Sample records for accuracy modulating mutations

  1. A design of optical modulation system with pixel-level modulation accuracy

    NASA Astrophysics Data System (ADS)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  2. Daily modulation of the speed-accuracy trade-off.

    PubMed

    Gueugneau, Nicolas; Pozzo, Thierry; Darlot, Christian; Papaxanthis, Charalambos

    2017-07-25

    Goal-oriented arm movements are characterized by a balance between speed and accuracy. The relation between speed and accuracy has been formalized by Fitts' law and predicts a linear increase in movement duration with task constraints. Up to now this relation has been investigated on a short-time scale only, that is during a single experimental session, although chronobiological studies report that the motor system is shaped by circadian rhythms. Here, we examine whether the speed-accuracy trade-off could vary during the day. Healthy adults carried out arm-pointing movements as accurately and fast as possible toward targets of different sizes at various hours of the day, and variations in Fitts' law parameters were scrutinized. To investigate whether the potential modulation of the speed-accuracy trade-off has peripheral and/or central origins, a motor imagery paradigm was used as well. Results indicated a daily (circadian-like) variation for the durations of both executed and mentally simulated movements, in strictly controlled accuracy conditions. While Fitts' law was held for the whole sessions of the day, the slope of the relation between movement duration and task difficulty expressed a clear modulation, with the lowest values in the afternoon. This variation of the speed-accuracy trade-off in executed and mental movements suggests that, beyond execution parameters, motor planning mechanisms are modulated during the day. Daily update of forward models is discussed as a potential mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mutations in histone modulators are associated with prolonged survival during azacitidine therapy

    PubMed Central

    Tobiasson, Magnus; McLornan, Donal P.; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Azenkoud, Asmaa Ben; Jädersten, Martin; Lindberg, Greger; Abdulkadir, Hani; Kulasekararaj, Austin; Ungerstedt, Johanna; Lennartsson, Andreas; Ekwall, Karl; Mufti, Ghulam J.; Hellström-Lindberg, Eva

    2016-01-01

    Early therapeutic decision-making is crucial in patients with higher-risk MDS. We evaluated the impact of clinical parameters and mutational profiles in 134 consecutive patients treated with azacitidine using a combined cohort from Karolinska University Hospital (n=89) and from King's College Hospital, London (n=45). While neither clinical parameters nor mutations had a significant impact on response rate, both karyotype and mutational profile were strongly associated with survival from the start of treatment. IPSS high-risk cytogenetics negatively impacted overall survival (median 20 vs 10 months; p<0.001), whereas mutations in histone modulators (ASXL1, EZH2) were associated with prolonged survival (22 vs 12 months, p=0.01). This positive association was present in both cohorts and remained highly significant in the multivariate cox model. Importantly, patients with mutations in histone modulators lacking high-risk cytogenetics showed a survival of 29 months compared to only 10 months in patients with the opposite pattern. While TP53 was negatively associated with survival, neither RUNX1-mutations nor the number of mutations appeared to influence survival in this cohort. We propose a model combining histone modulator mutational screening with cytogenetics in the clinical decision-making process for higher-risk MDS patients eligible for treatment with azacitidine. PMID:26959885

  4. Dynamic Accuracy of Inertial Magnetic Sensor Modules

    DTIC Science & Technology

    2016-12-01

    and the cost of the YEI 3-space data-logging sensor was justified. C. PREVIOUS WORK In [7], Jeremy Cookson built a low-cost pendulum with an optical...encoder to test the dynamic accuracy of MARG sensor modules. The pendulum was designed in order to execute dynamic, repeatable tests in a single...3DM-GX1 and 3DM-GX3-25 sensors. In [8], Leslie Landry developed similar repeatable tests and utilized the pendulum to test the dynamic accuracy of

  5. Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Walters, Benjamin T.; Janakiraman, Vasantharajan; Stinson, Jeremy; Patapoff, Thomas W.; Fuh, Germaine

    2017-01-01

    Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo. PMID:28057863

  6. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology.

    PubMed

    Cantara, Silvia; Capezzone, Marco; Marchisotta, Stefania; Capuano, Serena; Busonero, Giulia; Toti, Paolo; Di Santo, Andrea; Caruso, Giuseppe; Carli, Anton Ferdinando; Brilli, Lucia; Montanaro, Annalisa; Pacini, Furio

    2010-03-01

    Fine-needle aspiration cytology (FNAC) is the gold standard for the differential diagnosis of thyroid nodules but has the limitation of inadequate sampling or indeterminate lesions. We aimed to verify whether search of thyroid cancer-associated protooncogene mutations in cytological samples may improve the diagnostic accuracy of FNAC. One hundred seventy-four consecutive patients undergoing thyroid surgery were submitted to FNAC (on 235 thyroid nodules) that was used for cytology and molecular analysis of BRAF, RAS, RET, TRK, and PPRgamma mutations. At surgery these nodules were sampled to perform the same molecular testing. Mutations were found in 67 of 235 (28.5%) cytological samples. Of the 67 mutated samples, 23 (34.3%) were mutated by RAS, 33 (49.3%) by BRAF, and 11 (16.4%) by RET/PTC. In 88.2% of the cases, the mutation was confirmed in tissue sample. The presence of mutations at cytology was associated with cancer 91.1% of the times and follicular adenoma 8.9% of the time. BRAF or RET/PTC mutations were always associated with cancer, whereas RAS mutations were mainly associated with cancer (74%) but also follicular adenoma (26%). The diagnostic performance of molecular analysis was superior to that of traditional cytology, with better sensitivity and specificity, and the combination of the two techniques further contributed to improve the total accuracy (93.2%), compared with molecular analysis (90.2%) or traditional cytology (83.0%). Our findings demonstrate that molecular analysis of cytological specimens is feasible and that its results in combination with cytology improves the diagnostic performance of traditional cytology.

  7. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  8. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  9. Modulating speed-accuracy strategies in major depression.

    PubMed

    Vallesi, Antonino; Canalaz, Francesca; Balestrieri, Matteo; Brambilla, Paolo

    2015-01-01

    Depression is associated with deficits in cognitive flexibility. The role of general slowing in modulating more specific cognitive deficits is however unclear. We assessed how depression affects the capacity to strategically adapt behavior between harsh and prudent response modalities and how general and specific processes may contribute to performance deficits. Patients suffering from major depression and age- and education-matched healthy controls were asked to randomly stress either speed or accuracy during perceptual decision-making. Diffusion models showed that patients with depression kept using a less conservative strategy after a trial with speed vs. accuracy instructions. Additionally, the depression group showed a slower rate of evidence accumulation as indicated by a generally lower drift rate. These data demonstrate that less efficient strategic regulation of behavior in depression is due not only to general slowing, but also to more specific deficits, such as a rigid dependence on past contextual instructions. Future studies should investigate the neuro-anatomical basis of this deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  12. Metastatic site location influences the diagnostic accuracy of ctDNA EGFR- mutation testing in NSCLC patients: a pooled analysis.

    PubMed

    Passiglia, Francesco; Rizzo, Sergio; Rolfo, Christian; Galvano, Antonio; Bronte, Enrico; Incorvaia, Lorena; Listi, Angela; Barraco, Nadia; Castiglia, Marta; Calo, Valentina; Bazan, Viviana; Russo, Antonio

    2018-03-08

    Recent studies evaluated the diagnostic accuracy of circulating tumor DNA (ctDNA) in the detection of epidermal growth factor receptor (EGFR) mutations from plasma of NSCLC patients, overall showing a high concordance as compared to standard tissue genotyping. However it is less clear if the location of metastatic site may influence the ability to identify EGFR mutations in plasma. This pooled analysis aims to evaluate the association between the metastatic site location and the sensitivity of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Data from all published studies, evaluating the sensitivity of plasma-based EGFR-mutation testing, stratified by metastatic site location (extrathoracic (M1b) vs intrathoracic (M1a)) were collected by searching in PubMed, Cochrane Library, American Society of Clinical Oncology, and World Conference of Lung Cancer, meeting proceedings. Pooled Odds ratio (OR) and 95% confidence intervals (95% CIs) were calculated for the ctDNA analysis sensitivity, according to metastatic site location. A total of ten studies, with 1425 patients, were eligible. Pooled analysis showed that the sensitivity of ctDNA-based EGFR-mutation testing is significantly higher in patients with M1b vs M1a disease (OR: 5.09; 95% CIs: 2.93 - 8.84). A significant association was observed for both EGFR-activating (OR: 4.30, 95% CI: 2.35-7.88) and resistant T790M mutations (OR: 11.89, 95% CI: 1.45-97.22), regardless of the use of digital-PCR (OR: 5.85, 95% CI: 3.56-9.60) or non-digital PCR technologies (OR: 2.96, 95% CI: 2.24-3.91). These data suggest that the location of metastatic sites significantly influences the diagnostic accuracy of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Dosimetric quality, accuracy, and deliverability of modulated radiotherapy treatments for spinal metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel

    2016-10-01

    Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number

  14. Diagnostic accuracy of droplet digital PCR for detection of EGFR T790M mutation in circulating tumor DNA

    PubMed Central

    Tong, Xiang; Wang, Ye; Wang, Chengdi; Jin, Jing; Tian, Panwen; Li, Weimin

    2018-01-01

    Objectives Although different methods have been established to detect epidermal growth factor receptor (EGFR) T790M mutation in circulating tumor DNA (ctDNA), a wide range of diagnostic accuracy values were reported in previous studies. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for droplet digital PCR (ddPCR) in the diagnosis of EGFR T790M mutation based on ctDNA. Materials and methods A systematic review and meta-analysis were carried out based on resources from Pubmed, Web of Science, Embase and Cochrane Library up to October 11, 2017. Data were extracted to assess the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio (NLR), diagnostic OR (DOR), and areas under the summary receiver-operating characteristic curve (SROC). Results Eleven of 311 studies identified have met the including criteria. The sensitivity and specificity of ddPCR for the detection of T790M mutation in ctDNA ranged from 0.0% to 100.0% and 63.2% to 100.0%, respectively. For the pooled analysis, ddPCR had a performance of 70.1% (95% CI, 62.7%–76.7%) sensitivity, 86.9 % (95% CI, 80.6%–91.7%) specificity, 3.67 (95% CI, 2.33–5.79) PLR, 0.41 (95% CI, 0.32–0.55) NLR, and 10.83 (95% CI, 5.86–20.03) DOR, with the area under the SROC curve being 0.82. Conclusion The ddPCR harbored a good performance for detection of EGFR T790M mutation in ctDNA. PMID:29844700

  15. Multiple Mutations Modulate the Function of Dihydrofolate Reductase in Trimethoprim-Resistant Streptococcus pneumoniae

    PubMed Central

    Maskell, Jeffrey P.; Sefton, Armine M.; Hall, Lucinda M. C.

    2001-01-01

    Trimethoprim resistance in Streptococcus pneumoniae can be conferred by a single amino acid substitution (I100-L) in dihydrofolate reductase (DHFR), but resistant clinical isolates usually carry multiple DHFR mutations. DHFR genes from five trimethoprim-resistant isolates from the United Kingdom were compared to susceptible isolates and used to transform a susceptible control strain (CP1015). All trimethoprim-resistant isolates and transformants contained the I100-L mutation. The properties of DHFRs from transformants with different combinations of mutations were compared. In a transformant with only the I100-L mutation (R12/T2) and a D92-A mutation also found in the DHFRs of susceptible isolates, the enzyme was much more resistant to trimethoprim inhibition (50% inhibitory concentration [IC50], 4.2 μM) than was the DHFR from strain CP1015 (IC50, 0.09 μM). However, Km values indicated a lower affinity for the enzyme's natural substrates (Km for dihydrofolate [DHF], 3.1 μM for CP1015 and 27.5 μM for R12/T2) and a twofold decrease in the specificity constant. In transformants with additional mutations in the C-terminal portion of the enzyme, Km values for DHF were reduced (9.2 to 15.2 μM), indicating compensation for the lower affinity generated by I100-L. Additional mutations in the N-terminal portion of the enzyme were associated with up to threefold-increased resistance to trimethoprim (IC50 of up to 13.7 μM). It is postulated that carriage of the mutation M53-I—which, like I100-L, corresponds to a trimethoprim binding site in the Escherichia coli DHFR—is responsible for this increase. This study demonstrates that although the I100-L mutation alone may give rise to trimethoprim resistance, additional mutations serve to enhance resistance and modulate the effects of existing mutations on the affinity of DHFR for its natural substrates. PMID:11257022

  16. In vivo levels of S-adenosylmethionine modulate C:G to T:A mutations associated with repeat-induced point mutation in Neurospora crassa.

    PubMed

    Rosa, Alberto Luis; Folco, Hernán Diego; Mautino, Mario Ricardo

    2004-04-14

    In Neurospora crassa, the mutagenic process termed repeat-induced point mutation (RIP) inactivates duplicated DNA sequences during the sexual cycle by the introduction of C:G to T:A transition mutations. In this work, we have used a collection of N. crassa strains exhibiting a wide range of cellular levels of S-adenosylmethionine (AdoMet), the universal donor of methyl groups, to explore whether frequencies of RIP are dependent on the cellular levels of this metabolite. Mutant strains met-7 and eth-1 carry mutations in genes of the AdoMet pathway and have low levels of AdoMet. Wild type strains with high levels of AdoMet were constructed by introducing a chimeric transgene of the AdoMet synthetase (AdoMet-S) gene fused to the constitutive promoter trpC from Aspergillus nidulans. Crosses of these strains against tester duplications of the pan-2 and am genes showed that frequencies of RIP, as well as the total number of C:G to T:A transition mutations found in randomly selected am(RIP) alleles, are inversely correlated to the cellular level of AdoMet. These results indicate that AdoMet modulates the biochemical pathway leading to RIP.

  17. Modulation of HIV Protease Flexibility by the T80N Mutation

    PubMed Central

    Zhou, Hao; Li, Shangyang; Badger, John; Nalivaika, Ellen; Cai, Yufeng; Foulkes-Murzycki, Jennifer; Schiffer, Celia; Makowski, Lee

    2015-01-01

    The flexibility of HIV protease plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80 which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle scattering (WAXS) data was measured for a series of HIV protease variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared to the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, so as to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIV protease and is critical to catalytic function. PMID:25488402

  18. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    PubMed

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  19. Sound source localization identification accuracy: Envelope dependencies.

    PubMed

    Yost, William A

    2017-07-01

    Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.

  20. Epilepsy-causing mutations in Kv7.2 C-terminus affect binding and functional modulation by calmodulin.

    PubMed

    Ambrosino, Paolo; Alaimo, Alessandro; Bartollino, Silvia; Manocchio, Laura; De Maria, Michela; Mosca, Ilaria; Gomis-Perez, Carolina; Alberdi, Araitz; Scambia, Giovanni; Lesca, Gaetan; Villarroel, Alvaro; Taglialatela, Maurizio; Soldovieri, Maria Virginia

    2015-09-01

    Mutations in the KCNQ2 gene, encoding for voltage-gated Kv7.2K(+) channel subunits, are responsible for early-onset epileptic diseases with widely-diverging phenotypic presentation, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy. In the present study, Kv7.2 BFNS-causing mutations (W344R, L351F, L351V, Y362C, and R553Q) have been investigated for their ability to interfere with calmodulin (CaM) binding and CaM-induced channel regulation. To this aim, semi-quantitative (Far-Western blotting) and quantitative (Surface Plasmon Resonance and dansylated CaM fluorescence) biochemical assays have been performed to investigate the interaction of CaM with wild-type or mutant Kv7.2 C-terminal fragments encompassing the CaM-binding domain; in parallel, mutation-induced changes in CaM-dependent Kv7.2 or Kv7.2/Kv7.3 current regulation were investigated by patch-clamp recordings in Chinese Hamster Ovary (CHO) cells co-expressing Kv7.2 or Kv7.2/Kv7.3 channels and CaM or CaM1234 (a CaM isoform unable to bind Ca(2+)). The results obtained suggest that each BFNS-causing mutation prompts specific biochemical and/or functional consequences; these range from slight alterations in CaM affinity which did not translate into functional changes (L351V), to a significant reduction in the affinity and functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss without significant alteration in CaM affinity (W344R). CaM overexpression increased Kv7.2 and Kv7.2/Kv7.3 current levels, and partially (R553Q) or fully (L351F) restored normal channel function, providing a rationale pathogenetic mechanism for mutation-induced channel dysfunction in BFNS, and highlighting the potentiation of CaM-dependent Kv7.2 modulation as a potential therapeutic approach for Kv7.2-related epilepsies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    PubMed

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  2. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection.

    PubMed

    Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns

    2012-01-03

    Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.

  3. Effects of HCM cTnI Mutation R145G on Troponin Structure and Modulation by PKA Phosphorylation Elucidated by Molecular Dynamics Simulations

    PubMed Central

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J. Andrew

    2015-01-01

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137–147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca2+ handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca2+-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca2+ coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory

  4. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations.

    PubMed

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J Andrew

    2015-01-20

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N

  5. Accuracy of screening women at familial risk of breast cancer without a known gene mutation: Individual patient data meta-analysis.

    PubMed

    Phi, Xuan-Anh; Houssami, Nehmat; Hooning, Maartje J; Riedl, Christopher C; Leach, Martin O; Sardanelli, Francesco; Warner, Ellen; Trop, Isabelle; Saadatmand, Sepideh; Tilanus-Linthorst, Madeleine M A; Helbich, Thomas H; van den Heuvel, Edwin R; de Koning, Harry J; Obdeijn, Inge-Marie; de Bock, Geertruida H

    2017-11-01

    Women with a strong family history of breast cancer (BC) and without a known gene mutation have an increased risk of developing BC. We aimed to investigate the accuracy of screening using annual mammography with or without magnetic resonance imaging (MRI) for these women outside the general population screening program. An individual patient data (IPD) meta-analysis was conducted using IPD from six prospective screening trials that had included women at increased risk for BC: only women with a strong familial risk for BC and without a known gene mutation were included in this analysis. A generalised linear mixed model was applied to estimate and compare screening accuracy (sensitivity, specificity and predictive values) for annual mammography with or without MRI. There were 2226 women (median age: 41 years, interquartile range 35-47) with 7478 woman-years of follow-up, with a BC rate of 12 (95% confidence interval 9.3-14) in 1000 woman-years. Mammography screening had a sensitivity of 55% (standard error of mean [SE] 7.0) and a specificity of 94% (SE 1.3). Screening with MRI alone had a sensitivity of 89% (SE 4.6) and a specificity of 83% (SE 2.8). Adding MRI to mammography increased sensitivity to 98% (SE 1.8, P < 0.01 compared to mammography alone) but lowered specificity to 79% (SE 2.7, P < 0.01 compared with mammography alone). In this population of women with strong familial BC risk but without a known gene mutation, in whom BC incidence was high both before and after age 50, adding MRI to mammography substantially increased screening sensitivity but also decreased its specificity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    PubMed

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines.

    PubMed

    Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  8. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.

    PubMed

    Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel

    2007-12-07

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.

  9. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  10. Accuracy enhanced distance measurement system using double-sideband modulated frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Xilun; Wang, Xiangchuan; Pan, Shilong

    2017-03-01

    An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.

  11. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines

    PubMed Central

    Kaviarasu, Karunakaran; Nambi Raj, N. Arunai; Hamid, Misba; Giri Babu, A. Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119. PMID:29296041

  12. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  13. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  14. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom onmore » the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.« less

  15. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions.

    PubMed

    Calvo-Ortega, J F; Pozo, M; Moragues, S; Casals, J

    2017-01-01

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application (www.radiochromic.com) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm 2 region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  17. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukat, Alexandra; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases; Edgar, Daniel

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of themore » molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.« less

  19. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis.

    PubMed

    Burgener, Elizabeth B; Moss, Richard B

    2018-06-01

    The aim of this study was to describe the newest development in cystic fibrosis (CF) care, CF transmembrane conductance regulator (CFTR) modulator therapies. Phase II results showing CFTR modulator triple therapies are more effective than current CFTR modulators. CFTR modulator therapy targets the protein defective in CF and boosts its function, but the drug must match mutation pathobiology. Ivacaftor, a CFTR potentiator, was the first modulator approved in 2012, with impressive improvement in lung function and other measures of disease in patients with gating and other residual function mutations (∼10% of CF patients). In 2015, the combination of lumacaftor, a CFTR corrector, and ivacaftor was approved for patients homozygous for the F508del mutation (∼40-50% of the CF population) with positive but less impressive clinical response and 10-20% incidence of intolerance. A next-generation CFTR corrector, tezacaftor, with ivacaftor equally effective and better tolerated than lumacaftor, has also received US Food and Drug Administration approval. Novel CFTR correctors, entering Phase 3 trials in triple modulator combination with tezacaftor-ivacaftor, appear substantially more effective for patients who are homozygous for the F508del mutation and can provide benefit for patients with a single F508del mutation. This offers promise of effective CFTR modulator therapy for nearly 90% of CF patients.

  20. Muver, a computational framework for accurately calling accumulated mutations.

    PubMed

    Burkholder, Adam B; Lujan, Scott A; Lavender, Christopher A; Grimm, Sara A; Kunkel, Thomas A; Fargo, David C

    2018-05-09

    Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.

  1. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    He, Xiangyu; Zhu, Xiaoyu; Wang, Xuexiang; Wang, Wei; Dai, Yu; Yan, Qingfeng

    2013-01-01

    The phenotypic manifestations of mitochondrial DNA (mtDNA) mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R) or P(R) 454) mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R))), the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S)), mto2(P(S)) and MTO2(P(R))). The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R)) strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  2. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  3. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  4. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  5. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    PubMed Central

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S.; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Cajal, Teresa Ramón y; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K.; Toland, Amanda E.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Greene, Mark H.; Mai, Phuong L.; Nussbaum, Robert L.; Andrulis, Irene L.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Barkardottir, Rosa B.; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V.; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M.; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R.; Hogervorst, Frans B. L.; van der Hout, Annemarie H.; Seynaeve, Caroline; van der Luijt, Rob B.; Ligtenberg, Marjolijn J. L.; Devilee, Peter; Wijnen, Juul T.; Rookus, Matti A.; Meijers-Heijboer, Hanne E. J.; Blok, Marinus J.; van den Ouweland, Ans M. W.; Aalfs, Cora M.; Rodriguez, Gustavo C.; Phillips, Kelly-Anne A.; Piedmonte, Marion; Nerenstone, Stacy R.; Bae-Jump, Victoria L.; O'Malley, David M.; Ratner, Elena S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J.; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A.; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M.; Miron, Alex; Neuhausen, Susan L.; Terry, Mary Beth; Chung, Wendy K.; Daly, Mary B.; Goldgar, David E.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elisabeth J.; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K.; Olah, Edith; Narod, Steven A.; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N.; Hamann, Ute; Spurdle, Amanda B.; Healey, Sue; Weitzel, Jeffrey N.; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Maxwell, Christopher A.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J.; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F.; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J.; Antoniou, Antonis C.; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 – 1.15, p = 1.9 x 10−4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 – 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients’ survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers. PMID:25830658

  6. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    PubMed

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Ramón y Cajal, Teresa; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K; Toland, Amanda E; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Greene, Mark H; Mai, Phuong L; Nussbaum, Robert L; Andrulis, Irene L; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Barkardottir, Rosa B; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R; Hogervorst, Frans B L; van der Hout, Annemarie H; Seynaeve, Caroline; van der Luijt, Rob B; Ligtenberg, Marjolijn J L; Devilee, Peter; Wijnen, Juul T; Rookus, Matti A; Meijers-Heijboer, Hanne E J; Blok, Marinus J; van den Ouweland, Ans M W; Aalfs, Cora M; Rodriguez, Gustavo C; Phillips, Kelly-Anne A; Piedmonte, Marion; Nerenstone, Stacy R; Bae-Jump, Victoria L; O'Malley, David M; Ratner, Elena S; Schmutzler, Rita K; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M; Miron, Alex; Neuhausen, Susan L; Terry, Mary Beth; Chung, Wendy K; Daly, Mary B; Goldgar, David E; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elisabeth J; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K; Olah, Edith; Narod, Steven A; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N; Hamann, Ute; Spurdle, Amanda B; Healey, Sue; Weitzel, Jeffrey N; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Sinilnikova, Olga M; Maxwell, Christopher A; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J; Antoniou, Antonis C; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  7. Functional modules, mutational load and human genetic disease

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561

  8. Functional modules, mutational load and human genetic disease.

    PubMed

    Zaghloul, Norann A; Katsanis, Nicholas

    2010-04-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability

  10. Significance of duon mutations in cancer genomes

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  11. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  12. The UMD-p53 database: new mutations and analysis tools.

    PubMed

    Béroud, Christophe; Soussi, Thierry

    2003-03-01

    The tumor suppressor gene TP53 (p53) is the most extensively studied gene involved in human cancers. More than 1,400 publications have reported mutations of this gene in 150 cancer types for a total of 14,971 mutations. To exploit this huge bulk of data, specific analytic tools were highly warranted. We therefore developed a locus-specific database software called UMD-p53. This database compiles all somatic and germline mutations as well as polymorphisms of the TP53 gene which have been reported in the published literature since 1989, or unpublished data submitted to the database curators. The database is available at www.umd.necker.fr or at http://p53.curie.fr/. In this paper, we describe recent developments of the UMD-p53 database. These developments include new fields and routines. For example, the analysis of putative acceptor or donor splice sites is now automated and gives new insight for the causal role of "silent mutations." Other routines have also been created such as the prescreening module, the UV module, and the cancer distribution module. These new improvements will help users not only for molecular epidemiology and pharmacogenetic studies but also for patient-based studies. To achieve theses purposes we have designed a procedure to check and validate data in order to reach the highest quality data. Copyright 2003 Wiley-Liss, Inc.

