training module. Emotional awareness was measured by the Toronto Alexithymia Scale (TAS). Participants with TAS scores > 60 at screening were excluded. HBPa was found to increase steadily over the training, with significant and small- to medium-sized effects emerging after 6 months (Cohen's d = .173) and 9 months (d = .273) of mental training. Changes in HBPa were concomitant with and predictive of changes in emotional awareness. Our results suggest that HBPa can indeed be trained through intensive contemplative practice. The effect takes longer than the 8 weeks of typical mindfulness courses to reach meaningful magnitude. These increments in interoceptive accuracy and the related improvements in emotional awareness point to opportunities for improving physical and psychological health through contemplative mental training. © 2016 Society for Psychophysiological Research.

  7. Clinical and mutational spectrum in Korean patients with Rubinstein-Taybi syndrome: the spectrum of brain MRI abnormalities.

    PubMed

    Lee, Jin Sook; Byun, Christine K; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Ji Eun; Hwang, Yong Seung; Seong, Moon-Woo; Park, Sung Sup; Kim, Ki Joong; Chae, Jong-Hee

    2015-04-01

    Rubinstein-Taybi syndrome (RSTS) is one of the neurodevelopmental disorders caused by mutations of epigenetic genes. The CREBBP gene is the most common causative gene, encoding the CREB-binding protein with histone acetyltransferase (HAT) activity, an epigenetic modulator. To date, there have been few reports on the structural abnormalities of the brain in RSTS patients. In addition, there are no reports on the analysis of CREBBP mutations in Korean RSTS patients. We performed mutational analyses on 16 unrelated patients with RSTS, with diagnosis based on the typical clinical features. Their medical records and brain MRI images were reviewed retrospectively. Ten of 16 patients (62.5%) had mutations in the CREBBP gene. The mutations included five frameshift mutations (31.2%), two nonsense mutations (12.5%), and three multiexon deletions (18.8%). There were no remarkable significant differences in the clinical features between those with and without a CREBBP mutation, although brain MRI abnormalities were more frequently observed in those with a CREBBP mutation. Seven of 10 patients in whom brain imaging was performed had structural abnormalities, including Chiari malformation type 1, thinning of the corpus callosum, and delayed myelination. There were no differences in delayed development or cognitive impairment between those with and without abnormal brain images, while epilepsy was involved in two patients who had abnormalities on brain MRI images. We investigated the spectrum of CREBBP mutations in Korean patients with RSTS for the first time. Eight novel mutations extended the genetic spectrum of CREBBP mutations in RSTS patients. This is also the first study showing the prevalence and spectrum of abnormalities on brain MRI in RSTS patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease.

    PubMed

    Członkowska, Anna; Rodo, Maria; Wierzchowska-Ciok, Agata; Smolinski, Lukasz; Litwin, Tomasz

    2018-02-08

    In Wilson disease (WD), copper accumulates in the liver and other tissues because of mutations in the ATP7B copper transporter gene. Early and effective anticopper treatment is crucial. However, routine diagnostic methods based on clinical findings, copper metabolism tests, liver biopsies and DNA analyses do not always provide a conclusive diagnosis. The aim was to evaluate radioactive copper incorporation as a diagnostic test. We included cases with a diagnosis of WD supported by radiocopper testing and later, when available, confirmed by DNA analysis. Incorporation of 64 Cu was measured at 2, 24 and 48 hours following intravenous injection. Diagnostic accuracy (area under the receiver operating characteristic curve [AUC]), sensitivity, specificity and predictive value were assessed for 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios and compared with serum measurements of ceruloplasmin, copper, non-ceruloplasmin-bound copper and urinary 24-hours copper excretion. Patients having two pathogenic ATP7B mutations (homozygotes/compound heterozygotes) (n = 74) had significantly lower 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios than heterozygote controls (n = 21) (mean 0.14 and 0.12 vs 0.49 and 0.63, respectively; both P < .001). Of note, 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios had excellent diagnostic accuracy, with AUCs approaching 1, and only 24-hours urinary copper excretion displayed similar positive features. Other copper metabolism tests studied had lower accuracy, specificity and sensitivity. The radioactive copper test had excellent diagnostic accuracy and may be useful in the evaluation of new therapies aimed at restoring ATP7B function. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression.

    PubMed

    Quintana, Anita M; Geiger, Elizabeth A; Achilly, Nate; Rosenblatt, David S; Maclean, Kenneth N; Stabler, Sally P; Artinger, Kristin B; Appel, Bruce; Shaikh, Tamim H

    2014-12-01

    Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.

    PubMed Central

    Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M

    2001-01-01

    Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440

  11. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    PubMed

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  12. A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for Benign Prostatic Hyperplasia.

    PubMed

    Torshizi, Abolfazl Doostparast; Zarandi, Mohammad Hossein Fazel; Torshizi, Ghazaleh Doostparast; Eghbali, Kamyar

    2014-01-01

    This paper deals with application of fuzzy intelligent systems in diagnosing severity level and recommending appropriate therapies for patients having Benign Prostatic Hyperplasia. Such an intelligent system can have remarkable impacts on correct diagnosis of the disease and reducing risk of mortality. This system captures various factors from the patients using two modules. The first module determines severity level of the Benign Prostatic Hyperplasia and the second module, which is a decision making unit, obtains output of the first module accompanied by some external knowledge and makes an appropriate treatment decision based on its ontology model and a fuzzy type-1 system. In order to validate efficiency and accuracy of the developed system, a case study is conducted by 44 participants. Then the results are compared with the recommendations of a panel of experts on the experimental data. Then precision and accuracy of the results were investigated based on a statistical analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2014-10-30

    obtain range measurements . A MATLAB- based system developed at Clarkson University in FY14 has been used to perform real-time FDR ranging... measurement accuracy. There have been various methods that attempt to reduce the backscatter. One method is to increase the modulation frequency beyond...an unambiguous range measurement . In general, it is desired to determine which combination of Radio Frequency (RF) modulation frequencies, modulation

  14. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  15. SU-E-T-550: Modulation Index for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Park, S; Kim, J

    2015-06-15

    Purpose: To present modulation indices (MIs) for volumetric modulated arc therapy (VMAT). Methods: A total of 40 VMAT plans were retrospectively selected. To investigate the delivery accuracy of each VMAT plan, gamma passing rates, differences in modulating parameters between plans and log files, and differences between the original plans and the plans reconstructed with the log files were acquired. A modulation index (MIt) was designed by multiplications of the weighted quantifications of MLC speeds, MLC accelerations, gantry accelerations and dose-rate variations. Textural features including angular second moment, inverse difference moment, contrast, variance, correlation and entropy were calculated from the fluencesmore » of each VMAT plan. To test the performance of suggested MIs, Spearman’s rank correlation coefficients (r) with the plan delivery accuracy were calculated. Conventional modulation indices for VMAT including the modulation complexity score for VMAT (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li & Xing were calculated, and their correlations were also analyzed in the same way. Results: The r values of contrast (particular displacement distance, d = 1), variance (d = 1), MIt, MCSv, LTMCS and MI by Li&Xing to the local gamma passing rates with 2%/2 mm were 0.547 (p < 0.001), 0.519 (p < 0.001), −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The r values of those to the MLC errors were −0.863, −0.828, 0.917, −0.635, − 0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than did the conventional modulation indices. Conclusion: The MIt, contrast (d = 1) and variance (d = 1) showed good performance to predict the VMAT delivery accuracy showing higher correlations to the results of various types of verification methods for VMAT. This work was in part supported by the National Research Foundation of Korea (NRF) grant (no. 490-20140029 and no. 490-20130047) funded by the Korea government.« less

  16. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has never been demonstrated. By adding the calibration loop to an existing high-efficiency T/R module, there is a demonstrated order-of-magnitude improvement in the amplitude and phase stability.

  17. KRAS mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis.

    PubMed

    Westwood, Marie; van Asselt, Thea; Ramaekers, Bram; Whiting, Penny; Joore, Manuela; Armstrong, Nigel; Noake, Caro; Ross, Janine; Severens, Johan; Kleijnen, Jos

    2014-10-01

    Bowel cancer is the third most common cancer in the UK. Most bowel cancers are initially treated with surgery, but around 17% spread to the liver. When this happens, sometimes the liver tumour can be treated surgically, or chemotherapy may be used to shrink the tumour to make surgery possible. Kirsten rat sarcoma viral oncogene (KRAS) mutations make some tumours less responsive to treatment with biological therapies such as cetuximab. There are a variety of tests available to detect these mutations. These vary in the specific mutations that they detect, the amount of mutation they detect, the amount of tumour cells needed, the time to give a result, the error rate and cost. To compare the performance and cost-effectiveness of KRAS mutation tests in differentiating adults with metastatic colorectal cancer whose metastases are confined to the liver and are unresectable and who may benefit from first-line treatment with cetuximab in combination with standard chemotherapy from those who should receive standard chemotherapy alone. Thirteen databases, including MEDLINE and EMBASE, research registers and conference proceedings were searched to January 2013. Additional data were obtained from an online survey of laboratories participating in the UK National External Quality Assurance Scheme pilot for KRAS mutation testing. A systematic review of the evidence was carried out using standard methods. Randomised controlled trials were assessed for quality using the Cochrane risk of bias tool. Diagnostic accuracy studies were assessed using the QUADAS-2 tool. There were insufficient data for meta-analysis. For accuracy studies we calculated sensitivity and specificity together with 95% confidence intervals (CIs). Survival data were summarised as hazard ratios and tumour response data were summarised as relative risks, with 95% CIs. The health economic analysis considered the long-term costs and quality-adjusted life-years associated with different tests followed by treatment with standard chemotherapy or cetuximab plus standard chemotherapy. The analysis took a 'no comparator' approach, which implies that the cost-effectiveness of each strategy will be presented only compared with the next most cost-effective strategy. The de novo model consisted of a decision tree and Markov model. The online survey indicated no differences between tests in batch size, turnaround time, number of failed samples or cost. The literature searches identified 7903 references, of which seven publications of five studies were included in the review. Two studies provided data on the accuracy of KRAS mutation testing for predicting response to treatment in patients treated with cetuximab plus standard chemotherapy. Four RCTs provided data on the clinical effectiveness of cetuximab plus standard chemotherapy compared with that of standard chemotherapy in patients with KRAS wild-type tumours. There were no clear differences in the treatment effects reported by different studies, regardless of which KRAS mutation test was used to select patients. In the 'linked evidence' analysis the Therascreen KRAS RGQ PCR Kit (QIAGEN) was more expensive but also more effective than pyrosequencing or direct sequencing, with an incremental cost-effectiveness ratio of £17,019 per quality-adjusted life-year gained. In the 'assumption of equal prognostic value' analysis the total costs associated with the various testing strategies were similar. The results assume that the differences in outcomes between the trials were solely the result of the different mutation tests used to distinguish between patients; this assumption ignores other factors that might explain this variation. There was no strong evidence that any one KRAS mutation test was more effective or cost-effective than any other test. PROSPERO CRD42013003663. The National Institute for Health Research Health Technology Assessment programme.

  18. CFTR Modulators for the Treatment of Cystic Fibrosis.

    PubMed

    Pettit, Rebecca S; Fellner, Chris

    2014-07-01

    Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.

  19. [Genetic hypophosphatemia: recent advances in physiopathogenic concept].

    PubMed

    Beraud, G; Perimenis, P; Velayoudom, Fr-L; Wemeau, J-L; Vantyghem, M-Chr

    2005-04-01

    Renal proximal tubular reabsorption of phosphate and intestinal absorption both regulate phosphate homeostasis. Brush-border membrane Npt2a cotransporter is the key element in proximal tubular P (i) reabsorption. Inactivating mutations of Npt2a cause bone demineralisation and urolithiasis. An excess of a phosphaturic factor, called "Phosphatonin", could modulate phosphate reabsorption by inhibition on Npt2a. Inactivating mutation of PHEX, an endopeptidase-membrane coding gene, is responsible for X-linked Hypophosphatemia (XLH), because of an impaired degradation of phosphatonine by PHEX product. Autosomic Dominant Hypophosphatemic Rickets (ADHR) is explained by a mutation preventing FGF23 (one of the best identified phosphatonines) from cleavage. According recent data, FGF23, MEPE (Matrix Extracellular Phosphoglycoprotein) et FRP4 (frizzled related protein-4) are 3 putative "phosphatonines".

  20. MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone

    PubMed Central

    Li, Chunmei; Kennedy, Julie; Garcia-Gonzalo, Francesc R.; Romani, Marta; De Mori, Roberta; Bruel, Ange-Line; Gaillard, Dominique; Doray, Bérénice; Lopez, Estelle; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel; Reiter, Jeremy F.; Blacque, Oliver E.; Valente, Enza Maria; Leroux, Michel R.

    2016-01-01

    Cilia have a unique diffusion barrier (“gate”) within their proximal region, termed transition zone (TZ), that compartmentalises signalling proteins within the organelle. The TZ is known to harbour two functional modules/complexes (Meckel syndrome [MKS] and Nephronophthisis [NPHP]) defined by genetic interaction, interdependent protein localisation (hierarchy), and proteomic studies. However, the composition and molecular organisation of these modules and their links to human ciliary disease are not completely understood. Here, we reveal Caenorhabditis elegans CEP-290 (mammalian Cep290/Mks4/Nphp6 orthologue) as a central assembly factor that is specific for established MKS module components and depends on the coiled coil region of MKS-5 (Rpgrip1L/Rpgrip1) for TZ localisation. Consistent with a critical role in ciliary gate function, CEP-290 prevents inappropriate entry of membrane-associated proteins into cilia and keeps ARL-13 (Arl13b) from leaking out of cilia via the TZ. We identify a novel MKS module component, TMEM-218 (Tmem218), that requires CEP-290 and other MKS module components for TZ localisation and functions together with the NPHP module to facilitate ciliogenesis. We show that TZ localisation of TMEM-138 (Tmem138) and CDKL-1 (Cdkl1/Cdkl2/Cdkl3/Cdlk4 related), not previously linked to a specific TZ module, similarly depends on CEP-290; surprisingly, neither TMEM-138 or CDKL-1 exhibit interdependent localisation or genetic interactions with core MKS or NPHP module components, suggesting they are part of a distinct, CEP-290-associated module. Lastly, we show that families presenting with Oral-Facial-Digital syndrome type 6 (OFD6) have likely pathogenic mutations in CEP-290-dependent TZ proteins, namely Tmem17, Tmem138, and Tmem231. Notably, patient fibroblasts harbouring mutated Tmem17, a protein not yet ciliopathy-associated, display ciliogenesis defects. Together, our findings expand the repertoire of MKS module-associated proteins—including the previously uncharacterised mammalian Tmem80—and suggest an MKS-5 and CEP-290-dependent assembly pathway for building a functional TZ. PMID:26982032

  1. A multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors: a preclinical study.

    PubMed

    Li, Dongrui; Cheng, Zhigang; Chen, Gang; Liu, Fangyi; Wu, Wenbo; Yu, Jie; Gu, Ying; Liu, Fengyong; Ren, Chao; Liang, Ping

    2018-04-03

    To test the accuracy and efficacy of the multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors in phantom and animal models. To evaluate and compare the influences of intervention experience on robot-assisted and ultrasound-controlled ablation procedures. Accuracy tests on rigid body/phantom model with a respiratory movement simulation device and microwave ablation tests on porcine liver tumor/rabbit liver cancer were performed with the robot we designed or with the traditional ultrasound-guidance by physicians with or without intervention experience. In the accuracy tests performed by the physicians without intervention experience, the insertion accuracy and efficiency of robot-assisted group was higher than those of ultrasound-guided group with statistically significant differences. In the microwave ablation tests performed by the physicians without intervention experience, better complete ablation rate was achieved when applying the robot. In the microwave ablation tests performed by the physicians with intervention experience, there was no statistically significant difference of the insertion number and total ablation time between the robot-assisted group and the ultrasound-controlled group. The evaluation by the NASA-TLX suggested that the robot-assisted insertion and microwave ablation process performed by physicians with or without experience were more comfortable. The multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors could increase the insertion accuracy and ablation efficacy, and minimize the influence of the physicians' experience. The ablation procedure could be more comfortable with less stress with the application of the robot.

  2. Molecular mechanics and dynamics characterization of an in silico mutated protein: a stand-alone lab module or support activity for in vivo and in vitro analyses of targeted proteins.

    PubMed

    Chiang, Harry; Robinson, Lucy C; Brame, Cynthia J; Messina, Troy C

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships. Copyright © 2013 Wiley Periodicals, Inc.

  3. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo.

    PubMed

    Eyboulet, Fanny; Wydau-Dematteis, Sandra; Eychenne, Thomas; Alibert, Olivier; Neil, Helen; Boschiero, Claire; Nevers, Marie-Claire; Volland, Hervé; Cornu, David; Redeker, Virginie; Werner, Michel; Soutourina, Julie

    2015-10-30

    Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype

    PubMed Central

    Plog, Stephanie; Klymiuk, Nikolai; Binder, Stefanie; Van Hook, Matthew J.; Thoreson, Wallace B.; Gruber, Achim D.; Mundhenk, Lars

    2015-01-01

    The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype. PMID:26474299

  5. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  6. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  7. Identifying module biomarkers from gastric cancer by differential correlation network

    PubMed Central

    Liu, Xiaoping; Chang, Xiao

    2016-01-01

    Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371

  8. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  9. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.

    PubMed

    Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M

    2018-05-03

    Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

  10. A Novel NHERF1 Mutation in Human Breast Cancer and Effects on Malignant Progression.

    PubMed

    Yang, Xiaomei; Du, Guifang; Yu, Zhen; Si, Yang; Martin, Tracey A; He, Junqi; Cheng, Shan; Jiang, Wen G

    2017-01-01

    Na + /H + exchanger regulatory factor 1 (NHERF1) has been reported to interact with post-synaptic density protein/Drosophila disc large tumour suppressor/zonula occludens 1 protein (PDZ) binding proteins by its two PDZ domains. These associations have effects on cellular signal transductions. NHERF1 has also been indicated as a cancer-related gene in several solid tumour types. We identified a novel mutation (A190D), of the PDZ2 domain of NHERF1 in breast cancer tissues. NHERF1 A190D mutation abolished NHERF1 modulation of proliferation and migration. In this study, we found that NHERF1 A190D mutation increased nuclear localisation of the protein compared to wild-type NHERF1. It has been reported that YES-associated protein (YAP) interacts with NHERF1. Here we found that NHERF1 A190D mutation increased the binding affinity between NHERF1 and YAP, which inhibited the phosphorylation of YAP. These data suggest that wild-type NHERF1 acts as a tumour suppressor, while NHERF1 A190D mutation abolishes the tumour-suppressive effect in cancer cells, due to A190D mutation-mediated nuclear NHERF1 translocation and induction of YAP phosphorylation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  12. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation.

    PubMed

    Nelson, Heidi D; Pappas, Miranda; Zakher, Bernadette; Mitchell, Jennifer Priest; Okinaka-Hu, Leila; Fu, Rongwei

    2014-02-18

    Mutations in breast cancer susceptibility genes (BRCA1 and BRCA2) are associated with increased risks for breast, ovarian, and other types of cancer. To review new evidence on the benefits and harms of risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women. MEDLINE and PsycINFO between 2004 and 30 July 2013, the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews from 2004 through the second quarter of 2013, Health Technology Assessment during the fourth quarter of 2012, Scopus, and reference lists. English-language studies about accuracy of risk assessment and benefits and harms of genetic counseling, genetic testing, and interventions to reduce cancer incidence and mortality. Individual investigators extracted data on participants, study design, analysis, follow-up, and results, and a second investigator confirmed key data. Investigators independently dual-rated study quality and applicability by using established criteria. Five referral models accurately estimated individual risk for BRCA mutations. Genetic counseling increased the accuracy of risk perception and decreases the intention for genetic testing among unlikely carriers and cancer-related worry, anxiety, and depression. No trials evaluated the effectiveness of intensive screening or risk-reducing medications in mutation carriers, although false-positive rates, unneeded imaging, and unneeded surgeries were higher with screening. Among high-risk women and mutation carriers, risk-reducing mastectomy decreased breast cancer by 85% to 100% and breast cancer mortality by 81% to 100% compared with women without surgery; risk-reducing salpingo-oophorectomy decreased breast cancer incidence by 37% to 100%, ovarian cancer by 69% to 100%, and all-cause mortality by 55% to 100%. The analysis included only English-language articles;efficacy trials in mutation carriers were lacking. Studies of risk assessment, genetic counseling, genetic testing, and interventions to reduce cancer and mortality indicate potential benefits and harms that vary according to risk.

  13. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    PubMed

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.

  14. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    PubMed

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR: short tandem repeat; TE: trophectoderm; WGA: whole-genome amplification.

  15. A novel mutation of laminin β2 (LAMB2) in two siblings with renal failure.

    PubMed

    Falix, Farah A; Bennebroek, Carlien A M; van der Zwaag, Bert; Lapid-Gortzak, Ruth; Florquin, Sandrine; Oosterveld, Michiel J S

    2017-04-01

    This report describes a novel mutation of LAMB2, the gene associated with Pierson syndrome (microcoria-congenital nephrosis syndrome), in two female siblings. The c.970T>C p.(Cys324Arg) mutation in the LAMB2 gene affects one of the eight highly conserved cysteine residues within the first EGF-like module of the laminin β2 protein. These residues form disulfide bonds in order to achieve a correct 3D structure of the protein. The reported phenotype is considered a relatively mild variant of Pierson syndrome and is associated with later-onset (18 months) therapy-resistant nephrotic syndrome leading to renal failure, and ocular abnormalities consisting of high myopia, microcoria, diverse retinal abnormalities, hence a low level of visual acuity. Importantly, the reported LAMB2 mutation was associated with normal neurological development in both siblings. this report presents the variability of the renal, ocular and neurological phenotypes associated with LAMB2 mutations and underscores the importance of ophthalmologic examination in all children with unexplained renal insufficiency or nephrotic syndrome. What is known • LAMB2 mutations are associated with Pierson syndrome • Pierson syndrome is associated with congenital nephrotic syndrome, microcoria and neurological deficits What is new • A novel mutation in the LAMB2 gene in two female siblings • Genotype and clinical phenotype description of a novel LAMB2 mutation.

  16. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  17. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

    PubMed

    Matano, Mami; Date, Shoichi; Shimokawa, Mariko; Takano, Ai; Fujii, Masayuki; Ohta, Yuki; Watanabe, Toshiaki; Kanai, Takanori; Sato, Toshiro

    2015-03-01

    Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

  18. Mutated-leptin gene transfer induces increases in body weight by electroporation and hydrodynamics-based gene delivery in mice.

    PubMed

    Xiang, Lan; Murai, Atsushi; Muramatsu, Tatsuo

    2005-12-01

    To investigate whether in vivo gene transfer causes leptin-antagonistic effects on food intake, animal body weight and fat tissue weight, the R128Q mutated-leptin gene, an R to Q substitution at position 128 of mouse leptin, was transferred into mouse liver and leg muscle by electroporation and hydrodynamics-based gene delivery. Mutated-leptin gene transfer by electroporation caused significant increases in body weight at 5 days and after (5.4% increase relative to control; p<0.05). Hydrodynamics-based gene delivery of the mutated-leptin gene also caused an increase in body weight (3.0% increase relative to control; p<0.05). Mutated-leptin gene transfer by electroporation significantly increased the tissue weight of epididymal white fat and neuropeptide Y mRNA expression in the hypothalamus compared with those of the control group 3 weeks after gene transfer (p<0.05). These results suggest that mutated-leptin gene transfer successfully produced leptin-antagonistic effects by modulating the central regulator of energy homeostasis. Also, the extent of leptin-antagonistic effects by electroporation was much higher than hydrodynamics-based gene delivery, with at least single gene transfer.

  19. Expressivity of hearing loss in cases with Usher syndrome type IIA.

    PubMed

    Sadeghi, André M; Cohn, Edward S; Kimberling, William J; Halvarsson, Glenn; Möller, Claes

    2013-12-01

    The purpose of this study was to compare the genotype/phenotype relationship between siblings with identical USH2A pathologic mutations and the consequent audiologic phenotypes, in particular degree of hearing loss (HL). Decade audiograms were also compared among two groups of affected subjects with different mutations of USH2A. DNA samples from patients with Usher syndrome type II were analysed. The audiological features of patients and affected siblings with USH2A mutations were also examined to identify genotype-phenotype correlations. Genetic and audiometric examinations were performed in 18 subjects from nine families with Usher syndrome type IIA. Three different USH2A mutations were identified in the affected subjects. Both similarities and differences of the auditory phenotype were seen in families with several affected siblings. A variable degree of hearing loss, ranging from mild to profound, was observed among affected subjects. No significant differences in hearing thresholds were found the group of affected subjects with different pathological mutations. Our results indicate that mutations in the USH2A gene and the resulting phenotype are probably modulated by other variables, such as modifying genes, epigenetics or environmental factors which may be of importance for better understanding the etiology of Usher syndrome.

  20. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  1. Mutation detection in the human HSP70B′ gene by denaturing high-performance liquid chromatography

    PubMed Central

    Hecker, Karl H.; Asea, Alexzander; Kobayashi, Kaoru; Green, Stacy; Tang, Dan; Calderwood, Stuart K.

    2000-01-01

    Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B′ gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKERTM software. Four overlapping amplicons, which span the complete coding region of the HSP70B′ gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B′ gene on the WAVE® Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed. PMID:11189446

  2. Mutation detection in the human HSP7OB' gene by denaturing high-performance liquid chromatography.

    PubMed

    Hecker, K H; Asea, A; Kobayashi, K; Green, S; Tang, D; Calderwood, S K

    2000-11-01

    Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B' gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKER software. Four overlapping amplicons, which span the complete coding region of the HSP70B' gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B' gene on the WAVE Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed.

  3. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Russell, Marcia M; Tomlinson, James S

    2017-12-01

    Approximately 20-40% of stage II/III colorectal cancer (CRC) patients develop relapse. Clinicopathological factors alone are limited in detecting these patients, resulting in potential under/over-treatment. We sought to identify a prognostic tumor mutational profile that could predict CRC recurrence. Whole-exome sequencing data were obtained for 207 patients with stage II/III CRC from The Cancer Genome Atlas. Mutational landscape in relapse-free versus relapsed cohort was compared using Fisher's exact test, followed by multivariate Cox regression to identify genes associated with cancer recurrence. Bootstrap-validation was used to examine internal/external validity. We identified five prognostic genes (APAF1, DIAPH2, NTNG1, USP7, and VAV2), which were combined to form a prognostic mutation panel. Patients with ≥1 mutation(s) within this five-gene panel had worse prognosis (3-yr relapse-free survival [RFS]: 53.0%), compared to patients with no mutation (3-yr RFS: 84.3%). In multivariate analysis, the five-gene panel remained prognostic for cancer recurrence independent of stage and high-risk features (hazard ratio 3.63, 95%CI [1.93-6.83], P < 0.0001). Furthermore, its prognostic accuracy was superior to the American Joint Commission on Cancer classification (concordance-index: 0.70 vs 0.54). Our proposed mutation panel identifies CRC patients at high-risk for recurrence, which may help guide adjuvant therapy and post-operative surveillance protocols. © 2017 Wiley Periodicals, Inc.

  5. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    PubMed

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  6. Circulating progranulin as a biomarker for neurodegenerative diseases.

    PubMed

    Ghidoni, Roberta; Paterlini, Anna; Benussi, Luisa

    2012-01-01

    Progranulin is a growth factor involved in the regulation of multiple processes including tumorigenesis, wound repair, development, and inflammation. The recent discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD), and other neurodegenerative diseases leading to dementia, has brought renewed interest in progranulin and its functions in the central nervous system. GRN null mutations cause protein haploinsufficiency, leading to a significant decrease in progranulin levels that can be detected in plasma, serum and cerebrospinal fluid (CSF) of mutation carriers. The dosage of circulating progranulin sped up the identification of GRN mutations thus favoring genotype-phenotype correlation studies. Researchers demonstrated that, in GRN null mutation carriers, the shortage of progranulin invariably precedes clinical symptoms and thus mutation carriers are "captured" regardless of their disease status. GRN is a particularly appealing gene for drug targeting, in the way that boosting its expression may be beneficial for mutation carriers, preventing or delaying the onset of GRN-related neurodegenerative diseases. Physiological regulation of progranulin expression level is only partially known. Progranulin expression reflects mutation status and, intriguingly, its levels can be modulated by some additional factor (i.e. genetic background; drugs). Thus, factors increasing the production and secretion of progranulin from the normal gene are promising potential therapeutic avenues. In conclusion, peripheral progranulin is a nonintrusive highly accurate biomarker for early identification of mutation carriers and for monitoring future treatments that might boost the level of this protein.

  7. Circulating progranulin as a biomarker for neurodegenerative diseases

    PubMed Central

    Ghidoni, Roberta; Paterlini, Anna; Benussi, Luisa

    2012-01-01

    Progranulin is a growth factor involved in the regulation of multiple processes including tumorigenesis, wound repair, development, and inflammation. The recent discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD), and other neurodegenerative diseases leading to dementia, has brought renewed interest in progranulin and its functions in the central nervous system. GRN null mutations cause protein haploinsufficiency, leading to a significant decrease in progranulin levels that can be detected in plasma, serum and cerebrospinal fluid (CSF) of mutation carriers. The dosage of circulating progranulin sped up the identification of GRN mutations thus favoring genotype-phenotype correlation studies. Researchers demonstrated that, in GRN null mutation carriers, the shortage of progranulin invariably precedes clinical symptoms and thus mutation carriers are “captured” regardless of their disease status. GRN is a particularly appealing gene for drug targeting, in the way that boosting its expression may be beneficial for mutation carriers, preventing or delaying the onset of GRN-related neurodegenerative diseases. Physiological regulation of progranulin expression level is only partially known. Progranulin expression reflects mutation status and, intriguingly, its levels can be modulated by some additional factor (i.e. genetic background; drugs). Thus, factors increasing the production and secretion of progranulin from the normal gene are promising potential therapeutic avenues. In conclusion, peripheral progranulin is a nonintrusive highly accurate biomarker for early identification of mutation carriers and for monitoring future treatments that might boost the level of this protein. PMID:23383391

  8. Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.

    PubMed

    Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte

    2018-02-01

    Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.

  9. The anticonvulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator

    PubMed Central

    Fisher, Janet L.

    2009-01-01

    SUMMARY Stiripentol(STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anticonvulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABAA receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of α3-containing receptors and reduced potentiation when the β1 or ε subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the α3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on β1- and β2/β3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at α3-containing receptors as well as its activity at δ-containing receptors may provide a unique opportunity to target selected populations of GABARs. PMID:18585399

  10. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

    PubMed

    Yamasaki, Takashi; Nakazaki, Yosuke; Yoshida, Masasuke; Watanabe, Yo-hei

    2011-07-01

    ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer. © 2011 The Authors Journal compilation © 2011 FEBS.

  11. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  12. Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization.

    PubMed

    Thistlethwaite, William A; Moses, Linda M; Hoffbuhr, Kristen C; Devaney, Joseph M; Hoffman, Eric P

    2003-05-01

    Rett syndrome is a neurodevelopmental disorder that affects females almost exclusively, and in which eight common point mutations on the X-linked MeCP2 gene are knows to cause over 70% of mutation-positive cases. We explored the use of a novel platform to detect the eight common mutations in Rett syndrome patients to expedite and simplify the process of identification of known genotypes. The Nanogen workstation consists of a two-color assay based on electric hybridization and thermal discrimination, all performed on an electronically active NanoChip. This genotyping platform was tested on 362 samples of a pre-determined genotype, which had been previously identified by a combination of DHPLC (denaturing high performance liquid chromatography) and direct sequencing. This genotyping technique proved to be rapid, facile, and displayed a specificity of 100% with 3% ambiguity. In addition, we present consecutive testing of seven mutations on a single pad of the NanoChip. This was accomplished by tagging down two amplimers together and serially hybridizing for seven different loci, allowing us to genotype samples for seven of the eight common Rett mutations on a single pad. This novel method displayed the same level of specificity and accuracy as the single amplimer reactions, and proved to be faster and more economical.

  13. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR.

    PubMed

    Gruber, Aurélia; Pacault, Mathilde; El Khattabi, Laila Allach; Vaucouleur, Nicolas; Orhant, Lucie; Bienvenu, Thierry; Girodon, Emmanuelle; Vidaud, Dominique; Leturcq, France; Costa, Catherine; Letourneur, Franck; Anselem, Olivia; Tsatsaris, Vassilis; Goffinet, François; Viot, Géraldine; Vidaud, Michel; Nectoux, Juliette

    2018-04-25

    To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.

  14. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding.

    PubMed

    Meuwissen, Theo H E; Odegard, Jorgen; Andersen-Ranberg, Ina; Grindflek, Eli

    2014-08-01

    With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation. Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions. Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly, but were significantly more accurate than GLA. Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotyped animals.

  15. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  16. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Conserved residues in Lassa fever virus Z protein modulate viral infectivity at the level of the ribonucleoprotein.

    PubMed

    Capul, Althea A; de la Torre, Juan Carlos; Buchmeier, Michael J

    2011-04-01

    Arenaviruses are negative-strand RNA viruses that cause human diseases such as lymphocytic choriomeningitis, Bolivian hemorrhagic fever, and Lassa hemorrhagic fever. No licensed vaccines exist, and current treatment is limited to ribavirin. The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a model for dissecting virus-host interactions in persistent and acute disease. The RING finger protein Z has been identified as the driving force of arenaviral budding and acts as the viral matrix protein. While residues in Z required for viral budding have been described, residues that govern the Z matrix function(s) have yet to be fully elucidated. Because this matrix function is integral to viral assembly, we reasoned that this would be reflected in sequence conservation. Using sequence alignment, we identified several conserved residues in Z outside the RING and late domains. Nine residues were each mutated to alanine in Lassa fever virus Z. All of the mutations affected the expression of an LCMV minigenome and the infectivity of virus-like particles, but to greatly varying degrees. Interestingly, no mutations appeared to affect Z-mediated budding or association with viral GP. Our findings provide direct experimental evidence supporting a role for Z in the modulation of the activity of the viral ribonucleoprotein (RNP) complex and its packaging into mature infectious viral particles.

  18. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  19. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.).