  13. Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2011-01-01

    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time. PMID:21415911

  14. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

    PubMed

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C

    2011-01-01

    The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

  15. Modulating the DNA affinity of Elk-1 with computationally selected mutations.

    PubMed

    Park, Sheldon; Boder, Eric T; Saven, Jeffery G

    2005-04-22

    In order to regulate gene expression, transcription factors must first bind their target DNA sequences. The affinity of this binding is determined by both the network of interactions at the interface and the entropy change associated with the complex formation. To study the role of structural fluctuation in fine-tuning DNA affinity, we performed molecular dynamics simulations of two highly homologous proteins, Elk-1 and SAP-1, that exhibit different sequence specificity. Simulation studies show that several residues in Elk have significantly higher main-chain root-mean-square deviations than their counterparts in SAP. In particular, a single residue, D69, may contribute to Elk's lower DNA affinity for P(c-fos) by structurally destabilizing the carboxy terminus of the recognition helix. While D69 does not contact DNA directly, the increased mobility in the region may contribute to its weaker binding. We measured the ability of single point mutants of Elk to bind P(c-fos) in a reporter assay, in which D69 of wild-type Elk has been mutated to other residues with higher helix propensity in order to stabilize the local conformation. The gains in transcriptional activity and the free energy of binding suggested from these measurements correlate well with stability gains computed from helix propensity and charge-macrodipole interactions. The study suggests that residues that are distal to the binding interface may indirectly modulate the binding affinity by stabilizing the protein scaffold required for efficient DNA interaction.

  16. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells

    PubMed Central

    Coufal, Nicole G.; Garcia-Perez, Josè Luis; Peng, Grace E.; Marchetto, Maria C. N.; Muotri, Alysson R.; Mu, Yangling; Carson, Christian T.; Macia, Angela; Moran, John V.; Gage, Fred H.

    2011-01-01

    Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition. PMID:22159035

  17. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon

  18. Impact of mutations on the allosteric conformational equilibrium

    PubMed Central

    Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej

    2012-01-01

    Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330

  19. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    PubMed

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C; Gulsen, Gultekin

    2015-09-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

  20. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography

    PubMed Central

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C.; Gulsen, Gultekin

    2016-01-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed “temperature-modulated fluorescence tomography” (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40 mm × W :100 mm) is recovered as an elongated object in the conventional FT (x = 4.5 mm; y = 10.4 mm), while TM-FT recovers it successfully in both directions (x = 3.8 mm; y = 4.6 mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT. PMID:26368884

  1. KRAS mutation analysis of washing fluid from endoscopic ultrasound-guided fine needle aspiration improves cytologic diagnosis of pancreatic ductal adenocarcinoma.

    PubMed

    Park, Joo Kyung; Lee, Yoon Jung; Lee, Jong Kyun; Lee, Kyu Taek; Choi, Yoon-La; Lee, Kwang Hyuck

    2017-01-10

    EUS-FNA becomes one of the most important diagnostic modalities for PDACs. However, acquired tissue specimens were sometimes insufficient to make a definite cytological diagnosis. On the other hand, KRAS mutation is the most frequently acquired genetic alteration found more than 90% of PDACs. To investigate the way to improve diagnostic accuracy for PDACs using both cytological examination and KRAS mutation analysis would be a great help. Therefore, the aims of this study were to evaluate usefulness of conventional cytological examination combined with KRAS mutation analysis with modified PCR technology to improve the sensitivity and the accuracy. We enrolled 43 patients with solid pancreatic masses and 86 EUS-FNA specimens were obtained. During the EUS-FNA, the needle catheter was flushed with 2 cc of saline and the washed fluid was collected for KRAS mutation analysis for the first 2 passes; PNAClamp™ KRAS Mutation Detection Kit. There were 46 specimens from the 23 PDACs and 40 specimens from the 20 other pancreatic diseases. The sensitivity, specificity and accuracy were as follows; conventional cytopathologic examination: 63%, 100% and 80%; combination of cytopathologic examination and K-ras mutation analysis: 87%, 100% and 93%. Furthermore, KRAS mutation was detected 11 out of 17 PDAC samples whose cytopathology results were inconclusive. KRAS mutation analysis with PNAClamp™ technique using washing fluid from EUS-FNA along with cytological examination may not only improve the diagnostic accuracy of PDACs, but also establish the platform using genetic analysis which would be helpful as diagnostic modality for PDACs.

  2. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. On the neural implementation of the speed-accuracy trade-off

    PubMed Central

    Standage, Dominic; Blohm, Gunnar; Dorris, Michael C.

    2014-01-01

    Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This phenomenon is referred to as the speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and the data from these studies are well characterized within the framework of bounded integration. According to this framework, decision makers accumulate noisy evidence until the running total for one of the alternatives reaches a bound. Lower and higher bounds favor speed and accuracy respectively, each at the expense of the other. Studies addressing the neural implementation of these computations are a recent development in neuroscience. In this review, we describe the experimental and theoretical evidence provided by these studies. We structure the review according to the framework of bounded integration, describing evidence for (1) the modulation of the encoding of evidence under conditions favoring speed or accuracy, (2) the modulation of the integration of encoded evidence, and (3) the modulation of the amount of integrated evidence sufficient to make a choice. We discuss commonalities and differences between the proposed neural mechanisms, some of their assumptions and simplifications, and open questions for future work. We close by offering a unifying hypothesis on the present state of play in this nascent research field. PMID:25165430

  4. On the neural implementation of the speed-accuracy trade-off.

    PubMed

    Standage, Dominic; Blohm, Gunnar; Dorris, Michael C

    2014-01-01

    Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This phenomenon is referred to as the speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and the data from these studies are well characterized within the framework of bounded integration. According to this framework, decision makers accumulate noisy evidence until the running total for one of the alternatives reaches a bound. Lower and higher bounds favor speed and accuracy respectively, each at the expense of the other. Studies addressing the neural implementation of these computations are a recent development in neuroscience. In this review, we describe the experimental and theoretical evidence provided by these studies. We structure the review according to the framework of bounded integration, describing evidence for (1) the modulation of the encoding of evidence under conditions favoring speed or accuracy, (2) the modulation of the integration of encoded evidence, and (3) the modulation of the amount of integrated evidence sufficient to make a choice. We discuss commonalities and differences between the proposed neural mechanisms, some of their assumptions and simplifications, and open questions for future work. We close by offering a unifying hypothesis on the present state of play in this nascent research field.

  5. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders

    PubMed Central

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Àlex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications. PMID:24605182

  6. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders.

    PubMed

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Alex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.

  7. Tracking accuracy assessment for concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.

    2010-10-01

    The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.

  8. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and

  9. Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots.

    PubMed

    Uddin, Mohammed; Woodbury-Smith, Marc; Chan, Ada J S; Albanna, Ammar; Minassian, Berge; Boelman, Cyrus; Scherer, Stephen W

    2018-03-28

    Mutations within STXBP1 have been associated with a range of neurodevelopmental disorders implicating the pleotropic impact of this gene. Although the frequency of de novo mutations within STXBP1 for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context of de novo STXBP1 mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136 de novo /rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a 'GTA' motif ( P < 0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the 'GTA' mutations are splicing compared to 14.70% (20 out of 136) of all reported mutations within STXBP1 We also noted that 11 of these 14 'GTA' associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis for STXBP1 de novo splicing mutations. Copyright © 2018 Uddin et al.

  10. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  11. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    PubMed

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  12. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    PubMed

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  13. SPOP mutation leads to genomic instability in prostate cancer

    PubMed Central

    Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S

    2015-01-01

    Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986

  14. Ion Channel Modulators in Cystic Fibrosis.

    PubMed

    Gentzsch, Martina; Mall, Marcus A

    2018-05-08

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cAMP-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacological modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. In this review, we focus on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel (ENaC) as additional targets in CF lung disease. Further, we discuss how patient-derived precision medicine models may aid the translation of emerging next generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF. Copyright © 2018. Published by Elsevier Inc.

  15. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  16. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved throughmore » its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex

  17. [SOX10 mutation is relevant to inner ear malformation in patients with Waardenburg syndrome].

    PubMed

    Xu, G Y; Hao, Q Q; Zhong, L L; Ren, W; Yan, Y; Liu, R Y; Li, J N; Guo, W W; Zhao, H; Yang, S M

    2016-11-07

    Objective: To determine the relevance between the SOX 10 mutation and Waardenburg syndrome (WS) accompanied with inner ear abnormality by analyzing the inner ear imaging results and molecular and genetic results of the WS patients with the SOX 10 mutation. Methods: This study included 36 WS in patients during 2001 and 2015 in the department of otorhinolaryngology head and neck surgery, Chinese Peoples's Liberation Army General Hospital. The condition of the inner ear of each patient was assessed by analyzing HRCT scans of the temporal bone and MRI scans of the brain and internal auditory canal. Meanwhile, the possible pathogenic genes of WS, including SOX10, MITF , and PAX 3, were also screened. Patients were divided into two groups according to SOX 10 mutation.The Fisher accuracy test was used to determine statistical difference of inner ear deformation incidence between the two groups. Results: Among all 36 patients, 12 were found to have inner ear abnormality. Most abnormalities were posterior semicircular canal deformations, some accompanied with cochlear deformation and an enlarged vestibule. Among all patients, 9 patients were SOX 10 heterozygous mutation carriers, among which six showed bilateral inner ear abnormality. Fisher accuracy test results suggested a significant correlation between the SOX 10 mutation and inner ear abnormality in WS patients ( P =0.036). Conclusion: This study found that WS patients with the SOX 10 mutation are more likely to have deformed inner ears when compared to WS patients without the SOX 10 mutation.

  18. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.

    PubMed

    Rawat, Puneet; Kumar, Sandeep; Michael Gromiha, M

    2018-06-24

    Newly synthesized polypeptides must pass stringent quality controls in cells to ensure appropriate folding and function. However, mutations, environmental stresses and aging can reduce efficiencies of these controls, leading to accumulation of protein aggregates, amyloid fibrils and plaques. In-vitro experiments have shown that even single amino acid substitutions can drastically enhance or mitigate protein aggregation kinetics. In this work, we have collected a dataset of 220 unique mutations in 25 proteins and classified them as enhancers or mitigators on the basis of their effect on protein aggregation rate. The data were analyzed via machine learning to identify features capable of distinguishing between aggregation rate enhancers and mitigators. Our initial Support Vector Machine (SVM) model separated such mutations with an overall accuracy of 69%. When local secondary structures at the mutation sites were considered, the accuracies further improved by 13-15%. The machine-learnt features are distinct for each secondary structure class at mutation sites. Protein stability and flexibility changes are important features for mutations in α-helices. β-strand propensity, polarity and charge become important when mutations occur in β-strands and ability to form secondary structure, helical tendency and aggregation propensity are important for mutations lying in coils. These results have been incorporated into a sequence-based algorithm (available at http://www.iitm.ac.in/bioinfo/aggrerate-disc/) capable of predicting whether a mutation will enhance or mitigate a protein's aggregation rate. This algorithm will find several applications towards understanding protein aggregation in human diseases, enable in-silico optimization of biopharmaceuticals and enzymes for improved biophysical attributes and de novo design of bio-nanomaterials. Copyright © 2018. Published by Elsevier B.V.

  19. Invasive advance of an advantageous mutation: nucleation theory.

    PubMed

    O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas

    2006-12-01

    For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.

  20. Clinico-pathological nomogram for predicting BRAF mutational status of metastatic colorectal cancer.

    PubMed

    Loupakis, Fotios; Moretto, Roberto; Aprile, Giuseppe; Muntoni, Marta; Cremolini, Chiara; Iacono, Donatella; Casagrande, Mariaelena; Ferrari, Laura; Salvatore, Lisa; Schirripa, Marta; Rossini, Daniele; De Maglio, Giovanna; Fasola, Gianpiero; Calvetti, Lorenzo; Pilotto, Sara; Carbognin, Luisa; Fontanini, Gabriella; Tortora, Giampaolo; Falcone, Alfredo; Sperduti, Isabella; Bria, Emilio

    2016-01-12

    In metastatic colorectal cancer (mCRC), BRAFV600E mutation has been variously associated to specific clinico-pathological features. Two large retrospective series of mCRC patients from two Italian Institutions were used as training-set (TS) and validation-set (VS) for developing a nomogram predictive of BRAFV600E status. The model was internally and externally validated. In the TS, data from 596 mCRC patients were gathered (RAS wild-type (wt) 281 (47.1%); BRAFV600E mutated 54 (9.1%)); RAS and BRAFV600E mutations were mutually exclusive. In the RAS-wt population, right-sided primary (odds ratio (OR): 7.80, 95% confidence interval (CI) 3.05-19.92), female gender (OR: 2.90, 95% CI 1.14-7.37) and mucinous histology (OR: 4.95, 95% CI 1.90-12.90) were independent predictors of BRAFV600E mutation, with high replication at internal validation (100%, 93% and 98%, respectively). A predictive nomogram was calculated: patients with the highest score (right-sided primary, female and mucinous) had a 81% chance to bear a BRAFV600E-mutant tumour; accuracy measures: AUC=0.812, SE:0.034, sensitivity:81.2%; specificity:72.1%. In the VS (508 pts, RAS wt: 262 (51.6%), BRAFV600E mutated: 49 (9.6%)), right-sided primary, female gender and mucinous histology were confirmed as independent predictors of BRAFV600E mutation with high accuracy. Three simple and easy-to-collect characteristics define a useful nomogram for predicting BRAF status in mCRC with high specificity and sensitivity.

  1. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene.

    PubMed

    Silva, Bruno; Pita, Lina; Gomes, Susana; Gonçalves, João; Faustino, Paula

    2014-12-01

    Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.

  2. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  3. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  4. Detection of CFTR function and modulation in primary human nasal cell spheroids.

    PubMed

    Brewington, John J; Filbrandt, Erin T; LaRosa, F J; Ostmann, Alicia J; Strecker, Lauren M; Szczesniak, Rhonda D; Clancy, John P

    2018-01-01

    Expansion of CFTR modulators to patients with rare/undescribed mutations will be facilitated by patient-derived models quantifying CFTR function and restoration. We aimed to generate a personalized model system of CFTR function and modulation using non-surgically obtained nasal epithelial cells (NECs). NECs obtained by curettage from healthy volunteers and CF patients were expanded and grown in 3-dimensional culture as spheroids, characterized, and stimulated with cAMP-inducing agents to activate CFTR. Spheroid swelling was quantified as a proxy for CFTR function. NEC spheroids recapitulated characteristics of pseudostratified respiratory epithelia. When stimulated with forskolin/IBMX, spheroids swelled in the presence of functional CFTR, and shrank in its absence. Spheroid swelling quantified mutant CFTR restoration in F508del homozygous cells using clinically available CFTR modulators. NEC spheroids hold promise for understanding rare CFTR mutations and personalized modulator testing to drive evaluation for CF patients with common, rare or undescribed mutations. Portions of this data have previously been presented in abstract form at the 2016 meetings of the American Thoracic Society and the 2016 North American Cystic Fibrosis Conference. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Sarcomere protein gene mutations and inherited heart disease: a beta-cardiac myosin heavy chain mutation causing endocardial fibroelastosis and heart failure.

    PubMed

    Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G

    2006-01-01

    Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.

  6. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data.

    PubMed

    Fan, Yu; Xi, Liu; Hughes, Daniel S T; Zhang, Jianjun; Zhang, Jianhua; Futreal, P Andrew; Wheeler, David A; Wang, Wenyi

    2016-08-24

    Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of mutations in genetically heterogeneous tumor cell populations using next-generation sequencing remains challenging. We develop MuSE ( http://bioinformatics.mdanderson.org/main/MuSE ), Mutation calling using a Markov Substitution model for Evolution, a novel approach for modeling the evolution of the allelic composition of the tumor and normal tissue at each reference base. MuSE adopts a sample-specific error model that reflects the underlying tumor heterogeneity to greatly improve the overall accuracy. We demonstrate the accuracy of MuSE in calling subclonal mutations in the context of large-scale tumor sequencing projects using whole exome and whole genome sequencing.

  7. Clinical significance of somatic mutation in unexplained blood cytopenia

    PubMed Central

    Gallì, Anna; Travaglino, Erica; Ambaglio, Ilaria; Rizzo, Ettore; Molteni, Elisabetta; Elena, Chiara; Ferretti, Virginia Valeria; Catricalà, Silvia; Bono, Elisa; Todisco, Gabriele; Bianchessi, Antonio; Rumi, Elisa; Zibellini, Silvia; Pietra, Daniela; Boveri, Emanuela; Camaschella, Clara; Toniolo, Daniela; Papaemmanuil, Elli; Ogawa, Seishi; Cazzola, Mario

    2017-01-01

    Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms. PMID:28424163

  8. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.

    PubMed

    Derichs, Nico

    2013-03-01

    Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  9. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  10. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models.

    PubMed

    Bahreini, Amir; Li, Zheqi; Wang, Peilu; Levine, Kevin M; Tasdemir, Nilgun; Cao, Lan; Weir, Hazel M; Puhalla, Shannon L; Davidson, Nancy E; Stern, Andrew M; Chu, David; Park, Ben Ho; Lee, Adrian V; Oesterreich, Steffi

    2017-05-23

    Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line

  11. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  12. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  13. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  14. GNQ-209P Mutation in Metastatic Uveal Melanoma and Treatment Outcome.

    PubMed

    Abdel Karim, Nagla; Eldessouki, Ihab; Taftaf, Ahmad; Ayham, Deeb; Gaber, Ola; Makramalla, Abouelmagd; Correa, Zelia M

    2018-01-01

    Metastatic prognosis in uveal melanoma is assessed by gene expression profiling (GEP) testing of the tumor cells, usually obtained by fine needle aspiration (FNA). GEP has demonstrated high accuracy in distinguishing class I and II tumors, both having different metastatic potential. Transcriptomic studies identified distinct mutations including somatic mutations in GNAQ and GNA11 , detected in more than 80%, and contribute to the upregulation of the mitogen-activated protein kinase (MAPK) pathway and the development of uveal melanoma (UM). The role of these mutations in treatment selection and possible benefit from targeted therapy are somewhat unclear. However, until the discovery of novel agents, local versus systemic therapies remain options for treatment that can still be considered for disease control in certain cases. We report a series of patients with metastatic UM with distinct mutational profiles. One had significant liver metastases with proven GNQ-209P mutation on tissue biopsy while peripheral blood molecular profiling did not show these mutations. The other three cases had no GNQ-209P mutation. All cases received nab-paclitaxel (Abraxane) as a treatment drug, and we record their responses to treatment and their molecular-profiling results.

  15. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  16. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  17. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.

    PubMed

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D

    2016-10-01

    TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.

  18. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma

    PubMed Central

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie

    2016-01-01

    Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of

  19. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  20. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  1. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    PubMed

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  2. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures

    PubMed Central

    2014-01-01

    Background Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Methods Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Results Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Conclusions Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T). PMID:24571676

  3. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures.

    PubMed

    Andrade, Francianne Gomes; Furtado-Silva, Juliana Montibeller; Gonçalves, Bruno Alves de Aguiar; Thuler, Luiz Claudio Santos; Barbosa, Thayana Conceição; Emerenciano, Mariana; Siqueira, André; Pombo-de-Oliveira, Maria S

    2014-02-26

    Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T).

  4. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    PubMed

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  5. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP).

    PubMed

    Lessard, Christian B; Cottrell, Barbara A; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E; Koo, Edward H

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  6. Systematic reconstruction of autism biology from massive genetic mutation profiles

    PubMed Central

    Zhang, Chaolin; Jiang, Yong-hui

    2018-01-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3′,5′-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein–coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity. PMID:29651456

  7. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    PubMed

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  8. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia.

    PubMed

    Mar, Brenton G; Bullinger, Lars B; McLean, Kathleen M; Grauman, Peter V; Harris, Marian H; Stevenson, Kristen; Neuberg, Donna S; Sinha, Amit U; Sallan, Stephen E; Silverman, Lewis B; Kung, Andrew L; Lo Nigro, Luca; Ebert, Benjamin L; Armstrong, Scott A

    2014-03-24

    Relapsed paediatric acute lymphoblastic leukaemia (ALL) has high rates of treatment failure. Epigenetic regulators have been proposed as modulators of chemoresistance, here, we sequence genes encoding epigenetic regulators in matched diagnosis-remission-relapse ALL samples. We find significant enrichment of mutations in epigenetic regulators at relapse with recurrent somatic mutations in SETD2, CREBBP, MSH6, KDM6A and MLL2, mutations in signalling factors are not enriched. Somatic alterations in SETD2, including frameshift and nonsense mutations, are present at 12% in a large de novo ALL patient cohort. We conclude that the enrichment of mutations in epigenetic regulators at relapse is consistent with a role in mediating therapy resistance.

  9. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs.

    PubMed

    Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian; Bräuner-Osborne, Hans; Gloriam, David E

    2017-04-15

    Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. david.gloriam@sund.ku.dk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats.

    PubMed

    Chen, Tao; Hutts, Robert C; Mei, Nan; Liu, Xiaoli; Bishop, Michelle E; Shelton, Sharon; Manjanatha, Mugimane G; Aidoo, Anane

    2005-06-01

    A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.

  11. Optimization-based scatter estimation using primary modulation for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Ma, Jingchen; Zhao, Jun, E-mail: junzhao

    Purpose: Scatter reduces the image quality in computed tomography (CT), but scatter correction remains a challenge. A previously proposed primary modulation method simultaneously obtains the primary and scatter in a single scan. However, separating the scatter and primary in primary modulation is challenging because it is an underdetermined problem. In this study, an optimization-based scatter estimation (OSE) algorithm is proposed to estimate and correct scatter. Methods: In the concept of primary modulation, the primary is modulated, but the scatter remains smooth by inserting a modulator between the x-ray source and the object. In the proposed algorithm, an objective function ismore » designed for separating the scatter and primary. Prior knowledge is incorporated in the optimization-based framework to improve the accuracy of the estimation: (1) the primary is always positive; (2) the primary is locally smooth and the scatter is smooth; (3) the location of penumbra can be determined; and (4) the scatter-contaminated data provide knowledge about which part is smooth. Results: The simulation study shows that the edge-preserving weighting in OSE improves the estimation accuracy near the object boundary. Simulation study also demonstrates that OSE outperforms the two existing primary modulation algorithms for most regions of interest in terms of the CT number accuracy and noise. The proposed method was tested on a clinical cone beam CT, demonstrating that OSE corrects the scatter even when the modulator is not accurately registered. Conclusions: The proposed OSE algorithm improves the robustness and accuracy in scatter estimation and correction. This method is promising for scatter correction of various kinds of x-ray imaging modalities, such as x-ray radiography, cone beam CT, and the fourth-generation CT.« less

  12. BRAF mutation testing in solid tumors: a methodological comparison.

    PubMed

    Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J

    2014-09-01

    Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.

    PubMed

    Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E

    2013-02-12

    High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.

  14. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  15. Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms

    PubMed Central

    Tidwell, Timothy; Wechsler, Jeremy; Nayak, Ramesh C.; Trump, Lisa; Salipante, Stephen J.; Cheng, Jerry C.; Donadieu, Jean; Glaubach, Taly; Corey, Seth J.; Grimes, H. Leighton; Lutzko, Carolyn; Cancelas, Jose A.

    2014-01-01

    Hereditary neutropenia is usually caused by heterozygous germline mutations in the ELANE gene encoding neutrophil elastase (NE). How mutations cause disease remains uncertain, but two hypotheses have been proposed. In one, ELANE mutations lead to mislocalization of NE. In the other, ELANE mutations disturb protein folding, inducing an unfolded protein response in the endoplasmic reticulum (ER). In this study, we describe new types of mutations that disrupt the translational start site. At first glance, they should block translation and are incompatible with either the mislocalization or misfolding hypotheses, which require mutant protein for pathogenicity. We find that start-site mutations, instead, force translation from downstream in-frame initiation codons, yielding amino-terminally truncated isoforms lacking ER-localizing (pre) and zymogen-maintaining (pro) sequences, yet retain essential catalytic residues. Patient-derived induced pluripotent stem cells recapitulate hematopoietic and molecular phenotypes. Expression of the amino-terminally deleted isoforms in vitro reduces myeloid cell clonogenic capacity. We define an internal ribosome entry site (IRES) within ELANE and demonstrate that adjacent mutations modulate IRES activity, independently of protein-coding sequence alterations. Some ELANE mutations, therefore, appear to cause neutropenia via the production of amino-terminally deleted NE isoforms rather than by altering the coding sequence of the full-length protein. PMID:24184683

  16. Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.

    PubMed

    Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte

    2018-02-01

    Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.

  17. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  18. Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase

    PubMed Central

    Wei, Qiong; Wang, Liqun; Wang, Qiang; Kruger, Warren D.; Dunbrack, Roland L.

    2010-01-01

    Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies, and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD-SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position-specific scoring matrix values is more predictive than the wild-type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins. PMID:20455263

  19. Accuracy of self-reported family history of cancer, mutation status and tumor characteristics in patients with early onset breast cancer.

    PubMed

    Augustinsson, Annelie; Ellberg, Carolina; Kristoffersson, Ulf; Borg, Åke; Olsson, Håkan

    2018-05-01

    The main objectives of this study were to evaluate the concordance between self-reported and registry-reported information regarding family history of breast cancer (BC), ovarian cancer (OvC) and other types of cancer in first-degree relatives of patients with early onset BC, and to determine the frequency of mutation carriers and non-mutation carriers. The secondary objective was to describe tumor characteristics for each mutation group. Between 1993 and 2013, 231 women who were ≤35 years old when diagnosed with BC were registered at the Oncogenetic Clinic at Skåne University Hospital in Lund, Sweden. Self-reported and registry-reported information regarding first-degree family history of cancer was collected together with information regarding tumor characteristics. Almost perfect agreement was observed between self-reported and registry-reported information regarding first-degree family history of BC (κ = 0.92) and OvC (κ = 0.86). Lesser agreement was observed between reports regarding family history of other types of cancer (κ = 0.51). Mutation screening revealed pathogenic germline mutations in 30.4%; 18.8% in BRCA1, 7.1% in BRCA2 and 4.5% in other genes. Compared with other mutation groups, BRCA1 mutation carriers were more likely to be diagnosed with high-grade, ER-, PR- and triple-negative tumors. Our results demonstrate that physicians and genetic counselors can rely on self-reported information regarding BC and OvC in first-degree relatives. However, self-reported information regarding other types of cancer is not communicated as effectively, and there should be more focus on retrieving the correct information regarding family history of all tumor types. Furthermore, we observed that even though all BC patients fulfilled the criteria for genetic counseling and testing, a large number of patients diagnosed at ≤35 years of age did not receive genetic counseling at the Oncogenetic Clinic. This finding merits further elucidation.

  20. Mutants of Cre recombinase with improved accuracy

    PubMed Central

    Eroshenko, Nikolai; Church, George M.

    2013-01-01

    Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590

  1. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  2. Optical integration of SPO mirror modules in the ATHENA telescope

    NASA Astrophysics Data System (ADS)

    Valsecchi, G.; Marioni, F.; Bianucci, G.; Zocchi, F. E.; Gallieni, D.; Parodi, G.; Ottolini, M.; Collon, M.; Civitani, M.; Pareschi, G.; Spiga, D.; Bavdaz, M.; Wille, E.

    2017-08-01

    ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase.

  3. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  4. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  5. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    PubMed

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  6. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  7. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  8. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  10. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  11. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  12. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    PubMed

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  13. SU-E-T-550: Modulation Index for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Park, S; Kim, J

    2015-06-15

    Purpose: To present modulation indices (MIs) for volumetric modulated arc therapy (VMAT). Methods: A total of 40 VMAT plans were retrospectively selected. To investigate the delivery accuracy of each VMAT plan, gamma passing rates, differences in modulating parameters between plans and log files, and differences between the original plans and the plans reconstructed with the log files were acquired. A modulation index (MIt) was designed by multiplications of the weighted quantifications of MLC speeds, MLC accelerations, gantry accelerations and dose-rate variations. Textural features including angular second moment, inverse difference moment, contrast, variance, correlation and entropy were calculated from the fluencesmore » of each VMAT plan. To test the performance of suggested MIs, Spearman’s rank correlation coefficients (r) with the plan delivery accuracy were calculated. Conventional modulation indices for VMAT including the modulation complexity score for VMAT (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li & Xing were calculated, and their correlations were also analyzed in the same way. Results: The r values of contrast (particular displacement distance, d = 1), variance (d = 1), MIt, MCSv, LTMCS and MI by Li&Xing to the local gamma passing rates with 2%/2 mm were 0.547 (p < 0.001), 0.519 (p < 0.001), −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The r values of those to the MLC errors were −0.863, −0.828, 0.917, −0.635, − 0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than did the conventional modulation indices. Conclusion: The MIt, contrast (d = 1) and variance (d = 1) showed good performance to predict the VMAT delivery accuracy showing higher correlations to the results of various types of verification methods for VMAT. This work was in part supported by the National Research

  14. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.

    PubMed

    Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M

    2018-05-03

    Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

  15. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  16. Development of Fuel Shuffling Module for PHISICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti

    2013-06-01

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less

  17. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    PubMed

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  18. Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.

    PubMed

    Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi

    2017-01-01

    Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  20. Comparison of kinetics, toxicity, oligomers formation and membrane binding capacity of α-synuclein familial mutations at A53 site including newly discovered A53V mutation.

    PubMed

    Mohite, Ganesh M; Kumar, Rakesh; Panigrahi, Rajlaxmi; Navalkar, Ambuja; Singh, Nitu; Datta, Debalina; Mehra, Surabhi; Ray, Soumik; Gadhe, Laxmikant G; Das, Subhadeep; Singh, Namrata; Chatterjee, Debdeep; Kumar, Ashutosh; Maji, Samir K

    2018-05-17

    The involvement of α-synuclein (α-Syn) amyloid formation in Parkinson's disease (PD) pathogenesis is supported by the discovery of α-Syn gene (SNCA) mutations linked with familial PD, which are known to modulate the oligomerization and aggregation of α-Syn. Recently, the A53V mutation has been discovered, which leads to the late-onset PD. In the present study, we characterized for the first time the biophysical properties including the aggregation propensities, toxicity of aggregated species and membrane binding capability of A53V along with all familial mutations at A53 position. Present data suggest that A53V accelerate fibrillation of α-Syn without affecting the overall morphology and cytotoxicity of fibrils compared to wild-type protein. The aggregation propensity for A53 mutants is found to be; A53T>A53V>WT>A53E. Further, time course aggregation study reveals that A53V mutant promotes early oligomerization similar to A53T mutation. It promotes the highest amount of oligomer formation immediate after dissolution, which are cytotoxic. Although in the presence of membrane-mimicking environments, A53V mutation showed similar extent of helix-induction capacity as of WT protein, however, it exhibited lesser binding to lipid vesicle. The NMR study revealed unique chemical shift perturbation by A53V mutation com-pared to other mutations at A53 site. The present study might help to establish the disease-causing mechanism of A53V in PD pathology.

  1. Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status

    PubMed Central

    Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth

    2013-01-01

    FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML

  2. Evidence for Enhanced Interoceptive Accuracy in Professional Musicians

    PubMed Central

    Schirmer-Mokwa, Katharina L.; Fard, Pouyan R.; Zamorano, Anna M.; Finkel, Sebastian; Birbaumer, Niels; Kleber, Boris A.

    2015-01-01

    Interoception is defined as the perceptual activity involved in the processing of internal bodily signals. While the ability of internal perception is considered a relatively stable trait, recent data suggest that learning to integrate multisensory information can modulate it. Making music is a uniquely rich multisensory experience that has shown to alter motor, sensory, and multimodal representations in the brain of musicians. We hypothesize that musical training also heightens interoceptive accuracy comparable to other perceptual modalities. Thirteen professional singers, twelve string players, and thirteen matched non-musicians were examined using a well-established heartbeat discrimination paradigm complemented by self-reported dispositional traits. Results revealed that both groups of musicians displayed higher interoceptive accuracy than non-musicians, whereas no differences were found between singers and string-players. Regression analyses showed that accumulated musical practice explained about 49% variation in heartbeat perception accuracy in singers but not in string-players. Psychometric data yielded a number of psychologically plausible inter-correlations in musicians related to performance anxiety. However, dispositional traits were not a confounding factor on heartbeat discrimination accuracy. Together, these data provide first evidence indicating that professional musicians show enhanced interoceptive accuracy compared to non-musicians. We argue that musical training largely accounted for this effect. PMID:26733836

  3. Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context.

    PubMed

    Khalifa, M B; Weidenhaupt, M; Choulier, L; Chatellier, J; Rauffer-Bruyère, N; Altschuh, D; Vernet, T

    2000-01-01

    The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi-conservative amino acid replacements at the VH-VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE instrument. The substitutions introduced at the VH-VL interface had no significant effects on k(a) but showed small, significant effects on k(d). Mutations in the VH module affected k(d) not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation F(L37)L-Q(L38)L, alone or in combination with other mutations, consistently decreased k(d) about two-fold in Fab 145P. Other mutations in the VL module had no effect on k(d) in 145P, but always decreased k(d) in 1F1h. Moreover, in both systems, small-magnitude non-additive effects on k(d) were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes. Copyright 2000 John Wiley & Sons, Ltd.

  4. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  5. Mutations causing syndromic autism define an axis of synaptic pathophysiology.

    PubMed

    Auerbach, Benjamin D; Osterweil, Emily K; Bear, Mark F

    2011-11-23

    Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.

  6. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    PubMed

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

    PubMed Central

    Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839

  9. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.

    PubMed

    Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.

  10. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-04

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  11. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  12. Genotype imputation in a coalescent model with infinitely-many-sites mutation

    PubMed Central

    Huang, Lucy; Buzbas, Erkan O.; Rosenberg, Noah A.

    2012-01-01

    Empirical studies have identified population-genetic factors as important determinants of the properties of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a simple coalescent model of three sequences that we use to explore the theoretical basis for the influence of these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation. Employing a demographic model in which two populations diverged at a given time in the past, we derive the approximate expectation and variance of imputation accuracy in a study sequence sampled from one of the two populations, choosing between two reference sequences, one sampled from the same population as the study sequence and the other sampled from the other population. We show that under this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the markers in a chromosomal region that are genotyped, and the time to divergence between the study and reference populations. Each of these effects derives largely from an increase in information available for determining the reference sequence that is genetically most similar to the sequence targeted for imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in the target using a reference sequence from the same population as the target rather than from the other population. Together with a growing body of empirical investigations of genotype imputation in diverse human populations, our modeling framework lays a foundation for extending imputation techniques to novel populations that have not yet been extensively examined. PMID:23079542

  13. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress

    PubMed Central

    Barron, Martin J.; Smith, Claire E.L.; Poulter, James A.; Mighell, Alan J.; Inglehearn, Chris F.; Brown, Catriona J.; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J.

    2017-01-01

    Abstract ‘Amelogenesis imperfecta’ (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. PMID:28334996

  14. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    PubMed

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  15. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients

    PubMed Central

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-01-01

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection. PMID:29719623

  16. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations

    PubMed Central

    Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert

    2013-01-01

    Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854

  17. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.

    PubMed

    Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.

  18. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens

    PubMed Central

    Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare

  19. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.

    PubMed

    Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare

  20. Modulation of an ultraviolet mutational hotspot in a shuttle vector Xeroderma cells.

    PubMed Central

    Seetharam, S; Seidman, M M

    1991-01-01

    Ultraviolet mutagenesis of the shuttle vector plasmid pZ189 in Xeroderma Pigmentosum cells yields a mutational pattern marked by hotspots at photoproduct sites on both strands of the supF marker gene. In order to test the influence of strand orientation on the appearance of hotspots the mutagenesis study was repeated on a vector with the supF gene in the inverted orientation. We recovered a pattern the same as that in the earlier work and conclude that the nature of the DNA polymerase involved in the replication of specific strands is not a primary determinant of hotspot occurrence in this system. One of the hotspots lies in an 8 base palindrome while the corresponding site on the other strand was not a hotspot. These results were obtained with calcium phosphate transfection of the UV treated vector. When DEAE dextran was used as a transfection agent both sites in the palindrome were hotspots. In a mixing experiment the calcium phosphate pattern was recovered. Our data suggest that the sequence determinants of mutational probability at these two sites lie outside the 8 bases of the palindrome and that mutagenesis at one, but not the other, site is sensitive to perturbation of cellular calcium levels. PMID:2027767

  1. Modulation of Radiogenic Damage by Microgravity: Results From STS-76

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory; Kazarians, Gayane; Schubert, Wayne; Kern, Roger; Schranck, David; Hartman, Philip; Hlavacek, Anthony; Wilde, Honor; Lewicki, Dan; Benton, Eugene; hide

    1999-01-01

    The STS-76 (Shuttle-Mir 3) spaceflight provided an opportunity to test two questions about radiation responses in C. elegans. First, does the absence of gravity modify the dose-response relation for mutation and chromosome aberration and second, what are the features of the mutation spectrum resulting from exposure to cosmic rays? These questions were put to the test in space using the ESA "Biorack" facility which was housed in the Spacehab module aboard shuttle Atlantis. The mission flew in March, 1996 and was a shuttle rendezvous with the Russian space station Mir.

  2. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease.

    PubMed

    Członkowska, Anna; Rodo, Maria; Wierzchowska-Ciok, Agata; Smolinski, Lukasz; Litwin, Tomasz

    2018-02-08

    In Wilson disease (WD), copper accumulates in the liver and other tissues because of mutations in the ATP7B copper transporter gene. Early and effective anticopper treatment is crucial. However, routine diagnostic methods based on clinical findings, copper metabolism tests, liver biopsies and DNA analyses do not always provide a conclusive diagnosis. The aim was to evaluate radioactive copper incorporation as a diagnostic test. We included cases with a diagnosis of WD supported by radiocopper testing and later, when available, confirmed by DNA analysis. Incorporation of 64 Cu was measured at 2, 24 and 48 hours following intravenous injection. Diagnostic accuracy (area under the receiver operating characteristic curve [AUC]), sensitivity, specificity and predictive value were assessed for 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios and compared with serum measurements of ceruloplasmin, copper, non-ceruloplasmin-bound copper and urinary 24-hours copper excretion. Patients having two pathogenic ATP7B mutations (homozygotes/compound heterozygotes) (n = 74) had significantly lower 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios than heterozygote controls (n = 21) (mean 0.14 and 0.12 vs 0.49 and 0.63, respectively; both P < .001). Of note, 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios had excellent diagnostic accuracy, with AUCs approaching 1, and only 24-hours urinary copper excretion displayed similar positive features. Other copper metabolism tests studied had lower accuracy, specificity and sensitivity. The radioactive copper test had excellent diagnostic accuracy and may be useful in the evaluation of new therapies aimed at restoring ATP7B function. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  5. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens.

    PubMed

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-08-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.

  6. Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection.

    PubMed

    Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus

    2015-03-01

    The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.

  7. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.

    PubMed

    Usmanova, Dinara R; Bogatyreva, Natalya S; Ariño Bernad, Joan; Eremina, Aleksandra A; Gorshkova, Anastasiya A; Kanevskiy, German M; Lonishin, Lyubov R; Meister, Alexander V; Yakupova, Alisa G; Kondrashov, Fyodor A; Ivankov, Dmitry N

    2018-05-02

    Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta, and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here. ivankov13@gmail.com. Supplementary data are available at Bioinformatics online.

  8. Central-Monitor Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.

  9. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer.

    PubMed

    Castellanos, Emily; Feld, Emily; Horn, Leora

    2017-04-01

    EGFR-mutated NSCLC is a genetically heterogeneous disease that includes more than 200 distinct mutations. The implications of mutational subtype for both prognostic and predictive value are being increasingly understood. Although the most common EGFR mutations-exon 19 deletions or L858R mutations-predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs), it is now being recognized that outcomes may be improved in patients with exon 19 deletions. Additionally, 10% of patients will have an uncommon EGFR mutation, and response to EGFR TKI therapy is highly variable depending on the mutation. Given the growing recognition of the genetic and clinical variation seen in this disease, the development of comprehensive bioinformatics-driven tools to both analyze response in uncommon mutation subtypes and inform clinical decision making will be increasingly important. Clinical trials of novel EGFR TKIs should prospectively account for the presence of uncommon mutation subtypes in study design. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    PubMed

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  11. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  12. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  13. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress.

    PubMed

    Brookes, Steven J; Barron, Martin J; Smith, Claire E L; Poulter, James A; Mighell, Alan J; Inglehearn, Chris F; Brown, Catriona J; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J

    2017-05-15

    'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. © The Author 2017. Published by Oxford University Press.

  14. Validity of Models for Predicting BRCA1 and BRCA2 Mutations

    PubMed Central

    Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.

    2008-01-01

    Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205

  15. Immune defects caused by mutations in the ubiquitin system.

    PubMed

    Etzioni, Amos; Ciechanover, Aaron; Pikarsky, Eli

    2017-03-01

    The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-12-01

    Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness-related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.

  17. Placebo-suggestion modulates conflict resolution in the Stroop Task.

    PubMed

    Magalhães De Saldanha da Gama, Pedro A; Slama, Hichem; Caspar, Emilie A; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a "brain wave" machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion's contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.

  18. Placebo-Suggestion Modulates Conflict Resolution in the Stroop Task

    PubMed Central

    Caspar, Emilie A.; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a “brain wave” machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion’s contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion. PMID:24130735

  19. Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, M.; Tzuri, G.; Eyal, N.

    1993-10-01

    The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewis patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so farmore » among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS2+1 mutation constituted 2.26% of the disease alleles among Jewish Patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated [open quotes]RecNcil[close quotes] and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations-D409H and R463C- was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, is 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection. 33 refs, 3 figs

  20. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  1. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-01-01

    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754

  2. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  3. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. A gradient-boosting approach for filtering de novo mutations in parent-offspring trios.

    PubMed

    Liu, Yongzhuang; Li, Bingshan; Tan, Renjie; Zhu, Xiaolin; Wang, Yadong

    2014-07-01

    Whole-genome and -exome sequencing on parent-offspring trios is a powerful approach to identifying disease-associated genes by detecting de novo mutations in patients. Accurate detection of de novo mutations from sequencing data is a critical step in trio-based genetic studies. Existing bioinformatic approaches usually yield high error rates due to sequencing artifacts and alignment issues, which may either miss true de novo mutations or call too many false ones, making downstream validation and analysis difficult. In particular, current approaches have much worse specificity than sensitivity, and developing effective filters to discriminate genuine from spurious de novo mutations remains an unsolved challenge. In this article, we curated 59 sequence features in whole genome and exome alignment context which are considered to be relevant to discriminating true de novo mutations from artifacts, and then employed a machine-learning approach to classify candidates as true or false de novo mutations. Specifically, we built a classifier, named De Novo Mutation Filter (DNMFilter), using gradient boosting as the classification algorithm. We built the training set using experimentally validated true and false de novo mutations as well as collected false de novo mutations from an in-house large-scale exome-sequencing project. We evaluated DNMFilter's theoretical performance and investigated relative importance of different sequence features on the classification accuracy. Finally, we applied DNMFilter on our in-house whole exome trios and one CEU trio from the 1000 Genomes Project and found that DNMFilter could be coupled with commonly used de novo mutation detection approaches as an effective filtering approach to significantly reduce false discovery rate without sacrificing sensitivity. The software DNMFilter implemented using a combination of Java and R is freely available from the website at http://humangenome.duke.edu/software. © The Author 2014. Published by Oxford

  5. A neural mechanism of speed-accuracy tradeoff in macaque area LIP

    PubMed Central

    Hanks, Timothy; Kiani, Roozbeh; Shadlen, Michael N

    2014-01-01

    Decision making often involves a tradeoff between speed and accuracy. Previous studies indicate that neural activity in the lateral intraparietal area (LIP) represents the gradual accumulation of evidence toward a threshold level, or evidence bound, which terminates the decision process. The level of this bound is hypothesized to mediate the speed-accuracy tradeoff. To test this, we recorded from LIP while monkeys performed a motion discrimination task in two speed-accuracy regimes. Surprisingly, the terminating threshold levels of neural activity were similar in both regimes. However, neurons recorded in the faster regime exhibited stronger evidence-independent activation from the beginning of decision formation, effectively reducing the evidence-dependent neural modulation needed for choice commitment. Our results suggest that control of speed vs accuracy may be exerted through changes in decision-related neural activity itself rather than through changes in the threshold applied to such neural activity to terminate a decision. DOI: http://dx.doi.org/10.7554/eLife.02260.001 PMID:24867216

  6. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A.; Chung, Fuzon; Bailey, Nathanael G.; Schrader, Alexandra; Li, Bo; Li, Jun Z.; Ozel, Ayse B.; Betz, Bryan L.; Miranda, Roberto N.; Medeiros, L. Jeffrey; Zhao, Lili; Herling, Marco

    2014-01-01

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. PMID:24825865

  7. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A; Chung, Fuzon; Bailey, Nathanael G; Schrader, Alexandra; Li, Bo; Li, Jun Z; Ozel, Ayse B; Betz, Bryan L; Miranda, Roberto N; Medeiros, L Jeffrey; Zhao, Lili; Herling, Marco; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2014-08-28

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. © 2014 by The American Society of Hematology.

  8. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    PubMed

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  9. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens

    PubMed Central

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-01-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701

  10. Identifying module biomarkers from gastric cancer by differential correlation network

    PubMed Central

    Liu, Xiaoping; Chang, Xiao

    2016-01-01

    Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371

  11. Finding of IDH1 R132H mutation in histologically non-neoplastic glial tissue changes surgical strategies, a case report.

    PubMed

    Søndergaard, Christian Baastrup; Scheie, David; Sehested, Astrid Marie; Skjøth-Rasmussen, Jane

    2017-07-01

    In 2016, the WHO classification of diffuse astrocytoma began to include isocitrate dehydrogenase (IDH) mutation in addition to histology. We here demonstrate a case where a 14-year-old boy presented with a parietal tumor with no histological evidence of neoplasia but with an IDH1 mutation. Due to the IDH1 R132H mutation, the patient was diagnosed with diffuse astrocytoma WHO grade II and underwent successful gross total resection of this near-eloquently located tumor. This case exemplifies how inclusion of immunohistochemistry in tumor classification alters surgical strategy and might improve accuracy and time to diagnosis.

  12. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice.

    PubMed

    Campesato, Luís Felipe; Barroso-Sousa, Romualdo; Jimenez, Leandro; Correa, Bruna R; Sabbaga, Jorge; Hoff, Paulo M; Reis, Luiz F L; Galante, Pedro Alexandre F; Camargo, Anamaria A

    2015-10-27

    Cancer gene panels (CGPs) are already used in clinical practice to match tumor's genetic profile with available targeted therapies. We aimed to determine if CGPs could also be applied to estimate tumor mutational load and predict clinical benefit to PD-1 and CTLA-4 checkpoint blockade therapy. Whole-exome sequencing (WES) mutation data obtained from melanoma and non-small cell lung cancer (NSCLC) patients published by Snyder et al. 2014 and Rizvi et al. 2015, respectively, were used to select nonsynonymous somatic mutations occurring in genes included in the Foundation Medicine Panel (FM-CGP) and in our own Institutional Panel (HSL-CGP). CGP-mutational load was calculated for each patient using both panels and was associated with clinical outcomes as defined and reported in the original articles. Higher CGP-mutational load was observed in NSCLC patients presenting durable clinical benefit (DCB) to PD-1 blockade (FM-CGP P=0.03, HSL-CGP P=0.01). We also observed that 69% of patients with high CGP-mutational load experienced DCB to PD-1 blockade, as compared to 20% of patients with low CGP-mutational load (FM-CGP and HSL-CGP P=0.01). Noteworthy, predictive accuracy of CGP-mutational load for DCB was not statistically different from that estimated by WES sequencing (P=0.73). Moreover, a high CGP-mutational load was significantly associated with progression-free survival (PFS) in patients treated with PD-1 blockade (FM-CGP P=0.005, HR 0.27, 95% IC 0.105 to 0.669; HSL-CGP P=0.008, HR 0.29, 95% IC 0.116 to 0.719). Similar associations between CGP-mutational load and clinical benefit to CTLA-4 blockade were not observed. In summary, our data reveals that CGPs can be used to estimate mutational load and to predict clinical benefit to PD-1 blockade, with similar accuracy to that reported using WES.

  13. A Novel NHERF1 Mutation in Human Breast Cancer and Effects on Malignant Progression.

    PubMed

    Yang, Xiaomei; Du, Guifang; Yu, Zhen; Si, Yang; Martin, Tracey A; He, Junqi; Cheng, Shan; Jiang, Wen G

    2017-01-01

    Na + /H + exchanger regulatory factor 1 (NHERF1) has been reported to interact with post-synaptic density protein/Drosophila disc large tumour suppressor/zonula occludens 1 protein (PDZ) binding proteins by its two PDZ domains. These associations have effects on cellular signal transductions. NHERF1 has also been indicated as a cancer-related gene in several solid tumour types. We identified a novel mutation (A190D), of the PDZ2 domain of NHERF1 in breast cancer tissues. NHERF1 A190D mutation abolished NHERF1 modulation of proliferation and migration. In this study, we found that NHERF1 A190D mutation increased nuclear localisation of the protein compared to wild-type NHERF1. It has been reported that YES-associated protein (YAP) interacts with NHERF1. Here we found that NHERF1 A190D mutation increased the binding affinity between NHERF1 and YAP, which inhibited the phosphorylation of YAP. These data suggest that wild-type NHERF1 acts as a tumour suppressor, while NHERF1 A190D mutation abolishes the tumour-suppressive effect in cancer cells, due to A190D mutation-mediated nuclear NHERF1 translocation and induction of YAP phosphorylation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.

    PubMed

    Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie

    2018-04-11

    Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  15. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    PubMed

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  16. Research on accuracy analysis of laser transmission system based on Zemax and Matlab

    NASA Astrophysics Data System (ADS)

    Chen, Haiping; Liu, Changchun; Ye, Haixian; Xiong, Zhao; Cao, Tingfen

    2017-05-01

    Laser transmission system is important in high power solid-state laser facilities and its function is to transfer and focus the light beam in accordance with the physical function of the facility. This system is mainly composed of transmission mirror modules and wedge lens module. In order to realize the precision alignment of the system, the precision alignment of the system is required to be decomposed into the allowable range of the calibration error of each module. The traditional method is to analyze the error factors of the modules separately, and then the linear synthesis is carried out, and the influence of the multi-module and multi-factor is obtained. In order to analyze the effect of the alignment error of each module on the beam center and focus more accurately, this paper aims to combine with the Monte Carlo random test and ray tracing, analyze influence of multi-module and multi-factor on the center of the beam, and evaluate and optimize the results of accuracy decomposition.

  17. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  18. A vertically-stacked, polymer, microfluidic point mutation analyzer: Rapid, high accuracy detection of low-abundance K-ras mutations

    PubMed Central

    Han, Kyudong; Lee, Tae Yoon; Nikitopoulos, Dimitris E.; Soper, Steven A.; Murphy, Michael C.

    2011-01-01

    Recognition of point mutations in the K-ras gene can be used for the clinical management of several types of cancers. Unfortunately, several assay and hardware concerns must be addressed to allow users not well-trained in performing molecular analyses the opportunity to undertake these measurements. To provide for a larger user-base for these types of molecular assays, a vertically-stacked microfluidic analyzer with a modular architecture and process automation was developed. The analyzer employed a primary PCR coupled to an allele-specific ligase detection reaction (LDR). Each functional device, including continuous flow thermal reactors for the PCR and LDR, passive micromixers and ExoSAP-IT® purification, was designed and tested. Individual devices were fabricated in polycarbonate using hot embossing and assembled using adhesive bonding for system assembly. The system produced LDR products from a DNA sample in ~1 h, an 80% reduction in time compared to conventional bench-top instrumentation. Purifying the post-PCR products with the ExoSAP-IT® enzyme led to optimized LDR performance minimizing false positive signals and producing reliable results. Mutant alleles in genomic DNA were quantified to the level of 0.25 ng of mutant DNA in 50 ng of wild-type DNA for a 25 μL sample, equivalent to DNA from 42 mutant cells. PMID:21771577

  19. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia.