    PubMed

    Liu, Derui; Wang, Wei; Cai, Xiuling

    2014-12-01

    The rice Waxy (Wx) gene encodes granule-bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site-directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch-binding capacity, its ADP-glucose-binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer

    PubMed Central

    Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José

    2017-01-01

    Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033

  1. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review

    PubMed Central

    Boland, M R; Tatonetti, N P

    2016-01-01

    Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment. PMID:27401223

  2. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    PubMed Central

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; Lim, Jing Quan; Huang, Mi Ni; Padmanabhan, Nisha; Nellore, Vishwa; Kongpetch, Sarinya; Ng, Alvin Wei Tian; Ng, Ley Moy; Choo, Su Pin; Myint, Swe Swe; Thanan, Raynoo; Nagarajan, Sanjanaa; Lim, Weng Khong; Ng, Cedric Chuan Young; Boot, Arnoud; Liu, Mo; Ong, Choon Kiat; Rajasegaran, Vikneswari; Lie, Stefanus; Lim, Alvin Soon Tiong; Lim, Tse Hui; Tan, Jing; Loh, Jia Liang; McPherson, John R.; Khuntikeo, Narong; Bhudhisawasdi, Vajaraphongsa; Yongvanit, Puangrat; Wongkham, Sopit; Totoki, Yasushi; Nakamura, Hiromi; Arai, Yasuhito; Yamasaki, Satoshi; Chow, Pierce Kah-Hoe; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Dima, Simona; Duda, Dan G.; Popescu, Irinel; Broet, Philippe; Hsieh, Sen-Yung; Yu, Ming-Chin; Scarpa, Aldo; Lai, Jiaming; Luo, Di-Xian; Carvalho, André Lopes; Vettore, André Luiz; Rhee, Hyungjin; Park, Young Nyun; Alexandrov, Ludmil B.; Gordân, Raluca; Rozen, Steven G.; Shibata, Tatsuhiro; Pairojkul, Chawalit; Teh, Bin Tean; Tan, Patrick

    2017-01-01

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters – Fluke-Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3′UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores – mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer. PMID:28667006

  3. Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation

    PubMed Central

    Zhu, Li; Uskoković, Vuk; Le, Thuan; DenBesten, Pamela; Huang, Yulei; Habelitz, Stefan; Li, Wu

    2012-01-01

    Objective A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals. Design Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM. Results As compared to rh174 amelogenin, p.P70T mutant displayed significantly increased sizes of the assemblies, higher binding affinity to apatite, and decreased crystal height. Conclusions Pro-70 plays an important structural role in the biologically relevant amelogenin self-assembly. The disturbed regularity of amelogenin nanospheres by this single mutation resulted in an increased binding to apatite and inhibited crystal growth. PMID:21081224

  4. FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression in Drosophila.

    PubMed

    Miguel, Laetitia; Avequin, Tracey; Pons, Marine; Frébourg, Thierry; Campion, Dominique; Lecourtois, Magalie

    2018-05-17

    TDP-43 is a major disease-causing protein in amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Today, more than 50 missense mutations in the TARDBP/TDP-43 gene have been described in patients with FTLD/ALS. However, the functional consequences of FTLD/ALS-linked TDP-43 mutations are not fully elucidated. In the physiological state, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. In the present study, we investigated whether the FTLD/ALS-associated mutations could interfere with TDP-43 protein's capacity to modulate its own protein levels using Drosophila as an experimental model. Our data show that FTLD/ALS-associated mutant proteins regulate TDP-43 production with the same efficiency as the wild-type form of the protein. Thus, FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression and consequently of the homeostasis of TDP-43 protein levels. Copyright © 2018. Published by Elsevier B.V.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  6. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.

    PubMed

    Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.

  7. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

    PubMed Central

    Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839

  8. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, Erik A.

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.« less

  9. Quality assurance of intensity-modulated radiation therapy.

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  10. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  11. Implementation of Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-to-Rank Software Defect Prediction Model Construction

    NASA Astrophysics Data System (ADS)

    Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.

    2018-03-01

    Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.

  12. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  13. The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides.

    PubMed

    Brown, Christopher John; Srinivasan, Deepa; Jun, Lee Hui; Coomber, David; Verma, Chandra S; Lane, David P

    2008-03-01

    Florescence anisotropy measurements using FAM-labelled p53 peptides showed that the binding of the peptides to MDM2 was dependant upon the phosphorylation of p53 at Thr18 and that this binding was modulated by the electrostatic properties of MDM2. In agreement with computational predictions, the binding to phosphorylated p53 peptide, in comparison to the unphosphorylated p53 peptide, was enhanced upon mutation of 3 key residues on the MDM2 surface.

  14. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  15. Test module development to detect the flase call probe pins on microeprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.

  16. A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique

    PubMed Central

    Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong

    2017-01-01

    Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936

  17. Working memory capacity and task goals modulate error-related ERPs.

    PubMed

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  18. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  19. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    PubMed Central

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  20. Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module.

    PubMed

    Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T

    2015-08-01

    An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).

  1. A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio

    PubMed Central

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.

    2017-01-01

    ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306

  2. Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients

    NASA Astrophysics Data System (ADS)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.

    2018-02-01

    Predicting mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) gene utilizing MR imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare a deep neural network approach based on a residual deep neural network (ResNet) architecture and one based on a classical machine learning approach and evaluate their ability in predicting ATRX mutation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture, pre trained on ImageNet data was the best performing model, achieving an accuracy of 0.91 for the test set (classification of a slice as no tumor, ATRX mutated, or mutated) in terms of f1 score in a test set of 35 cases. The SVM classifier achieved 0.63 for differentiating the Flair signal abnormality regions from the test patients based on their mutation status. We report a method that alleviates the need for extensive preprocessing and acts as a proof of concept that deep neural network architectures can be used to predict molecular biomarkers from routine medical images.

  3. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome

    PubMed Central

    Comte, Caroline; Tonin, Yann; Heckel-Mager, Anne-Marie; Boucheham, Abdeldjalil; Smirnov, Alexandre; Auré, Karine; Lombès, Anne; Martin, Robert P.; Entelis, Nina; Tarassov, Ivan

    2013-01-01

    Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases. PMID:23087375

  4. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    PubMed

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. Copyright © 2013 Wiley Periodicals, Inc.

  5. Large-Scale ATP-Independent Nucleosome Unfolding by a Histone Chaperone

    PubMed Central

    Valieva, Maria E.; Armeev, Grigoriy A.; Kudryashova, Kseniya S.; Gerasimova, Nadezhda S.; Shaytan, Alexey K.; Kulaeva, Olga I.; McCullough, Laura L.; Formosa, Tim; Georgiev, Pavel G.; Kirpichnikov, Mikhail P.; Studitsky, Vasily M.; Feofanov, Alexey V.

    2017-01-01

    DNA accessibility to regulatory proteins is significantly affected by nucleosome structure and dynamics. FACT (facilitates chromatin transcription) increases the accessibility of nucleosomal DNA but the mechanism and extent of this nucleosome reorganization are unknown. We report here the effects of FACT on single nucleosomes revealed with spFRET microscopy. FACT binding results in a dramatic, ATP-independent, and reversible uncoiling of DNA that affects at least 70% of the DNA in a nucleosome. A mutated version of FACT is defective in this uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this is an important function of FACT in vivo. PMID:27820806

  6. Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2011-01-01

    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time. PMID:21415911

  7. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

    PubMed

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C

    2011-01-01

    The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

  8. Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition.

    PubMed

    Weikard, Rosemarie; Altmaier, Elisabeth; Suhre, Karsten; Weinberger, Klaus M; Hammon, Harald M; Albrecht, Elke; Setoguchi, Kouji; Takasuga, Akiko; Kühn, Christa

    2010-10-01

    Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.

  9. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.

    PubMed

    Fukui, Naoya; Araki, Kiho; Hongo, Kunihiro; Mizobata, Tomohiro; Kawata, Yasushi

    2016-11-25

    The isolated apical domain of the Escherichia coli GroEL subunit displays the ability to suppress the irreversible fibrillation of numerous amyloid-forming polypeptides. In previous experiments, we have shown that mutating Gly-192 (located at hinge II that connects the apical domain and the intermediate domain) to a tryptophan results in an inactive chaperonin whose apical domain is disoriented. In this study, we have utilized this disruptive effect of Gly-192 mutation to our advantage, by substituting this residue with amino acid residues of varying van der Waals volumes with the intent to modulate the affinity of GroEL toward fibrillogenic peptides. The affinities of GroEL toward fibrillogenic polypeptides such as Aβ(1-40) (amyloid-β(1-40)) peptide and α-synuclein increased in accordance to the larger van der Waals volume of the substituent amino acid side chain in the G192X mutants. When we compared the effects of wild-type GroEL and selected GroEL G192X mutants on α-synuclein fibril formation, we found that the effects of the chaperonin on α-synuclein fibrillation were different; the wild-type chaperonin caused changes in both the initial lag phase and the rate of fibril extension, whereas the effects of the G192X mutants were more specific toward the nucleus-forming lag phase. The chaperonins also displayed differential effects on α-synuclein fibril morphology, suggesting that through mutation of Gly-192, we may induce changes to the intermolecular affinities between GroEL and α-synuclein, leading to more efficient fibril suppression, and in specific cases, modulation of fibril morphology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Interplay of the modified nucleotide phosphoadenosine 5'-phosphosulfate (PAPS) with global regulatory proteins in Escherichia coli: modulation of cyclic AMP (cAMP)-dependent gene expression and interaction with the HupA regulatory protein.

    PubMed

    Longo, Francesca; Motta, Sara; Mauri, Pierluigi; Landini, Paolo; Rossi, Elio

    2016-11-25

    In the bacterium Escherichia coli, some intermediates of the sulfate assimilation and cysteine biosynthesis pathway can act as signal molecules and modulate gene expression. In addition to sensing and utilization of sulphur sources, these signaling mechanisms also impact more global cell processes, such as resistance to antimicrobial agents and biofilm formation. In a recent work, we have shown that inactivation of the cysH gene, encoding phosphoadenosine-phosphosulfate (PAPS) reductase, and the consequent increase in intracellular PAPS concentration, strongly affect production of several cell surface-associated structures, enhancing surface adhesion and cell aggregation. In order to identify the molecular mechanism relaying intracellular PAPS concentration to regulation of cell surface-associated structures, we looked for mutations able to suppress the effects of cysH inactivation. We found that mutations in the adenylate cyclase-encoding cyaA gene abolished the effects of PAPS accumulation; consistent with this result, cyclic AMP (cAMP)-dependent gene expression appears to be increased in the cysH mutant. Experiments aimed at the direct identification of proteins interacting with either CysC or CysH, i.e. the PAPS-related proteins APS kinase and PAPS reductase, allowed us to identify several regulators, namely, CspC, CspE, HNS and HupA. Protein-protein interaction between HupA and CysH was confirmed by a bacterial two hybrid system, and inactivation of the hupA gene enhanced the effects of the cysH mutation in terms of production of cell surface-associated factors. Our results indicate that PAPS can modulate different regulatory systems, providing evidence that this molecule acts as a global signal molecule in E. coli. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, M.; Tzuri, G.; Eyal, N.

    1993-10-01

    The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewis patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so farmore » among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS2+1 mutation constituted 2.26% of the disease alleles among Jewish Patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated [open quotes]RecNcil[close quotes] and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations-D409H and R463C- was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, is 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection. 33 refs, 3 figs., 4 tabs.« less

  12. Birefringence Polarimeter Using Dual LiNbO3 Electrooptic Crystal Modulators

    NASA Astrophysics Data System (ADS)

    Saitou, Takeshi; Nurdin Bin, Muhammad; Kowa, Hiroyuki; Umeda, Norihiro; Takizawa, Kuniharu; Kondoh, Eiichi; Jin, Lianhua

    2012-08-01

    A birefringence polarimeter that uses dual LiNbO3 electrooptic crystal modulators operating at a frequency ratio of 4:1 is described. The significance of this polarimeter is that the birefringent parameters of a sample are obtained only from the modulated polarization status. The measurement, therefore, avoids depolarization effects resulting from the sample itself and the rest of the optical system. The high speed and accuracy of this polarimeter are shown by measurements using a quarter-wave plate, a Babinet-Soleil compensator, and a phase modulator.

  13. Aquaporins: important but elusive drug targets

    PubMed Central

    Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.

    2014-01-01

    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825

  14. The interaction between thermodynamic stability and buried free cysteines in regulating the functional half-life of fibroblast growth factor-1.

    PubMed

    Lee, Jihun; Blaber, Michael

    2009-10-16

    Protein biopharmaceuticals are an important and growing area of human therapeutics; however, the intrinsic property of proteins to adopt alternative conformations (such as during protein unfolding and aggregation) presents numerous challenges, limiting their effective application as biopharmaceuticals. Using fibroblast growth factor-1 as model system, we describe a cooperative interaction between the intrinsic property of thermostability and the reactivity of buried free-cysteine residues that can substantially modulate protein functional half-life. A mutational strategy that combines elimination of buried free cysteines and secondary mutations that enhance thermostability to achieve a substantial gain in functional half-life is described. Furthermore, the implementation of this design strategy utilizing stabilizing mutations within the core region resulted in a mutant protein that is essentially indistinguishable from wild type as regard protein surface and solvent structure, thus minimizing the immunogenic potential of the mutations. This design strategy should be generally applicable to soluble globular proteins containing buried free-cysteine residues.

  15. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.

    PubMed

    Diaz-Uriarte, Ramon

    2017-06-15

    OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  17. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less

  18. Bridging the physical scales in evolutionary biology: From protein sequence space to fitness of organisms and populations

    PubMed Central

    Bershtein, Shimon; Serohijos, Adrian W.R.; Shakhnovich, Eugene I.

    2016-01-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. PMID:27810574

  19. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I

    2017-02-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    PubMed

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  1. γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments.

    PubMed

    Calusi, Silvia; Noferini, Linhsia; Marrazzo, Livia; Casati, Marta; Arilli, Chiara; Compagnucci, Antonella; Talamonti, Cinzia; Scoccianti, Silvia; Greto, Daniela; Bordi, Lorenzo; Livi, Lorenzo; Pallotta, Stefania

    2017-11-01

    We present the γTools, a new phantom designed to assess geometric and dosimetric accuracy in Gamma Knife treatments, together with first tests and results of applications. The phantom is composed of two modules: the imaging module, a regular grid of 1660 control points to evaluate image distortions and image registration result and the dosimetry module for delivered dose distribution measurements. The phantom is accompanied by a MatLab routine for image distortions quantification. Dose measurement are performed with Gafchromic films fixed between two inserts and placed in various positions and orientations inside the dosimetry module thus covering a volume comparable to the full volume of a head. Tests performed to assess the accuracy and precision of the imaging module demonstrated sub-millimetric values. As an example of possible applications, the phantom was employed to measure image distortions of two MRI scanners and to perform dosimetric studies of single shots delivered to homogeneous and heterogeneous materials. Due to the phantom material, the measured absolute dose do not correspond to the planned dose; doses comparisons are thus carried out between normalized dose distributions. Finally, an end-to-end test was carried out in the treatment of a neuroma-like target which resulted in a 100% gamma passing rate (2% local, 2 mm) and a distance between the real target perimeter and the prescription isodose centroids of about 1 mm. The tests demonstrate that the proposed phantom is suitable to assess both the geometrical and relative dosimetric accuracy of Gamma Knife radiosurgery treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Optimization of Antitumor Modulators of Pre-mRNA Splicing

    PubMed Central

    Lagisetti, Chandraiah; Palacios, Gustavo; Goronga, Tinopiwa; Freeman, Burgess; Caufield, William; Webb, Thomas R.

    2014-01-01

    The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators, which demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50= 39 nM) and other tumor lines, including: JeKo-1 (IC50= 26 nM), HeLa (IC50= 50 nM), and SK-N-AS (IC50= 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers. PMID:24325474

  3. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    PubMed

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  4. Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs

    PubMed Central

    Wang, Chong; Wu, Huixian; Evron, Tama; Vardy, Eyal; Han, Gye Won; Huang, Xi-Ping; Hufeisen, Sandy J.; Mangano, Thomas J.; Urban, Dan J.; Katritch, Vsevolod; Cherezov, Vadim; Caron, Marc G.; Roth, Bryan L.; Stevens, Raymond C.

    2014-01-01

    The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules. PMID:25008467

  5. Structural Basis for Modulation of Quality Control Fate in a Marginally Stable Protein.

    PubMed

    Brock, Kelly P; Abraham, Ayelet-chen; Amen, Triana; Kaganovich, Daniel; England, Jeremy L

    2015-07-07

    The human von Hippel-Lindau (VHL) tumor suppressor is a marginally stable protein previously used as a model substrate of eukaryotic refolding and degradation pathways. When expressed in the absence of its cofactors, VHL cannot fold and is quickly degraded by the quality control machinery of the cell. We combined computational methods with in vivo experiments to examine the basis of the misfolding propensity of VHL. By expressing a set of randomly mutated VHL sequences in yeast, we discovered a more stable mutant form. Subsequent modeling suggested the mutation had caused a conformational change affecting cofactor and chaperone interaction, and this hypothesis was then confirmed by additional knockout and overexpression experiments targeting a yeast cofactor homolog. These findings offer a detailed structural basis for the modulation of quality control fate in a model misfolded protein and highlight burial mode modeling as a rapid means to detect functionally important conformational changes in marginally stable globular domains. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Novel primer specific false terminations during DNA sequencing reactions: danger of inaccuracy of mutation analysis in molecular diagnostics

    PubMed Central

    Anwar, R; Booth, A; Churchill, A J; Markham, A F

    1996-01-01

    The determination of nucleotide sequence is fundamental to the identification and molecular analysis of genes. Direct sequencing of PCR products is now becoming a commonplace procedure for haplotype analysis, and for defining mutations and polymorphism within genes, particularly for diagnostic purposes. A previously unrecognised phenomenon, primer related variability, observed in sequence data generated using Taq cycle sequencing and T7 Sequenase sequencing, is reported. This suggests that caution is necessary when interpreting DNA sequence data. This is particularly important in situations where treatment may be dependent on the accuracy of the molecular diagnosis. Images PMID:16696096

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    PubMed

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  9. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.