    PubMed

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-03-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×10 9 /l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

  20. On the Accuracy Potential in Underwater/Multimedia Photogrammetry

    PubMed Central

    Maas, Hans-Gerd

    2015-01-01

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell’s Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions. PMID:26213942

  1. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    PubMed

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  2. Modeling Individual Differences in Response Time and Accuracy in Numeracy

    PubMed Central

    Ratcliff, Roger; Thompson, Clarissa A.; McKoon, Gail

    2015-01-01

    In the study of numeracy, some hypotheses have been based on response time (RT) as a dependent variable and some on accuracy, and considerable controversy has arisen about the presence or absence of correlations between RT and accuracy, between RT or accuracy and individual differences like IQ and math ability, and between various numeracy tasks. In this article, we show that an integration of the two dependent variables is required, which we accomplish with a theory-based model of decision making. We report data from four tasks: numerosity discrimination, number discrimination, memory for two-digit numbers, and memory for three-digit numbers. Accuracy correlated across tasks, as did RTs. However, the negative correlations that might be expected between RT and accuracy were not obtained; if a subject was accurate, it did not mean that they were fast (and vice versa). When the diffusion decision-making model was applied to the data (Ratcliff, 1978), we found significant correlations across the tasks between the quality of the numeracy information (drift rate) driving the decision process and between the speed/ accuracy criterion settings, suggesting that similar numeracy skills and similar speed-accuracy settings are involved in the four tasks. In the model, accuracy is related to drift rate and RT is related to speed-accuracy criteria, but drift rate and criteria are not related to each other across subjects. This provides a theoretical basis for understanding why negative correlations were not obtained between accuracy and RT. We also manipulated criteria by instructing subjects to maximize either speed or accuracy, but still found correlations between the criteria settings between and within tasks, suggesting that the settings may represent an individual trait that can be modulated but not equated across subjects. Our results demonstrate that a decision-making model may provide a way to reconcile inconsistent and sometimes contradictory results in numeracy

  3. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    PubMed

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100

  4. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    PubMed

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  5. Deep learning of mutation-gene-drug relations from the literature.

    PubMed

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  6. Molecular mechanics and dynamics characterization of an in silico mutated protein: a stand-alone lab module or support activity for in vivo and in vitro analyses of targeted proteins.

    PubMed

    Chiang, Harry; Robinson, Lucy C; Brame, Cynthia J; Messina, Troy C

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships. Copyright © 2013 Wiley Periodicals, Inc.

  7. Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.

    PubMed

    Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter

    2007-12-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.

  8. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  9. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  10. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  11. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    PubMed

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  12. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.

    2016-07-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  13. Optical vector network analyzer based on double-sideband modulation.

    PubMed

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  14. Molecular profiling and sequential somatic mutation shift in hypermutator tumours harbouring POLE mutations.

    PubMed

    Hatakeyama, Keiichi; Ohshima, Keiichi; Nagashima, Takeshi; Ohnami, Shumpei; Ohnami, Sumiko; Serizawa, Masakuni; Shimoda, Yuji; Maruyama, Koji; Akiyama, Yasuto; Urakami, Kenichi; Kusuhara, Masatoshi; Mochizuki, Tohru; Yamaguchi, Ken

    2018-06-07

    Defective DNA polymerase ε (POLE) proofreading leads to extensive somatic mutations that exhibit biased mutational properties; however, the characteristics of POLE-mutated tumours remain unclear. In the present study, we describe a molecular profile using whole exome sequencing based on the transition of somatic mutations in 10 POLE-mutated solid tumours that were obtained from 2,042 Japanese patients. The bias of accumulated variations in these mutants was quantified to follow a pattern of somatic mutations, thereby classifying the sequential mutation shift into three periods. During the period prior to occurrence of the aberrant POLE, bare accumulation of mutations in cancer-related genes was observed, whereas PTEN was highly mutated in conjunction with or subsequent to the event, suggesting that POLE and PTEN mutations were responsible for the development of POLE-mutated tumours. Furthermore, homologous recombination was restored following the occurrence of PTEN mutations. Our strategy for estimation of the footprint of somatic mutations may provide new insight towards the understanding of mutation-driven tumourigenesis.

  15. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has

  16. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  17. Mutation of SIMPLE in Charcot–Marie–Tooth 1C alters production of exosomes

    PubMed Central

    Zhu, Hong; Guariglia, Sara; Yu, Raymond Y. L.; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing

    2013-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546

  18. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  19. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  20. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  1. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta

    PubMed Central

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S.; Reid, Bryan M.; Lin, Brent P.; Wang, Susan J.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C.-C.

    2014-01-01

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell–ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance–Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell–matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects. PMID:24305999

  2. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off

    PubMed Central

    Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2015-01-01

    Fitts’ Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts’ Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability) to typically developing children. The results show a strong effect of the cost of error on the Fitts’ Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk. PMID:26447874

  3. Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning

    PubMed Central

    Bacik, John-Paul; Wrenbeck, Emily E.; Michalczyk, Ryszard; Whitehead, Timothy A.

    2017-01-01

    Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications. PMID:28196882

  4. A novel mutation of laminin β2 (LAMB2) in two siblings with renal failure.

    PubMed

    Falix, Farah A; Bennebroek, Carlien A M; van der Zwaag, Bert; Lapid-Gortzak, Ruth; Florquin, Sandrine; Oosterveld, Michiel J S

    2017-04-01

    This report describes a novel mutation of LAMB2, the gene associated with Pierson syndrome (microcoria-congenital nephrosis syndrome), in two female siblings. The c.970T>C p.(Cys324Arg) mutation in the LAMB2 gene affects one of the eight highly conserved cysteine residues within the first EGF-like module of the laminin β2 protein. These residues form disulfide bonds in order to achieve a correct 3D structure of the protein. The reported phenotype is considered a relatively mild variant of Pierson syndrome and is associated with later-onset (18 months) therapy-resistant nephrotic syndrome leading to renal failure, and ocular abnormalities consisting of high myopia, microcoria, diverse retinal abnormalities, hence a low level of visual acuity. Importantly, the reported LAMB2 mutation was associated with normal neurological development in both siblings. this report presents the variability of the renal, ocular and neurological phenotypes associated with LAMB2 mutations and underscores the importance of ophthalmologic examination in all children with unexplained renal insufficiency or nephrotic syndrome. What is known • LAMB2 mutations are associated with Pierson syndrome • Pierson syndrome is associated with congenital nephrotic syndrome, microcoria and neurological deficits What is new • A novel mutation in the LAMB2 gene in two female siblings • Genotype and clinical phenotype description of a novel LAMB2 mutation.

  5. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  6. Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation

    PubMed Central

    Zhu, Li; Uskoković, Vuk; Le, Thuan; DenBesten, Pamela; Huang, Yulei; Habelitz, Stefan; Li, Wu

    2012-01-01

    Objective A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals. Design Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM. Results As compared to rh174 amelogenin, p.P70T mutant displayed significantly increased sizes of the assemblies, higher binding affinity to apatite, and decreased crystal height. Conclusions Pro-70 plays an important structural role in the biologically relevant amelogenin self-assembly. The disturbed regularity of amelogenin nanospheres by this single mutation resulted in an increased binding to apatite and inhibited crystal growth. PMID:21081224

  7. TCOF1 mutation database: novel mutation in the alternatively spliced exon 6A and update in mutation nomenclature.

    PubMed

    Splendore, Alessandra; Fanganiello, Roberto D; Masotti, Cibele; Morganti, Lucas S C; Passos-Bueno, M Rita

    2005-05-01

    Recently, a novel exon was described in TCOF1 that, although alternatively spliced, is included in the major protein isoform. In addition, most published mutations in this gene do not conform to current mutation nomenclature guidelines. Given these observations, we developed an online database of TCOF1 mutations in which all the reported mutations are renamed according to standard recommendations and in reference to the genomic and novel cDNA reference sequences (www.genoma.ib.usp.br/TCOF1_database). We also report in this work: 1) results of the first screening for large deletions in TCOF1 by Southern blot in patients without mutation detected by direct sequencing; 2) the identification of the first pathogenic mutation in the newly described exon 6A; and 3) statistical analysis of pathogenic mutations and polymorphism distribution throughout the gene.

  8. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Cinoo; Kim, Kwang Joong; Bok, Jeong; Lee, Eun-Ju; Kim, Dong-Joon; Oh, Ji Hee; Park, Sung Pyo; Shin, Joo Young; Lee, Jong-Young

    2012-01-01

    Purpose To evaluate microarray-based genotyping technology for the detection of mutations responsible for retinitis pigmentosa (RP) and to perform phenotypic characterization of patients with pathogenic mutations. Methods DNA from 336 patients with RP and 360 controls was analyzed using the GoldenGate assay with microbeads containing 95 previously reported disease-associated mutations from 28 RP genes. Mutations identified by microarray-based genotyping were confirmed by direct sequencing. Segregation analysis and phenotypic characterization were performed in patients with mutations. The disease severity was assessed by visual acuity, electroretinography, optical coherence tomography, and kinetic perimetry. Results Ten RP-related mutations of five RP genes (PRP3 pre-mRNA processing factor 3 homolog [PRPF3], rhodopsin [RHO], phosphodiesterase 6B [PDE6B], peripherin 2 [PRPH2], and retinitis pigmentosa 1 [RP1]) were identified in 26 of the 336 patients (7.7%) and in six of the 360 controls (1.7%). The p.H557Y mutation in PDE6B, which was homozygous in four patients and heterozygous in nine patients, was the most frequent mutation (2.5%). Mutation segregation was assessed in four families. Among the patients with missense mutations, the most severe phenotype occurred in patients with p.D984G in RP1; less severe phenotypes occurred in patients with p.R135W in RHO; a relatively moderate phenotype occurred in patients with p.T494M in PRPF3, p.H557Y in PDE6B, or p.W316G in PRPH2; and a mild phenotype was seen in a patient with p.D190N in RHO. Conclusions The results reveal that the GoldenGate assay may not be an efficient method for molecular diagnosis in RP patients with rare mutations, although it has proven to be reliable and efficient for high-throughput genotyping of single-nucleotide polymorphisms. The clinical features varied according to the mutations. Continuous effort to identify novel RP genes and mutations in a population is needed to improve the efficiency and

  9. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  10. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  11. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  12. Novel mutation in the adiponectin (ADIPOQ) gene is associated with hypoadiponectinaemia in Japanese-Brazilians.

    PubMed

    Vendramini, Marcio F; Kasamatsu, Teresa S; Crispim, Felipe; Ferreira, Sandra R; Matioli, Sergio R; Moisés, Regina S

    2009-07-01

    Adiponectin is an important mediator of insulin sensitivity, encoded by the ADIPOQ gene. Here we describe two Japanese-Brazilian families with hypoadiponectinaemia due to a novel mutation in ADIPOQ. In this study, we examined the entire translated regions of adiponectin in Japanese-Brazilians, a population with one of the highest prevalence rates of diabetes worldwide. We screened 200 patients with type 2 diabetes (DM) and 240 age-matched subjects with normal glucose tolerance. A novel heterozygous T deletion at position 186 in exon 2 of ADIPOQ, causing a frameshift at codon 62 and leading to a premature termination at codon 168 (p.Gly63ValfsX106), was found in two individuals with diabetes. This mutation was not found in 240 nondiabetic control subjects. In addition, we screened the mutation in an expanded set of 100 nondiabetic subjects from the general Brazilian population, but we found no mutations. In addition, six family members of the probands were identified as mutation-carriers. Individuals who were mutation-carriers had markedly low plasma adiponectin concentrations compared with those without the mutation [DM: 0.65 (0.59-1.34) microg/ml vs. 5.30 (3.10-8.55) microg/ml, P < 0.0001; normal glucose tolerance: 0.95 (0.76-1.48) microg/ml vs. 8.50 (5.52-14.55) microg/ml, P = 0.003]. All individuals carrying the p.Gly63ValfsX106 mutation and older than 30 years were found to be diabetic. We describe for the first time a frameshift mutation in exon 2 of the ADIPOQ gene, which modulates adiponectin levels and may contribute to the genetic risk of late-onset diabetes in Japanese-Brazilians.

  13. Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    PubMed Central

    Zarate, Jean Mary; Delhommeau, Karine; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    Background Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy. Methodology/Principal Findings We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing. Conclusions/Significance Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production. PMID:20567521

  14. Quality assurance of intensity-modulated radiation therapy.

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  15. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

    PubMed

    Sancho, Rosa M; Law, Bernard M H; Harvey, Kirsten

    2009-10-15

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.

  16. Mediator kinase module and human tumorigenesis.

    PubMed

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  17. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  18. The Impact of Dose Rate on the Accuracy of Step-and-Shoot Intensity-modulated Radiation Therapy Quality Assurance Using Varian 2300CD.

    PubMed

    Njeh, Christopher F; Salmon, Howard W; Schiller, Claire

    2017-01-01

    Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.

  19. Mutation detection in the human HSP70B′ gene by denaturing high-performance liquid chromatography

    PubMed Central

    Hecker, Karl H.; Asea, Alexzander; Kobayashi, Kaoru; Green, Stacy; Tang, Dan; Calderwood, Stuart K.

    2000-01-01

    Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B′ gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKERTM software. Four overlapping amplicons, which span the complete coding region of the HSP70B′ gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B′ gene on the WAVE® Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed. PMID:11189446

  20. Mutation detection in the human HSP7OB' gene by denaturing high-performance liquid chromatography.

    PubMed

    Hecker, K H; Asea, A; Kobayashi, K; Green, S; Tang, D; Calderwood, S K

    2000-11-01

    Variances, particularly single nucleotide polymorphisms (SNP), in the genomic sequence of individuals are the primary key to understanding gene function as it relates to differences in the susceptibility to disease, environmental influences, and therapy. In this report, the HSP70B' gene is the target sequence for mutation detection in biopsy samples from human prostate cancer patients undergoing combined hyperthermia and radiation therapy at the Dana-Farber Cancer Institute, using temperature-modulated heteroduplex analysis (TMHA). The underlying principles of TMHA for mutation detection using DHPLC technology are discussed. The procedures involved in amplicon design for mutation analysis by DHPLC are detailed. The melting behavior of the complete coding sequence of the target gene is characterized using WAVEMAKER software. Four overlapping amplicons, which span the complete coding region of the HSP70B' gene, amenable to mutation detection by DHPLC were identified based on the software-predicted melting profile of the target sequence. TMHA was performed on PCR products of individual amplicons of the HSP70B' gene on the WAVE Nucleic Acid Fragment Analysis System. The criteria for mutation calling by comparing wild-type and mutant chromatographic patterns are discussed.

  1. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID

  2. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  3. Modulation of substrate specificities of D-sialic acid aldolase through single mutations of Val-251.

    PubMed

    Chou, Chien-Yu; Ko, Tzu-Ping; Wu, Kuan-Jung; Huang, Kai-Fa; Lin, Chun-Hung; Wong, Chi-Huey; Wang, Andrew H-J

    2011-04-22

    In a recent directed-evolution study, Escherichia coli D-sialic acid aldolase was converted by introducing eight point mutations into a new enzyme with relaxed specificity, denoted RS-aldolase (also known formerly as L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase), which showed a preferred selectivity toward L-KDO. To investigate the underlying molecular basis, we determined the crystal structures of D-sialic acid aldolase and RS-aldolase. All mutations are away from the catalytic center, except for V251I, which is near the opening of the (α/β)(8)-barrel and proximal to the Schiff base-forming Lys-165. The change of specificity from D-sialic acid to RS-aldolase can be attributed mainly to the V251I substitution, which creates a narrower sugar-binding pocket, but without altering the chirality in the reaction center. The crystal structures of D-sialic acid aldolase·l-arabinose and RS-aldolase·hydroxypyruvate complexes and five mutants (V251I, V251L, V251R, V251W, and V251I/V265I) of the D-sialic acid aldolase were also determined, revealing the location of substrate molecules and how the contour of the active site pocket was shaped. Interestingly, by mutating Val251 alone, the enzyme can accept substrates of varying size in the aldolase reactions and still retain stereoselectivity. The engineered D-sialic acid aldolase may find applications in synthesizing unnatural sugars of C(6) to C(10) for the design of antagonists and inhibitors of glycoenzymes.

  4. dbDSM: a manually curated database for deleterious synonymous mutations.

    PubMed

    Wen, Pengbo; Xiao, Peng; Xia, Junfeng

    2016-06-15

    Synonymous mutations (SMs), which changed the sequence of a gene without directly altering the amino acid sequence of the encoded protein, were thought to have no functional consequences for a long time. They are often assumed to be neutral in models of mutation and selection and were completely ignored in many studies. However, accumulating experimental evidence has demonstrated that these mutations exert their impact on gene functions via splicing accuracy, mRNA stability, translation fidelity, protein folding and expression, and some of these mutations are implicated in human diseases. To the best of our knowledge, there is still no database specially focusing on disease-related SMs. We have developed a new database called dbDSM (database of Deleterious Synonymous Mutation), a continually updated database that collects, curates and manages available human disease-related SM data obtained from published literature. In the current release, dbDSM collects 1936 SM-disease association entries, including 1289 SMs and 443 human diseases from ClinVar, GRASP, GWAS Catalog, GWASdb, PolymiRTS database, PubMed database and Web of Knowledge. Additionally, we provided users a link to download all the data in the dbDSM and a link to submit novel data into the database. We hope dbDSM will be a useful resource for investigating the roles of SMs in human disease. dbDSM is freely available online at http://bioinfo.ahu.edu.cn:8080/dbDSM/index.jsp with all major browser supported. jfxia@ahu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer

    PubMed Central

    Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José

    2017-01-01

    Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033

  6. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less

  7. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian; Robertson, Amy; Jonkman, Jason

    2016-08-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  8. IDH mutation assessment of glioma using texture features of multimodal MR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Tian, Qiang; Wu, Yu-Xia; Xu, Xiao-Pan; Li, Bao-Juan; Liu, Yi-Xiong; Liu, Yang; Lu, Hong-Bing

    2017-03-01

    Purpose: To 1) find effective texture features from multimodal MRI that can distinguish IDH mutant and wild status, and 2) propose a radiomic strategy for preoperatively detecting IDH mutation patients with glioma. Materials and Methods: 152 patients with glioma were retrospectively included from the Cancer Genome Atlas. Corresponding T1-weighted image before- and post-contrast, T2-weighted image and fluid-attenuation inversion recovery image from the Cancer Imaging Archive were analyzed. Specific statistical tests were applied to analyze the different kind of baseline information of LrGG patients. Finally, 168 texture features were derived from multimodal MRI per patient. Then the support vector machine-based recursive feature elimination (SVM-RFE) and classification strategy was adopted to find the optimal feature subset and build the identification models for detecting the IDH mutation. Results: Among 152 patients, 92 and 60 were confirmed to be IDH-wild and mutant, respectively. Statistical analysis showed that the patients without IDH mutation was significant older than patients with IDH mutation (p<0.01), and the distribution of some histological subtypes was significant different between IDH wild and mutant groups (p<0.01). After SVM-RFE, 15 optimal features were determined for IDH mutation detection. The accuracy, sensitivity, specificity, and AUC after SVM-RFE and parameter optimization were 82.2%, 85.0%, 78.3%, and 0.841, respectively. Conclusion: This study presented a radiomic strategy for noninvasively discriminating IDH mutation of patients with glioma. It effectively incorporated kinds of texture features from multimodal MRI, and SVM-based classification strategy. Results suggested that features selected from SVM-RFE were more potential to identifying IDH mutation. The proposed radiomics strategy could facilitate the clinical decision making in patients with glioma.

  9. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Russell, Marcia M; Tomlinson, James S

    2017-12-01

    Approximately 20-40% of stage II/III colorectal cancer (CRC) patients develop relapse. Clinicopathological factors alone are limited in detecting these patients, resulting in potential under/over-treatment. We sought to identify a prognostic tumor mutational profile that could predict CRC recurrence. Whole-exome sequencing data were obtained for 207 patients with stage II/III CRC from The Cancer Genome Atlas. Mutational landscape in relapse-free versus relapsed cohort was compared using Fisher's exact test, followed by multivariate Cox regression to identify genes associated with cancer recurrence. Bootstrap-validation was used to examine internal/external validity. We identified five prognostic genes (APAF1, DIAPH2, NTNG1, USP7, and VAV2), which were combined to form a prognostic mutation panel. Patients with ≥1 mutation(s) within this five-gene panel had worse prognosis (3-yr relapse-free survival [RFS]: 53.0%), compared to patients with no mutation (3-yr RFS: 84.3%). In multivariate analysis, the five-gene panel remained prognostic for cancer recurrence independent of stage and high-risk features (hazard ratio 3.63, 95%CI [1.93-6.83], P < 0.0001). Furthermore, its prognostic accuracy was superior to the American Joint Commission on Cancer classification (concordance-index: 0.70 vs 0.54). Our proposed mutation panel identifies CRC patients at high-risk for recurrence, which may help guide adjuvant therapy and post-operative surveillance protocols. © 2017 Wiley Periodicals, Inc.

  10. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  11. Feasibility and accuracy of molecular testing in specimens obtained with small biopsy forceps: comparison with the results of surgical specimens.

    PubMed

    Oki, Masahide; Yatabe, Yasushi; Saka, Hideo; Kitagawa, Chiyoe; Kogure, Yoshihito; Ichihara, Shu; Moritani, Suzuko

    2015-01-01

    During bronchoscopy, small biopsy forceps are increasingly used for the diagnosis of peripheral pulmonary lesions. However, it is unclear whether the formalin-fixed paraffin-embedded specimens sampled with the small biopsy forceps are suitable for the determination of genotypes which become indispensable for the management decision regarding patients with non-small cell lung cancer. The aim of this study was to evaluate the feasibility and accuracy of molecular testing in the specimens obtained with 1.5-mm small biopsy forceps. We examined specimens in 91 patients, who were enrolled in our previous 3 studies on the usefulness of thin bronchoscopes and given a diagnosis of non-small cell lung cancer by bronchoscopy with the 1.5-mm biopsy forceps, and then underwent surgical resection. An experienced pathologist examined paraffin-embedded specimens obtained by bronchoscopic biopsy or surgical resection in a blind fashion on epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements and KRAS mutations. Twenty-five (27%), 2 (2%) and 5 (5%) patients had an EGFR mutation, ALK rearrangement and KRAS mutation, respectively, based on the results in surgical specimens. EGFR, ALK and KRAS testing with bronchoscopic specimens was feasible in 82 (90%), 86 (95%) and 83 (91%) patients, respectively. If molecular testing was feasible, the accuracy of EGFR, ALK and KRAS testing with bronchoscopic specimens for the results with surgical specimens was 98, 100 and 98%, respectively. The results of molecular testing in the formalin-fixed paraffin-embedded specimens obtained with the small forceps, in which the genotype could be evaluated, correlated well with those in surgically resected specimens.

  12. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer.

    PubMed

    Guibert, N; Hu, Y; Feeney, N; Kuang, Y; Plagnol, V; Jones, G; Howarth, K; Beeler, J F; Paweletz, C P; Oxnard, G R

    2018-04-01

    Genomic analysis of plasma cell-free DNA is transforming lung cancer care; however, available assays are limited by cost, turnaround time, and imperfect accuracy. Here, we study amplicon-based plasma next-generation sequencing (NGS), rather than hybrid-capture-based plasma NGS, hypothesizing this would allow sensitive detection and monitoring of driver and resistance mutations in advanced non-small cell lung cancer (NSCLC). Plasma samples from patients with NSCLC and a known targetable genotype (EGFR, ALK/ROS1, and other rare genotypes) were collected while on therapy and analyzed blinded to tumor genotype. Plasma NGS was carried out using enhanced tagged amplicon sequencing of hotspots and coding regions from 36 genes, as well as intronic coverage for detection of ALK/ROS1 fusions. Diagnostic accuracy was compared with plasma droplet digital PCR (ddPCR) and tumor genotype. A total of 168 specimens from 46 patients were studied. Matched plasma NGS and ddPCR across 120 variants from 80 samples revealed high concordance of allelic fraction (R2 = 0.95). Pretreatment, sensitivity of plasma NGS for the detection of EGFR driver mutations was 100% (30/30), compared with 87% for ddPCR (26/30). A full spectrum of rare driver oncogenic mutations could be detected including sensitive detection of ALK/ROS1 fusions (8/9 detected, 89%). Studying 25 patients positive for EGFR T790M that developed resistance to osimertinib, 15 resistance mechanisms could be detected including tertiary EGFR mutations (C797S, Q791P) and mutations or amplifications of non-EGFR genes, some of which could be detected pretreatment or months before progression. This blinded analysis demonstrates the ability of amplicon-based plasma NGS to detect a full range of targetable genotypes in NSCLC, including fusion genes, with high accuracy. The ability of plasma NGS to detect a range of preexisting and acquired resistance mechanisms highlights its potential value as an alternative to single mutation

  13. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977. [Effects of diurnal temperature changes in Tradescantia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves,more » are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R ..gamma..) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth.« less

  14. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia

    PubMed Central

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-01-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×109/l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR. PMID:28450924

  15. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  16. Competence in Streptococcus pneumoniae Is a Response to an Increasing Mutational Burden

    PubMed Central

    Gagne, Alyssa L.; Stevens, Kathleen E.; Cassone, Marco; Pujari, Amit; Abiola, Olufunke E.; Chang, Diana J.; Sebert, Michael E.