    PubMed

    Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie

    2018-04-11

    Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  10. Orkambi® and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Ip, Wan; Ouyang, Hong; Villella, Adriana; Miller, John P; Lee, Po-Shun; Kulleperuma, Kethika; Du, Kai; Di Paola, Michelle; Eckford, Paul Dw; Laselva, Onofrio; Huan, Ling Jun; Wellhauser, Leigh; Li, Ellen; Ray, Peter N; Pomès, Régis; Moraes, Theo J; Gonska, Tanja; Ratjen, Felix; Bear, Christine E

    2017-09-01

    The combination therapy of lumacaftor and ivacaftor (Orkambi ® ) is approved for patients bearing the major cystic fibrosis (CF) mutation: ΔF508 It has been predicted that Orkambi ® could treat patients with rarer mutations of similar "theratype"; however, a standardized approach confirming efficacy in these cohorts has not been reported. Here, we demonstrate that patients bearing the rare mutation: c.3700 A>G, causing protein misprocessing and altered channel function-similar to ΔF508-CFTR, are unlikely to yield a robust Orkambi ® response. While  in silico  and biochemical studies confirmed that this mutation could be corrected and potentiated by lumacaftor and ivacaftor, respectively, this combination led to a minor in vitro response in patient-derived tissue. A CRISPR/Cas9-edited bronchial epithelial cell line bearing this mutation enabled studies showing that an "amplifier" compound, effective in increasing the levels of immature CFTR protein, augmented the Orkambi ® response. Importantly, this "amplifier" effect was recapitulated in patient-derived nasal cultures-providing the first evidence for its efficacy in augmenting Orkambi ® in tissues harboring a rare CF-causing mutation. We propose that this multi-disciplinary approach, including creation of CRISPR/Cas9-edited cells to profile modulators together with validation using primary tissue, will facilitate therapy development for patients with rare CF mutations. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  12. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukat, Alexandra; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases; Edgar, Daniel

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of themore » molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.« less

  13. Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor.

    PubMed

    Mesbahi, Myriam; Shteinberg, Michal; Wilschanski, Michael; Hatton, Aurelie; Nguyen-Khoa, Thao; Friedman, Hannah; Cohen, Michael; Escabasse, Virginie; Le Bourgeois, Muriel; Lucidi, Vicenzina; Sermet-Gaudelus, Isabelle; Bassinet, Laurence; Livnat, Galit

    2017-01-01

    Ivacaftor, a CFTR potentiator, has been found to improve CFTR function and clinical outcomes in patients with cystic fibrosis (CF) gating mutations. We investigated the effects of ivacaftor on CFTR functional measurement in CF patients carrying gating mutations other than p.Gly551Asp. Two siblings aged 13 and 12 carrying the p.Ser549Asn mutation, two sisters (45 and 43years old) compound heterozygotes for p.Asp1152His and p.Gly1244Glu, a 37year old man homozygous for the p.Gly1244Glu mutation, and a 7year old girl with p.Arg352Gln and p.Gly1244Glu mutations commenced treatment with ivacaftor. NPD was performed in all the patients and approached normal for four patients who had also clinical improvement (p.Ser549Asn compound heterozygotes, and p.Asp1152His/p.Gly1244Glu siblings). Beta-adrenergic sweat chloride secretion performed in thep.Asp1152His/p.Gly1244Glu patients improved significantly. The p.Gly1244Glu mutation homozygous patient, who had undergone an ileal resection with ileostomy and enterocutaneous fistula, did not respond clinically to ivacaftor and did not modify his sweat test. These results highlight the importance of different CFTR activity measurements to explore CFTR modulator efficacy. Copyright © 2016. Published by Elsevier B.V.

  14. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    PubMed

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  15. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells

    PubMed Central

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-01-01

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design. PMID:29113311

  16. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations.

    PubMed

    Montesinos, Isabel; Delforge, Marie-Luce; Ajjaham, Farida; Brancart, Françoise; Hites, Maya; Jacobs, Frederique; Denis, Olivier

    2017-01-01

    The PneumoGenius® real-time PCR assay is a new commercial multiplex real-time PCR method, which detects the Pneumocystis mitochondrial ribosomal large subunit (mtLSU) and two dihydropteroate synthase (DHPS) point mutations. To evaluate the clinical performance of this new real-time PCR assay we tested 120 extracted DNA samples from bronchoalveolar lavage specimens. These set of extracted DNA samples had already tested positive for Pneumocystis and patients had been classified in probable and unlikely PCP in a previous study. To evaluate de accuracy of the DHPS mutant's identification, an "in house" PCR and sequencing was performed. The sensitivity and specificity of PneumoGenius® PCR in discriminating between probable and unlikely Pneumocystis pneumonia (PCP) were 70% and 82% respectively. PneumoGenius® PCR was able to genotype more samples than "in house" DHPS PCR and sequencing. The same DHPS mutations were observed by both methods in four patients: two patients with a single mutation in position 171 (Pro57Ser) and two patients with a double mutation in position 165 (Thr55Ala) and in position 171 (Pro57Ser). A low rate of P. jirovecii (4.5%) harboring DHPS mutations was found, comparable to rates observed in other European countries. The PneumoGenius® real-time PCR is a suitable real-time PCR for PCP diagnosis and detection of DHPS mutants. The added value of DHPS mutation identification can assist in understanding the role of these mutations in prophylaxis failure or treatment outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cystic Fibrosis in the African Diaspora.

    PubMed

    Stewart, Cheryl; Pepper, Michael S

    2017-01-01

    Identifying mutations that cause cystic fibrosis (CF) is important for making an early, unambiguous diagnosis, which, in turn, is linked to better health and a greater life expectancy. In patients of African descent, a molecular diagnosis is often confounded by the fact that the majority of investigations undertaken to identify causative mutations have been conducted on European populations, and CF-causing mutations tend to be population specific. We undertook a survey of published data with the aim of identifying causative CF mutations in patients of African descent in the Americas. We found that 1,584 chromosomes had been tested in only 6 countries, of which 876 alleles (55.3%) still remained unidentified. There were 59 mutations identified. Of those, 41 have been shown to cause CF, 17 have no associated functional studies, and one (R117H) is of varying clinical consequence. The most common mutations identified in the patients of African descent were: ΔF508 (29.4% identified in the United States, Colombia, Brazil, and Venezuela); 3120 + 1G>A (8.4% identified in Brazil, the United States, and Colombia); G85E (3.8% identified in Brazil); 1811 + 1.6kbA>G (3.7% identified in Colombia); and 1342 - 1G>C (3.1% identified in the United States). The majority of the mutations identified (81.4%) have been described in just one country. Our findings indicate that there is a need to fully characterize the spectrum of CF mutations in the diaspora to improve diagnostic accuracy for these patients and facilitate treatment.

  18. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  19. Comparison of kinetics, toxicity, oligomers formation and membrane binding capacity of α-synuclein familial mutations at A53 site including newly discovered A53V mutation.

    PubMed

    Mohite, Ganesh M; Kumar, Rakesh; Panigrahi, Rajlaxmi; Navalkar, Ambuja; Singh, Nitu; Datta, Debalina; Mehra, Surabhi; Ray, Soumik; Gadhe, Laxmikant G; Das, Subhadeep; Singh, Namrata; Chatterjee, Debdeep; Kumar, Ashutosh; Maji, Samir K

    2018-05-17

    The involvement of α-synuclein (α-Syn) amyloid formation in Parkinson's disease (PD) pathogenesis is supported by the discovery of α-Syn gene (SNCA) mutations linked with familial PD, which are known to modulate the oligomerization and aggregation of α-Syn. Recently, the A53V mutation has been discovered, which leads to the late-onset PD. In the present study, we characterized for the first time the biophysical properties including the aggregation propensities, toxicity of aggregated species and membrane binding capability of A53V along with all familial mutations at A53 position. Present data suggest that A53V accelerate fibrillation of α-Syn without affecting the overall morphology and cytotoxicity of fibrils compared to wild-type protein. The aggregation propensity for A53 mutants is found to be; A53T>A53V>WT>A53E. Further, time course aggregation study reveals that A53V mutant promotes early oligomerization similar to A53T mutation. It promotes the highest amount of oligomer formation immediate after dissolution, which are cytotoxic. Although in the presence of membrane-mimicking environments, A53V mutation showed similar extent of helix-induction capacity as of WT protein, however, it exhibited lesser binding to lipid vesicle. The NMR study revealed unique chemical shift perturbation by A53V mutation com-pared to other mutations at A53 site. The present study might help to establish the disease-causing mechanism of A53V in PD pathology.

  20. A common co-morbidity modulates disease expression and treatment efficacy in inherited cardiac sodium channelopathy.

    PubMed

    Rivaud, Mathilde R; Jansen, John A; Postema, Pieter G; Nannenberg, Eline A; Mizusawa, Yuka; van der Nagel, Roel; Wolswinkel, Rianne; van der Made, Ingeborg; Marchal, Gerard A; Rajamani, Sridharan; Belardinelli, Luiz; van Tintelen, J Peter; Tanck, Michael W T; van der Wal, Allard C; de Bakker, Jacques M T; van Rijen, Harold V; Creemers, Esther E; Wilde, Arthur A M; van den Berg, Maarten P; van Veen, Toon A B; Bezzina, Connie R; Remme, Carol Ann

    2018-04-27

    Management of patients with inherited cardiac ion channelopathy is hindered by variability in disease severity and sudden cardiac death (SCD) risk. Here, we investigated the modulatory role of hypertrophy on arrhythmia and SCD risk in sodium channelopathy. Follow-up data was collected from 164 individuals positive for the SCN5A-1795insD founder mutation and 247 mutation-negative relatives. A total of 38 (obligate) mutation-positive patients died suddenly or suffered life-threatening ventricular arrhythmia. Of these, 18 were aged >40 years, a high proportion of which had a clinical diagnosis of hypertension and/or cardiac hypertrophy. While pacemaker implantation was highly protective in preventing bradycardia-related SCD in young mutation-positive patients, seven of them aged >40 experienced life-threatening arrhythmic events despite pacemaker treatment. Of these, six had a diagnosis of hypertension/hypertrophy, pointing to a modulatory role of this co-morbidity. Induction of hypertrophy in adult mice carrying the homologous mutation (Scn5a1798insD/+) caused SCD and excessive conduction disturbances, confirming a modulatory effect of hypertrophy in the setting of the mutation. The deleterious effects of the interaction between hypertrophy and the mutation were prevented by genetically impairing the pro-hypertrophic response and by pharmacological inhibition of the enhanced late sodium current associated with the mutation. This study provides the first evidence for a modulatory effect of co-existing cardiac hypertrophy on arrhythmia risk and treatment efficacy in inherited sodium channelopathy. Our findings emphasize the need for continued assessment and rigorous treatment of this co-morbidity in SCN5A mutation-positive individuals.

  1. Plasma epidermal growth factor receptor mutation testing with a chip-based digital PCR system in patients with advanced non-small cell lung cancer.

    PubMed

    Kasahara, Norimitsu; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Umehara, Rina; Ono, Akira; Hisamatsu, Yasushi; Wakuda, Kazushige; Omori, Shota; Nakashima, Kazuhisa; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Koh, Yasuhiro; Mori, Keita; Endo, Masahiro; Nakajima, Takashi; Yamada, Masanobu; Kusuhara, Masatoshi; Takahashi, Toshiaki

    2017-04-01

    Epidermal growth factor receptor (EGFR) mutation testing is a companion diagnostic to determine eligibility for treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). Recently, plasma-based EGFR testing by digital polymerase chain reaction (dPCR), which enables accurate quantification of target DNA, has shown promise as a minimally invasive diagnostic. Here, we aimed to evaluate the accuracy of a plasma-based EGFR mutation test developed using chip-based dPCR-based detection of 3 EGFR mutations (exon 19 deletions, L858R in exon 21, and T790M in exon 20). Forty-nine patients with NSCLC harboring EGFR-activating mutations were enrolled, and circulating free DNAs (cfDNAs) were extracted from the plasma of 21 and 28 patients before treatment and after progression following EGFR-TKI treatment, respectively. Using reference genomic DNA containing each mutation, the detection limit of each assay was determined to be 0.1%. The sensitivity and specificity of detecting exon 19 deletions and L858R mutations, calculated by comparing the mutation status in the corresponding tumors, were 70.6% and 93.3%, and 66.7% and 100%, respectively, showing similar results compared with previous studies. T790M was detected in 43% of 28 cfDNAs after progression with EGFR-TKI treatment, but in no cfDNAs before the start of the treatment. This chip-based dPCR assay can facilitate detection of EGFR mutations in cfDNA as a minimally invasive method in clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dosimetric quality, accuracy, and deliverability of modulated radiotherapy treatments for spinal metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel

    2016-10-01

    Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less

  3. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella.

    PubMed

    Steinbach, Denise; Gutbrod, Oliver; Lümmen, Peter; Matthiesen, Svend; Schorn, Corinna; Nauen, Ralf

    2015-08-01

    Anthranilic diamides and flubendiamide belong to a new chemical class of insecticides acting as conformation sensitive activators of the insect ryanodine receptor (RyR). These compounds control a diverse range of different herbivorous insects including diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a notorious global pest on cruciferous crops, which recently developed resistance due to target-site mutations located in the trans-membrane domain of the Plutella RyR. In the present study we further investigated the genetics and functional implications of a RyR G4946E target-site mutation we recently identified in a Philippine diamondback moth strain (Sudlon). Strain Sudlon is homozygous for the G4946E mutation and has been maintained under laboratory conditions without selection pressure for almost four years, and still exhibit stable resistance ratios of >2000-fold to all commercial diamides. Its F1 progeny resulting from reciprocal crosses with a susceptible strain (BCS-S) revealed no maternal effects and a diamide susceptible phenotype, suggesting an autosomally almost recessive mode of inheritance. Subsequent back-crosses indicate a near monogenic nature of the diamide resistance in strain Sudlon. Radioligand binding studies with Plutella thoracic microsomal membrane preparations provided direct evidence for the dramatic functional implications of the RyR G4946E mutation on both diamide specific binding and its concentration dependent modulation of [(3)H]ryanodine binding. Computational modelling based on a cryo-EM structure of rabbit RyR1 suggests that Plutella G4946E is located in trans-membrane helix S4 close to S4-S5 linker domain supposed to be involved in the modulation of the voltage sensor, and another recently described mutation, I4790M in helix S2 approx. 13 Å opposite of G4946E. Genotyping by pyrosequencing revealed the presence of the RyR G4946E mutation in larvae collected in 2013/14 in regions of ten different countries where diamide insecticides largely failed to control diamondback moth populations. Thus, our study highlights the global importance of the G4946E RyR target-site mutation, which as a mechanism on its own, confers high-level resistance to diamide insecticides in diamondback moth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A TAD closer to ATM.

    PubMed

    Aymard, Francois; Legube, Gaëlle

    2016-05-01

    Ataxia telangiectasia mutated (ATM) has been known for decades as the main kinase mediating the DNA double-strand break response. Our recent findings suggest that its major role at the sites of breaks likely resides in its ability to modify both the local chromatin landscape and the global chromosome organization in order to promote repair accuracy.

  5. An automated decision-tree approach to predicting protein interaction hot spots.

    PubMed

    Darnell, Steven J; Page, David; Mitchell, Julie C

    2007-09-01

    Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.

  6. Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770

    PubMed Central

    Gentzsch, Martina; Ren, Hong Y.; Houck, Scott A.; Quinney, Nancy L.; Cholon, Deborah M.; Sopha, Pattarawut; Chaudhry, Imron G.; Das, Jhuma; Dokholyan, Nikolay V.; Randell, Scott H.

    2016-01-01

    Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients. PMID:27402691

  7. Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770.

    PubMed

    Gentzsch, Martina; Ren, Hong Y; Houck, Scott A; Quinney, Nancy L; Cholon, Deborah M; Sopha, Pattarawut; Chaudhry, Imron G; Das, Jhuma; Dokholyan, Nikolay V; Randell, Scott H; Cyr, Douglas M

    2016-09-01

    Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients. Copyright © 2016 the American Physiological Society.

  8. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11).

    PubMed

    Hayashi, Hisamitsu; Sugiyama, Yuichi

    2009-01-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We demonstrated previously that 4-phenylbutyrate (4PBA) treatment, a U.S. Food and Drug Administration-approved drug for the treatment of urea cycle disorders, induces the cell-surface expression of BSEP by prolonging the degradation rate of cell-surface-resident BSEP. On the other hand, BSEP mutations, E297G and D482G, found in progressive familial intrahepatic cholestasis type 2 (PFIC2), reduced it by shortening the degradation rate of cell-surface-resident BSEP. Therefore, to help the development of the medical treatment of cholestasis, we investigated the underlying mechanism by which 4PBA and PFIC2-type mutations affect the BSEP degradation from cell surface, focusing on short-chain ubiquitination. In Madin-Darby canine kidney II (MDCK II) cells expressing BSEP and rat canalicular membrane vesicles, the molecular mass of the mature form of BSEP/Bsep shifted from 170 to 190 kDa after ubiquitin modification (molecular mass, 8 kDa). Ubiquitination susceptibility of BSEP/Bsep was reduced in vitro and in vivo by 4PBA treatment and, conversely, was enhanced by BSEP mutations E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations.

  9. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions

    PubMed Central

    Dai, Gucan

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation. PMID:23552282

  10. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.

    PubMed

    Dai, Gucan; Varnum, Michael D

    2013-07-15

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.

  11. Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation.

    PubMed

    Sheng, Zizhang; Schramm, Chaim A; Kong, Rui; Mullikin, James C; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2017-01-01

    Somatic hypermutation (SHM) plays a critical role in the maturation of antibodies, optimizing recognition initiated by recombination of V(D)J genes. Previous studies have shown that the propensity to mutate is modulated by the context of surrounding nucleotides and that SHM machinery generates biased substitutions. To investigate the intrinsic mutation frequency and substitution bias of SHMs at the amino acid level, we analyzed functional human antibody repertoires and developed mGSSP (method for gene-specific substitution profile), a method to construct amino acid substitution profiles from next-generation sequencing-determined B cell transcripts. We demonstrated that these gene-specific substitution profiles (GSSPs) are unique to each V gene and highly consistent between donors. We also showed that the GSSPs constructed from functional antibody repertoires are highly similar to those constructed from antibody sequences amplified from non-productively rearranged passenger alleles, which do not undergo functional selection. This suggests the types and frequencies, or mutational space, of a majority of amino acid changes sampled by the SHM machinery to be well captured by GSSPs. We further observed the rates of mutational exchange between some amino acids to be both asymmetric and context dependent and to correlate weakly with their biochemical properties. GSSPs provide an improved, position-dependent alternative to standard substitution matrices, and can be utilized to developing software for accurately modeling the SHM process. GSSPs can also be used for predicting the amino acid mutational space available for antigen-driven selection and for understanding factors modulating the maturation pathways of antibody lineages in a gene-specific context. The mGSSP method can be used to build, compare, and plot GSSPs; we report the GSSPs constructed for 69 common human V genes (DOI: 10.6084/m9.figshare.3511083) and provide high-resolution logo plots for each (DOI: 10.6084/m9.figshare.3511085).

  12. Clustering of Alpers disease mutations and catalytic defects in biochemical variants reveal new features of molecular mechanism of the human mitochondrial replicase, Pol γ

    PubMed Central

    Euro, Liliya; Farnum, Gregory A.; Palin, Eino; Suomalainen, Anu; Kaguni, Laurie S.

    2011-01-01

    Mutations in Pol γ represent a major cause of human mitochondrial diseases, especially those affecting the nervous system in adults and in children. Recessive mutations in Pol γ represent nearly half of those reported to date, and they are nearly uniformly distributed along the length of the POLG1 gene (Human DNA Polymerase gamma Mutation Database); the majority of them are linked to the most severe form of POLG syndrome, Alpers–Huttenlocher syndrome. In this report, we assess the structure–function relationships for recessive disease mutations by reviewing existing biochemical data on site-directed mutagenesis of the human, Drosophila and yeast Pol γs, and their homologs from the family A DNA polymerase group. We do so in the context of a molecular model of Pol γ in complex with primer–template DNA, which we have developed based upon the recently solved crystal structure of the apoenzyme form. We present evidence that recessive mutations cluster within five distinct functional modules in the catalytic core of Pol γ. Our results suggest that cluster prediction can be used as a diagnosis-supporting tool to evaluate the pathogenic role of new Pol γ variants. PMID:21824913

  13. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977. [Effects of diurnal temperature changes in Tradescantia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves,more » are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R ..gamma..) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth.« less

  14. Expression Profile Analysis of Zinc Transporters (ZIP4, ZIP9, ZIP11, ZnT9) in Gliomas and their Correlation with IDH1 Mutation Status.

    PubMed

    Kang, Xing; Chen, Rong; Zhang, Jie; Li, Gang; Dai, Peng-Gao; Chen, Chao; Wang, Hui-Juan

    2015-01-01

    Zinc transporters have been considered as essential regulators in many cancers; however, their mechanisms remain unknown, especially in gliomas. Isocitrate dehydrogenase 1(IDH1) mutation is crucial to glioma. This study aimed to investigate whether zinc transporters are correlated with glioma grade and IDH1 mutation status. IDH1 mutation status and mRNA expression of four zinc transporters (ZIP4, ZIP9, ZIP11, and ZnT9) were determined by subjecting a panel of 74 glioma tissue samples to quantitative real-time PCR and pyrosequencing. The correlations between the expression levels of these zinc transporter genes and the grade of glioma, as well as IDH1 mutation status, were investigated. Among the four zinc transporter genes, high ZIP4 expression and low ZIP11 expression were significantly associated with higher grade (grades III and IV) tumors compared with lower grade (grades I and II) counterparts (p<0.0001). However, only ZIP11 exhibited weak correlation with IDH1 mutation status (p=0.045). Samples with mutations in IDH1 displayed higher ZIP11 expression than those without IDH1 mutations. This finding indicated that zinc transporters may interact with IDH1 mutation by direct modulation or action in some shared pathways or genes to promote the development of glioma. Zinc transporters may play an important role in glioma. ZIP4 and ZIP11 are promising molecular diagnostic markers and novel therapeutic targets. Nevertheless, the detailed biological function of zinc transporters and the mechanism of the potential interaction between ZIP11 and IDH1 mutation in gliomagenesis should be further investigated.

  15. Novel mutation in the adiponectin (ADIPOQ) gene is associated with hypoadiponectinaemia in Japanese-Brazilians.

    PubMed

    Vendramini, Marcio F; Kasamatsu, Teresa S; Crispim, Felipe; Ferreira, Sandra R; Matioli, Sergio R; Moisés, Regina S

    2009-07-01

    Adiponectin is an important mediator of insulin sensitivity, encoded by the ADIPOQ gene. Here we describe two Japanese-Brazilian families with hypoadiponectinaemia due to a novel mutation in ADIPOQ. In this study, we examined the entire translated regions of adiponectin in Japanese-Brazilians, a population with one of the highest prevalence rates of diabetes worldwide. We screened 200 patients with type 2 diabetes (DM) and 240 age-matched subjects with normal glucose tolerance. A novel heterozygous T deletion at position 186 in exon 2 of ADIPOQ, causing a frameshift at codon 62 and leading to a premature termination at codon 168 (p.Gly63ValfsX106), was found in two individuals with diabetes. This mutation was not found in 240 nondiabetic control subjects. In addition, we screened the mutation in an expanded set of 100 nondiabetic subjects from the general Brazilian population, but we found no mutations. In addition, six family members of the probands were identified as mutation-carriers. Individuals who were mutation-carriers had markedly low plasma adiponectin concentrations compared with those without the mutation [DM: 0.65 (0.59-1.34) microg/ml vs. 5.30 (3.10-8.55) microg/ml, P < 0.0001; normal glucose tolerance: 0.95 (0.76-1.48) microg/ml vs. 8.50 (5.52-14.55) microg/ml, P = 0.003]. All individuals carrying the p.Gly63ValfsX106 mutation and older than 30 years were found to be diabetic. We describe for the first time a frameshift mutation in exon 2 of the ADIPOQ gene, which modulates adiponectin levels and may contribute to the genetic risk of late-onset diabetes in Japanese-Brazilians.

  16. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Cinoo; Kim, Kwang Joong; Bok, Jeong; Lee, Eun-Ju; Kim, Dong-Joon; Oh, Ji Hee; Park, Sung Pyo; Shin, Joo Young; Lee, Jong-Young

    2012-01-01

    Purpose To evaluate microarray-based genotyping technology for the detection of mutations responsible for retinitis pigmentosa (RP) and to perform phenotypic characterization of patients with pathogenic mutations. Methods DNA from 336 patients with RP and 360 controls was analyzed using the GoldenGate assay with microbeads containing 95 previously reported disease-associated mutations from 28 RP genes. Mutations identified by microarray-based genotyping were confirmed by direct sequencing. Segregation analysis and phenotypic characterization were performed in patients with mutations. The disease severity was assessed by visual acuity, electroretinography, optical coherence tomography, and kinetic perimetry. Results Ten RP-related mutations of five RP genes (PRP3 pre-mRNA processing factor 3 homolog [PRPF3], rhodopsin [RHO], phosphodiesterase 6B [PDE6B], peripherin 2 [PRPH2], and retinitis pigmentosa 1 [RP1]) were identified in 26 of the 336 patients (7.7%) and in six of the 360 controls (1.7%). The p.H557Y mutation in PDE6B, which was homozygous in four patients and heterozygous in nine patients, was the most frequent mutation (2.5%). Mutation segregation was assessed in four families. Among the patients with missense mutations, the most severe phenotype occurred in patients with p.D984G in RP1; less severe phenotypes occurred in patients with p.R135W in RHO; a relatively moderate phenotype occurred in patients with p.T494M in PRPF3, p.H557Y in PDE6B, or p.W316G in PRPH2; and a mild phenotype was seen in a patient with p.D190N in RHO. Conclusions The results reveal that the GoldenGate assay may not be an efficient method for molecular diagnosis in RP patients with rare mutations, although it has proven to be reliable and efficient for high-throughput genotyping of single-nucleotide polymorphisms. The clinical features varied according to the mutations. Continuous effort to identify novel RP genes and mutations in a population is needed to improve the efficiency and accuracy of the genetic diagnosis of RP. PMID:23049240

  17. Comparison of plasma and tissue samples in epidermal growth factor receptor mutation by ARMS in advanced non-small cell lung cancer.

    PubMed

    Ma, MeiLi; Shi, ChunLei; Qian, JiaLin; Teng, JiaJun; Zhong, Hua; Han, BaoHui

    2016-10-10

    The aim of this study was to assess the effectiveness and accuracy of blood-based circulating-free tumor DNA on testing epidermal growth factor receptor (EGFR) gene mutations. In total, 219 non-small cell lung cancer patients in stages III-IV were enrolled into this study. All patients had tissue samples and matched plasma DNA samples. EGFR gene mutations were detected by the Amplification Refractory Mutation System (ARMS). We compared the mutations in tumor tissue samples with matched plasma samples and determined the correlation between EGFR mutation status and clinical pathologic characteristics. The overall concordance rate of EGFR mutation status between the 219 matched plasma and tissue samples was 82% (179/219). The sensitivity and specificity for the ARMS EGFR mutation test in the plasma compared with tumor tissue were 60% (54/90) and 97% (125/129), respectively. The positive predictive value was 93% (54/58) and the negative predictive value was 78% (125/161). The median overall survival was longer for those with EGFR mutations than for those without EGFR mutations both in tissue samples (23.98 vs. 12.16months; P<0.001) and in plasma (19.96 vs. 13.63months; P=0.009). For the 68 patients treated with EGFR- tyrosine kinase inhibitors (TKIs), the median progression-free survival (PFS) was significantly prolonged in the EGFR mutant group compared to the non-mutation group in tumor tissue samples (12.26months vs. 2.40months, P<0.001). In plasma samples, the PFS of the mutant group was longer than that of the non-mutant group. However, there was no significant difference between the two groups (10.88months vs. 9.89months, P=0.411). The detection of EGFR mutations in plasma using ARMS is relatively sensitive and highly specific. However, EGFR mutation status tested by ARMS in plasma cannot replace a tumor tissue biopsy. Positive EGFR mutation results detected in plasma are fairly reliable, but negative results are hampered by a high rate of false negatives. Copyright © 2016. Published by Elsevier B.V.

  18. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    PubMed

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found outside the target.

  19. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  20. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    NASA Astrophysics Data System (ADS)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  1. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.

    PubMed

    Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Bending stiffness of catheters and guide wires.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    An important property of catheters and guide wires to assess their pushability behavior is their bending stiffness. To measure bending stiffness, a new bending module with a new clamping device was developed. This module can easily be mounted in commercially available tensile testing equipment, where bending force and deflection due to the bending force can be measured. To achieve high accuracy for the bending stiffness, the bending distance has to be measured with even higher accuracy by using a laser-scan micrometer. Measurement results of angiographic catheters and guide wires were presented and discussed. The bending stiffness shows a significant dependence on the angle of the test specimen's rotation around its length axis.

  3. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  4. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.

    PubMed

    Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity.

  5. A gradient-boosting approach for filtering de novo mutations in parent-offspring trios.

    PubMed

    Liu, Yongzhuang; Li, Bingshan; Tan, Renjie; Zhu, Xiaolin; Wang, Yadong

    2014-07-01

    Whole-genome and -exome sequencing on parent-offspring trios is a powerful approach to identifying disease-associated genes by detecting de novo mutations in patients. Accurate detection of de novo mutations from sequencing data is a critical step in trio-based genetic studies. Existing bioinformatic approaches usually yield high error rates due to sequencing artifacts and alignment issues, which may either miss true de novo mutations or call too many false ones, making downstream validation and analysis difficult. In particular, current approaches have much worse specificity than sensitivity, and developing effective filters to discriminate genuine from spurious de novo mutations remains an unsolved challenge. In this article, we curated 59 sequence features in whole genome and exome alignment context which are considered to be relevant to discriminating true de novo mutations from artifacts, and then employed a machine-learning approach to classify candidates as true or false de novo mutations. Specifically, we built a classifier, named De Novo Mutation Filter (DNMFilter), using gradient boosting as the classification algorithm. We built the training set using experimentally validated true and false de novo mutations as well as collected false de novo mutations from an in-house large-scale exome-sequencing project. We evaluated DNMFilter's theoretical performance and investigated relative importance of different sequence features on the classification accuracy. Finally, we applied DNMFilter on our in-house whole exome trios and one CEU trio from the 1000 Genomes Project and found that DNMFilter could be coupled with commonly used de novo mutation detection approaches as an effective filtering approach to significantly reduce false discovery rate without sacrificing sensitivity. The software DNMFilter implemented using a combination of Java and R is freely available from the website at http://humangenome.duke.edu/software. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens

    PubMed Central

    Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity. PMID:28125707

  7. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  8. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  9. The circadian modulation of leptin-controlled bone formation

    USDA-ARS?s Scientific Manuscript database

    Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...

  10. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.

    PubMed

    Yang, Jing; Jin, Qi-Yu; Zhang, Biao; Shen, Hong-Bin

    2016-08-15

    Inter-residue contacts in proteins dictate the topology of protein structures. They are crucial for protein folding and structural stability. Accurate prediction of residue contacts especially for long-range contacts is important to the quality of ab inito structure modeling since they can enforce strong restraints to structure assembly. In this paper, we present a new Residue-Residue Contact predictor called R2C that combines machine learning-based and correlated mutation analysis-based methods, together with a two-dimensional Gaussian noise filter to enhance the long-range residue contact prediction. Our results show that the outputs from the machine learning-based method are concentrated with better performance on short-range contacts; while for correlated mutation analysis-based approach, the predictions are widespread with higher accuracy on long-range contacts. An effective query-driven dynamic fusion strategy proposed here takes full advantages of the two different methods, resulting in an impressive overall accuracy improvement. We also show that the contact map directly from the prediction model contains the interesting Gaussian noise, which has not been discovered before. Different from recent studies that tried to further enhance the quality of contact map by removing its transitive noise, we designed a new two-dimensional Gaussian noise filter, which was especially helpful for reinforcing the long-range residue contact prediction. Tested on recent CASP10/11 datasets, the overall top L/5 accuracy of our final R2C predictor is 17.6%/15.5% higher than the pure machine learning-based method and 7.8%/8.3% higher than the correlated mutation analysis-based approach for the long-range residue contact prediction. http://www.csbio.sjtu.edu.cn/bioinf/R2C/Contact:hbshen@sjtu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics.

    PubMed

    Ernst, Corinna; Hahnen, Eric; Engel, Christoph; Nothnagel, Michael; Weber, Jonas; Schmutzler, Rita K; Hauke, Jan

    2018-03-27

    The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore, prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of hereditary breast and/or ovarian cancer. We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had previously been classified by expert committees. However, a major pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2 missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To overcome this drawback we identified 161 variants whose classification is independent of any previous in silico prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of combined approaches. PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92), accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer. We show that due to low specificities state-of-the-art in silico prediction tools are not suitable to predict pathogenicity of variants of uncertain significance in BRCA1/2. Thus, clinical consequences should never be based solely on in silico forecasts. However, our data suggests that SIFT and MutationTaster2 could be suitable to predict benignity, as both tools did not result in false negative predictions in our analysis.

  12. Validating the UNICEF/Washington Group Child Functioning Module for Fijian schools to identify seeing, hearing and walking difficulties.

    PubMed

    Sprunt, Beth; Hoq, Monsurul; Sharma, Umesh; Marella, Manjula

    2017-09-20

    This study investigated the seeing, hearing and walking questions of the UNICEF/Washington Group Child Functioning Module and the inter-rater reliability between teachers and parents as proxy respondents. Cross-sectional diagnostic accuracy study, two-gate design with representative sampling, comparing Module responses to reference standard assessments for 472 primary aged students in Fiji. Receiver operating characteristic curves were constructed to determine the area under the curve and optimal cut-off points. Areas under the curves ranged from 0.823 to 0.889 indicating "good" diagnostic accuracy. Inter-rater reliability between parent and teacher responses was "good" to "excellent". The optimal cut-off determined by the Youden Index was "some difficulty" however a wide spread of impairment levels were found in this category with most children either having none or substantial impairments. The diagnostic accuracy of the Module seeing, hearing and walking questions appears acceptable with either parents or teachers as proxy respondents. For education systems, use of the cut-off "some difficulty" with accompanying clinical assessment may be important to capture children who require services and learning supports and avoid potentially misleading categorization. Given the high proportion of the sample from special schools research is required to further test the Module in mainstream schools. Implications for rehabilitation Identification of children who are at risk of disability in Fiji is important to enable planning, monitoring and evaluating access to quality inclusive education. The UNICEF/Washington Group Child Functioning Module appears to be a practical and effective tool that can be used by teachers to identify children at risk of disability. Children identified on the UNICEF/Washington Group Child Functioning Module as having "some difficulty" or higher levels of difficulty in relation to vision, hearing or walking should be referred for further assessment and services. Rehabilitation services in Fiji need to prepare for greater numbers of referrals as the Ministry of Education increasingly rolls out the inclusive education policy, which includes identification by schools of children at risk of disability.