    2013-01-01

    Competence for genetic transformation in Streptococcus pneumoniae has previously been described as a quorum-sensing trait regulated by a secreted peptide pheromone. Recently we demonstrated that competence is also activated by reduction in the accuracy of protein biosynthesis. We have now investigated whether errors upstream of translation in the form of random genomic mutations can provide a similar stimulus. Here we show that generation of a mutator phenotype in S. pneumoniae through deletions of mutX, hexA or hexB enhanced the expression of competence. Similarly, chemical mutagenesis with the nucleotide analog dPTP promoted development of competence. To investigate the relationship between mutational load and the activation of competence, replicate lineages of the mutX strain were serially passaged under conditions of relaxed selection allowing random accumulation of secondary mutations. Competence increased with propagation in these lineages but not in control lineages having wild-type mutX. Resequencing of these derived strains revealed between 1 and 9 single nucleotide polymorphisms (SNPs) per lineage, which were broadly distributed across the genome and did not involve known regulators of competence. Notably, the frequency of competence development among the sequenced strains correlated significantly with the number of nonsynonymous mutations that had been acquired. Together, these observations provide support for the hypothesis that competence in S. pneumoniae is regulated in response to the accumulated burden of coding mutations in the bacterial genome. In contrast to previously described DNA damage response systems that are activated by physical lesions in the chromosome, this pneumococcal pathway may represent a unique stress response system that monitors the coding integrity of the genome. PMID:23967325

  17. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  18. Birefringence Polarimeter Using Dual LiNbO3 Electrooptic Crystal Modulators

    NASA Astrophysics Data System (ADS)

    Saitou, Takeshi; Nurdin Bin, Muhammad; Kowa, Hiroyuki; Umeda, Norihiro; Takizawa, Kuniharu; Kondoh, Eiichi; Jin, Lianhua

    2012-08-01

    A birefringence polarimeter that uses dual LiNbO3 electrooptic crystal modulators operating at a frequency ratio of 4:1 is described. The significance of this polarimeter is that the birefringent parameters of a sample are obtained only from the modulated polarization status. The measurement, therefore, avoids depolarization effects resulting from the sample itself and the rest of the optical system. The high speed and accuracy of this polarimeter are shown by measurements using a quarter-wave plate, a Babinet-Soleil compensator, and a phase modulator.

  19. Phosphorylation of Mutationally Introduced Tyrosine in the Activation Loop of HER2 Confers Gain-of-Function Activity

    PubMed Central

    Hu, Zexi; Wan, Xiaobo; Hao, Rui; Zhang, Heng; Li, Li; Li, Lin; Xie, Qiang; Wang, Peng; Gao, Yibo; Chen, She; Wei, Min; Luan, Zhidong; Zhang, Aiqun; Huang, Niu; Chen, Liang

    2015-01-01

    Amplification, overexpression, and somatic mutation of the HER2 gene have been reported to play a critical role in tumorigenesis of various cancers. The HER2 H878Y mutation was recently reported in 11% of hepatocellular carcinoma (HCC) patients. However, its functional impact on the HER2 protein and its role in tumorigenesis has not been determined. Here, we show that HER2 H878Y is a gain-of-function mutation. Y878 represents a phosphorylation site, and phospho-Y878 interacts with R898 residue to stabilize the active conformation of HER2, thereby enhancing its kinase activity. H878Y mutant is transforming and the transformed cells are sensitive to HER2 kinase inhibitors. Thus, our study reveals the following novel mechanism underlying the tumorigenic function of the HER2 H878Y mutation: the introduction of a tyrosine residue into the kinase activation loop via mutagenesis modulates the conformation of the kinase, thereby enhancing its activity. PMID:25853726

  20. NLOS mitigation and ranging accuracy for building indoor positioning system in UWB using commercial radio modules

    NASA Astrophysics Data System (ADS)

    Alsudani, Ahlam

    2018-05-01

    In recent years, indoor positioning system (IPS) plays a very important role in several environments such as hospitals, airports, males, Etc. It is used to locate mobile stations such as human and robots inside buildings. Some of IPSs applications are: locating an elder or child needed for an urgent help in hospitals, emergency situations such as locating firefighters inside building on fire or policemen fitting terrorists inside building by a commander to help for expedite evacuation in case one of them need for help. In indoor positioning applications, the accuracy should be high as can as possible, in another word; the error should be less than 1 meter. The indoor environment is the major challenging to obtain such accuracy. In this paper, we present a novel algorithm to identify the line of sight (LOS) and non-line of sight (NLOS) channels and improve the positioning accuracy using ultra-wideband (UWB) technology implementing DW1000 devices.

  1. Identification of HIV Mutation as Diagnostic Biomarker through Next Generation Sequencing.

    PubMed

    Shaw, Wen Hui; Lin, Qianqian; Muhammad, Zikry Zhiwei Bin Roslee; Lee, Jia Jun; Khong, Wei Xin; Ng, Oon Tek; Tan, Eng Lee; Li, Peng

    2016-07-01

    Current clinical detection of Human immunodeficiency virus 1 (HIV-1) is used to target viral genes and proteins. However, the immunoassay, such as viral culture or Polymerase Chain Reaction (PCR), lacks accuracy in the diagnosis, as these conventional assays rely on the stable genome and HIV-1 is a highly-mutated virus. Next generation sequencing (NGS) promises to be transformative for the practice of infectious disease, and the rapidly reducing cost and processing time mean that this will become a feasible technology in diagnostic and research laboratories in the near future. The technology offers the superior sensitivity to detect the pathogenic viruses, including unknown and unexpected strains. To leverage the NGS technology in order to improve current HIV-1 diagnosis and genotyping methods. Ten blood samples were collected from HIV-1 infected patients which were diagnosed by RT PCR at Singapore Communicable Disease Centre, Tan Tock Seng Hospital from October 2014 to March 2015. Viral RNAs were extracted from blood plasma and reversed into cDNA. The HIV-1 cDNA samples were cleaned up using a PCR purification kit and the sequencing library was prepared and identified through MiSeq. Two common mutations were observed in all ten samples. The common mutations were identified at genome locations 1908 and 2104 as missense and silent mutations respectively, conferring S37N and S3S found on aspartic protease and reverse transcriptase subunits. The common mutations identified in this study were not previously reported, therefore suggesting the potential for them to be used for identification of viral infection, disease transmission and drug resistance. This was especially the case for, missense mutation S37N which could cause an amino acid change in viral proteases thus reducing the binding affinity of some protease inhibitors. Thus, the unique common mutations identified in this study could be used as diagnostic biomarkers to indicate the origin of infection as being

  2. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations.

    PubMed

    Setia, Nitika; Saxena, Renu; Arora, Anjali; Verma, Ishwar C

    2016-12-01

    Homozygous familial hypercholesterolemia (FH) is a rare but serious, inherited disorder of lipid metabolism characterized by very high total and LDL cholesterol levels from birth. It presents as cutaneous and tendon xanthomas since childhood, with or without cardiac involvement. FH is commonly caused by mutations in three genes, i.e. LDL receptor (LDLR), apolipoprotein B (ApoB) and PCSK9. We aimed to determine the spectrum of mutations in cases of homozygous FH in Asian Indians and evaluate if there was any similarity to the mutations observed in Caucasians. Sixteen homozygous FH subjects from eleven families were analyzed for mutations by Sanger sequencing. Large rearrangements in LDLR gene were evaluated by multiplex ligation probe dependent amplification (MLPA) technique. Ten mutations were observed in LDLR gene, of which four mutations were novel. No mutation was detected in ApoB gene and common PCSK9 mutation (p.D374Y). Fourteen cases had homozygous mutations; one had compound heterozygous mutation, while no mutation was detected in one clinically homozygous case. We report an interesting "Triple hit" case with features of homozygous FH. The spectrum of mutations in the Asian Indian population is quite heterogeneous. Of the mutations identified, 40% were novel. No mutation was observed in exons 3, 9 and 14 of LDLR gene, which are considered to be hot spots in studies done on Asian Indians in South Africa. Early detection followed by aggressive therapy, and cascade screening of extended families has been initiated to reduce the morbidity and mortality in these patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma.

    PubMed

    Paek, Se Hyun; Kim, Byung Seup; Kang, Kyung Ho; Kim, Hee Sung

    2017-11-13

    The BRAF V600E mutation is highly specific for papillary thyroid carcinoma (PTC). A test for this mutation can increase the diagnostic accuracy of fine-needle aspiration cytology (FNAC), but a considerably high false-negative rate for the BRAF V600E mutation on FNAC has been reported. In this study, we investigated the risk factors associated with false-negative BRAF V600E mutation results on FNAC. BRAF V600E mutation results of 221 PTC nodules between December 2011 and June 2013 were retrospectively reviewed. BRAF V600E mutation results on both preoperative FNAC and postoperative formalin-fixed, paraffin-embedded (FFPE) samples were compared. We investigated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BRAF V600E mutation results on FNAC. And, we identified the risk factors associated with false-negative results. Of 221 PTC nodules, 150 (67.9%) on FNAC and 185 (83.7%) on FFPE samples were BRAF V600E mutation positive. The sensitivity, specificity, PPV, and NPV for BRAF V600E mutation testing with FNAC were 80.5, 97.2, 99.3, and 49.3%, respectively. Thirty-six (16.3%) BRAF V600E mutation-negative nodules on FNAC were mutation positive on FFPE sample analysis. Risk factors for these false-negative results were age, indeterminate FNAC results (nondiagnostic, atypia of undetermined significance (AUS), and findings suspicious for PTC), and PTC subtype. False-negative rate of BRAF mutation testing with FNAC for thyroid nodules is increased in cases of old age, indeterminate FNAC pathology results, and certain PTC subtypes. Therapeutic surgery can be considered for these cases. A well-designed prospective study with informed consent of patients will be essential for more informative results.

  4. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud.

  5. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  6. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.

    PubMed

    Diaz-Uriarte, Ramon

    2017-06-15

    OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    PubMed

    Ravindran, Ethiraj; Hu, Hao; Yuzwa, Scott A; Hernandez-Miranda, Luis R; Kraemer, Nadine; Ninnemann, Olaf; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Birchmeier, Carmen; Miller, Freda D; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2017-04-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  8. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation

    PubMed Central

    Yuzwa, Scott A.; Hernandez-Miranda, Luis R.; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Miller, Freda D.; Hübner, Christoph; Kaindl, Angela M.

    2017-01-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. PMID:28453519

  9. The effects of mutational processes and selection on driver mutations across cancer types.

    PubMed

    Temko, Daniel; Tomlinson, Ian P M; Severini, Simone; Schuster-Böckler, Benjamin; Graham, Trevor A

    2018-05-10

    Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.

  10. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations

    PubMed Central

    Pankratz, N; Kissell, D K.; Pauciulo, M W.; Halter, C A.; Rudolph, A; Pfeiffer, R F.; Marder, K S.; Foroud, T; Nichols, W C.

    2009-01-01

    Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset. GLOSSARY ADL = Activities of Daily Living; GDS = Geriatric Depression Scale; MLPA = multiplex ligation-dependent probe amplification; MMSE = Mini-Mental State Examination; PD = Parkinson disease; UPDRS = Unified Parkinson’s Disease Rating Scale. PMID:19636047

  11. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  12. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  13. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura.

    PubMed

    Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo

    2015-10-01

    NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Underestimation of Risk of a BRCA1 or BRCA2 Mutation in Women With High-Grade Serous Ovarian Cancer by BRCAPRO: A Multi-Institution Study

    PubMed Central

    Daniels, Molly S.; Babb, Sheri A.; King, Robin H.; Urbauer, Diana L.; Batte, Brittany A.L.; Brandt, Amanda C.; Amos, Christopher I.; Buchanan, Adam H.; Mutch, David G.; Lu, Karen H.

    2014-01-01

    Purpose Identification of the 10% to 15% of patients with ovarian cancer who have germline BRCA1 or BRCA2 mutations is important for management of both patients and relatives. The BRCAPRO model, which estimates mutation likelihood based on personal and family cancer history, can inform genetic testing decisions. This study's purpose was to assess the accuracy of BRCAPRO in women with ovarian cancer. Methods BRCAPRO scores were calculated for 589 patients with ovarian cancer referred for genetic counseling at three institutions. Observed mutations were compared with those predicted by BRCAPRO. Analysis of variance was used to assess factors impacting BRCAPRO accuracy. Results One hundred eighty (31%) of 589 patients with ovarian cancer tested positive. At BRCAPRO scores less than 40%, more mutations were observed than expected (93 mutations observed v 34.1 mutations expected; P < .001). If patients with BRCAPRO scores less than 10% had not been tested, 51 (28%) of 180 mutations would have been missed. BRCAPRO underestimated the risk for high-grade serous ovarian cancers but overestimated the risk for other histologies (P < .001), underestimation increased as age at diagnosis decreased (P = .02), and model performance varied by institution (P = .02). Conclusion Patients with ovarian cancer classified as low risk by BRCAPRO are more likely to test positive than predicted. The risk of a mutation in patients with low BRCAPRO scores is high enough to warrant genetic testing. This study demonstrates that assessment of family history by a validated model cannot effectively target testing to a high-risk ovarian cancer patient population, which strongly supports the recommendation to offer BRCA1/BRCA2 genetic testing to all patients with high-grade serous ovarian cancer regardless of family history. PMID:24638001

  15. De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder.

    PubMed

    Snijders Blok, Lot; Hiatt, Susan M; Bowling, Kevin M; Prokop, Jeremy W; Engel, Krysta L; Cochran, J Nicholas; Bebin, E Martina; Bijlsma, Emilia K; Ruivenkamp, Claudia A L; Terhal, Paulien; Simon, Marleen E H; Smith, Rosemarie; Hurst, Jane A; McLaughlin, Heather; Person, Richard; Crunk, Amy; Wangler, Michael F; Streff, Haley; Symonds, Joseph D; Zuberi, Sameer M; Elliott, Katherine S; Sanders, Victoria R; Masunga, Abigail; Hopkin, Robert J; Dubbs, Holly A; Ortiz-Gonzalez, Xilma R; Pfundt, Rolph; Brunner, Han G; Fisher, Simon E; Kleefstra, Tjitske; Cooper, Gregory M

    2018-05-08

    Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.

  16. Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa

    PubMed Central

    García-Hoyos, María; Cortón, Marta; Ávila-Fernández, Almudena; Riveiro-Álvarez, Rosa; Giménez, Ascensión; Hernan, Inma; Carballo, Miguel; Ayuso, Carmen

    2012-01-01

    Purpose Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. Methods We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. Results The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. Conclusions The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP. PMID:22736939

  17. Evaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter

    PubMed Central

    Shinzato, Amanda; Lerario, Antonio M.; Lin, Chin J.; Danilovic, Debora S.; Marui, Suemi; Trarbach, Ericka B.

    2015-01-01

    Background DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). Material/Methods DNA and RNA samples were obtained from hyperplastic thyroid glands of 60 patients (54 females) with benign MNG. DREAM mutations were evaluated by PCR and direct automatic sequencing, whereas relative quantification of mRNA was performed by real-time PCR. Over- and under-expression were defined as a 2-fold increase and decrease in comparison to normal thyroid tissue, respectively. RQ M (relative quantification mean); SD (standard deviation). Results DREAM expression was detected in all nodules evaluated. DREAM mRNA was overexpressed in 31.7% of MNG (RQ M=6.26; SD=5.08), whereas 53.3% and 15% had either normal (RQ M=1.16; SD=0.46) or underexpression (RQ M=0.30; SD=0.10), respectively. Regarding DREAM mutations analysis, only previously described intronic polymorphisms were observed. Conclusions We report DREAM gene expression in the hyperplastic thyroid gland of MNG patients. However, DREAM expression did not vary significantly, and was somewhat underexpressed in most patients, suggesting that DREAM upregulation does not significantly affect nodular development in human goiter. PMID:26319784

  18. The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation*

    PubMed Central

    Benilova, Iryna; Gallardo, Rodrigo; Ungureanu, Andreea-Alexandra; Castillo Cano, Virginia; Snellinx, An; Ramakers, Meine; Bartic, Carmen; Rousseau, Frederic; Schymkowitz, Joost; De Strooper, Bart

    2014-01-01

    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously. PMID:25253695

  19. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    PubMed

    Rowe, Steven M; Liu, Bo; Hill, Aubrey; Hathorne, Heather; Cohen, Morty; Beamer, John R; Accurso, Frank J; Dong, Qunming; Ordoñez, Claudia L; Stone, Anne J; Olson, Eric R; Clancy, John P

    2013-01-01

    Nasal potential difference (NPD) is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770) in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1) the average of both nostrils; (2) the most-polarized nostril at each visit; and (3) the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity), the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity), and the delta NPD (measuring CFTR and ENaC activity). The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV). Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  20. Clinical and mutational spectrum in Korean patients with Rubinstein-Taybi syndrome: the spectrum of brain MRI abnormalities.

    PubMed

    Lee, Jin Sook; Byun, Christine K; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Ji Eun; Hwang, Yong Seung; Seong, Moon-Woo; Park, Sung Sup; Kim, Ki Joong; Chae, Jong-Hee

    2015-04-01

    Rubinstein-Taybi syndrome (RSTS) is one of the neurodevelopmental disorders caused by mutations of epigenetic genes. The CREBBP gene is the most common causative gene, encoding the CREB-binding protein with histone acetyltransferase (HAT) activity, an epigenetic modulator. To date, there have been few reports on the structural abnormalities of the brain in RSTS patients. In addition, there are no reports on the analysis of CREBBP mutations in Korean RSTS patients. We performed mutational analyses on 16 unrelated patients with RSTS, with diagnosis based on the typical clinical features. Their medical records and brain MRI images were reviewed retrospectively. Ten of 16 patients (62.5%) had mutations in the CREBBP gene. The mutations included five frameshift mutations (31.2%), two nonsense mutations (12.5%), and three multiexon deletions (18.8%). There were no remarkable significant differences in the clinical features between those with and without a CREBBP mutation, although brain MRI abnormalities were more frequently observed in those with a CREBBP mutation. Seven of 10 patients in whom brain imaging was performed had structural abnormalities, including Chiari malformation type 1, thinning of the corpus callosum, and delayed myelination. There were no differences in delayed development or cognitive impairment between those with and without abnormal brain images, while epilepsy was involved in two patients who had abnormalities on brain MRI images. We investigated the spectrum of CREBBP mutations in Korean patients with RSTS for the first time. Eight novel mutations extended the genetic spectrum of CREBBP mutations in RSTS patients. This is also the first study showing the prevalence and spectrum of abnormalities on brain MRI in RSTS patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding.

    PubMed

    Meuwissen, Theo H E; Odegard, Jorgen; Andersen-Ranberg, Ina; Grindflek, Eli

    2014-08-01

    With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation. Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions. Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly

  2. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  3. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    PubMed Central

    Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune

    2015-01-01

    Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441

  4. Polarimetric Imaging using Two Photoelastic Modulators

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  5. KRAS mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis.

    PubMed

    Westwood, Marie; van Asselt, Thea; Ramaekers, Bram; Whiting, Penny; Joore, Manuela; Armstrong, Nigel; Noake, Caro; Ross, Janine; Severens, Johan; Kleijnen, Jos

    2014-10-01

    Bowel cancer is the third most common cancer in the UK. Most bowel cancers are initially treated with surgery, but around 17% spread to the liver. When this happens, sometimes the liver tumour can be treated surgically, or chemotherapy may be used to shrink the tumour to make surgery possible. Kirsten rat sarcoma viral oncogene (KRAS) mutations make some tumours less responsive to treatment with biological therapies such as cetuximab. There are a variety of tests available to detect these mutations. These vary in the specific mutations that they detect, the amount of mutation they detect, the amount of tumour cells needed, the time to give a result, the error rate and cost. To compare the performance and cost-effectiveness of KRAS mutation tests in differentiating adults with metastatic colorectal cancer whose metastases are confined to the liver and are unresectable and who may benefit from first-line treatment with cetuximab in combination with standard chemotherapy from those who should receive standard chemotherapy alone. Thirteen databases, including MEDLINE and EMBASE, research registers and conference proceedings were searched to January 2013. Additional data were obtained from an online survey of laboratories participating in the UK National External Quality Assurance Scheme pilot for KRAS mutation testing. A systematic review of the evidence was carried out using standard methods. Randomised controlled trials were assessed for quality using the Cochrane risk of bias tool. Diagnostic accuracy studies were assessed using the QUADAS-2 tool. There were insufficient data for meta-analysis. For accuracy studies we calculated sensitivity and specificity together with 95% confidence intervals (CIs). Survival data were summarised as hazard ratios and tumour response data were summarised as relative risks, with 95% CIs. The health economic analysis considered the long-term costs and quality-adjusted life-years associated with different tests followed by treatment

  6. Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.

    PubMed

    Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul

    2007-03-01

    VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.

  7. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer

    PubMed Central

    Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C.

    2016-01-01

    Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AI). We developed ultra-high sensitivity multiplexed digital PCR assays for ESR1 mutations in circulating tumor DNA (ctDNA) and used these to investigate the clinical relevance and origin of ESR1 mutations in a cohort of 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies, and could be assessed in samples shipped at room temperature in preservative tubes without loss of accuracy. ESR1 mutations were found exclusively in patients with estrogen receptor positive breast cancer previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy (HR 3.1, 95%CI 1.9-23.1, log rank p=0.0041). ESR1 mutation prevalence differed markedly between patients that were first exposed to AI during the adjuvant and metastatic settings (5.8% (3/52) vs 36.4% (16/44) respectively, p=0.0002). In an independent cohort, ESR1 mutations were identified in 0% (0/32, 95%CI 0-10.9%) tumor biopsies taken after progression on adjuvant AI. In a patient with serial samples taken during metastatic treatment, ESR1 mutation was selected during metastatic AI therapy, to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI therapy, but are commonly selected by therapy for metastatic disease, providing evidence that the mechanisms of resistance to targeted therapy may be substantially different between the treatment of micro-metastatic and overt metastatic cancer. PMID:26560360

  9. A Self-Instructional Course in Student Financial Aid Administration. Module 13: Verification. Second Edition.

    ERIC Educational Resources Information Center

    Washington Consulting Group, Inc., Washington, DC.

    Module 13 of the 17-module self-instructional course on student financial aid administration (designed for novice financial aid administrators and other institutional personnel) focuses on the verification procedure for checking the accuracy of applicant data used in making financial aid awards. The full course provides an introduction to the…

  10. A Novel Modulation Classification Approach Using Gabor Filter Network

    PubMed Central

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  11. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation

    PubMed Central

    Fedyna, Alison; Drayna, Dennis; Kang, Changsoo

    2010-01-01

    Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643

  12. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia

    PubMed Central

    LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING

    2016-01-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049

  13. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  14. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  15. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  16. Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog.

    PubMed

    Herman, Daniel S; Smith, Christina; Liu, Chang; Vaughn, Cecily P; Palaniappan, Selvi; Pritchard, Colin C; Shirts, Brian H

    2018-07-01

    Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    NASA Astrophysics Data System (ADS)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  18. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    PubMed

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome

    PubMed Central

    Query, Charles C.; Konarska, Maria M.

    2012-01-01

    Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3′ splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast. PMID:22408182

  20. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  1. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  2. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate.

    PubMed

    Partin, K M; Fleck, M W; Mayer, M L

    1996-11-01

    AMPA receptor GluRA subunits with mutations at position 750, a residue shown previously to control allosteric regulation by cyclothiazide, were analyzed for modulation of deactivation and desensitization by cyclothiazide, aniracetam, and thiocyanate. Point mutations from Ser to Asn, Ala, Asp, Gly, Gln, Met, Cys, Thr, Leu, Val, and Tyr were constructed in GluRAflip. The last four of these mutants were not functional; S750D was active only in the presence of cyclothiazide, and the remaining mutants exhibited altered rates of deactivation and desensitization for control responses to glutamate, and showed differential modulation by cyclothiazide and aniracetam. Results from kinetic analysis are consistent with aniracetam and cyclothiazide acting via distinct mechanisms. Our experiments demonstrate for the first time the functional importance of residue 750 in regulating intrinsic channel-gating kinetics and emphasize the biological significance of alternative splicing in the M3-M4 extracellular loop.

  3. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  4. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer.

    PubMed

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-04-01

    Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. To identify recurrent somatic mutations with prognostic significance in patients with CRC. Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

    PubMed Central

    Sancho, Rosa M.; Law, Bernard M.H.; Harvey, Kirsten

    2009-01-01

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2–DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2–DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2–DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2–DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease. PMID:19625296

  6. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    PubMed Central

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  7. Imperfect duplicate insertions type of mutations in plasmepsin V modulates binding properties of PEXEL motifs of export proteins in Indian Plasmodium vivax.

    PubMed

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200-300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246-249 AA and SLSE from 266-269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility

  8. Imperfect Duplicate Insertions Type of Mutations in Plasmepsin V Modulates Binding Properties of PEXEL Motifs of Export Proteins in Indian Plasmodium vivax

    PubMed Central

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL

  9. Thermodynamic framework to assess low abundance DNA mutation detection by hybridization

    PubMed Central

    Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef

    2017-01-01

    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229

  10. Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.

    PubMed

    Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef

    2017-01-01

    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.

  11. A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I.

    PubMed

    Zuiani, Adam; Chen, Kevin; Schwarz, Megan C; White, James P; Luca, Vincent C; Fremont, Daved H; Wang, David; Evans, Matthew J; Diamond, Michael S

    2016-12-01

    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses

  12. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    PubMed

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  13. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  14. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations.

    PubMed Central

    Roman, S J; Meyers, M; Volz, K; Matsumura, P

    1992-01-01

    CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch. Images PMID:1400175

  15. Estimation and enhancement of real-time software reliability through mutation analysis

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.

    1992-01-01

    A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.

  16. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  17. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis

    PubMed Central

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine MA; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-01-01

    Background: We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Methods: Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. Results: In BRCA1/2 mutation carriers of all ages (BRCA1=1219 and BRCA2=732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P>0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Conclusions: Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering. PMID:26908327

  18. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis.