  13. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa.

    PubMed

    Huang, Hui; Chen, Yanhua; Chen, Huishuang; Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin

    2018-01-01

    Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient's clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis.

  14. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa

    PubMed Central

    Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin

    2018-01-01

    Background Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. Methods A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. Results 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient’s clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. Conclusions We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis. PMID:29641573

  15. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  16. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion.

    PubMed

    Sitarska, Ewa; Xu, Junjie; Park, Seungmee; Liu, Xiaoxia; Quade, Bradley; Stepien, Karolina; Sugita, Kyoko; Brautigam, Chad A; Sugita, Shuzo; Rizo, Josep

    2017-05-06

    Munc18-1 orchestrates SNARE complex assembly together with Munc13-1 to mediate neurotransmitter release. Munc18-1 binds to synaptobrevin, but the relevance of this interaction and its relation to Munc13 function are unclear. NMR experiments now show that Munc18-1 binds specifically and non-specifically to synaptobrevin. Specific binding is inhibited by a L348R mutation in Munc18-1 and enhanced by a D326K mutation designed to disrupt the 'furled conformation' of a Munc18-1 loop. Correspondingly, the activity of Munc18-1 in reconstitution assays that require Munc18-1 and Munc13-1 for membrane fusion is stimulated by the D326K mutation and inhibited by the L348R mutation. Moreover, the D326K mutation allows Munc13-1-independent fusion and leads to a gain-of-function in rescue experiments in Caenorhabditis elegans unc-18 nulls. Together with previous studies, our data support a model whereby Munc18-1 acts as a template for SNARE complex assembly, and autoinhibition of synaptobrevin binding contributes to enabling regulation of neurotransmitter release by Munc13-1.

  17. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  18. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE PAGES

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; ...

    2017-06-30

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  19. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells

    PubMed Central

    Coufal, Nicole G.; Garcia-Perez, Josè Luis; Peng, Grace E.; Marchetto, Maria C. N.; Muotri, Alysson R.; Mu, Yangling; Carson, Christian T.; Macia, Angela; Moran, John V.; Gage, Fred H.

    2011-01-01

    Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition. PMID:22159035

  20. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model.

    PubMed

    Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt

    2018-02-01

    This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.

  1. Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus)

    PubMed Central

    Messer, Andrew E.; Chan, Jasmine; Daley, Alex; Copeland, O'Neal; Marston, Steven B.; Connolly, David J.

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model. PMID:28642712

  2. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures

    PubMed Central

    2014-01-01

    Background Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Methods Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Results Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Conclusions Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T). PMID:24571676

  3. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.

    PubMed

    Muday, Gloria K; Brady, Shari R; Argueso, Cristiana; Deruère, Jean; Kieber, Joseph J; DeLong, Alison

    2006-08-01

    The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.

  4. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE PAGES

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; ...

    2017-02-07

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  5. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures.

    PubMed

    Andrade, Francianne Gomes; Furtado-Silva, Juliana Montibeller; Gonçalves, Bruno Alves de Aguiar; Thuler, Luiz Claudio Santos; Barbosa, Thayana Conceição; Emerenciano, Mariana; Siqueira, André; Pombo-de-Oliveira, Maria S

    2014-02-26

    Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T).

  6. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  7. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy

    PubMed Central

    Li, Amy; Lal, Sean; Bos, J. Martijn; Harris, Samantha P.; van der Velden, Jolanda; Ackerman, Michael J.

    2017-01-01

    The “super-relaxed state” (SRX) of myosin represents a ‘reserve’ of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein–C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations. PMID:28658286

  8. SU-E-T-325: The New Evaluation Method of the VMAT Plan Delivery Using Varian DynaLog Files and Modulation Complexity Score (MCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K

    2014-06-01

    Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less

  9. Cancer Cell Biology: A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    PubMed Central

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037

  10. Optical vector network analyzer based on double-sideband modulation.

    PubMed

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  11. Thermal and chemical denaturation of the BRCT functional module of human 53BP1.

    PubMed

    Thanassoulas, Angelos; Nomikos, Michail; Theodoridou, Maria; Stavros, Philemon; Mastellos, Dimitris; Nounesis, George

    2011-10-01

    BRCTs are protein-docking modules involved in eukaryotic DNA repair. They are characterized by low sequence homology with generally well-conserved structure organization. In a considerable number of proteins, a pair of BRCT structural repeats occurs, connected with inter-BRCT linkers, variable in length, sequence and structure. Linkers may separate and control the relative position of BRCT domains as well as protect and stabilize the hydrophobic inter-BRCT interface region. Their vital role in protein function has been demonstrated by recent findings associating missense mutations in the inter-repeat linker region of the BRCT domain of BRCA1 (BRCA1-BRCT) to hereditary breast/ovarian cancer. The interaction of 53BP1 with the core domain of the p53 tumor suppressor involves the C-terminal BRCT repeat as well as the inert-BRCT linker of the tandem BRCT domain of 53BP1 (53BP1-BRCT). High-accuracy differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to characterize the heat-induced unfolding of 53BP1-BRCT domain. The calorimetric results provide evidence for unfolding to an intermediate, only partly unfolded state, which, based on the CD results, retains the secondary structural characteristics of the native protein. A direct comparison with the corresponding thermal processes for BRAC1-BRCT and BARD1-BRCT provides evidence that the observed behavior is analogous to BRCA1-BRCT even though the two domains differ substantially in the linker structure. Moreover, chemical denaturation experiments of the untagged 53BP1-BRCT and comparison with BRCA1 and BARD1 BRCTs show that no clear association can be drawn between the structural organization of the inter-BRCT linkers and the overall stability of the BRCT domains. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study

    PubMed Central

    Premi, Enrico; Grassi, Mario; van Swieten, John; Galimberti, Daniela; Graff, Caroline; Masellis, Mario; Tartaglia, Carmela; Tagliavini, Fabrizio; Rowe, James B.; Laforce Jr, Robert; Finger, Elizabeth; Frisoni, Giovanni B.; de Mendonça, Alexandre; Sorbi, Sandro; Gazzina, Stefano; Cosseddu, Maura; Archetti, Silvana; Gasparotti, Roberto; Manes, Marta; Alberici, Antonella; Cardoso, Manuel J.; Bocchetta, Martina; Cash, David M.; Ourselin, Sebastian; Padovani, Alessandro; Rohrer, Jonathan D.

    2017-01-01

    Abstract Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the slope of the correlation between education and grey matter volume (P = 0.007). Together, these results indicate that brain atrophy in presymptomatic carriers of common frontotemporal dementia mutations is affected by both genetic and environmental factors such that TMEM106B enhances the benefit of cognitive reserve on brain structure. These findings should be considered in evaluating outcomes in future disease-modifying trials, and support the search for protective mechanisms in people at risk of dementia that might facilitate new therapeutic strategies. PMID:28460069

  13. Ideological Manipulations: The Persian Translation of "The Gadfly"

    ERIC Educational Resources Information Center

    Khadem-Nabi, Mir Mohammad

    2014-01-01

    This paper discusses the lexical choices made by the translator of a novel. The novel, "The Gadfly," has a political significance for the pre-revolutionary Iran. Lexical choices were discussed in light of the methodology provided by Leuven-Zwart who introduces three taxonomies of modulation, modification and mutation for translation…

  14. Quantitative Detection and Resolution of BRAF V600 Status in Colorectal Cancer Using Droplet Digital PCR and a Novel Wild-Type Negative Assay.

    PubMed

    Bidshahri, Roza; Attali, Dean; Fakhfakh, Kareem; McNeil, Kelly; Karsan, Aly; Won, Jennifer R; Wolber, Robert; Bryan, Jennifer; Hughesman, Curtis; Haynes, Charles

    2016-03-01

    A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    PubMed

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  16. Phenotype–genotype correlation in Hirschsprung disease is illuminated by comparative analysis of the RET protein sequence

    PubMed Central

    Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.

    2005-01-01

    The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201

  17. Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa

    PubMed Central

    García-Hoyos, María; Cortón, Marta; Ávila-Fernández, Almudena; Riveiro-Álvarez, Rosa; Giménez, Ascensión; Hernan, Inma; Carballo, Miguel; Ayuso, Carmen

    2012-01-01

    Purpose Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. Methods We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. Results The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. Conclusions The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP. PMID:22736939

  18. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    PubMed Central

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  19. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  20. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  1. Mutations to the Formin Homology 2 Domain of INF2 Protein Have Unexpected Effects on Actin Polymerization and Severing*

    PubMed Central

    Ramabhadran, Vinay; Gurel, Pinar S.; Higgs, Henry N.

    2012-01-01

    INF2 (inverted formin 2) is a formin protein with unusual biochemical characteristics. As with other formins, the formin homology 2 (FH2) domain of INF2 accelerates actin filament assembly and remains at the barbed end, modulating elongation. The unique feature of INF2 is its ability to sever filaments and enhance depolymerization, which requires the C-terminal region. Physiologically, INF2 acts in the secretory pathway and is mutated in two human diseases, focal and segmental glomerulosclerosis and Charcot-Marie-Tooth disease. In this study, we investigate the effects of mutating two FH2 residues found to be key in other formins: Ile-643 and Lys-792. Surprisingly, neither mutation abolishes barbed end binding, as judged by pyrene-actin and total internal reflection (TIRF) microscopy elongation assays. The I643A mutation causes tight capping of a subset of filaments, whereas K792A causes slow elongation of all filaments. The I643A mutation has a minor inhibitory effect on polymerization activity but causes almost complete abolition of severing and depolymerization activity. The K792A mutation has relatively small effects on polymerization, severing, and depolymerization. In cells, the K792A mutant causes actin accumulation around the endoplasmic reticulum to a similar extent as wild type, whereas the I643A mutant causes no measurable polymerization. The inability of I643A to induce actin polymerization in cells is explained by its inability to promote robust actin polymerization in the presence of capping protein. These results highlight an important point: it is dangerous to assume that mutation of conserved FH2 residues will have equivalent effects in all formins. The work also suggests that both mutations have effects on the mechanism of processive elongation. PMID:22879592

  2. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1

    PubMed Central

    Tefferi, A

    2010-01-01

    Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17% these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation. PMID:20428194

  3. The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site-specific cancer risk modification

    PubMed Central

    Sohn, Kyoung-Jin; Jang, Hyeran; Campan, Mihaela; Weisenberger, Daniel J.; Dickhout, Jeffrey; Wang, Yi-Cheng; Cho, Robert C.; Yates, Zoe; Lucock, Mark; Chiang, En-Pei; Austin, Richard C.; Choi, Sang-Woon; Laird, Peter W.; Kim, Young-In

    2009-01-01

    The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer while it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one-carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one-carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA-MB-435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA-MB-435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA-MB-435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site-specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. PMID:19123462

  4. [Effects of anxiety and the COMT gene on cortical evoked potentials and performance effectiveness of selective attention].

    PubMed

    Alfimova, M V; Golimbet, V E; Lebedeva, I S; Korovaĭtseva, G I; Lezheĭko, T V

    2014-01-01

    We studied influence of the anxiety-related trait Harm Avoidance and the COMT gene, which is an important modulator of prefrontal functioning, on event-related potentials in oddball paradigm and performance effectiveness of selective attention. For 50 individuals accuracy and time of searching words among letters at any desired rate and then under an instruction to perform the task as quickly and accurate as possible were measured. Scores on the Harm Avoidance scale from Cloninger's Temperament and Character Inventory, N100 and P300 parameters, and COMTVa1158Met genotypes were obtained for them as well. Searching accuracy and time were mainly related to N100 amplitude. The COMT genotype and Harm Avoidance did not affect N100 amplitude; however, the N100 amplitude modulated their effects on accuracy and time dynamics. Harm Avoidance was positively correlated with P300 latency. The results suggest that anxiety and the COMT gene effects on performance effectiveness of selective attention depend on cognitive processes reflected in N100 parameters.

  5. Modulating speed-accuracy strategies in major depression.

    PubMed

    Vallesi, Antonino; Canalaz, Francesca; Balestrieri, Matteo; Brambilla, Paolo

    2015-01-01

    Depression is associated with deficits in cognitive flexibility. The role of general slowing in modulating more specific cognitive deficits is however unclear. We assessed how depression affects the capacity to strategically adapt behavior between harsh and prudent response modalities and how general and specific processes may contribute to performance deficits. Patients suffering from major depression and age- and education-matched healthy controls were asked to randomly stress either speed or accuracy during perceptual decision-making. Diffusion models showed that patients with depression kept using a less conservative strategy after a trial with speed vs. accuracy instructions. Additionally, the depression group showed a slower rate of evidence accumulation as indicated by a generally lower drift rate. These data demonstrate that less efficient strategic regulation of behavior in depression is due not only to general slowing, but also to more specific deficits, such as a rigid dependence on past contextual instructions. Future studies should investigate the neuro-anatomical basis of this deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Behavior Analysis Based on Coordinates of Body Tags

    NASA Astrophysics Data System (ADS)

    Luštrek, Mitja; Kaluža, Boštjan; Dovgan, Erik; Pogorelc, Bogdan; Gams, Matjaž

    This paper describes fall detection, activity recognition and the detection of anomalous gait in the Confidence project. The project aims to prolong the independence of the elderly by detecting falls and other types of behavior indicating a health problem. The behavior will be analyzed based on the coordinates of tags worn on the body. The coordinates will be detected with radio sensors. We describe two Confidence modules. The first one classifies the user's activity into one of six classes, including falling. The second one detects walking anomalies, such as limping, dizziness and hemiplegia. The walking analysis can automatically adapt to each person by using only the examples of normal walking of that person. Both modules employ machine learning: the paper focuses on the features they use and the effect of tag placement and sensor noise on the classification accuracy. Four tags were enough for activity recognition accuracy of over 93% at moderate sensor noise, while six were needed to detect walking anomalies with the accuracy of over 90%.

  7. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy.

    PubMed

    De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino

    2014-03-01

    Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.

  8. IDH mutation assessment of glioma using texture features of multimodal MR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Tian, Qiang; Wu, Yu-Xia; Xu, Xiao-Pan; Li, Bao-Juan; Liu, Yi-Xiong; Liu, Yang; Lu, Hong-Bing

    2017-03-01

    Purpose: To 1) find effective texture features from multimodal MRI that can distinguish IDH mutant and wild status, and 2) propose a radiomic strategy for preoperatively detecting IDH mutation patients with glioma. Materials and Methods: 152 patients with glioma were retrospectively included from the Cancer Genome Atlas. Corresponding T1-weighted image before- and post-contrast, T2-weighted image and fluid-attenuation inversion recovery image from the Cancer Imaging Archive were analyzed. Specific statistical tests were applied to analyze the different kind of baseline information of LrGG patients. Finally, 168 texture features were derived from multimodal MRI per patient. Then the support vector machine-based recursive feature elimination (SVM-RFE) and classification strategy was adopted to find the optimal feature subset and build the identification models for detecting the IDH mutation. Results: Among 152 patients, 92 and 60 were confirmed to be IDH-wild and mutant, respectively. Statistical analysis showed that the patients without IDH mutation was significant older than patients with IDH mutation (p<0.01), and the distribution of some histological subtypes was significant different between IDH wild and mutant groups (p<0.01). After SVM-RFE, 15 optimal features were determined for IDH mutation detection. The accuracy, sensitivity, specificity, and AUC after SVM-RFE and parameter optimization were 82.2%, 85.0%, 78.3%, and 0.841, respectively. Conclusion: This study presented a radiomic strategy for noninvasively discriminating IDH mutation of patients with glioma. It effectively incorporated kinds of texture features from multimodal MRI, and SVM-based classification strategy. Results suggested that features selected from SVM-RFE were more potential to identifying IDH mutation. The proposed radiomics strategy could facilitate the clinical decision making in patients with glioma.

  9. A New Microarray Substrate for Ultra-Sensitive Genotyping of KRAS and BRAF Gene Variants in Colorectal Cancer

    PubMed Central

    Pinzani, Pamela; Mancini, Irene; Vinci, Serena; Chiari, Marcella; Orlando, Claudio; Cremonesi, Laura; Ferrari, Maurizio

    2013-01-01

    Molecular diagnostics of human cancers may increase accuracy in prognosis, facilitate the selection of the optimal therapeutic regimen, improve patient outcome, reduce costs of treatment and favour development of personalized approaches to patient care. Moreover sensitivity and specificity are fundamental characteristics of any diagnostic method. We developed a highly sensitive microarray for the detection of common KRAS and BRAF oncogenic mutations. In colorectal cancer, KRAS and BRAF mutations have been shown to identify a cluster of patients that does not respond to anti-EGFR therapies; the identification of these mutations is therefore clinically extremely important. To verify the technical characteristics of the microarray system for the correct identification of the KRAS mutational status at the two hotspot codons 12 and 13 and of the BRAFV600E mutation in colorectal tumor, we selected 75 samples previously characterized by conventional and CO-amplification at Lower Denaturation temperature-PCR (COLD-PCR) followed by High Resolution Melting analysis and direct sequencing. Among these samples, 60 were collected during surgery and immediately steeped in RNAlater while the 15 remainders were formalin-fixed and paraffin-embedded (FFPE) tissues. The detection limit of the proposed method was different for the 7 KRAS mutations tested and for the V600E BRAF mutation. In particular, the microarray system has been able to detect a minimum of about 0.01% of mutated alleles in a background of wild-type DNA. A blind validation displayed complete concordance of results. The excellent agreement of the results showed that the new microarray substrate is highly specific in assigning the correct genotype without any enrichment strategy. PMID:23536897

  10. Validity of Models for Predicting BRCA1 and BRCA2 Mutations

    PubMed Central

    Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.

    2008-01-01

    Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205

  11. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    PubMed Central

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  12. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  13. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines.

    PubMed

    Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  14. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines

    PubMed Central

    Kaviarasu, Karunakaran; Nambi Raj, N. Arunai; Hamid, Misba; Giri Babu, A. Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119. PMID:29296041

  15. Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies

    PubMed Central

    2013-01-01

    The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039

  16. Predicting RNA Duplex Dimerization Free-Energy Changes upon Mutations Using Molecular Dynamics Simulations.

    PubMed

    Sakuraba, Shun; Asai, Kiyoshi; Kameda, Tomoshi

    2015-11-05

    The dimerization free energies of RNA-RNA duplexes are fundamental values that represent the structural stability of RNA complexes. We report a comparative analysis of RNA-RNA duplex dimerization free-energy changes upon mutations, estimated from a molecular dynamics simulation and experiments. A linear regression for nine pairs of double-stranded RNA sequences, six base pairs each, yielded a mean absolute deviation of 0.55 kcal/mol and an R(2) value of 0.97, indicating quantitative agreement between simulations and experimental data. The observed accuracy indicates that the molecular dynamics simulation with the current molecular force field is capable of estimating the thermodynamic properties of RNA molecules.

  17. Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning

    PubMed Central

    Bacik, John-Paul; Wrenbeck, Emily E.; Michalczyk, Ryszard; Whitehead, Timothy A.

    2017-01-01

    Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications. PMID:28196882

  18. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  19. Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog.

    PubMed

    Herman, Daniel S; Smith, Christina; Liu, Chang; Vaughn, Cecily P; Palaniappan, Selvi; Pritchard, Colin C; Shirts, Brian H

    2018-07-01

    Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Tracking accuracy assessment for concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.

    2010-10-01

    The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.

  1. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  2. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  3. The CodY regulator is essential for virulence in Streptococcus suis serotype 2

    PubMed Central

    Feng, Liping; Zhu, Jiawen; Chang, Haitao; Gao, Xiaoping; Gao, Cheng; Wei, Xiaofeng; Yuan, Fangyan; Bei, Weicheng

    2016-01-01

    The main role of CodY, a global regulatory protein in most low G + C gram-positive bacteria, is in transcriptional repression. To study the functions of CodY in Streptococcus suis serotype 2 (S. suis 2), a mutant codY clone named ∆codY was constructed to explore the phenotypic variation between ∆codY and the wild-type strain. The result showed that the codY mutation significantly inhibited cell growth, adherence and invasion ability of S. suis 2 to HEp-2 cells. The codY mutation led to decreased binding of the pathogen to the host cells, easier clearance by RAW264.7 macrophages and decreased growth ability in fresh blood of Cavia porcellus. The codY mutation also attenuated the virulence of S. suis 2 in BALB/c mice. Morphological analysis revealed that the codY mutation decreased the thickness of the capsule of S. suis 2 and changed the surface structures analylized by SDS-PAGE. Finally, the codY mutation altered the expressions of many virulence related genes, including sialic acid synthesis genes, leading to a decreased sialic acid content in capsule. Overall, mutation of codY modulated bacterial virulence by affecting the growth and colonization of S. suis 2, and at least via regulating sialic acid synthesis and capsule thickness. PMID:26883762

  4. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness

    PubMed Central

    Bershtein, Shimon; Mu, Wanmeng; Serohijos, Adrian W. R.; Zhou, Jingwen; Shakhnovich, Eugene I.

    2012-01-01

    Summary What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli’s gene encoding dihydrofolate reductase (DHFR), and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: Over-expression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding and degradation orchestrated by PQC through the interaction with folding intermediates. PMID:23219534

  5. Pediatric Disaster Triage: Multiple Simulation Curriculum Improves Prehospital Care Providers' Assessment Skills.

    PubMed

    Cicero, Mark Xavier; Whitfill, Travis; Overly, Frank; Baird, Janette; Walsh, Barbara; Yarzebski, Jorge; Riera, Antonio; Adelgais, Kathleen; Meckler, Garth D; Baum, Carl; Cone, David Christopher; Auerbach, Marc

    2017-01-01

    Paramedics and emergency medical technicians (EMTs) triage pediatric disaster victims infrequently. The objective of this study was to measure the effect of a multiple-patient, multiple-simulation curriculum on accuracy of pediatric disaster triage (PDT). Paramedics, paramedic students, and EMTs from three sites were enrolled. Triage accuracy was measured three times (Time 0, Time 1 [two weeks later], and Time 2 [6 months later]) during a disaster simulation, in which high and low fidelity manikins and actors portrayed 10 victims. Accuracy was determined by participant triage decision concordance with predetermined expected triage level (RED [Immediate], YELLOW [Delayed], GREEN [Ambulatory], BLACK [Deceased]) for each victim. Between Time 0 and Time 1, participants completed an interactive online module, and after each simulation there was an individual debriefing. Associations between participant level of training, years of experience, and enrollment site were determined, as were instances of the most dangerous mistriage, when RED and YELLOW victims were triaged BLACK. The study enrolled 331 participants, and the analysis included 261 (78.9%) participants who completed the study, 123 from the Connecticut site, 83 from Rhode Island, and 55 from Massachusetts. Triage accuracy improved significantly from Time 0 to Time 1, after the educational interventions (first simulation with debriefing, and an interactive online module), with a median 10% overall improvement (p < 0.001). Subgroup analyses showed between Time 0 and Time 1, paramedics and paramedic students improved more than EMTs (p = 0.002). Analysis of triage accuracy showed greatest improvement in overall accuracy for YELLOW triage patients (Time 0 50% accurate, Time1 100%), followed by RED patients (Time 0 80%, Time 1 100%). There was no significant difference in accuracy between Time 1 and Time 2 (p = 0.073). This study shows that the multiple-victim, multiple-simulation curriculum yields a durable 10% improvement in simulated triage accuracy. Future iterations of the curriculum can target greater improvements in EMT triage accuracy.

  6. Strategies for the etiological therapy of cystic fibrosis.

    PubMed

    Maiuri, Luigi; Raia, Valeria; Kroemer, Guido

    2017-11-01

    Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.

  7. Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2016-08-05

    The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Strategies for the etiological therapy of cystic fibrosis

    PubMed Central

    Maiuri, Luigi; Raia, Valeria; Kroemer, Guido

    2017-01-01

    Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies. PMID:28937684

  9. Treatment of infertility does not increase the risk of ovarian cancer among women with a BRCA1 or BRCA2 mutation.

    PubMed

    Gronwald, Jacek; Glass, Karen; Rosen, Barry; Karlan, Beth; Tung, Nadine; Neuhausen, Susan L; Moller, Pal; Ainsworth, Peter; Sun, Ping; Narod, Steven A; Lubinski, Jan; Kotsopoulos, Joanne

    2016-03-01

    To evaluate the relationship between use of fertility medication (i.e., selective estrogen receptor [ER] modulator, gonadotropin, or other) or infertility treatment (i.e., IVF or IUI) and the risk of ovarian cancer among women with a BRCA1 or BRCA2 mutation. A matched case-control study of 941 pairs of BRCA1 or BRCA2 mutation carriers with and without a diagnosis of ovarian cancer. Genetic clinics. Detailed information regarding treatment of infertility was collected from a routinely administered questionnaire. None. Conditional logistic regression was used to estimate odds ratios and 95% confidence intervals associated with fertility treatment. There was no significant relationship between the use of any fertility medication or IVF treatment (odds ratio, 0.66; 95% confidence interval 0.18-2.33) and the subsequent risk of ovarian cancer. Our findings suggest that treatment for infertility does not significantly increase the risk of ovarian cancer among women with a BRCA mutation. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.

  10. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis.

    PubMed

    McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel

    2013-01-01

    Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

  11. Simple, efficient, and cost-effective multiplex genotyping with matrix assisted laser desorption/ionization time-of-flight mass spectrometry of hemoglobin beta gene mutations.

    PubMed

    Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-Thai

    2009-07-01

    A number of common mutations in the hemoglobin beta (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers.

  12. MADGiC: a model-based approach for identifying driver genes in cancer

    PubMed Central

    Korthauer, Keegan D.; Kendziorski, Christina

    2015-01-01

    Motivation: Identifying and prioritizing somatic mutations is an important and challenging area of cancer research that can provide new insights into gene function as well as new targets for drug development. Most methods for prioritizing mutations rely primarily on frequency-based criteria, where a gene is identified as having a driver mutation if it is altered in significantly more samples than expected according to a background model. Although useful, frequency-based methods are limited in that all mutations are treated equally. It is well known, however, that some mutations have no functional consequence, while others may have a major deleterious impact. The spatial pattern of mutations within a gene provides further insight into their functional consequence. Properly accounting for these factors improves both the power and accuracy of inference. Also important is an accurate background model. Results: Here, we develop a Model-based Approach for identifying Driver Genes in Cancer (termed MADGiC) that incorporates both frequency and functional impact criteria and accommodates a number of factors to improve the background model. Simulation studies demonstrate advantages of the approach, including a substantial increase in power over competing methods. Further advantages are illustrated in an analysis of ovarian and lung cancer data from The Cancer Genome Atlas (TCGA) project. Availability and implementation: R code to implement this method is available at http://www.biostat.wisc.edu/ kendzior/MADGiC/. Contact: kendzior@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573922

  13. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    PubMed

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  14. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  15. An Extra Dimension to Decision-Making in Animals: The Three-way Trade-off between Speed, Effort per-Unit-Time and Accuracy

    PubMed Central

    de Froment, Adrian J.; Rubenstein, Daniel I.; Levin, Simon A.

    2014-01-01

    The standard view in biology is that all animals, from bumblebees to human beings, face a trade-off between speed and accuracy as they search for resources and mates, and attempt to avoid predators. For example, the more time a forager spends out of cover gathering information about potential food sources the more likely it is to make accurate decisions about which sources are most rewarding. However, when the cost of time spent out of cover rises (e.g. in the presence of a predator) the optimal strategy is for the forager to spend less time gathering information and to accept a corresponding decline in the accuracy of its decisions. We suggest that this familiar picture is missing a crucial dimension: the amount of effort an animal expends on gathering information in each unit of time. This is important because an animal that can respond to changing time costs by modulating its level of effort per-unit-time does not have to accept the same decrease in accuracy that an animal limited to a simple speed-accuracy trade-off must bear in the same situation. Instead, it can direct additional effort towards (i) reducing the frequency of perceptual errors in the samples it gathers or (ii) increasing the number of samples it gathers per-unit-time. Both of these have the effect of allowing it to gather more accurate information within a given period of time. We use a modified version of a canonical model of decision-making (the sequential probability ratio test) to show that this ability to substitute effort for time confers a fitness advantage in the face of changing time costs. We predict that the ability to modulate effort levels will therefore be widespread in nature, and we lay out testable predictions that could be used to detect adaptive modulation of effort levels in laboratory and field studies. Our understanding of decision-making in all species, including our own, will be improved by this more ecologically-complete picture of the three-way tradeoff between time, effort per-unit-time and accuracy. PMID:25522281

  16. An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy.

    PubMed

    de Froment, Adrian J; Rubenstein, Daniel I; Levin, Simon A

    2014-12-01

    The standard view in biology is that all animals, from bumblebees to human beings, face a trade-off between speed and accuracy as they search for resources and mates, and attempt to avoid predators. For example, the more time a forager spends out of cover gathering information about potential food sources the more likely it is to make accurate decisions about which sources are most rewarding. However, when the cost of time spent out of cover rises (e.g. in the presence of a predator) the optimal strategy is for the forager to spend less time gathering information and to accept a corresponding decline in the accuracy of its decisions. We suggest that this familiar picture is missing a crucial dimension: the amount of effort an animal expends on gathering information in each unit of time. This is important because an animal that can respond to changing time costs by modulating its level of effort per-unit-time does not have to accept the same decrease in accuracy that an animal limited to a simple speed-accuracy trade-off must bear in the same situation. Instead, it can direct additional effort towards (i) reducing the frequency of perceptual errors in the samples it gathers or (ii) increasing the number of samples it gathers per-unit-time. Both of these have the effect of allowing it to gather more accurate information within a given period of time. We use a modified version of a canonical model of decision-making (the sequential probability ratio test) to show that this ability to substitute effort for time confers a fitness advantage in the face of changing time costs. We predict that the ability to modulate effort levels will therefore be widespread in nature, and we lay out testable predictions that could be used to detect adaptive modulation of effort levels in laboratory and field studies. Our understanding of decision-making in all species, including our own, will be improved by this more ecologically-complete picture of the three-way tradeoff between time, effort per-unit-time and accuracy.

  17. Inborn errors of metabolism and the human interactome: a systems medicine approach.

    PubMed

    Woidy, Mathias; Muntau, Ania C; Gersting, Søren W

    2018-02-05

    The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.

  18. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2013-12-01

    Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

  19. Fragrant Dioxane Derivatives Identify β1-Subunit-containing GABAA Receptors*

    PubMed Central

    Sergeeva, Olga A.; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R.; Görg, Boris; Haas, Helmut L.; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-01-01

    Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs. PMID:20511229

  20. Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors.

    PubMed

    Sergeeva, Olga A; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R; Görg, Boris; Haas, Helmut L; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-07-30

    Nineteen GABA(A) receptor (GABA(A)R) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of beta1-subunit-containing GABA(A)Rs is unknown. Here we report the discovery of a new structural class of GABA(A)R positive modulators with unique beta1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed alpha1betaxgamma2L (x-for 1,2,3) GABA(A)R FDD were 6 times more potent at beta1- versus beta2- and beta3-containing receptors. Serine at position 265 was essential for the high sensitivity of the beta1-subunit to FDD and the beta1N286W mutation nearly abolished modulation; vice versa the mutation beta3N265S shifted FDD sensitivity toward the beta1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to beta1-negative cerebellar Purkinje neurons. Immunostaining for the beta1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by beta1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of beta1-containing GABA(A)Rs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABA(A)Rs.

  1. Modulatory effects of metformin on mutagenicity and epithelial tumor incidence in doxorubicin-treated Drosophila melanogaster.

    PubMed

    Oliveira, Victor Constante; Constante, Sarah Alves Rodrigues; Orsolin, Priscila Capelari; Nepomuceno, Júlio César; de Rezende, Alexandre Azenha Alves; Spanó, Mário Antônio

    2017-08-01

    Metformin (MET) is an anti-diabetic drug used to prevent hepatic glucose release and increase tissue insulin sensitivity. Diabetic cancer patients are on additional therapy with anticancer drugs. Doxorubicin (DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. MET (2.5, 5, 10, 25 or 50 mM) alone was examined for mutagenicity, recombinogenicity and carcinogenicity, and combined with DXR (0.4 mM) for antimutagenicity, antirecombinogenicity and anticarcinogenicity, using the Somatic Mutation and Recombination Test and the Test for Detecting Epithelial Tumor Clones in Drosophila melanogaster. MET alone did not induce mutation or recombination. Modulating effects of MET on DXR-induced DNA damage were observed at the highest concentrations. In the evaluation of carcinogenesis, MET alone did not induce tumors. When combined with DXR, MET also reduced the DXR-induced tumors at the highest concentrations. Therefore, in the present experimental conditions, MET alone did not present mutagenic/recombinogenic/carcinogenic effects, but it was able to modulate the effect of DXR in the induction of DNA damage and of tumors in D. melanogaster. It is believed that this modulating effect is mainly related to the antioxidant, anti-inflammatory and apoptotic effects of this drug, although such effects have not been directly evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. TMEM237 Is Mutated in Individuals with a Joubert Syndrome Related Disorder and Expands the Role of the TMEM Family at the Ciliary Transition Zone

    PubMed Central

    Huang, Lijia; Szymanska, Katarzyna; Jensen, Victor L.; Janecke, Andreas R.; Innes, A. Micheil; Davis, Erica E.; Frosk, Patrick; Li, Chunmei; Willer, Jason R.; Chodirker, Bernard N.; Greenberg, Cheryl R.; McLeod, D. Ross; Bernier, Francois P.; Chudley, Albert E.; Müller, Thomas; Shboul, Mohammad; Logan, Clare V.; Loucks, Catrina M.; Beaulieu, Chandree L.; Bowie, Rachel V.; Bell, Sandra M.; Adkins, Jonathan; Zuniga, Freddi I.; Ross, Kevin D.; Wang, Jian; Ban, Matthew R.; Becker, Christian; Nürnberg, Peter; Douglas, Stuart; Craft, Cheryl M.; Akimenko, Marie-Andree; Hegele, Robert A.; Ober, Carole; Utermann, Gerd; Bolz, Hanno J.; Bulman, Dennis E.; Katsanis, Nicholas; Blacque, Oliver E.; Doherty, Dan; Parboosingh, Jillian S.; Leroux, Michel R.; Johnson, Colin A.; Boycott, Kym M.