    PubMed

    Phi, Xuan-Anh; Saadatmand, Sepideh; De Bock, Geertruida H; Warner, Ellen; Sardanelli, Francesco; Leach, Martin O; Riedl, Christopher C; Trop, Isabelle; Hooning, Maartje J; Mandel, Rodica; Santoro, Filippo; Kwan-Lim, Gek; Helbich, Thomas H; Tilanus-Linthorst, Madeleine M A; van den Heuvel, Edwin R; Houssami, Nehmat

    2016-03-15

    We investigated the additional contribution of mammography to screening accuracy in BRCA1/2 mutation carriers screened with MRI at different ages using individual patient data from six high-risk screening trials. Sensitivity and specificity of MRI, mammography and the combination of these tests were compared stratified for BRCA mutation and age using generalised linear mixed models with random effect for studies. Number of screens needed (NSN) for additional mammography-only detected cancer was estimated. In BRCA1/2 mutation carriers of all ages (BRCA1 = 1,219 and BRCA2 = 732), adding mammography to MRI did not significantly increase screening sensitivity (increased by 3.9% in BRCA1 and 12.6% in BRCA2 mutation carriers, P > 0.05). However, in women with BRCA2 mutation younger than 40 years, one-third of breast cancers were detected by mammography only. Number of screens needed for mammography to detect one breast cancer not detected by MRI was much higher for BRCA1 compared with BRCA2 mutation carriers at initial and repeat screening. Additional screening sensitivity from mammography above that from MRI is limited in BRCA1 mutation carriers, whereas mammography contributes to screening sensitivity in BRCA2 mutation carriers, especially those ⩽ 40 years. The evidence from our work highlights that a differential screening schedule by BRCA status is worth considering.

  19. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    PubMed

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  20. iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.

    PubMed

    Morgan, Claire; Lewis, Paul D

    2006-01-31

    The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems

  1. Spatial Lattice Modulation for MIMO Systems

    NASA Astrophysics Data System (ADS)

    Choi, Jiwook; Nam, Yunseo; Lee, Namyoon

    2018-06-01

    This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.

  2. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification

    PubMed Central

    Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  3. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations

    PubMed Central

    Core, Jason Q.; Mehrabi, Mehrsa; Robinson, Zachery R.; Ochs, Alexander R.; McCarthy, Linda A.; Zaragoza, Michael V.

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei. PMID:29149195

  4. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations.

    PubMed

    Core, Jason Q; Mehrabi, Mehrsa; Robinson, Zachery R; Ochs, Alexander R; McCarthy, Linda A; Zaragoza, Michael V; Grosberg, Anna

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.

  5. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  6. fMRI evidence for a dual process account of the speed-accuracy tradeoff in decision-making.

    PubMed

    Ivanoff, Jason; Branning, Philip; Marois, René

    2008-07-09

    The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy trade-off (SAT) in decision-making, its neural basis is still unknown. Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speed-accuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions. These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decision-making.

  7. Genetic modulation of sickle cell anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, M.H.

    1995-05-01

    Sickle cell anemia, a common disorder associated with reduced life span of the red blood cell and vasoocclusive events, is caused by a mutation in the {Beta}-hemoglobin gene. Yet, despite this genetic homogeneity, the phenotype of the disease is heterogeneous. This suggests the modulating influence of associated inherited traits. Some of these may influence the accumulation of fetal hemoglobin, a hemoglobin type that interferes with the polymerization of sickle hemoglobin. Another inherited trait determines the accumulation of {alpha}-globin chains. This review focuses on potential genetic regulators of the phenotype of sickle cell anemia. 125 refs., 6 figs., 3 tabs.

  8. Iron overload and HFE gene mutations in Polish patients with liver cirrhosis.

    PubMed

    Sikorska, Katarzyna; Romanowski, Tomasz; Stalke, Piotr; Iżycka-Świeszewska, Ewa; Bielawski, Krzysztof Piotr

    2011-06-01

    Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for

  9. Mutated-leptin gene transfer induces increases in body weight by electroporation and hydrodynamics-based gene delivery in mice.

    PubMed

    Xiang, Lan; Murai, Atsushi; Muramatsu, Tatsuo

    2005-12-01

    To investigate whether in vivo gene transfer causes leptin-antagonistic effects on food intake, animal body weight and fat tissue weight, the R128Q mutated-leptin gene, an R to Q substitution at position 128 of mouse leptin, was transferred into mouse liver and leg muscle by electroporation and hydrodynamics-based gene delivery. Mutated-leptin gene transfer by electroporation caused significant increases in body weight at 5 days and after (5.4% increase relative to control; p<0.05). Hydrodynamics-based gene delivery of the mutated-leptin gene also caused an increase in body weight (3.0% increase relative to control; p<0.05). Mutated-leptin gene transfer by electroporation significantly increased the tissue weight of epididymal white fat and neuropeptide Y mRNA expression in the hypothalamus compared with those of the control group 3 weeks after gene transfer (p<0.05). These results suggest that mutated-leptin gene transfer successfully produced leptin-antagonistic effects by modulating the central regulator of energy homeostasis. Also, the extent of leptin-antagonistic effects by electroporation was much higher than hydrodynamics-based gene delivery, with at least single gene transfer.

  10. Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization.

    PubMed

    Thistlethwaite, William A; Moses, Linda M; Hoffbuhr, Kristen C; Devaney, Joseph M; Hoffman, Eric P

    2003-05-01

    Rett syndrome is a neurodevelopmental disorder that affects females almost exclusively, and in which eight common point mutations on the X-linked MeCP2 gene are knows to cause over 70% of mutation-positive cases. We explored the use of a novel platform to detect the eight common mutations in Rett syndrome patients to expedite and simplify the process of identification of known genotypes. The Nanogen workstation consists of a two-color assay based on electric hybridization and thermal discrimination, all performed on an electronically active NanoChip. This genotyping platform was tested on 362 samples of a pre-determined genotype, which had been previously identified by a combination of DHPLC (denaturing high performance liquid chromatography) and direct sequencing. This genotyping technique proved to be rapid, facile, and displayed a specificity of 100% with 3% ambiguity. In addition, we present consecutive testing of seven mutations on a single pad of the NanoChip. This was accomplished by tagging down two amplimers together and serially hybridizing for seven different loci, allowing us to genotype samples for seven of the eight common Rett mutations on a single pad. This novel method displayed the same level of specificity and accuracy as the single amplimer reactions, and proved to be faster and more economical.

  11. Mutation rates among RNA viruses

    PubMed Central

    Drake, John W.; Holland, John J.

    1999-01-01

    The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population. PMID:10570172

  12. Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.

    PubMed

    Gapsys, Vytautas; de Groot, Bert L

    2017-12-12

    Nucleotide-sequence-dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have long been sought. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g., machine learning algorithms or knowledge-based statistical potentials. Molecular-dynamics-based free energy calculations offer a robust, system-independent, first-principles-based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein-DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html .

  13. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry.

    PubMed

    Mosko, Michael J; Nakorchevsky, Aleksey A; Flores, Eunice; Metzler, Heath; Ehrich, Mathias; van den Boom, Dirk J; Sherwood, James L; Nygren, Anders O H

    2016-01-01

    Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma.

    PubMed

    Lee, Seung Eun; Chang, Seong-Hwan; Kim, Wook Youn; Lim, So Dug; Kim, Wan Seop; Hwang, Tea Sook; Han, Hye Seung

    2016-10-25

    Genetic alterations of TERT and CTNNB1 have been documented in hepatocellular carcinoma. TERT promoter mutations are the earliest genetic events in the multistep process of hepatocarcinogenesis related to cirrhosis. However, analyses of TERT promoter and CTNNB1 mutations in hepatocellular carcinoma tumor samples have not been performed in the Korean population, where hepatitis B virus-related hepatocellular carcinoma is prevalent. In order to identify the role of TERT promoter and CTNNB1 mutations in the hepatocarcinogenesis and pathogenesis of recurrent hepatocellular carcinoma, we performed the sequence analyses in 140 hepatocellular nodules (including 107 hepatocellular carcinomas), and 8 pairs of matched primary and relapsed hepatocellular carcinomas. TERT promoter and CTNNB1 mutations were only observed in hepatocellular carcinomas but not in precursor lesions. Of 109 patients with hepatocellular carcinoma, 41 (39.0%) and 15 (14.6%) harbored TERT and CTNNB1 mutations, respectively. TERT promotermutations were significantly more frequent in hepatocellular carcinomas related to hepatitis C virus infection (5/6; 83.3%) compared to tumors of other etiologies (P = 0.001). In two cases, discordance in TERT promoter mutation status was observed between the primary and the corresponding recurrent hepatocellular carcinoma. The two patients with discordant cases had early relapses. In conclusion, we identified TERT promoter and CTNNB1 mutations as the most frequent somatic genetic alterations observed in hepatocellular carcinoma, indicating its pivotal role in hepatocarcinogenesis. Furthermore, we suggest the possibility of intratumoral genetic heterogeneity of TERT promoter mutations in hepatocellular carcinoma as indicated by the discordance in TERT promoter mutations between primary and corresponding recurrent hepatocellular carcinoma.

  15. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  16. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  17. Electronically scanned pressure sensor module with in SITU calibration capability

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1978-01-01

    This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  18. A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique

    PubMed Central

    Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong

    2017-01-01

    Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936

  19. Accuracy of Continuous Glucose Monitoring During Three Closed-Loop Home Studies Under Free-Living Conditions.

    PubMed

    Thabit, Hood; Leelarathna, Lalantha; Wilinska, Malgorzata E; Elleri, Daniella; Allen, Janet M; Lubina-Solomon, Alexandra; Walkinshaw, Emma; Stadler, Marietta; Choudhary, Pratik; Mader, Julia K; Dellweg, Sibylle; Benesch, Carsten; Pieber, Thomas R; Arnolds, Sabine; Heller, Simon R; Amiel, Stephanie A; Dunger, David; Evans, Mark L; Hovorka, Roman

    2015-11-01

    Closed-loop (CL) systems modulate insulin delivery based on glucose levels measured by a continuous glucose monitor (CGM). Accuracy of the CGM affects CL performance and safety. We evaluated the accuracy of the Freestyle Navigator(®) II CGM (Abbott Diabetes Care, Alameda, CA) during three unsupervised, randomized, open-label, crossover home CL studies. Paired CGM and capillary glucose values (10,597 pairs) were collected from 57 participants with type 1 diabetes (41 adults [mean±SD age, 39±12 years; mean±SD hemoglobin A1c, 7.9±0.8%] recruited at five centers and 16 adolescents [mean±SD age, 15.6±3.6 years; mean±SD hemoglobin A1c, 8.1±0.8%] recruited at two centers). Numerical accuracy was assessed by absolute relative difference (ARD) and International Organization for Standardization (ISO) 15197:2013 15/15% limits, and clinical accuracy was assessed by Clarke error grid analysis. Total duration of sensor use was 2,002 days (48,052 h). Overall sensor accuracy for the capillary glucose range (1.1-27.8 mmol/L) showed mean±SD and median (interquartile range) ARD of 14.2±15.5% and 10.0% (4.5%, 18.4%), respectively. Lowest mean ARD was observed in the hyperglycemic range (9.8±8.8%). Over 95% of pairs were in combined Clarke error grid Zones A and B (A, 80.1%, B, 16.2%). Overall, 70.0% of the sensor readings satisfied ISO criteria. Mean ARD was consistent (12.3%; 95% of the values fall within ±3.7%) and not different between participants (P=0.06) within the euglycemic and hyperglycemic range, when CL is actively modulating insulin delivery. Consistent accuracy of the CGM within the euglycemic-hyperglycemic range using the Freestyle Navigator II was observed and supports its use in home CL studies. Our results may contribute toward establishing normative CGM performance criteria for unsupervised home use of CL.

  20. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    PubMed

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  1. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy.

    PubMed

    De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino

    2014-03-01

    Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.

  2. Automated extraction and semantic analysis of mutation impacts from the biomedical literature

    PubMed Central

    2012-01-01

    Background Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. Results We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. Conclusion We present

  3. Consequences of splitting whole-genome sequencing effort over multiple breeds on imputation accuracy.

    PubMed

    Bouwman, Aniek C; Veerkamp, Roel F

    2014-10-03

    The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference

  4. Enabling Technologies for High-accuracy Multiangle Spectropolarimetric Imaging from Space

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Macenka, Steven A.; Seshndri, Suresh; Bruce, Carl E; Jau, Bruno; Chipman, Russell A.; Cairns, Brian; Christoph, Keller; Foo, Leslie D.

    2004-01-01

    Satellite remote sensing plays a major role in measuring the optical and radiative properties, environmental impact, and spatial and temporal distribution of tropospheric aerosols. In this paper, we envision a new generation of spaceborne imager that integrates the unique strengths of multispectral, multiangle, and polarimetric approaches, thereby achieving better accuracies in aerosol optical depth and particle properties than can be achieved using any one method by itself. Design goals include spectral coverage from the near-UV to the shortwave infrared; global coverage within a few days; intensity and polarimetric imaging simultaneously at multiple view angles; kilometer to sub-kilometer spatial resolution; and measurement of the degree of linear polarization for a subset of the spectral complement with an uncertainty of 0.5% or less. The latter requirement is technically the most challenging. In particular, an approach for dealing with inter-detector gain variations is essential to avoid false polarization signals. We propose using rapid modulation of the input polarization state to overcome this problem, using a high-speed variable retarder in the camera design. Technologies for rapid retardance modulation include mechanically rotating retarders, liquid crystals, and photoelastic modulators (PEMs). We conclude that the latter are the most suitable.

  5. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  6. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations.

    PubMed

    Nishida, Naoshi; Kudo, Masatoshi

    Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment. © 2016 S. Karger AG, Basel.

  7. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx; Wall, Jonathan S.; González Andrade, Martín

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stabilitymore » and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.« less

  8. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts.

    PubMed

    Long, Hongan; Behringer, Megan G; Williams, Emily; Te, Ronald; Lynch, Michael

    2016-12-01

    Yeast species are extremely diverse and not monophyletic. Because the majority of yeast research focuses on ascomycetes, the mutational determinants of genetic diversity across yeast species are not well understood. By combining mutation-accumulation techniques with whole-genome sequencing, we resolved the genomic mutation rate and spectrum of the oleaginous (oil-producing) ‘red yeast’ Rhodotorula toruloides, the first such study in the fungal phylum Basidiomycota. We find that the mutation spectrum is quite different from what has been observed in all other studied unicellular eukaryotes, but similar to that in most bacteria—a predominance of transitions relative to transversions. Rhodotorula toruloides has a significantly higher A:T→G:C transition rate—possibly elevated by the abundant flanking G/C nucleotides in the GC-rich genome, as well as a much lower G:C→T:A transversion rate. In spite of these striking differences, there are substantial consistencies between R. toruloides and the ascomycete model yeasts: a spontaneous base-substitution mutation rate of 1.90 × 10 −10 per site per cell division as well as an elevated mutation rate at non-methylated 5'CpG3' sites. These results imply the evolution of variable mutation spectra in the face of similar mutation rates in yeasts.

  9. Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2016-08-05

    The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model

    PubMed Central

    Rom, Joseph S.; Atwood, Danielle N.; Beenken, Karen E.; Meeker, Daniel G.; Loughran, Allister J.; Spencer, Horace J.; Lantz, Tamara L.; Smeltzer, Mark S.

    2017-01-01

    ABSTRACT Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism. PMID:28910576

  11. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    PubMed

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  12. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Detection of Mycobacterium tuberculosis resistance mutations to rifampin and isoniazid by real-time PCR.

    PubMed

    Hristea, A; Otelea, D; Paraschiv, S; Macri, A; Baicus, C; Moldovan, O; Tinischi, M; Arama, V; Streinu-Cercel, A

    2010-01-01

    The objective of our study was to evaluate the use of a real-time polymerase chain reaction (PCR)-based technique for the prediction of phenotypic resistance of Mycobacterium tuberculosis. We tested 67 M tuberculosis strains (26 drug resistant and 41 drug susceptible) using a method recommended for the LightCycler platform. The susceptibility testing was performed by the absolute concentration method. For rifampin resistance, two regions of the rpoB gene were targeted, while for identification of isoniazid resistance, we searched for mutations in katG and inhA genes. The sensitivity and specificity of this method for rapid detection of mutations for isoniazid resistance were 96% (95% CI: 88% to 100%) and 95% (95% CI: 89% to 100%), respectively. For detection of rifampin resistance, the sensitivity and specificity were 92% (95% CI: 81% to 100%) and 74% (95% CI: 61% to 87%), respectively. The main isoniazid resistance mechanism identified in our isolates is related to changes in the katG gene that encodes catalase. We found that for rifampin resistance the concordance between the predicted and observed phenotype was less than satisfactory. Using this method, the best accuracy for genotyping compared with phenotypic resistance testing was obtained for detecting isoniazid resistance mutations. Although real-time PCR assay may be a valuable diagnostic tool, it is not yet completely satisfactory for detection of drug resistance mutations in M tuberculosis.

  14. Predicting the impact of mutations on the specific activity of Bacillus thermocatenulatus lipase using a combined approach of docking and molecular dynamics.

    PubMed

    Yukselen, Onur; Timucin, Emel; Sezerman, Ugur

    2016-10-01

    Lipases are important biocatalysts owing to their ability to catalyze diverse reactions with exceptional substrate specificities. A combined docking and molecular dynamics (MD) approach was applied to study the chain-length selectivity of Bacillus thermocatenulatus lipase (BTL2) towards its natural substrates (triacylglycerols). A scoring function including electrostatic, van der Waals (vdW) and desolvation energies along with conformational entropy was developed to predict the impact of mutation. The native BTL2 and its 6 mutants (F17A, V175A, V175F, D176F, T178V and I320F) were experimentally analyzed to determine their specific activities towards tributyrin (C4) or tricaprylin (C8), which were used to test our approach. Our scoring methodology predicted the chain-length selectivity of BTL2 with 85.7% (6/7) accuracy with a positive correlation between the calculated scores and the experimental activity values (r = 0.82, p = 0.0004). Additionally, the impact of mutation on activity was predicted with 75% (9/12) accuracy. The described study represents a fast and reliable approach to accurately predict the effect of mutations on the activity and selectivity of lipases and also of other enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. A Coarse-Grained Elastic Network Atom Contact Model and Its Use in the Simulation of Protein Dynamics and the Prediction of the Effect of Mutations

    PubMed Central

    Frappier, Vincent; Najmanovich, Rafael J.

    2014-01-01

    Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations. PMID:24762569

  16. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia.

    PubMed

    Li, Chenglong; Zhu, Biao; Chen, Jiao; Huang, Xiaobing

    2016-07-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation‑positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the microarray data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML.

  17. Detection of IDH1 mutation in the plasma of patients with glioma.

    PubMed

    Boisselier, Blandine; Gállego Pérez-Larraya, Jaime; Rossetto, Marta; Labussière, Marianne; Ciccarino, Pietro; Marie, Yannick; Delattre, Jean-Yves; Sanson, Marc

    2012-10-16

    The IDH1(R132H) mutation is both a strong prognostic predictor and a diagnostic hallmark of gliomas and therefore has major clinical relevance. Here, we developed a new technique to detect the IDH1(R132H) mutation in the plasma of patients with glioma. Small-size DNA (150-250 base pairs) was extracted from the plasma of 31 controls and 80 patients with glioma with known IDH1(R132H) status and correlated with MRI data. The IDH1(R132H) mutation was detected by a combination of coamplification at lower denaturation temperature and digital PCR. The small size DNA concentration was 1.2 ng/mL (range 0.1-6.6) in controls vs 1.2 ng/mL (range 0.1-50.3) in patients with glioma (p = not significant) and 0.9 ng/mL (0.0-3.0) in low-grade gliomas vs 1.5 ng/mL in high-grade gliomas (p < 0.01). The small size DNA concentration correlated with enhancing tumor volume (1.6 ng/mL [0.4-24.9] when <10 cm(3) and 14.0 ng/mL [0.6-50.3] when ≥10 cm(3)). The IDH1(R132H) mutation was detected in 15 out of 25 plasma DNA mixtures (60%) from patients with mutated tumors and in none of the 14 patients with a nonmutated tumor. The sensitivity increased with enhancing tumor volume (3/9 in nonenhancing tumors, 6/10 for enhancing volume <10 cm(3), and 6/6 for enhancing volume ≥10 cm(3)). With a specificity of 100% and a sensitivity related to the tumor volume and contrast enhancement, IDH1(R132H) identification has a valuable diagnostic accuracy in patients not amenable to biopsy.

  18. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  19. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  20. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  1. Test module development to detect the flase call probe pins on microeprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.

  2. Maximum likelihood sequence estimation for optical complex direct modulation.

    PubMed

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  3. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  4. How MAP kinase modules function as robust, yet adaptable, circuits.

    PubMed

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.

  5. Effect of data compression on diagnostic accuracy in digital hand and chest radiography

    NASA Astrophysics Data System (ADS)

    Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita

    1992-05-01

    Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.

  6. Monogenic Autoinflammatory Diseases with Mendelian Inheritance: Genes, Mutations, and Genotype/Phenotype Correlations

    PubMed Central

    Martorana, Davide; Bonatti, Francesco; Mozzoni, Paola; Vaglio, Augusto; Percesepe, Antonio

    2017-01-01

    Autoinflammatory diseases (AIDs) are a genetically heterogeneous group of diseases caused by mutations of genes encoding proteins, which play a pivotal role in the regulation of the inflammatory response. In the pathogenesis of AIDs, the role of the genetic background is triggered by environmental factors through the modulation of the innate immune system. Monogenic AIDs are characterized by Mendelian inheritance and are caused by highly penetrant genetic variants in single genes. During the last years, remarkable progress has been made in the identification of disease-associated genes by using new technologies, such as next-generation sequencing, which has allowed the genetic characterization in undiagnosed patients and in sporadic cases by means of targeted resequencing of a gene panel and whole exome sequencing. In this review, we delineate the genetics of the monogenic AIDs, report the role of the most common gene mutations, and describe the evidences of the most sound genotype/phenotype correlations in AID. PMID:28421071

  7. The anticonvulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator

    PubMed Central

    Fisher, Janet L.

    2009-01-01

    SUMMARY Stiripentol(STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anticonvulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABAA receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of α3-containing receptors and reduced potentiation when the β1 or ε subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the α3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on β1- and β2/β3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at α3-containing receptors as well as its activity at δ-containing receptors may provide a unique opportunity to target selected populations of GABARs. PMID:18585399

  8. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer.

    PubMed

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-06-08

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors.

  9. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer

    PubMed Central

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors. PMID:27338477

  10. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  11. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  12. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutatedmore » (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.« less

  13. Predictable Phenotypes of Antibiotic Resistance Mutations.

    PubMed

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  14. Detection of IDH1 R132H mutation in acute myeloid leukemia by mutation-specific immunohistochemistry.

    PubMed

    Byers, Richard; Hornick, Jason L; Tholouli, Eleni; Kutok, Jeffery; Rodig, Scott J

    2012-01-01

    IDH1 mutations are present but are uncommon in acute myeloid leukemia (AML) and although prognostically favorable in gliomas their clinical significance in AML is unclear. Some have associated IDH1 mutations with inferior outcome, whereas others found no association with prognosis. Complicating these analyses is the need to sequence IDH1 from leukemic blasts, which is technically challenging and not yet routine. Mutation-specific antibodies enable robust, cost-effective detection of mutations in routine biopsy samples. Immunohistochemistry for the R132H mutation-specific antibody was performed in a tissue microarray containing 159 cases of AML, detecting the R132H mutation in 7 cases (4.4%). Positivity was associated with intermediate risk cytogenetics. Our results demonstrate an association between the R132H IDH1 mutation and intermediate risk cytogenetics in AML, suggesting that R132H IDH1 mutation may be associated with improved clinical outcome and demonstrate the feasibility of using mutation-specific antibodies to genotype and subclassify AML.

  15. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern

    PubMed Central

    Hafner, Christian; López-Knowles, Elena; Luis, Nuno M.; Toll, Agustí; Baselga, Eulàlia; Fernández-Casado, Alex; Hernández, Silvia; Ribé, Adriana; Mentzel, Thomas; Stoehr, Robert; Hofstaedter, Ferdinand; Landthaler, Michael; Vogt, Thomas; Pujol, Ramòn M.; Hartmann, Arndt; Real, Francisco X.

    2007-01-01

    Activating mutations of the p110 α subunit of PI3K (PIK3CA) oncogene have been identified in a broad spectrum of malignant tumors. However, their role in benign or preneoplastic conditions is unknown. Activating FGF receptor 3 (FGFR3) mutations are common in benign skin lesions, either as embryonic mutations in epidermal nevi (EN) or as somatic mutations in seborrheic keratoses (SK). FGFR3 mutations are also common in low-grade malignant bladder tumors, where they often occur in association with PIK3CA mutations. Therefore, we examined exons 9 and 20 of PIK3CA and FGFR3 hotspot mutations in EN (n = 33) and SK (n = 62), two proliferative skin lesions lacking malignant potential. Nine of 33 (27%) EN harbored PIK3CA mutations; all cases showed the E545G substitution, which is uncommon in cancers. In EN, R248C was the only FGFR3 mutation identified. By contrast, 10 of 62 (16%) SK revealed the typical cancer-associated PIK3CA mutations E542K, E545K, and H1047R. The same lesions displayed a wide range of FGFR3 mutations. Corresponding unaffected tissue was available for four EN and two mutant SK: all control samples displayed a WT sequence, confirming the somatic nature of the mutations found in lesional tissue. Forty of 95 (42%) lesions showed at least one mutation in either gene. PIK3CA and FGFR3 mutations displayed an independent distribution; 5/95 lesions harbored mutations in both genes. Our findings suggest that, in addition to their role in cancer, oncogenic PIK3CA mutations contribute to the pathogenesis of skin tumors lacking malignant potential. The remarkable genotype–phenotype correlation as observed in this study points to a distinct etiopathogenesis of the mutations in keratinocytes occuring either during fetal development or in adult life. PMID:17673550

  16. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    PubMed Central

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  17. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  18. Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1 , are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention. Copyright © 2017 American Society for Microbiology.