    2011-01-01

    Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes. PMID:22152675

  3. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    PubMed

    Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos

    2015-02-03

    Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

    PubMed Central

    Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos

    2015-01-01

    Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180

  5. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  6. Research on the trace detection of carbon dioxide gas and modulation parameter optimization based on the TDLAS technology

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tao, Jun; Yu, Chang-rui; Li, Ye

    2014-02-01

    Based on the technology of tunable diode laser absorption spectroscopy, modulation of the center wavelength of 2004 nm distributed feedback laser diode at a room-temperature, the second harmonic amplitude of CO2 at 2004nm can be obtained. The CO2 concentration can be calculated via the Beer-Lambert law. Sinusoidal modulation parameter is an important factor that affects the sensitivity and accuracy of the system, through the research on the relationship between sinusoidal modulation signal frequency, amplitude and Second harmonic linetype, we finally achieve the detection limit of 10ppm under 12 m optical path.

  7. Age-related influence of contingencies on a saccade task

    PubMed Central

    Jazbec, Sandra; Hardin, Michael G.; Schroth, Elizabeth; McClure, Erin; Pine, Daniel S.; Ernst, Monique

    2009-01-01

    Adolescence is characterized by increased risk-taking and sensation-seeking, presumably brought about by developmental changes within reward-mediating brain circuits. A better understanding of the neural mechanisms underlying reward-seeking during adolescence can have critical implications for the development of strategies to enhance adolescent performance in potentially dangerous situations. Yet little research has investigated the influence of age on the modulation of behavior by incentives with neuroscience-based methods. A monetary reward antisaccade task (the RST) was used with 23 healthy adolescents and 30 healthy adults. Performance accuracy, latency and peak velocity of saccade responses (prosaccades and antisaccades) were analyzed. Performance accuracy across all groups was improved by incentives (obtain reward, avoid punishment) for both, prosaccades and antisaccades. However, modulation of antisaccade errors (direction errors) by incentives differed between groups: adolescents modulated saccade latency and peak velocity depending on contingencies, with incentives aligning their performance to that of adults; adults did not show a modulation by incentives. These findings suggest that incentives modulate a global measure of performance (percent direction errors) in adults and adolescents, and exert a more powerful influence on the control of incorrect motor responses in adolescents than in adults. These findings suggest that this task can be used in neuroimaging studies as a probe of the influence of incentives on cognitive control from a developmental perspective as well as in health and disease. PMID:16733706

  8. Age-related influence of contingencies on a saccade task.

    PubMed

    Jazbec, Sandra; Hardin, Michael G; Schroth, Elizabeth; McClure, Erin; Pine, Daniel S; Ernst, Monique

    2006-10-01

    Adolescence is characterized by increased risk-taking and sensation-seeking, presumably brought about by developmental changes within reward-mediating brain circuits. A better understanding of the neural mechanisms underlying reward-seeking during adolescence can have critical implications for the development of strategies to enhance adolescent performance in potentially dangerous situations. Yet little research has investigated the influence of age on the modulation of behavior by incentives with neuroscience-based methods. A monetary reward antisaccade task (the RST) was used with 23 healthy adolescents and 30 healthy adults. Performance accuracy, latency and peak velocity of saccade responses (prosaccades and antisaccades) were analyzed. Performance accuracy across all groups was improved by incentives (obtain reward, avoid punishment) for both, prosaccades and antisaccades. However, modulation of antisaccade errors (direction errors) by incentives differed between groups: adolescents modulated saccade latency and peak velocity depending on contingencies, with incentives aligning their performance to that of adults; adults did not show a modulation by incentives. These findings suggest that incentives modulate a global measure of performance (percent direction errors) in adults and adolescents, and exert a more powerful influence on the control of incorrect motor responses in adolescents than in adults. These findings suggest that this task can be used in neuroimaging studies as a probe of the influence of incentives on cognitive control from a developmental perspective as well as in health and disease.

  9. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  10. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  11. Genetic modulation of sickle cell anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, M.H.

    1995-05-01

    Sickle cell anemia, a common disorder associated with reduced life span of the red blood cell and vasoocclusive events, is caused by a mutation in the {Beta}-hemoglobin gene. Yet, despite this genetic homogeneity, the phenotype of the disease is heterogeneous. This suggests the modulating influence of associated inherited traits. Some of these may influence the accumulation of fetal hemoglobin, a hemoglobin type that interferes with the polymerization of sickle hemoglobin. Another inherited trait determines the accumulation of {alpha}-globin chains. This review focuses on potential genetic regulators of the phenotype of sickle cell anemia. 125 refs., 6 figs., 3 tabs.

  12. Cinacalcet Rectifies Hypercalcemia in a Patient With Familial Hypocalciuric Hypercalcemia Type 2 (FHH2) Caused by a Germline Loss‐of‐Function Gα11 Mutation

    PubMed Central

    Gorvin, Caroline M; Hannan, Fadil M; Cranston, Treena; Valta, Helena; Makitie, Outi; Schalin‐Jantti, Camilla

    2017-01-01

    ABSTRACT G‐protein subunit α‐11 (Gα11) couples the calcium‐sensing receptor (CaSR) to phospholipase C (PLC)‐mediated intracellular calcium (Ca2+ i) and mitogen‐activated protein kinase (MAPK) signaling, which in the parathyroid glands and kidneys regulates parathyroid hormone release and urinary calcium excretion, respectively. Heterozygous germline loss‐of‐function Gα11 mutations cause familial hypocalciuric hypercalcemia type 2 (FHH2), for which effective therapies are currently not available. Here, we report a novel heterozygous Gα11 germline mutation, Phe220Ser, which was associated with hypercalcemia in a family with FHH2. Homology modeling showed the wild‐type (WT) Phe220 nonpolar residue to form part of a cluster of hydrophobic residues within a highly conserved cleft region of Gα11, which binds to and activates PLC; and predicted that substitution of Phe220 with the mutant Ser220 polar hydrophilic residue would disrupt PLC‐mediated signaling. In vitro studies involving transient transfection of WT and mutant Gα11 proteins into HEK293 cells, which express the CaSR, showed the mutant Ser220 Gα11 protein to impair CaSR‐mediated Ca2+ i and extracellular signal‐regulated kinase 1/2 (ERK) MAPK signaling, consistent with diminished activation of PLC. Furthermore, engineered mutagenesis studies demonstrated that loss of hydrophobicity within the Gα11 cleft region also impaired signaling by PLC. The loss‐of‐function associated with the Ser220 Gα11 mutant was rectified by treatment of cells with cinacalcet, which is a CaSR‐positive allosteric modulator. Furthermore, in vivo administration of cinacalcet to the proband harboring the Phe220Ser Gα11 mutation, normalized serum ionized calcium concentrations. Thus, our studies, which report a novel Gα11 germline mutation (Phe220Ser) in a family with FHH2, reveal the importance of the Gα11 hydrophobic cleft region for CaSR‐mediated activation of PLC, and show that allosteric CaSR modulation can rectify the loss‐of‐function Phe220Ser mutation and ameliorate the hypercalcemia associated with FHH2. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. PMID:28833550

  13. Performance Comparison of Bench-Top Next Generation Sequencers Using Microdroplet PCR-Based Enrichment for Targeted Sequencing in Patients with Autism Spectrum Disorder

    PubMed Central

    Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-01-01

    Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114

  14. Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.

    PubMed

    Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef

    2017-01-01

    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.

  15. The Generalized Anxiety Disorder Screener (GAD-7) and the anxiety module of the Hospital and Depression Scale (HADS-A) as screening tools for generalized anxiety disorder among cancer patients.

    PubMed

    Esser, Peter; Hartung, Tim J; Friedrich, Michael; Johansen, Christoffer; Wittchen, Hans-Ulrich; Faller, Hermann; Koch, Uwe; Härter, Martin; Keller, Monika; Schulz, Holger; Wegscheider, Karl; Weis, Joachim; Mehnert, Anja

    2018-06-01

    Anxiety in cancer patients may represent a normal psychological reaction. To detect patients with pathological levels, appropriate screeners with established cut-offs are needed. Given that previous research is sparse, we investigated the diagnostic accuracy of 2 frequently used screening tools in detecting generalized anxiety disorder (GAD). We used data of a multicenter study including 2141 cancer patients. Diagnostic accuracy was investigated for the Generalized Anxiety Disorder Screener (GAD-7) and the anxiety module of the Hospital Anxiety and Depression Scale (HADS-A). GAD, assessed with the Composite International Diagnostic Interview for Oncology, served as a reference standard. Overall accuracy was measured with the area under the receiver operating characteristics curve (AUC). The AUC of the 2 screeners were statistically compared. We also calculated accuracy measures for selected cut-offs. Diagnostic accuracy could be interpreted as adequate for both screeners, with an identical AUC of .81 (95% CI: .79-.82). Consequently, the 2 screeners did not differ in their performance (P = .86). The best balance between sensitivity and specificity was found for cut-offs ≥7 (GAD-7) and ≥8 (HADS-A). The officially recommended thresholds for the GAD-7 (≥ 10) and the HADS-A (≥11) showed low sensitivities of 55% and 48%, respectively. The GAD-7 and HADS-A showed AUC of adequate diagnostic accuracy and hence are applicable for GAD screening in cancer patients. Nevertheless, the choice of optimal cut-offs should be carefully evaluated. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Optimal spiral phase modulation in Gerchberg-Saxton algorithm for wavefront reconstruction and correction

    NASA Astrophysics Data System (ADS)

    Baránek, M.; Běhal, J.; Bouchal, Z.

    2018-01-01

    In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.

  17. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  18. Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli

    PubMed Central

    Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain

    2017-01-01

    Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437

  19. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-01-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ∼12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  20. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus

    PubMed Central

    Ameratunga, Rohan; Koopmans, Wikke; Woon, See-Tarn; Leung, Euphemia; Lehnert, Klaus; Slade, Charlotte A; Tempany, Jessica C; Enders, Anselm; Steele, Richard; Browett, Peter; Hodgkin, Philip D; Bryant, Vanessa L

    2017-01-01

    Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband. PMID:29114388

  1. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  2. Heisenberg principle applied to the analysis of speckle interferometry fringes

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Sciammarella, F. M.

    2003-11-01

    Optical techniques that are used to measure displacements utilize a carrier. When a load is applied the displacement field modulates the carrier. The accuracy of the information that can be recovered from the modulated carrier is limited by a number of factors. In this paper, these factors are analyzed and conclusions concerning the limitations in information recovery are illustrated with examples taken from experimental data.

  3. Optical sensors and multiplexing for aircraft engine control

    NASA Astrophysics Data System (ADS)

    Berkcan, Ertugrul

    1993-02-01

    Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.

  4. Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures.

    PubMed

    Roberts, Brittany L T; Patel, Kinaree; Brown, Hilda H; Borchelt, David R

    2012-01-01

    Pathologic aggregates of superoxide dismutase 1 (SOD1) harboring mutations linked to familial amyotrophic lateral sclerosis (fALS) have been shown to contain aberrant intermolecular disulfide cross-links. In prior studies, we observed that intermolecular bonding was not necessary in the formation of detergent- insoluble SOD1 complexes by mutant SOD1, but we were unable to assess whether this type of bonding may be important for pathologic inclusion formation. In the present study, we visually assess the formation of large inclusions by fusing mutant SOD1 to yellow fluorescent protein (YFP). Experimental constructs possessing mutations at all cysteine residues in SOD1 (sites 6, 57, 111, and 146 to F,S,Y,R or G,S,Y,R, respectively) were shown to maintain a high propensity of inclusion formation despite the inability to form disulfide cross-links. Interestingly, although aggregates form when all cysteines were mutated, double mutants of the ALS mutation C6G with an experimental mutation C111S exhibited low aggregation propensity. Overall, this study is an extension of previous work demonstrating that cysteine residues in mutant SOD1 play a role in modulating aggregation and that intermolecular disulfide bonds are not required to produce large intracellular inclusion-like structures.

  5. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta

    PubMed Central

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S.; Reid, Bryan M.; Lin, Brent P.; Wang, Susan J.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C.-C.

    2014-01-01

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell–ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance–Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell–matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects. PMID:24305999

  6. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    PubMed

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  7. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A.; Chung, Fuzon; Bailey, Nathanael G.; Schrader, Alexandra; Li, Bo; Li, Jun Z.; Ozel, Ayse B.; Betz, Bryan L.; Miranda, Roberto N.; Medeiros, L. Jeffrey; Zhao, Lili; Herling, Marco

    2014-01-01

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. PMID:24825865

  8. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A; Chung, Fuzon; Bailey, Nathanael G; Schrader, Alexandra; Li, Bo; Li, Jun Z; Ozel, Ayse B; Betz, Bryan L; Miranda, Roberto N; Medeiros, L Jeffrey; Zhao, Lili; Herling, Marco; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2014-08-28

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. © 2014 by The American Society of Hematology.

  9. TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels

    PubMed Central

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L.; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B.; Morris, John C.; Goate, Alison

    2011-01-01

    Objective A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals. Design Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model. Subjects We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals. Results The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. Conclusions The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN. PMID:21220649

  10. CORK Study in Cystic Fibrosis: Sustained Improvements in Ultra-Low-Dose Chest CT Scores After CFTR Modulation With Ivacaftor.

    PubMed

    Ronan, Nicola J; Einarsson, Gisli G; Twomey, Maria; Mooney, Denver; Mullane, David; NiChroinin, Muireann; O'Callaghan, Grace; Shanahan, Fergus; Murphy, Desmond M; O'Connor, Owen J; Shortt, Cathy A; Tunney, Michael M; Eustace, Joseph A; Maher, Michael M; Elborn, J Stuart; Plant, Barry J

    2018-02-01

    Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. Significant improvements in FEV 1 , BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Single-nucleotide polymorphisms in Toll-like receptor (TLR)-2, TLR4 and heat shock protein 70 genes and susceptibility to scrub typhus.

    PubMed

    Janardhanan, Jeshina; Joseph Martin, Sherry; Astrup, Elisabeth; Veeramanikandan, R; Aukrust, Pål; Abraham, Ooriapadickal C; Varghese, George M

    2013-11-01

    Scrub typhus is a highly prevalent bacterial infection in India and South Asia that is caused by Orientia tsutsugamushi. The innate immune response to infections is modulated by Toll-like receptors (TLRs) and heat shock proteins (HSPs). This study was done to assess the prevalence and possible association of TLR and HSP polymorphisms in scrub typhus. TLR4 Asp299Gly, TLR4 Thr399Ile, TLR2 Arg753Gln and HSP70-2 A1267G are single-nucleotide polymorphisms (SNPs) that may modulate their activities, and these SNPs were assessed in 137 scrub typhus patients and 134 controls by PCR restriction fragment length polymorphism. We found that the two TLR4 mutations, TLR4 D299G and TLR4T399I, were present in 19.5% and 22% of the study population, respectively, and was in significant linkage disequilibrium with a D' of 0.8. The TLR2 mutation was found to be rare, whereas the HSP A>G mutation was very common (77.5%). Compared with the controls, the prevalence of heterozygous genotype of the TLR4D299G SNP, but not any of the other SNPs, was significantly higher among scrub typhus patients. Further studies using a larger sample size and more candidate genes may better enable in determining the role of these associations in susceptibility and severity of scrub typhus.

  12. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations.

    PubMed

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-08-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC(50) in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G(1)-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27(KIP1)) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma.

  13. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations12

    PubMed Central

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-01-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma. PMID:19649202

  14. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements.

    PubMed

    Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D

    2009-02-01

    TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.

  15. Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1.

    PubMed

    Polster, Robert; Petropoulos, Christos J; Bonhoeffer, Sebastian; Guillaume, Frédéric

    2016-12-01

    The genotype-phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. [Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].

    PubMed

    Luo, Yuwen; Li, Yao

    2018-03-25

    This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.

  17. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  18. Droplet Digital PCR-Based Chimerism Analysis for Primary Immunodeficiency Diseases.

    PubMed

    Okano, Tsubasa; Tsujita, Yuki; Kanegane, Hirokazu; Mitsui-Sekinaka, Kanako; Tanita, Kay; Miyamoto, Satoshi; Yeh, Tzu-Wen; Yamashita, Motoi; Terada, Naomi; Ogura, Yumi; Takagi, Masatoshi; Imai, Kohsuke; Nonoyama, Shigeaki; Morio, Tomohiro

    2018-04-01

    In the current study, we aimed to accurately evaluate donor/recipient or male/female chimerism in samples from patients who underwent hematopoietic stem cell transplantation (HSCT). We designed the droplet digital polymerase chain reaction (ddPCR) for SRY and RPP30 to detect the male/female chimerism. We also developed mutation-specific ddPCR for four primary immunodeficiency diseases. The accuracy of the male/female chimerism analysis using ddPCR was confirmed by comparing the results with those of conventional methods (fluorescence in situ hybridization and short tandem repeat-PCR) and evaluating dilution assays. In particular, we found that this method was useful for analyzing small samples. Thus, this method could be used with patient samples, especially to sorted leukocyte subpopulations, during the early post-transplant period. Four mutation-specific ddPCR accurately detected post-transplant chimerism. ddPCR-based male/female chimerism analysis and mutation-specific ddPCR were useful for all HSCT, and these simple methods contribute to following the post-transplant chimerism, especially in disease-specific small leukocyte fractions.

  19. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  20. Accuracy enhanced distance measurement system using double-sideband modulated frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Xilun; Wang, Xiangchuan; Pan, Shilong

    2017-03-01

    An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.

Top