  19. Human Cataract Mutations in EPHA2 SAM Domain Alter Receptor Stability and Function

    PubMed Central

    Park, Jeong Eun; Son, Alexander I.; Hua, Rui; Wang, Lianqing; Zhang, Xue; Zhou, Renping

    2012-01-01

    The cellular and molecular mechanisms underlying the pathogenesis of cataracts leading to visual impairment remain poorly understood. In recent studies, several mutations in the cytoplasmic sterile-α-motif (SAM) domain of human EPHA2 on chromosome 1p36 have been associated with hereditary cataracts in several families. Here, we have investigated how these SAM domain mutations affect EPHA2 activity. We showed that the SAM domain mutations dramatically destabilized the EPHA2 protein in a proteasome-dependent pathway, as evidenced by the increase of EPHA2 receptor levels in the presence of the proteasome inhibitor MG132. In addition, the expression of wild-type EPHA2 promoted the migration of the mouse lens epithelial αTN4-1 cells in the absence of ligand stimulation, whereas the mutants exhibited significantly reduced activity. In contrast, stimulation of EPHA2 with its ligand ephrin-A5 eradicates the enhancement of cell migration accompanied by Akt activation. Taken together, our studies suggest that the SAM domain of the EPHA2 protein plays critical roles in enhancing the stability of EPHA2 by modulating the proteasome-dependent process. Furthermore, activation of Akt switches EPHA2 from promoting to inhibiting cell migration upon ephrin-A5 binding. Our results provide the first report of multiple EPHA2 cataract mutations contributing to the destabilization of the receptor and causing the loss of cell migration activity. PMID:22570727

  20. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions

    PubMed Central

    Dai, Gucan

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  1. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.

    PubMed

    Dai, Gucan; Varnum, Michael D

    2013-07-15

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  2. Limited family structure and BRCA gene mutation status in single cases of breast cancer.

    PubMed

    Weitzel, Jeffrey N; Lagos, Veronica I; Cullinane, Carey A; Gambol, Patricia J; Culver, Julie O; Blazer, Kathleen R; Palomares, Melanie R; Lowstuter, Katrina J; MacDonald, Deborah J

    2007-06-20

    An autosomal dominant pattern of hereditary breast cancer may be masked by small family size or transmission through males given sex-limited expression. To determine if BRCA gene mutations are more prevalent among single cases of early onset breast cancer in families with limited vs adequate family structure than would be predicted by currently available probability models. A total of 1543 women seen at US high-risk clinics for genetic cancer risk assessment and BRCA gene testing were enrolled in a prospective registry study between April 1997 and February 2007. Three hundred six of these women had breast cancer before age 50 years and no first- or second-degree relatives with breast or ovarian cancers. The main outcome measure was whether family structure, assessed from multigenerational pedigrees, predicts BRCA gene mutation status. Limited family structure was defined as fewer than 2 first- or second-degree female relatives surviving beyond age 45 years in either lineage. Family structure effect and mutation probability by the Couch, Myriad, and BRCAPRO models were assessed with stepwise multiple logistic regression. Model sensitivity and specificity were determined and receiver operating characteristic curves were generated. Family structure was limited in 153 cases (50%). BRCA gene mutations were detected in 13.7% of participants with limited vs 5.2% with adequate family structure. Family structure was a significant predictor of mutation status (odds ratio, 2.8; 95% confidence interval, 1.19-6.73; P = .02). Although none of the models performed well, receiver operating characteristic analysis indicated that modification of BRCAPRO output by a corrective probability index accounting for family structure was the most accurate BRCA gene mutation status predictor (area under the curve, 0.72; 95% confidence interval, 0.63-0.81; P<.001) for single cases of breast cancer. Family structure can affect the accuracy of mutation probability models. Genetic testing

  3. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  4. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  5. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    PubMed

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  6. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations

    PubMed Central

    Pérez, Paula Soledad; Sevic, Ina; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy. PMID:29738548

  7. MINE: Module Identification in Networks

    PubMed Central

    2011-01-01

    Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434

  8. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase.

    PubMed

    Chen, Shaolin; Ehrhardt, David W; Somerville, Chris R

    2010-10-05

    The CESA1 component of cellulose synthase is phosphorylated at sites clustered in two hypervariable regions of the protein. Mutations of the phosphorylated residues to Ala (A) or Glu (E) alter anisotropic cell expansion and cellulose synthesis in rapidly expanding roots and hypocotyls. Expression of T166E, S686E, or S688E mutants of CESA1 fully rescued the temperature sensitive cesA1-1 allele (rsw1) at a restrictive temperature whereas mutations to A at these positions caused defects in anisotropic cell expansion. However, mutations to E at residues surrounding T166 (i.e., S162, T165, and S167) caused opposite effects. Live-cell imaging of fluorescently labeled CESA showed close correlations between tissue or cell morphology and patterns of bidirectional motility of CESA complexes in the plasma membrane. In the WT, CESA complexes moved at similar velocities in both directions along microtubule tracks. By contrast, the rate of movement of CESA particles was directionally asymmetric in mutant lines that exhibited abnormal tissue or cell expansion, and the asymmetry was removed upon depolymerizing microtubules with oryzalin. This suggests that phosphorylation of CESA differentially affects a polar interaction with microtubules that may regulate the length or quantity of a subset of cellulose microfibrils and that this, in turn, alters microfibril structure in the primary cell wall resulting in or contributing to the observed defect in anisotropic cell expansion.

  9. NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery

    PubMed Central

    Lehmann-Horn, Frank; Fan, Chunxiang; Wolf, Markus; Winston, Vern; Merlini, Luciano

    2014-01-01

    4 translocation for hypokalaemic periodic paralysis mutations at arginine residues located below the gating pore constriction of the voltage sensor module. PMID:24549961

  10. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    PubMed Central

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  11. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    PubMed

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  12. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  13. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii

    PubMed Central

    Kraemer, Susanne A.; Böndel, Katharina B.; Ness, Robert W.; Keightley, Peter D.; Colegrave, Nick

    2017-01-01

    Abstract Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain. PMID:28884790

  14. Clinical and genetic characterization of a founder PKHD1 mutation in Afrikaners with ARPKD.

    PubMed

    Lambie, Lindsay; Amin, Rasheda; Essop, Fahmida; Cnaan, Avital; Krause, Amanda; Guay-Woodford, Lisa M

    2015-02-01

    Autosomal recessive polycystic kidney disease (ARPKD; MIM 263200) occurs in 1:20,000 live births. Disease expression is widely variable, with approximately 30 % of affected neonates dying perinatally, while others survive to adulthood. Mutations at the PKHD1 locus are responsible for all typical presentations. The objectives of this study were to define the clinical and genetic characteristics in a cohort of South African patients of Afrikaner origin, a population with a high prevalence of ARPKD. DNA from the cohort was analyzed for background haplotypes and the p.M627K mutation previously identified in two unrelated Afrikaner patients. The clinical phenotype of the homozygous group was characterized. Analysis of 36 Afrikaner families revealed that 27 patients, from 24 (67 %) families, were homozygous for the p.M627K substitution, occurring on a common haplotype. The clinical phenotype of the homozygous individuals was variable. Our data provide strong evidence that the p.M627K substitution is a founder mutation in the Afrikaner population and can be used for streamlined diagnostic testing for at-risk pregnancies. The observed clinical variability suggests that disease expression is modulated by other genetic loci or by gene-environment interactions.

  15. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    PubMed

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  16. Culture modulates the brain response to human expressions of emotion: electrophysiological evidence.

    PubMed

    Liu, Pan; Rigoulot, Simon; Pell, Marc D

    2015-01-01

    To understand how culture modulates on-line neural responses to social information, this study compared how individuals from two distinct cultural groups, English-speaking North Americans and Chinese, process emotional meanings of multi-sensory stimuli as indexed by both behaviour (accuracy) and event-related potential (N400) measures. In an emotional Stroop-like task, participants were presented face-voice pairs expressing congruent or incongruent emotions in conditions where they judged the emotion of one modality while ignoring the other (face or voice focus task). Results indicated that while both groups were sensitive to emotional differences between channels (with lower accuracy and higher N400 amplitudes for incongruent face-voice pairs), there were marked group differences in how intruding facial or vocal cues affected accuracy and N400 amplitudes, with English participants showing greater interference from irrelevant faces than Chinese. Our data illuminate distinct biases in how adults from East Asian versus Western cultures process socio-emotional cues, supplying new evidence that cultural learning modulates not only behaviour, but the neurocognitive response to different features of multi-channel emotion expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  18. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  19. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations.

    PubMed

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.

  20. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  1. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  2. High-accuracy microassembly by intelligent vision systems and smart sensor integration

    NASA Astrophysics Data System (ADS)

    Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael

    2003-10-01

    Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.

  3. Exploring the common molecular basis for the universal DNA mutation bias: Revival of Loewdin mutation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Liang-Yu; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070; Wang, Guang-Zhong

    2011-06-10

    Highlights: {yields} There exists a universal G:C {yields} A:T mutation bias in three domains of life. {yields} This universal mutation bias has not been sufficiently explained. {yields} A DNA mutation model proposed by Loewdin 40 years ago offers a common explanation. -- Abstract: Recently, numerous genome analyses revealed the existence of a universal G:C {yields} A:T mutation bias in bacteria, fungi, plants and animals. To explore the molecular basis for this mutation bias, we examined the three well-known DNA mutation models, i.e., oxidative damage model, UV-radiation damage model and CpG hypermutation model. It was revealed that these models cannot providemore » a sufficient explanation to the universal mutation bias. Therefore, we resorted to a DNA mutation model proposed by Loewdin 40 years ago, which was based on inter-base double proton transfers (DPT). Since DPT is a fundamental and spontaneous chemical process and occurs much more frequently within GC pairs than AT pairs, Loewdin model offers a common explanation for the observed universal mutation bias and thus has broad biological implications.« less

  4. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  5. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.

    PubMed

    Safdar, Adeel; Khrapko, Konstantin; Flynn, James M; Saleem, Ayesha; De Lisio, Michael; Johnston, Adam P W; Kratysberg, Yevgenya; Samjoo, Imtiaz A; Kitaoka, Yu; Ogborn, Daniel I; Little, Jonathan P; Raha, Sandeep; Parise, Gianni; Akhtar, Mahmood; Hettinga, Bart P; Rowe, Glenn C; Arany, Zoltan; Prolla, Tomas A; Tarnopolsky, Mark A

    2016-01-01

    Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.

  6. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured.

  7. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness

    PubMed Central

    Vincent, Ajoy; Audo, Isabelle; Tavares, Erika; Maynes, Jason T.; Tumber, Anupreet; Wright, Thomas; Li, Shuning; Michiels, Christelle; Banin, Eyal; Bocquet, Beatrice; De Baere, Elfride; Casteels, Ingele; Defoort-Dhellemmes, Sabine; Drumare, Isabelle; Friedburg, Christoph; Gottlob, Irene; Jacobson, Samuel G.; Kellner, Ulrich; Koenekoop, Robert; Kohl, Susanne; Leroy, Bart P.; Lorenz, Birgit; McLean, Rebecca; Meire, Francoise; Meunier, Isabelle; Munier, Francis; de Ravel, Thomy; Reiff, Charlotte M.; Mohand-Saïd, Saddek; Sharon, Dror; Schorderet, Daniel; Schwartz, Sharon; Zanlonghi, Xavier; Condroyer, Christel; MacDonald, Heather; Verdet, Robert; Sahel, José-Alain; Hamel, Christian P.; Zeitz, Christina; Héon, Elise

    2016-01-01

    Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339∗]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339∗]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling. PMID:27063057

  8. Trading Speed and Accuracy by Coding Time: A Coupled-circuit Cortical Model

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2013-01-01

    Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. PMID:23592967

  9. Discriminating between stabilizing and destabilizing protein design mutations via recombination and simulation.

    PubMed

    Johnson, Lucas B; Gintner, Lucas P; Park, Sehoo; Snow, Christopher D

    2015-08-01

    Accuracy of current computational protein design (CPD) methods is limited by inherent approximations in energy potentials and sampling. These limitations are often used to qualitatively explain design failures; however, relatively few studies provide specific examples or quantitative details that can be used to improve future CPD methods. Expanding the design method to include a library of sequences provides data that is well suited for discriminating between stabilizing and destabilizing design elements. Using thermophilic endoglucanase E1 from Acidothermus cellulolyticus as a model enzyme, we computationally designed a sequence with 60 mutations. The design sequence was rationally divided into structural blocks and recombined with the wild-type sequence. Resulting chimeras were assessed for activity and thermostability. Surprisingly, unlike previous chimera libraries, regression analysis based on one- and two-body effects was not sufficient for predicting chimera stability. Analysis of molecular dynamics simulations proved helpful in distinguishing stabilizing and destabilizing mutations. Reverting to the wild-type amino acid at destabilized sites partially regained design stability, and introducing predicted stabilizing mutations in wild-type E1 significantly enhanced thermostability. The ability to isolate stabilizing and destabilizing elements in computational design offers an opportunity to interpret previous design failures and improve future CPD methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Genomic mutation consequence calculator.

    PubMed

    Major, John E

    2007-11-15

    The genomic mutation consequence calculator (GMCC) is a tool that will reliably and quickly calculate the consequence of arbitrary genomic mutations. GMCC also reports supporting annotations for the specified genomic region. The particular strength of the GMCC is it works in genomic space, not simply in spliced transcript space as some similar tools do. Within gene features, GMCC can report on the effects on splice site, UTR and coding regions in all isoforms affected by the mutation. A considerable number of genomic annotations are also reported, including: genomic conservation score, known SNPs, COSMIC mutations, disease associations and others. The manual interface also offers link outs to various external databases and resources. In batch mode, GMCC returns a csv file which can easily be parsed by the end user. GMCC is intended to support the many tumor resequencing efforts, but can be useful to any study investigating genomic mutations.

  11. FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression in Drosophila.

    PubMed

    Miguel, Laetitia; Avequin, Tracey; Pons, Marine; Frébourg, Thierry; Campion, Dominique; Lecourtois, Magalie

    2018-05-17

    TDP-43 is a major disease-causing protein in amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Today, more than 50 missense mutations in the TARDBP/TDP-43 gene have been described in patients with FTLD/ALS. However, the functional consequences of FTLD/ALS-linked TDP-43 mutations are not fully elucidated. In the physiological state, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. In the present study, we investigated whether the FTLD/ALS-associated mutations could interfere with TDP-43 protein's capacity to modulate its own protein levels using Drosophila as an experimental model. Our data show that FTLD/ALS-associated mutant proteins regulate TDP-43 production with the same efficiency as the wild-type form of the protein. Thus, FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression and consequently of the homeostasis of TDP-43 protein levels. Copyright © 2018. Published by Elsevier B.V.

  12. Direct position determination for digital modulation signals based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding

    2018-04-01

    The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.

  13. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  14. Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations

    PubMed Central

    Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.

    2012-01-01

    Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860

  15. Orkambi® and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Ip, Wan; Ouyang, Hong; Villella, Adriana; Miller, John P; Lee, Po-Shun; Kulleperuma, Kethika; Du, Kai; Di Paola, Michelle; Eckford, Paul Dw; Laselva, Onofrio; Huan, Ling Jun; Wellhauser, Leigh; Li, Ellen; Ray, Peter N; Pomès, Régis; Moraes, Theo J; Gonska, Tanja; Ratjen, Felix; Bear, Christine E

    2017-09-01

    The combination therapy of lumacaftor and ivacaftor (Orkambi ® ) is approved for patients bearing the major cystic fibrosis (CF) mutation: ΔF508 It has been predicted that Orkambi ® could treat patients with rarer mutations of similar "theratype"; however, a standardized approach confirming efficacy in these cohorts has not been reported. Here, we demonstrate that patients bearing the rare mutation: c.3700 A>G, causing protein misprocessing and altered channel function-similar to ΔF508-CFTR, are unlikely to yield a robust Orkambi ® response. While  in silico  and biochemical studies confirmed that this mutation could be corrected and potentiated by lumacaftor and ivacaftor, respectively, this combination led to a minor in vitro response in patient-derived tissue. A CRISPR/Cas9-edited bronchial epithelial cell line bearing this mutation enabled studies showing that an "amplifier" compound, effective in increasing the levels of immature CFTR protein, augmented the Orkambi ® response. Importantly, this "amplifier" effect was recapitulated in patient-derived nasal cultures-providing the first evidence for its efficacy in augmenting Orkambi ® in tissues harboring a rare CF-causing mutation. We propose that this multi-disciplinary approach, including creation of CRISPR/Cas9-edited cells to profile modulators together with validation using primary tissue, will facilitate therapy development for patients with rare CF mutations. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  17. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  18. A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex

    PubMed Central

    Peck, J. R.

    1994-01-01

    This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669

  19. Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.

    PubMed

    Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo

    2015-10-01

    To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.

  20. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells.

    PubMed

    Ambrosini, Grazia; Sawle, Ashley D; Musi, Elgilda; Schwartz, Gary K

    2015-10-20

    Uveal melanoma (UM) is an aggressive intraocular malignancy with limited therapeutic options. Both primary and metastatic UM are characterized by oncogenic mutations in the G-protein alpha subunit q and 11. Furthermore, nearly 40% of UM has amplification of the chromosomal arm 8q and monosomy of chromosome 3, with consequent anomalies of MYC copy number. Chromatin regulators have become attractive targets for cancer therapy. In particular, the bromodomain and extra-terminal (BET) inhibitor JQ1 has shown selective inhibition of c-Myc expression with antiproliferative activity in hematopoietic and solid tumors. Here we provide evidence that JQ1 had cytotoxic activity in UM cell lines carrying Gnaq/11 mutations, while in cells without the mutations had little effects. Using microarray analysis, we identified a large subset of genes modulated by JQ1 involved in the regulation of cell cycle, apoptosis and DNA repair. Further analysis of selected genes determined that the concomitant silencing of Bcl-xL and Rad51 represented the minimal requirement to mimic the apoptotic effects of JQ1 in the mutant cells, independently of c-Myc. In addition, administration of JQ1 to mouse xenograft models of Gnaq-mutant UM resulted in significant inhibition of tumor growth.Collectively, our results define BRD4 targeting as a novel therapeutic intervention against UM with Gnaq/Gna11 mutations.

  1. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation

    DOE PAGES

    Zhang, Yinglu; Shan, Chun -Min; Wang, Jiyong; ...

    2017-03-03

    Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid sidemore » chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Lastly, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects.« less

  2. Mutation rate evolution in replicator dynamics.

    PubMed

    Allen, Benjamin; Rosenbloom, Daniel I Scholes

    2012-11-01

    The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.

  3. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.

  4. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy

    PubMed Central

    Li, Amy; Lal, Sean; Bos, J. Martijn; Harris, Samantha P.; van der Velden, Jolanda; Ackerman, Michael J.

    2017-01-01

    The “super-relaxed state” (SRX) of myosin represents a ‘reserve’ of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein–C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations. PMID:28658286

  5. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  6. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    PubMed

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  7. How MAP kinase modules function as robust, yet adaptable, circuits

    PubMed Central

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189

  8. Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands.

    PubMed

    Vincent, John B; Kolozsvari, Debbie; Roberts, Wendy S; Bolton, Patrick F; Gurling, Hugh M D; Scherer, Stephen W

    2004-08-15

    Autism, a childhood neuropsychiatric disorder with a strong genetic component, is currently the focus of considerable attention within the field of human genetics as well many other medical-related disciplines. A recent study has implicated two X-chromosomal neuroligin genes, NLGN3 and NLGN4, as having an etiological role in autism, having identified a frameshift mutation in one gene and a substitution mutation in the other, segregating in multiplex autism spectrum families (Jamain et al. [2003: Nat Genet 34:27-29]). The function of neuroligin as a trigger for synapse formation would suggest that such mutations would likely result in some form of pathological manifestation. Our own study, screening a larger sample of 196 autism probands, failed to identify any mutations that would affect the coding regions of these genes. Our findings suggest that mutations in these two genes are infrequent in autism. Copyright 2004 Wiley-Liss, Inc.

  9. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  10. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification.

    PubMed

    Tan, Hua; Bao, Jiguang; Zhou, Xiaobo

    2012-11-15

    It becomes widely accepted that human cancer is a disease involving dynamic changes in the genome and that the missense mutations constitute the bulk of human genetic variations. A multitude of computational algorithms, especially the machine learning-based ones, has consequently been proposed to distinguish missense changes that contribute to the cancer progression ('driver' mutation) from those that do not ('passenger' mutation). However, the existing methods have multifaceted shortcomings, in the sense that they either adopt incomplete feature space or depend on protein structural databases which are usually far from integrated. In this article, we investigated multiple aspects of a missense mutation and identified a novel feature space that well distinguishes cancer-associated driver mutations from passenger ones. An index (DX score) was proposed to evaluate the discriminating capability of each feature, and a subset of these features which ranks top was selected to build the SVM classifier. Cross-validation showed that the classifier trained on our selected features significantly outperforms the existing ones both in precision and robustness. We applied our method to several datasets of missense mutations culled from published database and literature and obtained more reasonable results than previous studies. The software is available online at http://www.methodisthealth.com/software and https://sites.google.com/site/drivermutationidentification/. xzhou@tmhs.org. Supplementary data are available at Bioinformatics online.

  11. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  12. Comparison of plasma and tissue samples in epidermal growth factor receptor mutation by ARMS in advanced non-small cell lung cancer.

    PubMed

    Ma, MeiLi; Shi, ChunLei; Qian, JiaLin; Teng, JiaJun; Zhong, Hua; Han, BaoHui

    2016-10-10

    The aim of this study was to assess the effectiveness and accuracy of blood-based circulating-free tumor DNA on testing epidermal growth factor receptor (EGFR) gene mutations. In total, 219 non-small cell lung cancer patients in stages III-IV were enrolled into this study. All patients had tissue samples and matched plasma DNA samples. EGFR gene mutations were detected by the Amplification Refractory Mutation System (ARMS). We compared the mutations in tumor tissue samples with matched plasma samples and determined the correlation between EGFR mutation status and clinical pathologic characteristics. The overall concordance rate of EGFR mutation status between the 219 matched plasma and tissue samples was 82% (179/219). The sensitivity and specificity for the ARMS EGFR mutation test in the plasma compared with tumor tissue were 60% (54/90) and 97% (125/129), respectively. The positive predictive value was 93% (54/58) and the negative predictive value was 78% (125/161). The median overall survival was longer for those with EGFR mutations than for those without EGFR mutations both in tissue samples (23.98 vs. 12.16months; P<0.001) and in plasma (19.96 vs. 13.63months; P=0.009). For the 68 patients treated with EGFR- tyrosine kinase inhibitors (TKIs), the median progression-free survival (PFS) was significantly prolonged in the EGFR mutant group compared to the non-mutation group in tumor tissue samples (12.26months vs. 2.40months, P<0.001). In plasma samples, the PFS of the mutant group was longer than that of the non-mutant group. However, there was no significant difference between the two groups (10.88months vs. 9.89months, P=0.411). The detection of EGFR mutations in plasma using ARMS is relatively sensitive and highly specific. However, EGFR mutation status tested by ARMS in plasma cannot replace a tumor tissue biopsy. Positive EGFR mutation results detected in plasma are fairly reliable, but negative results are hampered by a high rate of false negatives

  13. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  14. Effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers.

    PubMed

    Saleh-Gohari, Nasrollah; Khademi Bami, Maryam; Nikbakht, Roya; Karimi-Maleh, Hassan

    2015-07-01

    Thalassaemia is a haemoglobin disorder caused by a reduction in, or a complete absence of, the production of α- or β-globin genes. Detection of β-thalassaemia carriers is the first step in the prenatal diagnosis of the disease and is based primarily on the differences between levels of blood cell indices. Since co-inheritance of β- and α-thalassaemia mutations modulates the haematological parameters of heterozygote β-thalassaemia indices, understanding the influence of this interaction is helpful for identification of disease carriers. To determine the effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers. We used gap-PCR and amplification refractory mutation system techniques to find any α- and/or β-thalassaemia mutations in 270 subjects who were suspected to be thalassaemia carriers. The mean values of the haematological parameters in α, β-thalassaemia and β-thalassaemia carriers were compared. Significant differences in mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and HbA2 were found between the two groups. Patients who were α, β-thalassaemia carriers had higher mean values of MCV and MCH, whereas HbA2 levels were higher in simple β-thalassaemia. No marked differences were found in mean cell haemoglobin (Hb) concentration and Hb blood cell indices. The value of MCV, MCH and HbA2 were significantly different between α,β-thalassaemia and simple β-thalassaemia in men and women, but the mean values of Hb in the two groups differed markedly only in men. We conclude that co-inheritance of α- and β-thalassaemia mutations may result in misdiagnosis of β-thalassaemia carriers. Therefore, in genetic counselling of patients with a near-normal range of blood cell indices the possibility that they may carry α, β-thalassaemia mutations must be considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. AIP mutations and gigantism.

    PubMed

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Mutation screening of Chinese Treacher Collins syndrome patients identified novel TCOF1 mutations.

    PubMed

    Chen, Ying; Guo, Luo; Li, Chen-Long; Shan, Jing; Xu, Hai-Song; Li, Jie-Ying; Sun, Shan; Hao, Shao-Juan; Jin, Lei; Chai, Gang; Zhang, Tian-Yu

    2018-04-01

    Treacher Collins syndrome (TCS) (OMIM 154500) is a rare congenital craniofacial disorder with an autosomal dominant manner of inheritance in most cases. To date, three pathogenic genes (TCOF1, POLR1D and POLR1C) have been identified. In this study, we conducted mutational analysis on Chinese TCS patients to reveal a mutational spectrum of known causative genes and show phenotype-genotype data to provide more information for gene counselling and future studies on the pathogenesis of TCS. Twenty-two TCS patients were recruited from two tertiary referral centres, and Sanger sequencing for the coding exons and exon-intron boundaries of TCOF1, POLR1D and POLR1C was performed. For patients without small variants, further copy number variations (CNVs) analysis was conducted using high-density SNP array platforms. The Sanger sequencing overall mutation detection rate was as high as 86.3% (19/22) for our cohort. Fifteen TCOF1 pathogenic variants, including ten novel mutations, were identified in nineteen patients. No causative mutations in POLR1D and POLR1C genes and no CNVs mutations were detected. A suspected autosomal dominant inheritance case that implies germinal mosaicism was described. Our study confirmed that TCOF1 was the main disease-causing gene for the Chinese TCS population and revealed its mutation spectrum. We also addressed the need for more studies of mosaicism in TCS cases, which could explain the mechanism of autosomal dominant inheritance in TCS cases and benefit the prevention of TCS.

  17. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    PubMed

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  18. HER2 mutations in lung adenocarcinomas: A report from the Lung Cancer Mutation Consortium.

    PubMed

    Pillai, Rathi N; Behera, Madhusmita; Berry, Lynne D; Rossi, Mike R; Kris, Mark G; Johnson, Bruce E; Bunn, Paul A; Ramalingam, Suresh S; Khuri, Fadlo R

    2017-11-01

    Human epidermal growth factor receptor 2 (HER2) mutations have been reported in lung adenocarcinomas. Herein, the authors describe the prevalence, clinical features, and outcomes associated with HER2 mutations in 1007 patients in the Lung Cancer Mutation Consortium (LCMC). Patients with advanced-stage lung adenocarcinomas were enrolled to the LCMC. Tumor specimens were assessed for diagnosis and adequacy; multiplexed genotyping was performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories to examine 10 oncogenic drivers. The LCMC database was queried for patients with HER2 mutations to access demographic data, treatment history, and vital status. An exploratory analysis was performed to evaluate the survival of patients with HER2 mutations who were treated with HER2-directed therapies. A total of 920 patients were tested for HER2 mutations; 24 patients (3%) harbored exon 20 insertion mutations (95% confidence interval, 2%-4%). One patient had a concurrent mesenchymal-epithelial transition factor (MET) amplification. The median age of the patients was 62 years, with a slight predominance of females over males (14 females vs 10 males). The majority of the patients were never-smokers (71%) and presented with advanced disease at the time of diagnosis. The median survival for patients who received HER2-targeted therapies (12 patients) was 2.1 years compared with 1.4 years for those who did not (12 patients) (P = .48). Patients with HER2 mutations were found to have inferior survival compared with the rest of the LCMC cohort with other mutations: the median survival was 3.5 years in the LCMC population receiving targeted therapy and 2.4 years for patients not receiving targeted therapy. HER2 mutations were detected in 3% of patients with lung adenocarcinoma in the LCMC. HER2-directed therapies should be investigated in this subgroup of patients. Cancer 2017;123:4099-4105. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy?

    PubMed

    Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco

    2016-12-01

    Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.

  20. Analysis and implications of mutational variation.

    PubMed

    Keightley, Peter D; Halligan, Daniel L

    2009-06-01

    Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.

  1. MUTATIONS INDUCED BY URBAN AIR AND DRINKING WATER: DO THEY LEAVE A MUTATIONAL SIGNATURE IN HUMAN TUMORS?

    EPA Science Inventory

    Mutations Induced by Urban Air and Drinking Water: Do They Leave a Mutational Signature in Human Tumors?

    Mutation spectra of complex environmental mixtures have been determined thus far only in Salmonella. We have determined mutation spectra for the particulate organics ...

  2. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  3. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  4. Bayesian module identification from multiple noisy networks.

    PubMed

    Zamani Dadaneh, Siamak; Qian, Xiaoning

    2016-12-01

    Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many real-world applications, for example, when analyzing protein-protein interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and missing links between vertices. In this paper, we propose a new model for more robust module identification by taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be strengthened and help improve the solution quality by combining information from various sources. We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to instantaneous module assignments in all the observed networks to capture the underlying modular structure and combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately and robustly identify the underlying modules from multiple noisy networks. Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.

  5. Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load

    PubMed Central

    Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian

    2017-01-01

    Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985

  6. Comparison of next-generation sequencing mutation profiling with BRAF and IDH1 mutation-specific immunohistochemistry.

    PubMed

    Jabbar, Kausar J; Luthra, Rajalakshmi; Patel, Keyur P; Singh, Rajesh R; Goswami, Rashmi; Aldape, Ken D; Medeiros, L Jeffrey; Routbort, Mark J

    2015-04-01

    Mutation-specific antibodies for BRAF V600E and IDH1 R132H offer convenient immunohistochemical (IHC) assays to detect these mutations in tumors. Previous studies using these antibodies have shown high sensitivity and specificity, but use in routine diagnosis with qualitative assessment has not been well studied. In this retrospective study, we reviewed BRAF and IDH1 mutation-specific IHC results compared with separately obtained clinical next-generation sequencing results. For 67 tumors with combined IDH1 IHC and mutation data, IHC was unequivocally reported as positive or negative in all cases. Sensitivity of IHC for IDH1 R132H was 98% and specificity was 100% compared with mutation status. Four IHC-negative samples showed non-R132H IDH1 mutations including R132C, R132G, and P127T. For 128 tumors with combined BRAF IHC and mutation data, IHC was positive in 33, negative in 82, and equivocal in 13 tumors. The sensitivity of IHC was 97% and specificity was 99% when including only unequivocally positive or negative results. If equivocal IHC cases were included in the analysis as negative, sensitivity fell to 81%. If equivocal cases were classified as positive, specificity dropped to 91%. Eight IHC-negative samples showed non-V600E BRAF mutations including V600K, N581I, V600M, and K601E. We conclude that IHC for BRAF V600E and IDH1 R132H is relatively sensitive and specific, but there is a discordance rate that is not trivial. In addition, a significant proportion of patients harbor BRAF non-V600E or IDH1 non-R132H mutations not detectable by IHC, potentially limiting utility of IHC screening for BRAF and IDH1 mutations.

  7. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    PubMed

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  8. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    PubMed Central

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  9. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  10. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    PubMed

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  11. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing.

    PubMed

    Stattin, Eva-Lena; Boström, Ida Maria; Winbo, Annika; Cederquist, Kristina; Jonasson, Jenni; Jonsson, Björn-Anders; Diamant, Ulla-Britt; Jensen, Steen M; Rydberg, Annika; Norberg, Anna

    2012-10-25

    Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort. Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT). In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected cases (8%) harboured a mutation in the

  12. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor.

    PubMed

    Dong, Chongmei; Vincent, Kate; Sharp, Peter

    2009-12-04

    TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here

  13. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment.

    PubMed

    Ashraf, Shazia; Kudo, Hiroki; Rao, Jia; Kikuchi, Atsuo; Widmeier, Eugen; Lawson, Jennifer A; Tan, Weizhen; Hermle, Tobias; Warejko, Jillian K; Shril, Shirlee; Airik, Merlin; Jobst-Schwan, Tilman; Lovric, Svjetlana; Braun, Daniela A; Gee, Heon Yung; Schapiro, David; Majmundar, Amar J; Sadowski, Carolin E; Pabst, Werner L; Daga, Ankana; van der Ven, Amelie T; Schmidt, Johanna M; Low, Boon Chuan; Gupta, Anjali Bansal; Tripathi, Brajendra K; Wong, Jenny; Campbell, Kirk; Metcalfe, Kay; Schanze, Denny; Niihori, Tetsuya; Kaito, Hiroshi; Nozu, Kandai; Tsukaguchi, Hiroyasu; Tanaka, Ryojiro; Hamahira, Kiyoshi; Kobayashi, Yasuko; Takizawa, Takumi; Funayama, Ryo; Nakayama, Keiko; Aoki, Yoko; Kumagai, Naonori; Iijima, Kazumoto; Fehrenbach, Henry; Kari, Jameela A; El Desoky, Sherif; Jalalah, Sawsan; Bogdanovic, Radovan; Stajić, Nataša; Zappel, Hildegard; Rakhmetova, Assel; Wassmer, Sharon-Rose; Jungraithmayr, Therese; Strehlau, Juergen; Kumar, Aravind Selvin; Bagga, Arvind; Soliman, Neveen A; Mane, Shrikant M; Kaufman, Lewis; Lowy, Douglas R; Jairajpuri, Mohamad A; Lifton, Richard P; Pei, York; Zenker, Martin; Kure, Shigeo; Hildebrandt, Friedhelm

    2018-05-17

    No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.

  14. Characterization of novel StAR (steroidogenic acute regulatory protein) mutations causing non-classic lipoid adrenal hyperplasia.

    PubMed

    Flück, Christa E; Pandey, Amit V; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E; Audi, Laura

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.

  15. Characterization of Novel StAR (Steroidogenic Acute Regulatory Protein) Mutations Causing Non-Classic Lipoid Adrenal Hyperplasia

    PubMed Central

    Flück, Christa E.; Pandey, Amit V.; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E.; Audi, Laura

    2011-01-01

    Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed. PMID:21647419

  16. Somatic mutation dynamics in MDS patients treated with azacitidine indicate clonal selection in patients-responders

    PubMed Central

    Polgarova, Kamila; Vargova, Karina; Kulvait, Vojtech; Dusilkova, Nina; Minarik, Lubomir; Zemanova, Zuzana; Pesta, Michal; Jonasova, Anna; Stopka, Tomas

    2017-01-01

    Azacitidine (AZA) for higher risk MDS patients is a standard therapy with limited durability. To monitor mutation dynamics during AZA therapy we utilized massive parallel sequencing of 54 genes previously associated with MDS/AML pathogenesis. Serial sampling before and during AZA therapy of 38 patients (reaching median overall survival 24 months (Mo) with 60% clinical responses) identified 116 somatic pathogenic variants with allele frequency (VAF) exceeding 5%. High accuracy of data was achieved via duplicate libraries from myeloid cells and T-cell controls. We observed that nearly half of the variants were stable while other variants were highly dynamic. Patients with marked decrease of allelic burden upon AZA therapy achieved clinical responses. In contrast, early-progressing patients on AZA displayed minimal changes of the mutation pattern. We modeled the VAF dynamics on AZA and utilized a joint model for the overall survival and response duration. While the presence of certain variants associated with clinical outcomes, such as the mutations of CDKN2A were adverse predictors while KDM6A mutations yield lower risk of dying, the data also indicate that allelic burden volatility represents additional important prognostic variable. In addition, preceding 5q- syndrome represents strong positive predictor of longer overall survival and response duration in high risk MDS patients treated with AZA. In conclusion, variants dynamics detected via serial sampling represents another parameter to consider when evaluating AZA efficacy and predicting outcome. PMID:29340104

  17. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations

    PubMed Central

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients. PMID:27416070

  18. Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system.

    PubMed

    Aung, Kyaw L; Donald, Emma; Ellison, Gillian; Bujac, Sarah; Fletcher, Lynn; Cantarini, Mireille; Brady, Ged; Orr, Maria; Clack, Glen; Ranson, Malcolm; Dive, Caroline; Hughes, Andrew

    2014-05-01

    BRAF mutation testing from circulating free DNA (cfDNA) using the amplification refractory mutation testing system (ARMS) holds potential as a surrogate for tumor mutation testing. Robust assay validation is needed to establish the optimal clinical matrix for measurement and cfDNA-specific mutation calling criteria. Plasma- and serum-derived cfDNA samples from 221 advanced melanoma patients were analyzed for BRAF c.1799T>A (p.V600E) mutation using ARMS in two stages in a blinded fashion. cfDNA-specific mutation calling criteria were defined in stage 1 and validated in stage 2. cfDNA concentrations in serum and plasma, and the sensitivities and specificities of BRAF mutation detection in these two clinical matrices were compared. Sensitivity of BRAF c.1799T>A (p.V600E) mutation detection in cfDNA was increased by using mutation calling criteria optimized for cfDNA (these criteria were adjusted from those used for archival tumor biopsies) without compromising specificity. Sensitivity of BRAF mutation detection in serum was 44% (95% CI, 35% to 53%) and in plasma 52% (95% CI, 43% to 61%). Specificity was 96% (95% CI, 90% to 99%) in both matrices. Serum contains significantly higher total cfDNA than plasma, whereas the proportion of tumor-derived mutant DNA was significantly higher in plasma. Using mutation calling criteria optimized for cfDNA improves sensitivity of BRAF c.1799T>A (p.V600E) mutation detection. The proportion of tumor-derived cfDNA in plasma was significantly higher than in serum. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. SU-E-T-97: Dependence Of Optically Stimulated Luminescent Dosimeter (OSLD) Out Of Field Response On Volumetric Modulated Arc Therapy (VMAT) Field Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ware, S; Clouser, E

    2014-06-01

    Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less

  20. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  1. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    PubMed

    Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L

    2018-05-01

    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.

  2. Molecular Dynamics Study of HIV-1 RT-DNA-Nevirapine Complexes Explains NNRTI Inhibition, and Resistance by Connection Mutations

    PubMed Central

    Vijayan, R.S.K.; Arnold, Eddy; Das, Kalyan

    2015-01-01

    HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and nonnucleoside inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of the highly active antiretroviral therapy (HAART) regimen. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns MD simulations, followed by essential dynamics, free-energy landscape analyses and network analyses of RT-DNA, RT-DNA-nevirapine, and N348I/T369I mutant RT-DNA-nevirapine complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon nevirapine binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-nevirapine complex suggesting enhanced rigidity of RT upon nevirapine binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. PMID:24174331

  3. Molecular dynamics study of HIV-1 RT-DNA-nevirapine complexes explains NNRTI inhibition and resistance by connection mutations.

    PubMed

    Vijayan, R S K; Arnold, Eddy; Das, Kalyan

    2014-05-01

    HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of several highly active antiretroviral therapy regimens. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns molecular dynamics (MD) simulations, followed by essential dynamics, free-energy landscape analyses, and network analyses of RT-DNA, RT-DNA-nevirapine (NVP), and N348I/T369I mutant RT-DNA-NVP complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon NVP binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-NVP complex suggesting enhanced rigidity of RT upon NVP binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. Copyright © 2013 Wiley Periodicals, Inc.

  4. Familial Mediterranean fever with a single MEFV mutation: comparison of rare and common mutations in a Turkish paediatric cohort.

    PubMed

    Soylemezoglu, Oguz; Kandur, Yasar; Duzova, Ali; Ozkaya, Ozan; Kasapcopur, Ozgür; Baskin, Esra; Fidan, Kibriya; Yalcinkaya, Fatos

    2015-01-01

    Presence of common MEFV gene mutations strengthened the diagnosis of FMF in addition to the typical clinical characteristics of FMF. However, there are also rare mutations. P369S, A744S, R761H, K695R, F479L are the main rare mutations in Turkish population. We aimed to evaluate FMF patients with a single allele MEFV mutation and to compare patients with common and rare mutations. We retrospectively reviewed the medical records of FMF patients with a single allele mutation who were followed up between 2008 and 2013 in six centres. We compared the patients with rare and common mutations for disease severity score, frequent exacerbations ( >1 attack per month), long attack period (>3 day), symptoms, age at the onset of symptoms, gender, consanguinity, and family history. Two hundred and seventeen patients (M/F=101/116) with the diagnosis of FMF and single mutation were included. Heterozygote mutations were defined as common (M694V, V726A, M68OI) and rare mutations (A744S, P369S, K695R, R761H, F479L). Sixty-seven patients (27 males, 40 females) had one single rare mutation and 150 (74 males, 76 females) had one single common mutation. No difference was found between the rare and common mutations with respect to the disease severity score. There was no significant difference between common and rare heterozygote form of mutations in terms of disease severity. Patients with typical characteristics of FMF, with some rare mutations (A744S, P369S) should be treated in the same manner as patients with a common mutation.

  5. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    PubMed

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  6. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    PubMed

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the

  7. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  8. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  9. Determining Mutation Rates in Bacterial Populations

    PubMed Central

    Rosche, William A.; Foster, Patricia L.

    2010-01-01

    When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. PMID:10610800

  10. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness

    PubMed Central

    Bershtein, Shimon; Mu, Wanmeng; Serohijos, Adrian W. R.; Zhou, Jingwen; Shakhnovich, Eugene I.

    2012-01-01

    Summary What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli’s gene encoding dihydrofolate reductase (DHFR), and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: Over-expression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding and degradation orchestrated by PQC through the interaction with folding intermediates. PMID:23219534

  12. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations.

    PubMed

    Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A

    2014-07-01

    X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.

  13. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  14. Parkinsonism Associated with Glucocerebrosidase Mutation

    PubMed Central

    Sunwoo, Mun-Kyung; Kim, Seung-Min; Lee, Sarah

    2011-01-01

    Background Gaucher's disease is an autosomal recessive, lysosomal storage disease caused by mutations of the β-glucocerebrosidase gene (GBA). There is increasing evidence that GBA mutations are a genetic risk factor for the development of Parkinson's disease (PD). We report herein a family of Koreans exhibiting parkinsonism-associated GBA mutations. Case Report A 44-year-old woman suffering from slowness and paresthesia of the left arm for the previous 1.5years, visited our hospital to manage known invasive ductal carcinoma. During a preoperative evaluation, she was diagnosed with Gaucher's disease and double mutations of S271G and R359X in GBA. Parkinsonian features including low amplitude postural tremors, rigidity, bradykinesia and shuffling gait were observed. Genetic analysis also revealed that her older sister, who had also been diagnosed with PD and had been taking dopaminergic drugs for 8-years, also possessed a heterozygote R359X mutation in GBA. 18F-fluoropropylcarbomethoxyiodophenylnortropane positron-emission tomography in these patients revealed decreased uptake of dopamine transporter in the posterior portion of the bilateral putamen. Conclusions This case study demonstrates Korean familial cases of PD with heterozygote mutation of GBA, further supporting the association between PD and GBA mutation. PMID:21779299

  15. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience

    PubMed Central

    Dias-Santagata, Dora; Wistuba, Ignacio I.; Chen, Heidi; Fujimoto, Junya; Kugler, Kelly; Franklin, Wilbur A.; Iafrate, A. John; Ladanyi, Marc; Kris, Mark G.; Johnson, Bruce E.; Bunn, Paul A.; Minna, John D.; Kwiatkowski, David J.

    2015-01-01

    Introduction Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented. Methods Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions. Results 1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET. Conclusion Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations. PMID:25738220

  16. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    PubMed

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (<2%) of IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  17. The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics

    PubMed Central

    Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.

    2014-01-01

    Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900

  18. Mutations to the Formin Homology 2 Domain of INF2 Protein Have Unexpected Effects on Actin Polymerization and Severing*

    PubMed Central

    Ramabhadran, Vinay; Gurel, Pinar S.; Higgs, Henry N.

    2012-01-01

    INF2 (inverted formin 2) is a formin protein with unusual biochemical characteristics. As with other formins, the formin homology 2 (FH2) domain of INF2 accelerates actin filament assembly and remains at the barbed end, modulating elongation. The unique feature of INF2 is its ability to sever filaments and enhance depolymerization, which requires the C-terminal region. Physiologically, INF2 acts in the secretory pathway and is mutated in two human diseases, focal and segmental glomerulosclerosis and Charcot-Marie-Tooth disease. In this study, we investigate the effects of mutating two FH2 residues found to be key in other formins: Ile-643 and Lys-792. Surprisingly, neither mutation abolishes barbed end binding, as judged by pyrene-actin and total internal reflection (TIRF) microscopy elongation assays. The I643A mutation causes tight capping of a subset of filaments, whereas K792A causes slow elongation of all filaments. The I643A mutation has a minor inhibitory effect on polymerization activity but causes almost complete abolition of severing and depolymerization activity. The K792A mutation has relatively small effects on polymerization, severing, and depolymerization. In cells, the K792A mutant causes actin accumulation around the endoplasmic reticulum to a similar extent as wild type, whereas the I643A mutant causes no measurable polymerization. The inability of I643A to induce actin polymerization in cells is explained by its inability to promote robust actin polymerization in the presence of capping protein. These results highlight an important point: it is dangerous to assume that mutation of conserved FH2 residues will have equivalent effects in all formins. The work also suggests that both mutations have effects on the mechanism of processive elongation. PMID:22879592

  19. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    PubMed

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding*

    PubMed Central

    Moritz, Amy E.; Foster, James D.; Gorentla, Balachandra K.; Mazei-Robison, Michelle S.; Yang, Jae-Won; Sitte, Harald H.; Blakely, Randy D.; Vaughan, Roxanne A.

    2013-01-01

    As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (−)-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

  1. Rare beneficial mutations can halt Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  2. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    PubMed Central

    2010-01-01

    Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064

  3. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  4. Timing, rates and spectra of human germline mutation.

    PubMed

    Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E

    2016-02-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.

  5. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  6. Structural basis for alcohol modulation of a pentameric ligand-gated ion channel

    PubMed Central

    Howard, Rebecca J.; Murail, Samuel; Ondricek, Kathryn E.; Corringer, Pierre-Jean; Lindahl, Erik; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Despite its long history of use and abuse in human culture, the molecular basis for alcohol action in the brain is poorly understood. The recent determination of the atomic-scale structure of GLIC, a prokaryotic member of the pentameric ligand-gated ion channel (pLGIC) family, provides a unique opportunity to characterize the structural basis for modulation of these channels, many of which are alcohol targets in brain. We observed that GLIC recapitulates bimodal modulation by n-alcohols, similar to some eukaryotic pLGICs: methanol and ethanol weakly potentiated proton-activated currents in GLIC, whereas n-alcohols larger than ethanol inhibited them. Mapping of residues important to alcohol modulation of ionotropic receptors for glycine, γ-aminobutyric acid, and acetylcholine onto GLIC revealed their proximity to transmembrane cavities that may accommodate one or more alcohol molecules. Site-directed mutations in the pore-lining M2 helix allowed the identification of four residues that influence alcohol potentiation, with the direction of their effects reflecting α-helical structure. At one of the potentiation-enhancing residues, decreased side chain volume converted GLIC into a highly ethanol-sensitive channel, comparable to its eukaryotic relatives. Covalent labeling of M2 positions with an alcohol analog, a methanethiosulfonate reagent, further implicated residues at the extracellular end of the helix in alcohol binding. Molecular dynamics simulations elucidated the structural consequences of a potentiation-enhancing mutation and suggested a structural mechanism for alcohol potentiation via interaction with a transmembrane cavity previously termed the “linking tunnel.” These results provide a unique structural model for independent potentiating and inhibitory interactions of n-alcohols with a pLGIC family member. PMID:21730162

  7. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis.

    PubMed

    McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel

    2013-01-01

    Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

  8. Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation

    PubMed Central

    Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus

    2012-01-01

    An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458

  9. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  11. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  12. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR.

    PubMed

    Gruber, Aurélia; Pacault, Mathilde; El Khattabi, Laila Allach; Vaucouleur, Nicolas; Orhant, Lucie; Bienvenu, Thierry; Girodon, Emmanuelle; Vidaud, Dominique; Leturcq, France; Costa, Catherine; Letourneur, Franck; Anselem, Olivia; Tsatsaris, Vassilis; Goffinet, François; Viot, Géraldine; Vidaud, Michel; Nectoux, Juliette

    2018-04-25

    To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.

  13. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, Erik A.

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  14. Epilepsy caused by CDKL5 mutations.

    PubMed

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples.

    PubMed

    Díaz-Gay, Marcos; Vila-Casadesús, Maria; Franch-Expósito, Sebastià; Hernández-Illán, Eva; Lozano, Juan José; Castellví-Bel, Sergi

    2018-06-14

    Mutational signatures have been proved as a valuable pattern in somatic genomics, mainly regarding cancer, with a potential application as a biomarker in clinical practice. Up to now, several bioinformatic packages to address this topic have been developed in different languages/platforms. MutationalPatterns has arisen as the most efficient tool for the comparison with the signatures currently reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. However, the analysis of mutational signatures is nowadays restricted to a small community of bioinformatic experts. In this work we present Mutational Signatures in Cancer (MuSiCa), a new web tool based on MutationalPatterns and built using the Shiny framework in R language. By means of a simple interface suited to non-specialized researchers, it provides a comprehensive analysis of the somatic mutational status of the supplied cancer samples. It permits characterizing the profile and burden of mutations, as well as quantifying COSMIC-reported mutational signatures. It also allows classifying samples according to the above signature contributions. MuSiCa is a helpful web application to characterize mutational signatures in cancer samples. It is accessible online at http://bioinfo.ciberehd.org/GPtoCRC/en/tools.html and source code is freely available at https://github.com/marcos-diazg/musica .

  16. Mutation induction by heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  17. Plasma epidermal growth factor receptor mutation testing with a chip-based digital PCR system in patients with advanced non-small cell lung cancer.

    PubMed

    Kasahara, Norimitsu; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Umehara, Rina; Ono, Akira; Hisamatsu, Yasushi; Wakuda, Kazushige; Omori, Shota; Nakashima, Kazuhisa; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Koh, Yasuhiro; Mori, Keita; Endo, Masahiro; Nakajima, Takashi; Yamada, Masanobu; Kusuhara, Masatoshi; Takahashi, Toshiaki

    2017-04-01

    Epidermal growth factor receptor (EGFR) mutation testing is a companion diagnostic to determine eligibility for treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). Recently, plasma-based EGFR testing by digital polymerase chain reaction (dPCR), which enables accurate quantification of target DNA, has shown promise as a minimally invasive diagnostic. Here, we aimed to evaluate the accuracy of a plasma-based EGFR mutation test developed using chip-based dPCR-based detection of 3 EGFR mutations (exon 19 deletions, L858R in exon 21, and T790M in exon 20). Forty-nine patients with NSCLC harboring EGFR-activating mutations were enrolled, and circulating free DNAs (cfDNAs) were extracted from the plasma of 21 and 28 patients before treatment and after progression following EGFR-TKI treatment, respectively. Using reference genomic DNA containing each mutation, the detection limit of each assay was determined to be 0.1%. The sensitivity and specificity of detecting exon 19 deletions and L858R mutations, calculated by comparing the mutation status in the corresponding tumors, were 70.6% and 93.3%, and 66.7% and 100%, respectively, showing similar results compared with previous studies. T790M was detected in 43% of 28 cfDNAs after progression with EGFR-TKI treatment, but in no cfDNAs before the start of the treatment. This chip-based dPCR assay can facilitate detection of EGFR mutations in cfDNA as a minimally invasive method in clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DNA Mutations Mediate Microevolution between Host-Adapted Forms of the Pathogenic Fungus Cryptococcus neoformans

    PubMed Central

    Magditch, Denise A.; Liu, Tong-Bao; Xue, Chaoyang; Idnurm, Alexander

    2012-01-01

    The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease. PMID:23055925

  19. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    PubMed

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic

  20. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling

    PubMed Central

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic