Sample records for accuracy motion estimation

  1. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.

    PubMed

    Zheng, Ran; Maraj, Brian K V

    2018-04-27

    In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.

  2. Myocardial motion estimation of tagged cardiac magnetic resonance images using tag motion constraints and multi-level b-splines interpolation.

    PubMed

    Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng

    2016-05-01

    Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Respiratory motion estimation in x-ray angiography for improved guidance during coronary interventions

    NASA Astrophysics Data System (ADS)

    Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.

    2015-05-01

    During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).

  4. Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki

    2018-07-01

    Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.

  5. VO2 estimation using 6-axis motion sensor with sports activity classification.

    PubMed

    Nagata, Takashi; Nakamura, Naoteru; Miyatake, Masato; Yuuki, Akira; Yomo, Hiroyuki; Kawabata, Takashi; Hara, Shinsuke

    2016-08-01

    In this paper, we focus on oxygen consumption (VO2) estimation using 6-axis motion sensor (3-axis accelerometer and 3-axis gyroscope) for people playing sports with diverse intensities. The VO2 estimated with a small motion sensor can be used to calculate the energy expenditure, however, its accuracy depends on the intensities of various types of activities. In order to achieve high accuracy over a wide range of intensities, we employ an estimation framework that first classifies activities with a simple machine-learning based classification algorithm. We prepare different coefficients of linear regression model for different types of activities, which are determined with training data obtained by experiments. The best-suited model is used for each type of activity when VO2 is estimated. The accuracy of the employed framework depends on the trade-off between the degradation due to classification errors and improvement brought by applying separate, optimum model to VO2 estimation. Taking this trade-off into account, we evaluate the accuracy of the employed estimation framework by using a set of experimental data consisting of VO2 and motion data of people with a wide range of intensities of exercises, which were measured by a VO2 meter and motion sensor, respectively. Our numerical results show that the employed framework can improve the estimation accuracy in comparison to a reference method that uses a common regression model for all types of activities.

  6. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, T; Bamber, J; Harris, E

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion would also be prudent. This work is support by Cancer Research UK Programme Grant C33589/A19727.« less

  7. Motion direction estimation based on active RFID with changing environment

    NASA Astrophysics Data System (ADS)

    Jie, Wu; Minghua, Zhu; Wei, He

    2018-05-01

    The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.

  8. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  9. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  10. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  11. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    PubMed

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  12. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less

  13. Improved frame-based estimation of head motion in PET brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less

  14. Improved frame-based estimation of head motion in PET brain imaging

    PubMed Central

    Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355

  15. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  16. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    PubMed Central

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146

  17. A novel Bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions.

    PubMed

    Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P

    2013-05-01

    In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  19. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder internal rotation, and elbow flexion. However, digital photography was only more precise than goniometry for measurements of elbow flexion. Overall digital photography shows equivalent accuracy to visual estimation and goniometry, but with higher precision than visual estimation. Copyright © 2017. Published by Elsevier B.V.

  20. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  1. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their full potential in capturing clinical outcomes. PMID:25811838

  2. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  3. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  4. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.

  5. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  6. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  7. A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements.

    PubMed

    Tannous, Halim; Istrate, Dan; Benlarbi-Delai, Aziz; Sarrazin, Julien; Gamet, Didier; Ho Ba Tho, Marie Christine; Dao, Tien Tuan

    2016-11-15

    Exergames have been proposed as a potential tool to improve the current practice of musculoskeletal rehabilitation. Inertial or optical motion capture sensors are commonly used to track the subject's movements. However, the use of these motion capture tools suffers from the lack of accuracy in estimating joint angles, which could lead to wrong data interpretation. In this study, we proposed a real time quaternion-based fusion scheme, based on the extended Kalman filter, between inertial and visual motion capture sensors, to improve the estimation accuracy of joint angles. The fusion outcome was compared to angles measured using a goniometer. The fusion output shows a better estimation, when compared to inertial measurement units and Kinect outputs. We noted a smaller error (3.96°) compared to the one obtained using inertial sensors (5.04°). The proposed multi-sensor fusion system is therefore accurate enough to be applied, in future works, to our serious game for musculoskeletal rehabilitation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myronakis, M; Cai, W; Dhou, S

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumormore » motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to acknowledge funding from MRA, VARIAN Medical Systems, Inc.« less

  9. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  10. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  11. Motion vector field upsampling for improved 4D cone-beam CT motion compensation of the thorax

    NASA Astrophysics Data System (ADS)

    Sauppe, Sebastian; Rank, Christopher M.; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2017-03-01

    To improve the accuracy of motion vector fields (MVFs) required for respiratory motion compensated (MoCo) CT image reconstruction without increasing the computational complexity of the MVF estimation approach, we propose a MVF upsampling method that is able to reduce the motion blurring in reconstructed 4D images. While respiratory gating improves the temporal resolution, it leads to sparse view sampling artifacts. MoCo image reconstruction has the potential to remove all motion artifacts while simultaneously making use of 100% of the rawdata. However the MVF accuracy is still below the temporal resolution of the CBCT data acquisition. Increasing the number of motion bins would increase reconstruction time and amplify sparse view artifacts, but not necessarily the accuracy of MVF. Therefore we propose a new method to upsample estimated MVFs and use those for MoCo. To estimate the MVFs, a modified version of the Demons algorithm is used. Our proposed method is able to interpolate the original MVFs up to a factor that each projection has its own individual MVF. To validate the method we use an artificially deformed clinical CT scan, with a breathing pattern of a real patient, and patient data acquired with a TrueBeamTM4D CBCT system (Varian Medical Systems). We evaluate our method for different numbers of respiratory bins, each again with different upsampling factors. Employing our upsampling method, motion blurring in the reconstructed 4D images, induced by irregular breathing and the limited temporal resolution of phase-correlated images, is substantially reduced.

  12. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  13. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  14. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  15. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  16. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  17. 4D ultrasound speckle tracking of intra-fraction prostate motion: a phantom-based comparison with x-ray fiducial tracking using CyberKnife

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan P.; Garcia, Leo J.; Rosser, Karen E.; Harris, Emma J.; Evans, Philip M.; Bamber, Jeffrey C.

    2014-04-01

    This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (˜2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.

  18. Accuracy of System Step Response Roll Magnitude Estimation from Central and Peripheral Visual Displays and Simulator Cockpit Motion

    NASA Technical Reports Server (NTRS)

    Hosman, R. J. A. W.; Vandervaart, J. C.

    1984-01-01

    An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.

  19. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  20. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  1. Direction-dependent regularization for improved estimation of liver and lung motion in 4D image data

    NASA Astrophysics Data System (ADS)

    Schmidt-Richberg, Alexander; Ehrhardt, Jan; Werner, René; Handels, Heinz

    2010-03-01

    The estimation of respiratory motion is a fundamental requisite for many applications in the field of 4D medical imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done using non-linear registration of time frames of the sequence without further modelling of physiological motion properties. In this context, the accurate calculation of liver und lung motion is especially challenging because the organs are slipping along the surrounding tissue (i.e. the rib cage) during the respiratory cycle, which leads to discontinuities in the motion field. Without incorporating this specific physiological characteristic, common smoothing mechanisms cause an incorrect estimation along the object borders. In this paper, we present an extended diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while preventing gaps and ensuring smooth motion fields inside. We evaluate our model for the estimation of lung and liver motion on the basis of publicly accessible 4D CT and 4D MRI data. The results show a considerable increase of registration accuracy with respect to the target registration error and a more plausible motion estimation.

  2. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    PubMed

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be the best option for accurate estimation of dual R&C motion in clinical situation. © 2018 American Association of Physicists in Medicine.

  3. Poster - Thur Eve - 11: A realistic respiratory trace generator and its application to respiratory management techniques.

    PubMed

    Quirk, S; Becker, N; Smith, W L

    2012-07-01

    Respiratory motion complicates radiotherapy treatment of thoracic and abdominal tumours. Simplified respiratory motions such as sinusoidal and single patient traces are often used to determine the impact of motion on respiratory management techniques in radiotherapy. Such simplifications only accurately model a small portion of patients, as most patients exhibit variability and irregularity beyond these models. We have preformed a comprehensive analysis of respiratory motion and developed a software tool that allows for explicit inclusion of variability. We utilize our realistic respiratory generator to customize respiratory traces to test the robustness of the estimate of internal gross target volumes (IGTV) by 4DCT and CBCT. We confirmed that good agreement is found between 4DCT and CBCT for regular breathing motion. When amplitude variability was introduced the accuracy of the estimate slightly, but the absolute differences were still < 3 mm for both modalities. Poor agreement was shown with the addition of baseline drifts. Both modalities were found to underestimate the IGTV by as much as 30% for 4DCT and 25% for CBCT. Both large and small drifts deteriorated the estimate accuracy. The respiratory trace generator was advantageous for examining the difference between 4DCT and CBCT IGTV estimation under variable motions. It provided useful implementation abilities to test specific attributes of respiratory motion and detected issues that were not seen with the regular motion studies. This is just one example of how the respiratory trace generator can be utilized to test applications of respiratory management techniques. © 2012 American Association of Physicists in Medicine.

  4. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  5. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    PubMed Central

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the Neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  6. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  7. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.

    PubMed

    Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W

    2017-05-01

    A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r 2  > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.

  8. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  9. Optimal full motion video registration with rigorous error propagation

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn

    2014-06-01

    Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.

  10. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  11. Motion Correction in PROPELLER and Turboprop-MRI

    PubMed Central

    Tamhane, Ashish A.; Arfanakis, Konstantinos

    2009-01-01

    PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858

  12. 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling.

    PubMed

    Yang, Deshan; Lu, Wei; Low, Daniel A; Deasy, Joseph O; Hope, Andrew J; El Naqa, Issam

    2008-10-01

    Four-dimensional computed tomography (4D-CT) imaging technology has been developed for radiation therapy to provide tumor and organ images at the different breathing phases. In this work, a procedure is proposed for estimating and modeling the respiratory motion field from acquired 4D-CT imaging data and predicting tissue motion at the different breathing phases. The 4D-CT image data consist of series of multislice CT volume segments acquired in ciné mode. A modified optical flow deformable image registration algorithm is used to compute the image motion from the CT segments to a common full volume 3D-CT reference. This reference volume is reconstructed using the acquired 4D-CT data at the end-of-exhalation phase. The segments are optimally aligned to the reference volume according to a proposed a priori alignment procedure. The registration is applied using a multigrid approach and a feature-preserving image downsampling maxfilter to achieve better computational speed and higher registration accuracy. The registration accuracy is about 1.1 +/- 0.8 mm for the lung region according to our verification using manually selected landmarks and artificially deformed CT volumes. The estimated motion fields are fitted to two 5D (spatial 3D+tidal volume+airflow rate) motion models: forward model and inverse model. The forward model predicts tissue movements and the inverse model predicts CT density changes as a function of tidal volume and airflow rate. A leave-one-out procedure is used to validate these motion models. The estimated modeling prediction errors are about 0.3 mm for the forward model and 0.4 mm for the inverse model.

  13. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  14. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  15. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  16. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  17. Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI.

    PubMed

    Tamhane, Ashish A; Arfanakis, Konstantinos

    2009-07-01

    Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.

  18. A revised ground-motion and intensity interpolation scheme for shakemap

    USGS Publications Warehouse

    Worden, C.B.; Wald, D.J.; Allen, T.I.; Lin, K.; Garcia, D.; Cua, G.

    2010-01-01

    We describe a weighted-average approach for incorporating various types of data (observed peak ground motions and intensities and estimates from groundmotion prediction equations) into the ShakeMap ground motion and intensity mapping framework. This approach represents a fundamental revision of our existing ShakeMap methodology. In addition, the increased availability of near-real-time macroseismic intensity data, the development of newrelationships between intensity and peak ground motions, and new relationships to directly predict intensity from earthquake source information have facilitated the inclusion of intensity measurements directly into ShakeMap computations. Our approach allows for the combination of (1) direct observations (ground-motion measurements or reported intensities), (2) observations converted from intensity to ground motion (or vice versa), and (3) estimated ground motions and intensities from prediction equations or numerical models. Critically, each of the aforementioned data types must include an estimate of its uncertainties, including those caused by scaling the influence of observations to surrounding grid points and those associated with estimates given an unknown fault geometry. The ShakeMap ground-motion and intensity estimates are an uncertainty-weighted combination of these various data and estimates. A natural by-product of this interpolation process is an estimate of total uncertainty at each point on the map, which can be vital for comprehensive inventory loss calculations. We perform a number of tests to validate this new methodology and find that it produces a substantial improvement in the accuracy of ground-motion predictions over empirical prediction equations alone.

  19. 2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration.

    PubMed

    Chakraborty, Bidisha; Liu, Zhi; Heyde, Brecht; Luo, Jianwen; D'hooge, Jan

    2018-06-01

    Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching (BM) on the underlying radio frequency (RF) data in order to increase sensitivity to small interframe motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, nonrigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this paper was, therefore, to develop an NRIR motion estimator adapted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state-of-the-art BM solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy, particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in vivo.

  20. FPGA-based architecture for motion recovering in real-time

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  1. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  2. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  3. Research of small bodies motion prognosis effectivity on cluster "Skif Cyberia". (Russian Title: Исследование эффективности прогнозирования движения малых тел Солнечной системы на кластере "Skif Cyberia")

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.

    2010-12-01

    The results of the experimental estimations on cluster "Skif Cyberia" of Everhart's numerical integration accuracy and rapidness are presented. The integration has been carried out for celestial bodies' equations of motion such as N-body problem equations and perturbed two-body problem equations. In the last case the perturbing bodies' coordinates are being taked during calculations from the ephemeris DE406. The accuracy and rapidness estimations have been made by means of forward and backward integrations with various values of Everhart method parameters of motion equations of the short-periodic comet Herschel-Rigollet. The optimal combinations of these parameters have been obtained. The research has been made both for 16-digit decimal accuracy and for 34-digit one.

  4. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415

  5. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  6. Humans Optimize Decision-Making by Delaying Decision Onset

    PubMed Central

    Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack

    2014-01-01

    Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295

  7. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  8. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-07

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  9. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  10. Restoration of motion blurred images

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  11. Modeling human perception and estimation of kinematic responses during aircraft landing

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Silk, Anthony B.

    1988-01-01

    The thrust of this research is to determine estimation accuracy of aircraft responses based on observed cues. By developing the geometric relationships between the outside visual scene and the kinematics during landing, visual and kinesthetic cues available to the pilot were modeled. Both fovial and peripheral vision was examined. The objective was to first determine estimation accuracy in a variety of flight conditions, and second to ascertain which parameters are most important and lead to the best achievable accuracy in estimating the actual vehicle response. It was found that altitude estimation was very sensitive to the FOV. For this model the motion cue of perceived vertical acceleration was shown to be less important than the visual cues. The inclusion of runway geometry in the visual scene increased estimation accuracy in most cases. Finally, it was shown that for this model if the pilot has an incorrect internal model of the system kinematics the choice of observations thought to be 'optimal' may in fact be suboptimal.

  12. Richardson-Lucy deblurring for the star scene under a thinning motion path

    NASA Astrophysics Data System (ADS)

    Su, Laili; Shao, Xiaopeng; Wang, Lin; Wang, Haixin; Huang, Yining

    2015-05-01

    This paper puts emphasis on how to model and correct image blur that arises from a camera's ego motion while observing a distant star scene. Concerning the significance of accurate estimation of point spread function (PSF), a new method is employed to obtain blur kernel by thinning star motion path. In particular, how the blurred star image can be corrected to reconstruct the clear scene with a thinning motion blur model which describes the camera's path is presented. This thinning motion path to build blur kernel model is more effective at modeling the spatially motion blur introduced by camera's ego motion than conventional blind estimation of kernel-based PSF parameterization. To gain the reconstructed image, firstly, an improved thinning algorithm is used to obtain the star point trajectory, so as to extract the blur kernel of the motion-blurred star image. Then how motion blur model can be incorporated into the Richardson-Lucy (RL) deblurring algorithm, which reveals its overall effectiveness, is detailed. In addition, compared with the conventional estimated blur kernel, experimental results show that the proposed method of using thinning algorithm to get the motion blur kernel is of less complexity, higher efficiency and better accuracy, which contributes to better restoration of the motion-blurred star images.

  13. Estimation of accuracy of earth-rotation parameters in different frequency bands

    NASA Astrophysics Data System (ADS)

    Vondrak, J.

    1986-11-01

    The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.

  14. In vivo validation of patellofemoral kinematics during overground gait and stair ascent.

    PubMed

    Pitcairn, Samuel; Lesniak, Bryson; Anderst, William

    2018-06-18

    The patellofemoral (PF) joint is a common site for non-specific anterior knee pain. The pathophysiology of patellofemoral pain may be related to abnormal motion of the patella relative to the femur, leading to increased stress at the patellofemoral joint. Patellofemoral motion cannot be accurately measured using conventional motion capture. The aim of this study was to determine the accuracy of a biplane radiography system for measuring in vivo PF motion during walking and stair ascent. Four subjects had three 1.0 mm diameter tantalum beads implanted into the patella. Participants performed three trials each of over ground walking and stair ascent while biplane radiographs were collected at 100 Hz. Patella motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. The average RMS difference between the RSA and model-based tracking was 0.41 mm and 1.97° when there was no obstruction from the contralateral leg. These differences increased by 34% and 40%, respectively, when the patella was at least partially obstructed by the contralateral leg. The average RMS difference in patellofemoral joint space between tracking methods was 0.9 mm or less. Previous validations of biplane radiographic systems have estimated tracking accuracy by moving cadaveric knees through simulated motions. These validations were unable to replicate in vivo kinematics, including patella motion due to muscle activation, and failed to assess the imaging and tracking challenges related to contralateral limb obstruction. By replicating the muscle contraction, movement velocity, joint range of motion, and obstruction of the patella by the contralateral limb, the present study provides a realistic estimate of patellofemoral tracking accuracy for future in vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  16. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    PubMed Central

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  17. VLBI2020: From Reality to Vision

    NASA Technical Reports Server (NTRS)

    Titov, Oleg

    2010-01-01

    The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.

  18. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  19. Test suite for image-based motion estimation of the brain and tongue

    NASA Astrophysics Data System (ADS)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield "ghost" shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation.

  20. Test Suite for Image-Based Motion Estimation of the Brain and Tongue

    PubMed Central

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-01-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an “image synthesis” test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head-brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield “ghost” shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation. PMID:28781414

  1. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  2. Aging persons' estimates of vehicular motion.

    PubMed

    Schiff, W; Oldak, R; Shah, V

    1992-12-01

    Estimated arrival times of moving autos were examined in relation to viewer age, gender, motion trajectory, and velocity. Direct push-button judgments were compared with verbal estimates derived from velocity and distance, which were based on assumptions that perceivers compute arrival time from perceived distance and velocity. Experiment 1 showed that direct estimates of younger Ss were most accurate. Older women made the shortest (highly cautious) estimates of when cars would arrive. Verbal estimates were much lower than direct estimates, with little correlation between them. Experiment 2 extended target distances and velocities of targets, with the results replicating the main findings of Experiment 1. Judgment accuracy increased with target velocity, and verbal estimates were again poorer estimates of arrival time than direct ones, with different patterns of findings. Using verbal estimates to approximate judgments in traffic situations appears questionable.

  3. Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images

    PubMed Central

    Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.

    2013-01-01

    Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342

  4. Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion

    NASA Astrophysics Data System (ADS)

    Miyajo, Akira; Hasegawa, Hideyuki

    2018-07-01

    At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.

  5. Incorporating structure from motion uncertainty into image-based pose estimation

    NASA Astrophysics Data System (ADS)

    Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen

    2015-05-01

    A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.

  6. Toward an affordable and user-friendly visual motion capture system.

    PubMed

    Bonnet, V; Sylla, N; Cherubini, A; Gonzáles, A; Azevedo Coste, C; Fraisse, P; Venture, G

    2014-01-01

    The present study aims at designing and evaluating a low-cost, simple and portable system for arm joint angle estimation during grasping-like motions. The system is based on a single RGB-D camera and three customized markers. The automatically detected and tracked marker positions were used as inputs to an offline inverse kinematic process based on bio-mechanical constraints to reduce noise effect and handle marker occlusion. The method was validated on 4 subjects with different motions. The joint angles were estimated both with the proposed low-cost system and, a stereophotogrammetric system. Comparative analysis shows good accuracy with high correlation coefficient (r= 0.92) and low average RMS error (3.8 deg).

  7. ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Mendes Cerveira, P.

    2007-05-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.

  8. Gravitational orientation of the orbital complex, Salyut-6--Soyuz

    NASA Technical Reports Server (NTRS)

    Grecho, G. M.; Sarychev, V. A.; Legostayev, V. P.; Sazonov, V. V.; Gansvind, I. N.

    1983-01-01

    A simple mathematical model is proposed for the Salyut-6-Soyuz orbital complex motion with respect to the center of mass under the one-axis gravity-gradient orientation regime. This model was used for processing the measurements of the orbital complex motion parameters when the above orientation region was implemented. Some actual satellite motions are simulated and the satellite's aerodynamic parameters are determined. Estimates are obtained for the accuracy of measurements as well as that of the mathematical model.

  9. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  10. Features selection and classification to estimate elbow movements

    NASA Astrophysics Data System (ADS)

    Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.

    2015-11-01

    In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.

  11. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  12. SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R; Block, A; Harkenrider, M

    2015-06-15

    Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking,more » we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.« less

  13. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a set of system (range bandwidth, temporal and spatial baseline) and processing parameters (e.g., filtering strength and sub-band configuration). A case study in Greenland is attached below.

  14. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  15. Establishment of quality assurance for respiratory-gated radiotherapy using a respiration-simulating phantom and gamma index: Evaluation of accuracy taking into account tumor motion and respiratory cycle

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The purpose of this study is to present a new method of quality assurance (QA) in order to ensure effective evaluation of the accuracy of respiratory-gated radiotherapy (RGR). This would help in quantitatively analyzing the patient's respiratory cycle and respiration-induced tumor motion and in performing a subsequent comparative analysis of dose distributions, using the gamma-index method, as reproduced in our in-house developed respiration-simulating phantom. Therefore, we designed a respiration-simulating phantom capable of reproducing the patient's respiratory cycle and respiration-induced tumor motion and evaluated the accuracy of RGR by estimating its pass rates. We applied the gamma index passing criteria of accepted error ranges of 3% and 3 mm for the dose distribution calculated by using the treatment planning system (TPS) and the actual dose distribution of RGR. The pass rate clearly increased inversely to the gating width chosen. When respiration-induced tumor motion was 12 mm or less, pass rates of 85% and above were achieved for the 30-70% respiratory phase, and pass rates of 90% and above were achieved for the 40-60% respiratory phase. However, a respiratory cycle with a very small fluctuation range of pass rates failed to prove reliable in evaluating the accuracy of RGR. Therefore, accurate and reliable outcomes of radiotherapy will be obtainable only by establishing a novel QA system using the respiration-simulating phantom, the gamma-index analysis, and a quantitative analysis of diaphragmatic motion, enabling an indirect measurement of tumor motion.

  16. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications

    PubMed Central

    Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.

    2018-01-01

    Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918

  17. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications.

    PubMed

    Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A

    2018-04-01

    Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.

  18. Demonstration of precise estimation of polar motion parameters with the global positioning system: Initial results

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1991-01-01

    Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.

  19. A robust motion estimation system for minimal invasive laparoscopy

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer

    2012-02-01

    Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.

  20. A distributed automatic target recognition system using multiple low resolution sensors

    NASA Astrophysics Data System (ADS)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  1. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

    PubMed Central

    Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-01-01

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851

  2. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.

    PubMed

    Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-11-25

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.

  3. Scene-aware joint global and local homographic video coding

    NASA Astrophysics Data System (ADS)

    Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.

    2016-09-01

    Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.

  4. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.

    PubMed

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-09-09

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.

  5. Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task.

    PubMed

    Shia, Victor; Moore, Talia Yuki; Holmes, Patrick; Bajcsy, Ruzena; Vasudevan, Ram

    2018-04-27

    The ability to quantitatively measure stability is essential to ensuring the safety of locomoting systems. While the response to perturbation directly reflects the stability of a motion, this experimental method puts human subjects at risk. Unfortunately, existing indirect methods for estimating stability from unperturbed motion have been shown to have limited predictive power. This paper leverages recent advances in dynamical systems theory to accurately estimate the stability of human motion without requiring perturbation. This approach relies on kinematic observations of a nominal Sit-to-Stand motion to construct an individual-specific dynamic model, input bounds, and feedback control that are then used to compute the set of perturbations from which the model can recover. This set, referred to as the stability basin, was computed for 14 individuals, and was able to successfully differentiate between less and more stable Sit-to-Stand strategies for each individual with greater accuracy than existing methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.

    PubMed

    Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, Gonzalo

    2014-01-01

    Human body motion is usually variable in terms of intensity and, therefore, any Inertial Measurement Unit attached to a subject will measure both low and high angular rate and accelerations. This can be a problem for the accuracy of orientation estimation algorithms based on adaptive filters such as the Kalman filter, since both the variances of the process noise and the measurement noise are set at the beginning of the algorithm and remain constant during its execution. Setting fixed noise parameters burdens the adaptation capability of the filter if the intensity of the motion changes rapidly. In this work we present a conjoint novel algorithm which uses a motion intensity detector to dynamically vary the noise statistical parameters of different approaches of the Kalman filter. Results show that the precision of the estimated orientation in terms of the RMSE can be improved up to 29% with respect to the standard fixed-parameters approaches.

  7. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.

    PubMed

    Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David

    2012-05-01

    Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D(vol)) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). 4D(vol) CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological "tumor" objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D(vol) CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D(vol) CT. Under irregular breathing, the 4D(vol) CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a significantly different PDF from the ground truth, especially for smaller tumors (cross-correlation ranging between 0.04 and 0.69). For the protocols studied, the dose measurements were higher in the 4D(vol) CT method (40%), but it was shown that significant mAs reductions can be achieved by a factor of 4-5 while maintaining image quality and accuracy. 4D(vol) CT using a scanner with a large cone-angle is a promising alternative for improving the accuracy with which respiration-induced motion can be characterized, particularly for patients with irregular breathing motion. This approach also generates 4DCT image data with a reduced total scan time compared to a RCCT scan, without the need for image binning or external respiration signals within the 16 cm scan length. Scan dose can be made comparable to RCCT by optimization of the scan parameters. In addition, it provides the possibility of measuring breathing motion for more than one breathing cycle to assess stability and obtain a more accurate motion PDF, which is currently not feasible with the conventional RCCT approach.

  8. Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.

    2007-12-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.

  9. A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.

    2006-08-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.

  10. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  11. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Chen, Z; Nath, R

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less

  13. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  14. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    NASA Astrophysics Data System (ADS)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  15. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  16. Estimating 4D CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy

    PubMed Central

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-01-01

    Purpose To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume to evaluate the method. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against 3 lung patients. Results The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47±2.94% and 0.23±0.22mm for SMM-WFD and 25.23±19.01% and 2.58±2.54mm for GMM-FD among all 8 XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21±5.61% and 0.39±0.49mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Conclusion Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. PMID:28079267

  17. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    PubMed

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  18. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  19. Robust Stereo Visual Odometry Using Improved RANSAC-Based Methods for Mobile Robot Localization

    PubMed Central

    Liu, Yanqing; Gu, Yuzhang; Li, Jiamao; Zhang, Xiaolin

    2017-01-01

    In this paper, we present a novel approach for stereo visual odometry with robust motion estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus). Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially generated by sampling the input feature points on the order of ages and similarities of the features; second, the evaluation of hypotheses is performed based on the SPRT (Sequential Probability Ratio Test) that makes bad hypotheses discarded very fast without verifying all the data points; third, we aggregate the three best hypotheses to get the final estimation instead of only selecting the best hypothesis. The first two aspects improve the speed of RANSAC by generating good hypotheses and discarding bad hypotheses in advance, respectively. The last aspect improves the accuracy of motion estimation. Our method was evaluated in the KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) and the New Tsukuba dataset. Experimental results show that the proposed method achieves better results for both speed and accuracy than RANSAC. PMID:29027935

  20. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  1. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control.

    PubMed

    Liu, Lukai; Liu, Pu; Clancy, Edward A; Scheme, Erik; Englehart

    2013-09-01

    Time and frequency domain features of the surface electromyogram (EMG) signal acquired from multiple channels have frequently been investigated for use in controlling upper-limb prostheses. A common control method is EMG-based motion classification. We propose the use of EMG signal whitening as a preprocessing step in EMG-based motion classification. Whitening decorrelates the EMG signal and has been shown to be advantageous in other EMG applications including EMG amplitude estimation and EMG-force processing. In a study of ten intact subjects and five amputees with up to 11 motion classes and ten electrode channels, we found that the coefficient of variation of time domain features (mean absolute value, average signal length and normalized zero crossing rate) was significantly reduced due to whitening. When using these features along with autoregressive power spectrum coefficients, whitening added approximately five percentage points to classification accuracy when small window lengths were considered.

  2. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation.

    PubMed

    Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo

    2014-12-01

    Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.

  3. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  4. Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect

    NASA Astrophysics Data System (ADS)

    Chao, Chia-Chun George

    2009-03-01

    The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.

  5. A hybrid approach to estimate the complex motions of clouds in sky images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approachmore » with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.« less

  6. A hybrid approach to estimate the complex motions of clouds in sky images

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2016-09-14

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approachmore » with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.« less

  7. Determination of proper motions in the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Schilbach, E.

    1991-04-01

    For 458 stars in the Pleiades field from the catalog of Eichhorn et al. (1970) proper motions were derived on Tautenburg and CERGA Schmidt telescope plates measured with the automated measuring machine MAMA in Paris. The catalog positions were considered as first epoch coordinates with an epoch difference of ca. 33 years to the observations. The results show good coincidence of proper motions derived with both Schmidt telescopes within the error bars. Comparison with proper motions determined by Vasilevskis et al. (1979) displays some significant differences but no systematic effects depending on plate coordinates or magnitudes could be found. An accuracy of 0.3 arcsec/100a for one proper motion component was estimated. According to the criterion of common proper motion 34 new cluster members were identified.

  8. Parametric system identification of catamaran for improving controller design

    NASA Astrophysics Data System (ADS)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  9. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    PubMed

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform's range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology.

  10. Side-information-dependent correlation channel estimation in hash-based distributed video coding.

    PubMed

    Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter

    2012-04-01

    In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.

  11. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  12. A kind of graded sub-pixel motion estimation algorithm combining time-domain characteristics with frequency-domain phase correlation

    NASA Astrophysics Data System (ADS)

    Xie, Bing; Duan, Zhemin; Chen, Yu

    2017-11-01

    The mode of navigation based on scene match can assist UAV to achieve autonomous navigation and other missions. However, aerial multi-frame images of the UAV in the complex flight environment easily be affected by the jitter, noise and exposure, which will lead to image blur, deformation and other issues, and result in the decline of detection rate of the interested regional target. Aiming at this problem, we proposed a kind of Graded sub-pixel motion estimation algorithm combining time-domain characteristics with frequency-domain phase correlation. Experimental results prove the validity and accuracy of the proposed algorithm.

  13. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    PubMed Central

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  14. A practical approach to superresolution

    NASA Astrophysics Data System (ADS)

    Farsiu, Sina; Elad, Michael; Milanfar, Peyman

    2006-01-01

    Theoretical and practical limitations usually constrain the achievable resolution of any imaging device. Super-Resolution (SR) methods are developed through the years to go beyond this limit by acquiring and fusing several low-resolution (LR) images of the same scene, producing a high-resolution (HR) image. The early works on SR, although occasionally mathematically optimal for particular models of data and noise, produced poor results when applied to real images. In this paper, we discuss two of the main issues related to designing a practical SR system, namely reconstruction accuracy and computational efficiency. Reconstruction accuracy refers to the problem of designing a robust SR method applicable to images from different imaging systems. We study a general framework for optimal reconstruction of images from grayscale, color, or color filtered (CFA) cameras. The performance of our proposed method is boosted by using powerful priors and is robust to both measurement (e.g. CCD read out noise) and system noise (e.g. motion estimation error). Noting that the motion estimation is often considered a bottleneck in terms of SR performance, we introduce the concept of "constrained motions" for enhancing the quality of super-resolved images. We show that using such constraints will enhance the quality of the motion estimation and therefore results in more accurate reconstruction of the HR images. We also justify some practical assumptions that greatly reduce the computational complexity and memory requirements of the proposed methods. We use efficient approximation of the Kalman Filter (KF) and adopt a dynamic point of view to the SR problem. Novel methods for addressing these issues are accompanied by experimental results on real data.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Nguyen, D; O’Brien, R

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) usingmore » a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.« less

  16. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  17. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  18. Stock price prediction using geometric Brownian motion

    NASA Astrophysics Data System (ADS)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  19. Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging.

    PubMed

    Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2010-12-01

    Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.

  20. Low-Cost 3-D Flow Estimation of Blood With Clutter.

    PubMed

    Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali

    2017-05-01

    Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.

  1. Geopositioning with a quadcopter: Extracted feature locations and predicted accuracy without a priori sensor attitude information

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Edwards, David; Theiss, Henry; Braun, Aaron

    2017-05-01

    This paper presents an overview of the Full Motion Video-Geopositioning Test Bed (FMV-GTB) developed to investigate algorithm performance and issues related to the registration of motion imagery and subsequent extraction of feature locations along with predicted accuracy. A case study is included corresponding to a video taken from a quadcopter. Registration of the corresponding video frames is performed without the benefit of a priori sensor attitude (pointing) information. In particular, tie points are automatically measured between adjacent frames using standard optical flow matching techniques from computer vision, an a priori estimate of sensor attitude is then computed based on supplied GPS sensor positions contained in the video metadata and a photogrammetric/search-based structure from motion algorithm, and then a Weighted Least Squares adjustment of all a priori metadata across the frames is performed. Extraction of absolute 3D feature locations, including their predicted accuracy based on the principles of rigorous error propagation, is then performed using a subset of the registered frames. Results are compared to known locations (check points) over a test site. Throughout this entire process, no external control information (e.g. surveyed points) is used other than for evaluation of solution errors and corresponding accuracy.

  2. Decision making by urgency gating: theory and experimental support.

    PubMed

    Thura, David; Beauregard-Racine, Julie; Fradet, Charles-William; Cisek, Paul

    2012-12-01

    It is often suggested that decisions are made when accumulated sensory information reaches a fixed accuracy criterion. This is supported by many studies showing a gradual build up of neural activity to a threshold. However, the proposal that this build up is caused by sensory accumulation is challenged by findings that decisions are based on information from a time window much shorter than the build-up process. Here, we propose that in natural conditions where the environment can suddenly change, the policy that maximizes reward rate is to estimate evidence by accumulating only novel information and then compare the result to a decreasing accuracy criterion. We suggest that the brain approximates this policy by multiplying an estimate of sensory evidence with a motor-related urgency signal and that the latter is primarily responsible for neural activity build up. We support this hypothesis using human behavioral data from a modified random-dot motion task in which motion coherence changes during each trial.

  3. Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Xianxiang; Fang, Zhen; Xue, Yongjiao; Zhan, Qingyuan; Yang, Ting; Xia, Shanhong

    2017-02-01

    The present study designs an algorithm to increase the accuracy of continuous blood pressure (BP) estimation. Pulse arrival time (PAT) has been widely used for continuous BP estimation. However, because of motion artifact and physiological activities, PAT-based methods are often troubled with low BP estimation accuracy. This paper used a signal quality modified Kalman filter to track blood pressure changes. A Kalman filter guarantees that BP estimation value is optimal in the sense of minimizing the mean square error. We propose a joint signal quality indice to adjust the measurement noise covariance, pushing the Kalman filter to weigh more heavily on measurements from cleaner data. Twenty 2 h physiological data segments selected from the MIMIC II database were used to evaluate the performance. Compared with straightforward use of the PAT-based linear regression model, the proposed model achieved higher measurement accuracy. Due to low computation complexity, the proposed algorithm can be easily transplanted into wearable sensor devices.

  4. Estimating 4D-CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy.

    PubMed

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-03-01

    To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion model extracted by a global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural PCA method was developed to build a structural motion model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respiratory changes from planning 4D-CT to on-board volume to evaluate the method. The estimation accuracy was evaluated by the volume percent difference (VPD)/center-of-mass-shift (COMS) between lesions in the estimated and "ground-truth" on-board 4D-CBCT. Different on-board projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against three lung patients. The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47 ± 2.94% and 0.23 ± 0.22 mm for SMM-WFD and 25.23 ± 19.01% and 2.58 ± 2.54 mm for GMM-FD among all eight XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21 ± 5.61% and 0.39 ± 0.49 mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. © 2017 American Association of Physicists in Medicine.

  5. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  6. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  7. VizieR Online Data Catalog: The USNO-B1.0 Catalog (Monet+ 2003)

    NASA Astrophysics Data System (ADS)

    Monet, D. G.; Levine, S. E.; Casian, B.; et al.

    2002-11-01

    The USNO-B1.0 is a catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,045,913,669 objects derived from 3,648,832,040 separate observations. The data were taken from scans of 7,435 Schmidt plates taken from various sky surveys during the last 50 years. The catalog is expected to be complete down to V=21; the estimated accuracies are 0.2arcsec for the positions at J2000, 0.3mag in up to 5 colors, and 85% accuracy for distinguishing stars from non-stellar objects. (1 data file).

  8. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation. PMID:24260324

  9. Motion correction for improved estimation of heart rate using a visual spectrum camera

    NASA Astrophysics Data System (ADS)

    Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki

    2017-05-01

    Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.

  10. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  11. Motion capture for human motion measuring by using single camera with triangle markers

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Tanaka, Takayuki; Kaneko, Shun'ichi

    2005-12-01

    This study aims to realize a motion capture for measuring 3D human motions by using single camera. Although motion capture by using multiple cameras is widely used in sports field, medical field, engineering field and so on, optical motion capture method with one camera is not established. In this paper, the authors achieved a 3D motion capture by using one camera, named as Mono-MoCap (MMC), on the basis of two calibration methods and triangle markers which each length of side is given. The camera calibration methods made 3D coordinates transformation parameter and a lens distortion parameter with Modified DLT method. The triangle markers enabled to calculate a coordinate value of a depth direction on a camera coordinate. Experiments of 3D position measurement by using the MMC on a measurement space of cubic 2 m on each side show an average error of measurement of a center of gravity of a triangle marker was less than 2 mm. As compared with conventional motion capture method by using multiple cameras, the MMC has enough accuracy for 3D measurement. Also, by putting a triangle marker on each human joint, the MMC was able to capture a walking motion, a standing-up motion and a bending and stretching motion. In addition, a method using a triangle marker together with conventional spherical markers was proposed. Finally, a method to estimate a position of a marker by measuring the velocity of the marker was proposed in order to improve the accuracy of MMC.

  12. Arterial Mechanical Motion Estimation Based on a Semi-Rigid Body Deformation Approach

    PubMed Central

    Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo

    2014-01-01

    Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987

  13. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    NASA Astrophysics Data System (ADS)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions. References 1,Wnuk E., Golebiewska J.,2005, ,,The relative motion of Earth's orbiting satellites", Celestial Mechanics, 91, 373-389. 2.Wnuk E., Golebiewska J.,2006, "Differential Perturbations and Semimajor Axis Estimation for Satellite Formation Orbits", American Institute of Aeronautics and Astronautics, Electronic Library, 2006, 6018.

  14. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  15. How many records should be used in ASCE/SEI-7 ground motion scaling procedure?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.

  16. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    PubMed Central

    Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT treatment plans–allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies. PMID:28231337

  17. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.

    PubMed

    Sothmann, Thilo; Gauer, Tobias; Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail-which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that-in the sense of 4D QA of VMAT treatment plans-allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies.

  18. Clinical measurement of the dart throwing motion of the wrist: variability, accuracy and correction.

    PubMed

    Vardakastani, Vasiliki; Bell, Hannah; Mee, Sarah; Brigstocke, Gavin; Kedgley, Angela E

    2018-01-01

    Despite being functionally important, the dart throwing motion is difficult to assess accurately through goniometry. The objectives of this study were to describe a method for reliably quantifying the dart throwing motion using goniometric measurements within a healthy population. Wrist kinematics of 24 healthy participants were assessed using goniometry and optical motion tracking. Three wrist angles were measured at the starting and ending points of the motion: flexion-extension, radial-ulnar deviation and dart throwing motion angle. The orientation of the dart throwing motion plane relative to the flexion-extension axis ranged between 28° and 57° among the tested population. Plane orientations derived from optical motion capture differed from those calculated through goniometry by 25°. An equation to correct the estimation of the plane from goniometry measurements was derived. This was applied and differences in the orientation of the plane were reduced to non-significant levels, enabling the dart throwing motion to be measured using goniometry alone.

  19. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  20. Development of a Plantar Load Estimation Algorithm for Evaluation of Forefoot Load of Diabetic Patients during Daily Walks Using a Foot Motion Sensor

    PubMed Central

    Noguchi, Hiroshi; Sanada, Hiromi

    2017-01-01

    Forefoot load (FL) contributes to callus formation, which is one of the pathways to diabetic foot ulcers (DFU). In this study, we hypothesized that excessive FL, which cannot be detected by plantar load measurements within laboratory settings, occurs in daily walks. To demonstrate this, we created a FL estimation algorithm using foot motion data. Acceleration and angular velocity data were obtained from a motion sensor attached to each shoe of the subjects. The accuracy of the estimated FL was validated by correlation with the FL measured by force sensors on the metatarsal heads, which was assessed using the Pearson correlation coefficient. The mean of correlation coefficients of all the subjects was 0.63 at a level corridor, while it showed an intersubject difference at a slope and stairs. We conducted daily walk measurements in two diabetic patients, and additionally, we verified the safety of daily walk measurement using a wearable motion sensor attached to each shoe. We found that excessive FL occurred during their daily walks for approximately three hours in total, when any adverse event was not observed. This study indicated that FL evaluation method using wearable motion sensors was one of the promising ways to prevent DFUs. PMID:28840130

  1. Development of a Plantar Load Estimation Algorithm for Evaluation of Forefoot Load of Diabetic Patients during Daily Walks Using a Foot Motion Sensor.

    PubMed

    Watanabe, Ayano; Noguchi, Hiroshi; Oe, Makoto; Sanada, Hiromi; Mori, Taketoshi

    2017-01-01

    Forefoot load (FL) contributes to callus formation, which is one of the pathways to diabetic foot ulcers (DFU). In this study, we hypothesized that excessive FL, which cannot be detected by plantar load measurements within laboratory settings, occurs in daily walks. To demonstrate this, we created a FL estimation algorithm using foot motion data. Acceleration and angular velocity data were obtained from a motion sensor attached to each shoe of the subjects. The accuracy of the estimated FL was validated by correlation with the FL measured by force sensors on the metatarsal heads, which was assessed using the Pearson correlation coefficient. The mean of correlation coefficients of all the subjects was 0.63 at a level corridor, while it showed an intersubject difference at a slope and stairs. We conducted daily walk measurements in two diabetic patients, and additionally, we verified the safety of daily walk measurement using a wearable motion sensor attached to each shoe. We found that excessive FL occurred during their daily walks for approximately three hours in total, when any adverse event was not observed. This study indicated that FL evaluation method using wearable motion sensors was one of the promising ways to prevent DFUs.

  2. Terrain shape estimation from optical flow, using Kalman filtering

    NASA Astrophysics Data System (ADS)

    Hoff, William A.; Sklair, Cheryl W.

    1990-01-01

    As one moves through a static environment, the visual world as projected on the retina seems to flow past. This apparent motion, called optical flow, can be an important source of depth perception for autonomous robots. An important application is in planetary exploration -the landing vehicle must find a safe landing site in rugged terrain, and an autonomous rover must be able to navigate safely through this terrain. In this paper, we describe a solution to this problem. Image edge points are tracked between frames of a motion sequence, and the range to the points is calculated from the displacement of the edge points and the known motion of the camera. Kalman filtering is used to incrementally improve the range estimates to those points, and provide an estimate of the uncertainty in each range. Errors in camera motion and image point measurement can also be modelled with Kalman filtering. A surface is then interpolated to these points, providing a complete map from which hazards such as steeply sloping areas can be detected. Using the method of extended Kalman filtering, our approach allows arbitrary camera motion. Preliminary results of an implementation are presented, and show that the resulting range accuracy is on the order of 1-2% of the range.

  3. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.

    PubMed

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-05-18

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.

  4. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material

    PubMed Central

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-01-01

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance. PMID:28524110

  5. Reverse Kinematic Analysis and Uncertainty Analysis of the Space Shuttle AFT Propulsion System (APS) POD Lifting Fixture

    NASA Technical Reports Server (NTRS)

    Brink, Jeffrey S.

    2005-01-01

    The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.

  6. Dynamical reference frames in the planetary and earth-moon systems

    NASA Technical Reports Server (NTRS)

    Standish, E. M.; Williams, G.

    1990-01-01

    Estimates of the accuracies of the ephemerides are reviewed using data for planetary and lunar systems to determine the efficacy of the inherent dynamical reference frame. The varied observational data are listed and given with special attention given to ephemeris improvements. The importance of ranging data is discussed with respect to the inner four planets and the moon, and the discrepancy of 1 arcsec/century between mean motions determined by optical observations versus ranging data is addressed. The Viking mission data provide inertial mean motions for the earth and Mars of 0.003 arcsec/century which will deteriorate to 0.01 arcsec after about 10 years. Uncertainties for other planets and the moon are found to correspond to approximately the same level of degradation. In general the data measurements and error estimates are improving the ephemerides, although refitting the data cannot account for changes in mean motion.

  7. Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer.

    PubMed

    Liu, Maolin; Li, Huaiyu; Wang, Yuan; Li, Fei; Chen, Xiuwan

    2018-04-01

    Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer's application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.

  8. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization

    PubMed Central

    Sasaki, Ryo; Angelaki, Dora E.

    2017-01-01

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. PMID:29030435

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Tomohiro; Miyabe, Yuki, E-mail: miyabe@kuhp.kyoto-u.ac.jp; Yamada, Masahiro

    Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measuredmore » position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.« less

  10. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    NASA Astrophysics Data System (ADS)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  11. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system.

    PubMed

    Bae, Myungsoo; Lee, Sangmin; Kim, Namkug

    2018-07-01

    To develop and validate a robust and cost-effective 3D respiratory monitoring system based on a Kinect device with a custom-made simple marker. A 3D respiratory monitoring system comprising the simple marker and the Microsoft Kinect v2 device was developed. The marker was designed for simple and robust detection, and the tracking algorithm was developed using the depth, RGB, and infra-red images acquired from the Kinect sensor. A Kalman filter was used to suppress movement noises. The major movements of the marker attached to the four different locations of body surface were determined from the initially collected tracking points of the marker while breathing. The signal level of respiratory motion with the tracking point was estimated along the major direction vector. The accuracy of the results was evaluated through a comparison with those of the conventional stereovision navigation system (NDI Polaris Spectra). Sixteen normal volunteers were enrolled to evaluate the accuracy of this system. The correlation coefficients between the respiratory motion signal from the Kinect device and conventional navigation system ranged from 0.970 to 0.999 and from 0.837 to 0.995 at the abdominal and thoracic surfaces, respectively. The respiratory motion signal from this system was obtained at 27-30 frames/s. This system with the Kinect v2 device and simple marker could be used for cost-effective, robust and accurate 3D respiratory motion monitoring. In addition, this system is as reliable for respiratory motion signal generation and as practically useful as the conventional stereovision navigation system and is less sensitive to patient posture. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hidden marker position estimation during sit-to-stand with walker.

    PubMed

    Yoon, Sang Ho; Jun, Hong Gul; Dan, Byung Ju; Jo, Byeong Rim; Min, Byung Hoon

    2012-01-01

    Motion capture analysis of sit-to-stand task with assistive device is hard to achieve due to obstruction on reflective makers. Previously developed robotic system, Smart Mobile Walker, is used as an assistive device to perform motion capture analysis in sit-to-stand task. All lower limb markers except hip markers are invisible through whole session. The link-segment and regression method is applied to estimate the marker position during sit-to-stand. Applying a new method, the lost marker positions are restored and the biomechanical evaluation of the sit-to-stand movement with a Smart Mobile Walker could be carried out. The accuracy of the marker position estimation is verified with normal sit-to-stand data from more than 30 clinical trials. Moreover, further research on improving the link segment and regression method is addressed.

  13. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  14. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using borehole recordings had the smallest standard deviation among the estimated magnitudes and produced more stable and robust magnitude estimates. This suggests that incorporating borehole strong ground-motion records immediately available after the occurrence of large earthquakes can provide robust and accurate magnitude estimation.

  15. Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L.

    2016-05-15

    Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmablemore » translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three-dimensional position estimation from monoscopic imaging permits continuous, uninterrupted intrafraction motion monitoring even in the presence of gantry rotation, which may block kV sources or imagers. This potentially allows for more accurate treatment delivery, by ensuring that the prostate does not deviate substantially from the initial setup position.« less

  16. SU-F-J-80: Deformable Image Registration for Residual Organ Motion Estimation in Respiratory Gated Treatments with Scanned Carbon Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meschini, G; Seregni, M; Pella, A

    Purpose: At the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy) C-ions respiratory gated treatments of patients with abdominal tumours started in 2014. In these cases, the therapeutic dose is delivered around end-exhale. We propose the use of a respiratory motion model to evaluate residual tumour motion. Such a model requires motion fields obtained from deformable image registration (DIR) between 4DCT phases, estimating anatomical motion through interpolation. The aim of this work is to identify the optimal DIR technique to be integrated in the modeling pipeline. Methods: We used 4DCT datasets from 4 patients to test 4 DIR algorithms: Bspline,more » demons, log-domain and symmetric log domain diffeomorphic demons. We evaluate DIR performance in terms of registration accuracy (RMSE between registered images) and anatomical consistency of the motion field (Jacobian) when registering end-inhale to end-exhale. We subsequently employed the model to estimate the tumour trajectory within the ideal gating window. Results: Within the liver contour, the RMSE is in the range 31–46 HU for the best performing algorithm (Bspline) and 43–145 HU for the worst one (demons). The Jacobians featured zero negative voxels (which indicate singularities in the motion field) for the Bspline fields in 3 of 4 patients, whereas diffeomorphic demons fields showed a non-null number of negative voxels in every case. GTV motion in the gating window measured less than 7 mm for every patient, displaying a predominant superior-inferior (SI) component. Conclusion: The Bspline algorithm allows for acceptable DIR results in the abdominal region, exhibiting the property of anatomical consistency of the computed field. Computed trajectories are in agreement with clinical expectations (small and prevalent SI displacements), since patients lie wearing semi-rigid immobilizing masks. In future, the model could be used for retrospective estimation of organ motion during treatment, as guided by the breathing surrogate signal.« less

  17. Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Garcin, Matthieu

    2017-10-01

    Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-dependent Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational calculus. This method is very general and not restricted to the sole Hurst framework. It is globally more accurate and easier than other existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it makes it possible to make forecasts based on the estimated multifractional Brownian motion. The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD, AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.

  18. Joint groupwise registration and ADC estimation in the liver using a B-value weighted metric.

    PubMed

    Sanz-Estébanez, Santiago; Rabanillo-Viloria, Iñaki; Royuela-Del-Val, Javier; Aja-Fernández, Santiago; Alberola-López, Carlos

    2018-02-01

    The purpose of this work is to develop a groupwise elastic multimodal registration algorithm for robust ADC estimation in the liver on multiple breath hold diffusion weighted images. We introduce a joint formulation to simultaneously solve both the registration and the estimation problems. In order to avoid non-reliable transformations and undesirable noise amplification, we have included appropriate smoothness constraints for both problems. Our metric incorporates the ADC estimation residuals, which are inversely weighted according to the signal content in each diffusion weighted image. Results show that the joint formulation provides a statistically significant improvement in the accuracy of the ADC estimates. Reproducibility has also been measured on real data in terms of the distribution of ADC differences obtained from different b-values subsets. The proposed algorithm is able to effectively deal with both the presence of motion and the geometric distortions, increasing accuracy and reproducibility in diffusion parameters estimation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Foot-mounted inertial measurement unit for activity classification.

    PubMed

    Ghobadi, Mostafa; Esfahani, Ehsan T

    2014-01-01

    This paper proposes a classification technique for daily base activity recognition for human monitoring during physical therapy in home. The proposed method estimates the foot motion using single inertial measurement unit, then segments the motion into steps classify them by template-matching as walking, stairs up or stairs down steps. The results show a high accuracy of activity recognition. Unlike previous works which are limited to activity recognition, the proposed approach is more qualitative by providing similarity index of any activity to its desired template which can be used to assess subjects improvement.

  20. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-07

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  1. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  2. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal instantaneous frequencies.

  3. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.

    PubMed

    Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A

    2017-04-01

    Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.

  5. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.

  6. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  7. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object

    PubMed Central

    Dokka, Kalpana; DeAngelis, Gregory C.

    2015-01-01

    Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214

  8. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    PubMed Central

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722

  9. A Height Estimation Approach for Terrain Following Flights from Monocular Vision.

    PubMed

    Campos, Igor S G; Nascimento, Erickson R; Freitas, Gustavo M; Chaimowicz, Luiz

    2016-12-06

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80 % for positives and 90 % for negatives, while the height estimation algorithm presented good accuracy.

  10. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  11. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts.

    PubMed

    Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin

    2017-02-16

    The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.

  12. Pseudorange Measurement Method Based on AIS Signals.

    PubMed

    Zhang, Jingbo; Zhang, Shufang; Wang, Jinpeng

    2017-05-22

    In order to use the existing automatic identification system (AIS) to provide additional navigation and positioning services, a complete pseudorange measurements solution is presented in this paper. Through the mathematical analysis of the AIS signal, the bit-0-phases in the digital sequences were determined as the timestamps. Monte Carlo simulation was carried out to compare the accuracy of the zero-crossing and differential peak, which are two timestamp detection methods in the additive white Gaussian noise (AWGN) channel. Considering the low-speed and low-dynamic motion characteristics of ships, an optimal estimation method based on the minimum mean square error is proposed to improve detection accuracy. Furthermore, the α difference filter algorithm was used to achieve the fusion of the optimal estimation results of the two detection methods. The results show that the algorithm can greatly improve the accuracy of pseudorange estimation under low signal-to-noise ratio (SNR) conditions. In order to verify the effectiveness of the scheme, prototypes containing the measurement scheme were developed and field tests in Xinghai Bay of Dalian (China) were performed. The test results show that the pseudorange measurement accuracy was better than 28 m (σ) without any modification of the existing AIS system.

  13. Pseudorange Measurement Method Based on AIS Signals

    PubMed Central

    Zhang, Jingbo; Zhang, Shufang; Wang, Jinpeng

    2017-01-01

    In order to use the existing automatic identification system (AIS) to provide additional navigation and positioning services, a complete pseudorange measurements solution is presented in this paper. Through the mathematical analysis of the AIS signal, the bit-0-phases in the digital sequences were determined as the timestamps. Monte Carlo simulation was carried out to compare the accuracy of the zero-crossing and differential peak, which are two timestamp detection methods in the additive white Gaussian noise (AWGN) channel. Considering the low-speed and low-dynamic motion characteristics of ships, an optimal estimation method based on the minimum mean square error is proposed to improve detection accuracy. Furthermore, the α difference filter algorithm was used to achieve the fusion of the optimal estimation results of the two detection methods. The results show that the algorithm can greatly improve the accuracy of pseudorange estimation under low signal-to-noise ratio (SNR) conditions. In order to verify the effectiveness of the scheme, prototypes containing the measurement scheme were developed and field tests in Xinghai Bay of Dalian (China) were performed. The test results show that the pseudorange measurement accuracy was better than 28 m (σ) without any modification of the existing AIS system. PMID:28531153

  14. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging

    PubMed Central

    Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A

    2014-01-01

    Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647

  15. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization.

    PubMed

    Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C

    2017-11-15

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. Copyright © 2017 the authors 0270-6474/17/3711204-16$15.00/0.

  16. Multi-Axis Identifiability Using Single-Surface Parameter Estimation Maneuvers on the X-48B Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.

  17. Digital stereophotogrammetry based on circular markers and zooming cameras: evaluation of a method for 3D analysis of small motions in orthopaedic research

    PubMed Central

    2011-01-01

    Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867

  18. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  19. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    PubMed Central

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions). PMID:29163196

  20. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    PubMed

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions).

  1. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    PubMed Central

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Peter H.

    2016-01-01

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%), anterior (ρ = 0.965, rRMSE = 9.4%) and sagittal (ρ = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%), frontal (ρ = 0.710, rRMSE = 29.6%), and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory. PMID:28042857

  2. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.

    PubMed

    Jarchi, Delaram; Casson, Alexander J

    2017-09-01

    Recently numerous methods have been proposed for estimating average heart rate using photoplethysmography (PPG) during physical activity, overcoming the significant interference that motion causes in PPG traces. We propose a new algorithm framework for extracting instantaneous heart rate from wearable PPG and Electrocardiogram (ECG) signals to provide an estimate of heart rate variability during exercise. For ECG signals, we propose a new spectral masking approach which modifies a particle filter tracking algorithm, and for PPG signals constrains the instantaneous frequency obtained from the Hilbert transform to a region of interest around a candidate heart rate measure. Performance is verified using accelerometry and wearable ECG and PPG data from subjects while biking and running on a treadmill. Instantaneous heart rate provides more information than average heart rate alone. The instantaneous heart rate can be extracted during motion to an accuracy of 1.75 beats per min (bpm) from PPG signals and 0.27 bpm from ECG signals. Estimates of instantaneous heart rate can now be generated from PPG signals during motion. These estimates can provide more information on the human body during exercise. Instantaneous heart rate provides a direct measure of vagal nerve and sympathetic nervous system activity and is of substantial use in a number of analyzes and applications. Previously it has not been possible to estimate instantaneous heart rate from wrist wearable PPG signals.

  3. Accuracy of a combined heart rate and motion sensor for assessing energy expenditure in free-living adults during a double-blind crossover caffeine trial using doubly labeled water as the reference method.

    PubMed

    Silva, A M; Santos, D A; Matias, C N; Júdice, P B; Magalhães, J P; Ekelund, U; Sardinha, L B

    2015-01-01

    A combined heart rate (HR) and motion sensor (Actiheart) has been proposed as an accurate method for assessing total energy expenditure (TEE) and physical activity energy expenditure (PAEE). However, the extent to which factors such as caffeine may affect the accuracy by which the estimated HR-related PAEE contribution will affect TEE and PAEE estimates is unknown. Therefore, we examined the validity of Actiheart in estimating TEE and PAEE in free-living adults under a caffeine trial compared with doubly labeled water (DLW) as reference criterion. Using a double-blind crossover trial (Clinicaltrials.gov ID: #NCT01477294) with two conditions (4-day each with a 3-day-washout period), randomly ordered as caffeine (5 mg/kg per day) and placebo (malt-dextrine) intake, TEE was measured by DLW in 17 physically active men (20-38 years) who were non-caffeine users. In each condition, resting energy expenditure (REE) was assessed by indirect calorimetry and PAEE was calculated as (TEE-(REE+0.1 TEE)). Simultaneously, PAEE and TEE were estimated by Actiheart using an individual calibration (ACC+HRstep). Under caffeine, ACC+HRstep explained 76 and 64% of TEE and PAEE from DLW, respectively; corresponding results for the placebo condition were 82 and 66%. No mean bias was found between ACC+HRstep and DLW for TEE (caffeine:-468 kJ per day; placebo:-407 kJ per day), although PAEE was slightly underestimated (caffeine:-856 kJ per day; placebo:-1147 kJ per day). Similar limits of agreement were observed in both conditions ranging from -2066 to 3002 and from -3488 to 1776 kJ per day for TEE and PAEE, respectively. Regardless of caffeine intake, the combined HR and motion sensor is valid for estimating free-living energy expenditure in a group of healthy men but is less accurate for an individual assessment.

  4. JASMINE project Instrument design and centroiding experiment

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki

    JASMINE will study the fundamental structure and evolution of the Milky Way Galaxy. To accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μarcsec at z = 14 mag. In this paper the instrument design (optics, detectors, etc.) of JASMINE is presented. We also show a CCD centroiding experiment for estimating positions of star images. The experimental result shows that the accuracy of estimated distances has a variance of less than 0.01 pixel.

  5. An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Yan, S.; Liu, G.; LV, M.

    2017-12-01

    Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.

  6. VizieR Online Data Catalog: 1876 open clusters multimembership catalog (Sampedro+, 2017)

    NASA Astrophysics Data System (ADS)

    Sampedro, L.; Dias, W. S.; Alfaro, E. J.; Monteiro, H.; Molino, A.

    2017-10-01

    We use version 3.5 of the New Optically Visible Open Clusters and Candidates catalogue (hereafter DAML02; Dias et al., 2002, Cat. B/ocl), to select a sample of 2167 open clusters to be analysed. The stellar positions and the proper motions are taken from the UCAC4 (Zacharias et al., 2013, Cat. I/322). The catalogue contains data for over 113 million stars (105 million of them with proper-motion data), and is complete down to magnitude R=16. The positional accuracy of the listed objects is about 15-100mas per coordinate, depending on the magnitude. Formal errors in proper motions range from about 1 to 10mas/yr, depending on the magnitude and the observational history. Systematic errors in the proper motions are estimated to be about 1-4mas/yr. (2 data files).

  7. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  8. A Method of Time-Intensity Curve Calculation for Vascular Perfusion of Uterine Fibroids Based on Subtraction Imaging with Motion Correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xinjian; Wu, Ruoyu; Li, Tao; Zhao, Dawei; Shan, Xin; Wang, Puling; Peng, Song; Li, Faqi; Wu, Baoming

    2016-12-01

    The time-intensity curve (TIC) from contrast-enhanced ultrasound (CEUS) image sequence of uterine fibroids provides important parameter information for qualitative and quantitative evaluation of efficacy of treatment such as high-intensity focused ultrasound surgery. However, respiration and other physiological movements inevitably affect the process of CEUS imaging, and this reduces the accuracy of TIC calculation. In this study, a method of TIC calculation for vascular perfusion of uterine fibroids based on subtraction imaging with motion correction is proposed. First, the fibroid CEUS recording video was decoded into frame images based on the record frame rate. Next, the Brox optical flow algorithm was used to estimate the displacement field and correct the motion between two frames based on warp technique. Then, subtraction imaging was performed to extract the positional distribution of vascular perfusion (PDOVP). Finally, the average gray of all pixels in the PDOVP from each image was determined, and this was considered the TIC of CEUS image sequence. Both the correlation coefficient and mutual information of the results with proposed method were larger than those determined using the original method. PDOVP extraction results have been improved significantly after motion correction. The variance reduction rates were all positive, indicating that the fluctuations of TIC had become less pronounced, and the calculation accuracy has been improved after motion correction. This proposed method can effectively overcome the influence of motion mainly caused by respiration and allows precise calculation of TIC.

  9. Interferometric estimation of ice sheet motion and topography

    NASA Technical Reports Server (NTRS)

    Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad

    1997-01-01

    With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.

  10. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  11. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    NASA Astrophysics Data System (ADS)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  12. Experimental evaluation of four ground-motion scaling methods for dynamic response-history analysis of nonlinear structures

    USGS Publications Warehouse

    O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.

    2017-01-01

    This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.

  13. Performance of U-net based pyramidal lucas-kanade registration on free-breathing multi-b-value diffusion MRI of the kidney.

    PubMed

    Lv, Jun; Huang, Wenjian; Zhang, Jue; Wang, Xiaoying

    2018-06-01

    In free-breathing multi-b-value diffusion-weighted imaging (DWI), a series of images typically requires several minutes to collect. During respiration the kidney is routinely displaced and may also undergo deformation. These respiratory motion effects generate artifacts and these are the main sources of error in the quantification of intravoxel incoherent motion (IVIM) derived parameters. This work proposes a fully automated framework that combines a kidney segmentation to improve the registration accuracy. 10 healthy subjects were recruited to participate in this experiment. For the segmentation, U-net was adopted to acquire the kidney's contour. The segmented kidney then served as a region of interest (ROI) for the registration method, known as pyramidal Lucas-Kanade. Our proposed framework confines the kidney's solution range, thus increasing the pyramidal Lucas-Kanade's accuracy. To demonstrate the feasibility of our presented framework, eight regions of interest were selected in the cortex and medulla, and data stability was estimated by comparing the normalized root-mean-square error (NRMSE) values of the fitted data from the bi-exponential intravoxel incoherent motion model pre- and post- registration. The results show that the NRMSE was significantly lower after registration both in the cortex (p < 0.05) and medulla (p < 0.01) during free-breathing measurements. In addition, expert visual scoring of the derived apparent diffusion coefficient (ADC), f, D and D* maps indicated there were significant improvements in the alignment of the kidney in the post-registered image. The proposed framework can effectively reduce the motion artifacts of misaligned multi-b-value DWIs and the inaccuracies of the ADC, f, D and D* estimations. Advances in knowledge: This study demonstrates the feasibility of our proposed fully automated framework combining U-net based segmentation and pyramidal Lucas-Kanade registration method for improving the alignment of multi-b-value diffusion-weighted MRIs and reducing the inaccuracy of parameter estimation during free-breathing.

  14. Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Anissipour, Amir A.; Benson, Russell A.

    1989-01-01

    The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.

  15. A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1989-01-01

    Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.

  16. Bottom boundary layer spectral dissipation estimates in the presence of wave motions

    NASA Astrophysics Data System (ADS)

    Gross, T. F.; Williams, A. J.; Terray, E. A.

    1994-08-01

    Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.

  17. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  18. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  19. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  1. SU-G-JeP3-04: Estimating 4D CBCT from Prior Information and Extremely Limited Angle Projections Using Structural PCA and Weighted Free-Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Zhang, Y

    Purpose: To investigate the feasibility of using structure-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and a free-form deformation (GMM-FD) technique, using data fidelity constraint and the deformation energy minimization. In thismore » study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Results: Among 6 different XCAT scenarios corresponding to respirational and anatomical changes from planning CT to on-board using single 30° on-board projections, the VPD/COMS for SMM-WFD was reduced to 10.64±3.04%/1.20±0.45mm from 21.72±9.24%/1.80±0.53mm for GMM-FD. Using 15° orthogonal projections, the VPD/COMS was further reduced to 1.91±0.86%/0.31±0.42mm based on SMM-WFD. Conclusion: Compared to GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles to provide ultra-fast 4D verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  2. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  3. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  4. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.

    PubMed

    Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz

    2011-02-01

    Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.

  5. Modeling of earthquake ground motion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation model is assessed using data from the SMART-1 array in Taiwan. The interpolation model provides an effective method to estimate ground motion at a site using recordings from stations located up to several kilometers away. Reliable estimates of differential ground motion are restricted to relatively limited ranges of frequencies and inter-station spacings.

  6. On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry

    NASA Astrophysics Data System (ADS)

    Hering, R.; Walter, H. G.

    2007-06-01

    Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.

  7. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  8. Structure-From-Motion in 3D Space Using 2D Lidars

    PubMed Central

    Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So

    2017-01-01

    This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372

  9. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A robust H.264/AVC video watermarking scheme with drift compensation.

    PubMed

    Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.

  11. A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation

    PubMed Central

    Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376

  12. Video compression of coronary angiograms based on discrete wavelet transform with block classification.

    PubMed

    Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P

    1996-01-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  13. Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models.

    PubMed

    Kainz, Hans; Hoang, Hoa X; Stockton, Chris; Boyd, Roslyn R; Lloyd, David G; Carty, Christopher P

    2017-10-01

    Gait analysis together with musculoskeletal modeling is widely used for research. In the absence of medical images, surface marker locations are used to scale a generic model to the individual's anthropometry. Studies evaluating the accuracy and reliability of different scaling approaches in a pediatric and/or clinical population have not yet been conducted and, therefore, formed the aim of this study. Magnetic resonance images (MRI) and motion capture data were collected from 12 participants with cerebral palsy and 6 typically developed participants. Accuracy was assessed by comparing the scaled model's segment measures to the corresponding MRI measures, whereas reliability was assessed by comparing the model's segments scaled with the experimental marker locations from the first and second motion capture session. The inclusion of joint centers into the scaling process significantly increased the accuracy of thigh and shank segment length estimates compared to scaling with markers alone. Pelvis scaling approaches which included the pelvis depth measure led to the highest errors compared to the MRI measures. Reliability was similar between scaling approaches with mean ICC of 0.97. The pelvis should be scaled using pelvic width and height and the thigh and shank segment should be scaled using the proximal and distal joint centers.

  14. Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion magnetic resonance during dobutamine stress.

    PubMed

    Gebker, Rolf; Mirelis, Jesus G; Jahnke, Cosima; Hucko, Thomas; Manka, Robert; Hamdan, Ashraf; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-09-01

    The purpose of this study was to determine the influence of left ventricular (LV) hypertrophy and geometry on the diagnostic accuracy of wall motion and additional perfusion imaging during high-dose dobutamine/atropine stress magnetic resonance for the detection of coronary artery disease. Combined dobutamine stress magnetic resonance (DSMR)-wall motion and DSMR-perfusion imaging was performed in a single session in 187 patients scheduled for invasive coronary angiography. Patients were classified into 4 categories on the basis of LV mass (normal, ≤ 81 g/m(2) in men and ≤ 62 g/m(2) in women) and relative wall thickness (RWT) (normal, <0.45) as follows: normal geometry (normal mass, normal RWT), concentric remodeling (normal mass, increased RWT), concentric hypertrophy (increased mass, increased RWT), and eccentric hypertrophy (increased mass, normal RWT). Wall motion and perfusion images were interpreted sequentially, with observers blinded to other data. Significant coronary artery disease was defined as ≥ 70% stenosis. In patients with increased LV concentricity (defined by an RWT ≥ 0.45), sensitivity and accuracy of DSMR-wall motion were significantly reduced (63% and 73%, respectively; P<0.05) compared with patients without increased LV concentricity (90% and 88%, respectively; P<0.05). Although accuracy of DSMR-perfusion was higher than that of DSMR-wall motion in patients with concentric hypertrophy (82% versus 71%; P < 0.05), accuracy of DSMR-wall motion was superior to DSMR-perfusion (90% versus 85%; P < 0.05) in patients with eccentric hypertrophy. The accuracy of DSMR-wall motion is influenced by LV geometry. In patients with concentric remodeling and concentric hypertrophy, additional first-pass perfusion imaging during high-dose dobutamine stress improves the diagnostic accuracy for the detection of coronary artery disease.

  15. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.

    PubMed

    Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu

    2017-09-01

    An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.

  16. Selective attention increases choice certainty in human decision making.

    PubMed

    Zizlsperger, Leopold; Sauvigny, Thomas; Haarmeier, Thomas

    2012-01-01

    Choice certainty is a probabilistic estimate of past performance and expected outcome. In perceptual decisions the degree of confidence correlates closely with choice accuracy and reaction times, suggesting an intimate relationship to objective performance. Here we show that spatial and feature-based attention increase human subjects' certainty more than accuracy in visual motion discrimination tasks. Our findings demonstrate for the first time a dissociation of choice accuracy and certainty with a significantly stronger influence of voluntary top-down attention on subjective performance measures than on objective performance. These results reveal a so far unknown mechanism of the selection process implemented by attention and suggest a unique biological valence of choice certainty beyond a faithful reflection of the decision process.

  17. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach

    NASA Astrophysics Data System (ADS)

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  18. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.

  19. A Height Estimation Approach for Terrain Following Flights from Monocular Vision

    PubMed Central

    Campos, Igor S. G.; Nascimento, Erickson R.; Freitas, Gustavo M.; Chaimowicz, Luiz

    2016-01-01

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80% for positives and 90% for negatives, while the height estimation algorithm presented good accuracy. PMID:27929424

  20. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    NASA Astrophysics Data System (ADS)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  1. An Improved Method for Deriving Mountain Glacier Motion by Integrating Information of Intensity and Phase Based on SAR Images

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.

    2016-12-01

    Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.

  2. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise.

    PubMed

    Zhang, Zhilin; Pi, Zhouyue; Liu, Benyuan

    2015-02-01

    Heart rate monitoring using wrist-type photoplethysmographic signals during subjects' intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects' hand movements. So far few works have studied this problem. In this study, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification. The TROIKA framework has high estimation accuracy and is robust to strong motion artifacts. Many variants can be straightforwardly derived from this framework. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/h showed that the average absolute error of heart rate estimation was 2.34 beat per minute, and the Pearson correlation between the estimates and the ground truth of heart rate was 0.992. This framework is of great values to wearable devices such as smartwatches which use PPG signals to monitor heart rate for fitness.

  3. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  4. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy.

    PubMed

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C; Lomax, Antony J; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6[Formula: see text] layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with [Formula: see text]5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.

  5. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy

    NASA Astrophysics Data System (ADS)

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.

  6. Brownian motion with adaptive drift for remaining useful life prediction: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2018-01-01

    Linear Brownian motion with constant drift is widely used in remaining useful life predictions because its first hitting time follows the inverse Gaussian distribution. State space modelling of linear Brownian motion was proposed to make the drift coefficient adaptive and incorporate on-line measurements into the first hitting time distribution. Here, the drift coefficient followed the Gaussian distribution, and it was iteratively estimated by using Kalman filtering once a new measurement was available. Then, to model nonlinear degradation, linear Brownian motion with adaptive drift was extended to nonlinear Brownian motion with adaptive drift. However, in previous studies, an underlying assumption used in the state space modelling was that in the update phase of Kalman filtering, the predicted drift coefficient at the current time exactly equalled the posterior drift coefficient estimated at the previous time, which caused a contradiction with the predicted drift coefficient evolution driven by an additive Gaussian process noise. In this paper, to alleviate such an underlying assumption, a new state space model is constructed. As a result, in the update phase of Kalman filtering, the predicted drift coefficient at the current time evolves from the posterior drift coefficient at the previous time. Moreover, the optimal Kalman filtering gain for iteratively estimating the posterior drift coefficient at any time is mathematically derived. A discussion that theoretically explains the main reasons why the constructed state space model can result in high remaining useful life prediction accuracies is provided. Finally, the proposed state space model and its associated Kalman filtering gain are applied to battery prognostics.

  7. An application of Galactic parallax: the distance to the tidal stream GD-1

    NASA Astrophysics Data System (ADS)

    Eyre, Andy

    2010-04-01

    We assess the practicality of computing the distance to stellar streams in our Galaxy, using the method of Galactic parallax suggested by Eyre & Binney. We find that the uncertainty in Galactic parallax is dependent upon the specific geometry of the problem in question. In the case of the tidal stream GD-1, the problem geometry indicates that available proper-motion data, with individual accuracy ~4masyr-1, should allow estimation of its distance with about 50 per cent uncertainty. Proper motions accurate to ~1masyr-1, which are expected from the forthcoming Pan-STARRS PS-1 survey, will allow estimation of its distance to about 10 per cent uncertainty. Proper motions from the future Large Synoptic Survey Telescope (LSST) and Gaia projects will be more accurate still, and will allow the parallax for a stream 30 kpc distant to be measured with ~14 per cent uncertainty. We demonstrate the feasibility of the method and show that our uncertainty estimates are accurate by computing Galactic parallax using simulated data for the GD-1 stream. We also apply the method to actual data for the GD-1 stream, published by Koposov, Rix & Hogg. With the exception of one datum, the distances estimated using Galactic parallax match photometric estimates with less than 1 kpc discrepancy. The scatter in the distances recovered using Galactic parallax is very low, suggesting that the proper-motion uncertainty reported by Koposov et al. is in fact overestimated. We conclude that the GD-1 stream is (8 +/- 1)kpc distant, on a retrograde orbit inclined 37° to the plane, and that the visible portion of the stream is likely to be near pericentre.

  8. The first clinical implementation of a real-time six degree of freedom target tracking system during radiation therapy based on Kilovoltage Intrafraction Monitoring (KIM).

    PubMed

    Nguyen, Doan Trang; O'Brien, Ricky; Kim, Jung-Ha; Huang, Chen-Yu; Wilton, Lee; Greer, Peter; Legge, Kimberley; Booth, Jeremy T; Poulsen, Per Rugaard; Martin, Jarad; Keall, Paul J

    2017-04-01

    We present the first clinical implementation of a real-time six-degree of freedom (6DoF) Kilovoltage Intrafraction Monitoring (KIM) system which tracks the cancer target translational and rotational motions during treatment. The method was applied to measure and correct for target motion during stereotactic body radiotherapy (SBRT) for prostate cancer. Patient: A patient with prostate adenocarcinoma undergoing SBRT with 36.25Gy, delivered in 5 fractions was enrolled in the study. 6DoF KIM technology: 2D positions of three implanted gold markers in each of the kV images (125kV, 10mA at 11Hz) were acquired continuously during treatment. The 2D→3D target position estimation was based on a probability distribution function. The 3D→6DoF target rotation was calculated using an iterative closest point algorithm. The accuracy and precision of the KIM method was measured by comparing the real-time results with kV-MV triangulation. Of the five treatment fractions, KIM was utilised successfully in four fractions. The intrafraction prostate motion resulted in three couch shifts in two fractions when the prostate motion exceeded the pre-set action threshold of 2mm for more than 5s. KIM translational accuracy and precision were 0.3±0.6mm, -0.2±0.3mm and 0.2±0.7mm in the Left-Right (LR), Superior-Inferior (SI) and Anterior-Posterior (AP) directions, respectively. The KIM rotational accuracy and precision were 0.8°±2.0°, -0.5°±3.3° and 0.3°±1.6° in the roll, pitch and yaw directions, respectively. This treatment represents, to the best of our knowledge, the first time a cancer patient's tumour position and rotation have been monitored in real-time during treatment. The 6 DoF KIM system has sub-millimetre accuracy and precision in all three translational axes, and less than 1° accuracy and 4° precision in all three rotational axes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Translation and Rotation Trade Off in Human Visual Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    We have previously shown that, during simulated curvilinear motion, humans can make reasonably accurate and precise heading judgments from optic flow without either oculomotor or static-depth cues about rotation. We now systematically investigate the effect of varying the parameters of self-motion. We visually simulated 400 ms of self-motion along curved paths (constant rotation and translation rates, fixed retinocentric heading) towards two planes of random dots at 10.3 m and 22.3 m at mid-trial. Retinocentric heading judgments of 4 observers (2 naive) were measured for 12 different combinations of translation (T between 4 and 16 m/s) and rotation (R either 8 or 16 deg/s). In the range tested, heading bias and uncertainty decrease quasilinearly with T/R, but the bias also appears to depend on R. If depth is held constant, the ratio T/R can account for much of the variation in the accuracy and precision of human visual heading estimation, although further experiments are needed to resolve whether absolute rotation rate, total flow rate, or some other factor can account for the observed -2 deg shift between the bias curves.

  10. Hybrid Orientation Based Human Limbs Motion Tracking Method

    PubMed Central

    Glonek, Grzegorz; Wojciechowski, Adam

    2017-01-01

    One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832

  11. Replicating and extending Bourdon's (1902) experiment on motion parallax.

    PubMed

    Ono, Hiroshi; Lillakas, Linda; Kapoor, Anjani; Wong, Irene

    2013-01-01

    Bourdon conducted the first laboratory experiment on observer-produced motion parallax as a cue to depth. In three experiments, we replicated and extended Bourdon's experiment. In experiment 1, we reproduced his finding: when the two cues, motion parallax and relative height, were combined, accuracy of depth perception was high, and when the two cues were in conflict, accuracy was lower. In experiment 2, the relative height cue was replaced with relative retinal image size. As in experiment 1, when the two cues (motion parallax and relative retinal image size) were combined, accuracy was high, but when they were in conflict, it was lower. In experiment 3, the stimuli from experiments 1 and 2 were viewed monocularly with head movement and binocularly without head movement. In the binocular conditions, accuracy, certainty, and the extent of perceived depth were higher than in the monocular condition. In the conflict conditions, accuracy, certainty, and the extent of perceived depth were lower than in the no-conflict condition, but the extent of perceived motion was larger. These results are discussed in terms of recent findings about the effectiveness of motion parallax as a cue for depth.

  12. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  13. Integration time for the perception of depth from motion parallax.

    PubMed

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Design and Kinematic Evaluation of a Novel Joint-Specific Play Controller: Application for Wrist and Forearm Therapy

    PubMed Central

    Schwartz, Joel B.; Wilcox, Bethany; Costa, Laura; Kerman, Karen

    2015-01-01

    Background The wrist extensors and flexors are profoundly affected in most children with hemiparetic cerebral palsy (CP) and are the major target of physical therapists' and occupational therapists' efforts to restore useful hand functions. A limitation of any therapeutic or exercise program can be the level of the child's engagement or adherence. The proposed approach capitalizes on the primary learning avenue for children: toy play. Objective This study aimed to develop and evaluate the measurement accuracy of innovative, motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. Design Design objectives of the play controller included a cost-effective, home-based supplement to physical therapy, the ability to calibrate the controller so that play can be accomplished with any active range of motion, and the capability of logging play activity and wrist motion over week-long periods. Methods Accuracy of the play controller in measuring wrist flexion-extension was evaluated in 6 children who were developing in a typical manner, using optical motion capture of the wrist and forearm as the gold standard. Results The error of the play controller was estimated at approximately 5 degrees in both maximum wrist flexion and extension. Limitations Measurements were taken during a laboratory session, with children without CP, and no toy or computer game was interfaced with the play controller. Therefore, the potential engagement of the proposed approach for therapy remains to be evaluated. Conclusions This study presented the concept, development, and wrist tracking accuracy of an inexpensive approach to extremity therapy that may have a health benefit for children with hemiparesis, and potentially for patients of any age with a wide range of extremity neuromotor impairments. PMID:25573759

  15. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  16. Accuracy verification of the photostereometric system KKN/1B developed for intraoperative measurement of knee movement immediately after total knee arthroplasty.

    PubMed

    Nishino, K; Hayashi, T; Suzuki, Y; Koga, Y; Omori, G

    1999-01-01

    The function and integrity of the knee joint following total knee arthroplasty (TKA) is determined at first by the design and implantation of the prosthesis, and later by the tension of soft tissues surrounding it. Accurate post-TKA motion data obtained intraoperatively could be used not only to optimize implantation techniques from a kinematic standpoint, but also to improve prosthetic design. We therefore developed a system specifically geared to photostereometric measurement of 6 d.o.f. knee motion. A total of eight LEDs are mounted on the prosthetic components in two sets of four by means of connecting measuring-bows. The positions of the LEDs are detected in three-dimensions by two sets of three linear CCD cameras, located bilaterally relative to the knee. The position and orientation of the femoral component relative to the tibial one are estimated from the positions of all LEDs in the sense of least-squares. Based upon results of various accuracy validation experiments performed after precise camera calibration, static overall accuracy and spatial resolution were considered to lie within 0.52 and 0.11 mm, respectively, at any point on the femoral articular surface.

  17. Image informative maps for component-wise estimating parameters of signal-dependent noise

    NASA Astrophysics Data System (ADS)

    Uss, Mykhail L.; Vozel, Benoit; Lukin, Vladimir V.; Chehdi, Kacem

    2013-01-01

    We deal with the problem of blind parameter estimation of signal-dependent noise from mono-component image data. Multispectral or color images can be processed in a component-wise manner. The main results obtained rest on the assumption that the image texture and noise parameters estimation problems are interdependent. A two-dimensional fractal Brownian motion (fBm) model is used for locally describing image texture. A polynomial model is assumed for the purpose of describing the signal-dependent noise variance dependence on image intensity. Using the maximum likelihood approach, estimates of both fBm-model and noise parameters are obtained. It is demonstrated that Fisher information (FI) on noise parameters contained in an image is distributed nonuniformly over intensity coordinates (an image intensity range). It is also shown how to find the most informative intensities and the corresponding image areas for a given noisy image. The proposed estimator benefits from these detected areas to improve the estimation accuracy of signal-dependent noise parameters. Finally, the potential estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise parameters is derived, providing confidence intervals of these estimates for a given image. In the experiment, the proposed and existing state-of-the-art noise variance estimators are compared for a large image database using CRLB-based statistical efficiency criteria.

  18. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. WE-G-BRD-01: A Data-Driven 4D-MRI Motion Model to Estimate Full Field-Of-View Abdominal Motion From 2D Image Navigators During MR-Linac Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis

    2015-06-15

    Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-seriesmore » consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large volume, while acquiring real-time cine-MR images for MR-guided radiotherapy.« less

  20. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.

    PubMed

    Bertomeu-Motos, Arturo; Lledó, Luis D; Díez, Jorge A; Catalan, Jose M; Ezquerro, Santiago; Badesa, Francisco J; Garcia-Aracil, Nicolas

    2015-12-04

    This paper presents a novel kinematic reconstruction of the human arm chain with five degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian through the acceleration of the upper arm, measured using an accelerometer, and the orientation of the shoulder, estimated with a magnetic angular rate and gravity (MARG) device. The results show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm measured through an optoelectronic system. Furthermore, the range of motion (ROM) of 50 healthy subjects is studied from two different trials, one trying to avoid shoulder movements and the second one forcing them. Moreover, the shoulder movement in the second trial is also estimated accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints' estimation enables a better adjustment of the therapy, taking into account the needs of the patient, and consequently, the arm motion improves faster.

  1. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.

    2010-08-01

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  2. Efficient Wide Baseline Structure from Motion

    NASA Astrophysics Data System (ADS)

    Michelini, Mario; Mayer, Helmut

    2016-06-01

    This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.

  3. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    NASA Astrophysics Data System (ADS)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  4. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  5. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.

    PubMed

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    2016-06-01

    We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.

  6. The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.

    PubMed

    Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson

    2008-09-01

    To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.

  7. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no; Klein, Stefan; Hofstad, Erlend Fagertun

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequencemore » in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe that the method has potential in interventions on moving abdominal organs such as MR or ultrasound guided focused ultrasound therapy and radiotherapy, pending the method is enabled to run in real-time. The data and the annotations used for this study are made publicly available for those who would like to test other methods on 4D liver ultrasound data.« less

  8. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  9. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  10. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  11. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  12. EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment.

    PubMed

    Lin, Chin-Teng; Tsai, Shu-Fang; Ko, Li-Wei

    2013-10-01

    Motion sickness is a common experience for many people. Several previous researches indicated that motion sickness has a negative effect on driving performance and sometimes leads to serious traffic accidents because of a decline in a person's ability to maintain self-control. This safety issue has motivated us to find a way to prevent vehicle accidents. Our target was to determine a set of valid motion sickness indicators that would predict the occurrence of a person's motion sickness as soon as possible. A successful method for the early detection of motion sickness will help us to construct a cognitive monitoring system. Such a monitoring system can alert people before they become sick and prevent them from being distracted by various motion sickness symptoms while driving or riding in a car. In our past researches, we investigated the physiological changes that occur during the transition of a passenger's cognitive state using electroencephalography (EEG) power spectrum analysis, and we found that the EEG power responses in the left and right motors, parietal, lateral occipital, and occipital midline brain areas were more highly correlated to subjective sickness levels than other brain areas. In this paper, we propose the use of a self-organizing neural fuzzy inference network (SONFIN) to estimate a driver's/passenger's sickness level based on EEG features that have been extracted online from five motion sickness-related brain areas, while either in real or virtual vehicle environments. The results show that our proposed learning system is capable of extracting a set of valid motion sickness indicators that originated from EEG dynamics, and through SONFIN, a neuro-fuzzy prediction model, we successfully translated the set of motion sickness indicators into motion sickness levels. The overall performance of this proposed EEG-based learning system can achieve an average prediction accuracy of ~82%.

  13. List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.

    2013-08-01

    Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.

  14. List-mode Reconstruction for the Biograph mCT with Physics Modeling and Event-by-Event Motion Correction

    PubMed Central

    Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.

    2013-01-01

    Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32-bit packets, where averaging of lines of response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic assignment of LOR positions (pLOR) that addresses axial and transaxial LOR grouping in 32-bit data. Second, two simplified approaches for 3D TOF scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + time-of-flight (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32-bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction. PMID:23892635

  15. Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Wolfinger, K.; Stamm, J. D.

    2017-12-01

    The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.

  16. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing.

    PubMed

    Najafi, Bijan; Lee-Eng, Jacqueline; Wrobel, James S; Goebel, Ruben

    2015-06-01

    This study suggests a wearable sensor technology to estimate center of mass (CoM) trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®). Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon®) for angle measurement (r > 0.99, random error <1.2° (1.5%) for anterior-posterior; <0.9° (2%) for medial-lateral; and <3.6° (2.5%) for internal-external direction). The two-link model yielded a better agreement with the reference system compared to one-link model (r > 0.93 v. r = 0.52, respectively). On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error <1cm (7.7%) and <2cm (10.4%) for M-L). The proposed system appears to accurately quantify the kinematics of CoM trajectory as a surrogate of dynamic postural control during an athlete's movement and its portability, makes it feasible to fit the competitive environment without restricting surface type. Key pointsThis study demonstrates that wearable technology based on inertial sensors are accurate to estimate center of mass trajectory in complex athletic task (e.g., golf swing)This study suggests that two-link model of human body provides optimum tradeoff between accuracy and minimum number of sensor module for estimation of center of mass trajectory in particular during fast movements.Wearable technologies based on inertial sensors are viable option for assessing dynamic postural control in complex task outside of gait laboratory and constraints of cameras, surface, and base of support.

  17. Beat-to-beat heart rate estimation fusing multimodal video and sensor data

    PubMed Central

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-01-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754

  18. Comparative analysis of algorithms for lunar landing control

    NASA Astrophysics Data System (ADS)

    Zhukov, B. I.; Likhachev, V. N.; Sazonov, V. V.; Sikharulidze, Yu. G.; Tuchin, A. G.; Tuchin, D. A.; Fedotov, V. P.; Yaroshevskii, V. S.

    2015-11-01

    For the descent from the pericenter of a prelanding circumlunar orbit a comparison of three algorithms for the control of lander motion is performed. These algorithms use various combinations of terminal and programmed control in a trajectory including three parts: main braking, precision braking, and descent with constant velocity. In the first approximation, autonomous navigational measurements are taken into account and an estimate of the disturbances generated by movement of the fuel in the tanks was obtained. Estimates of the accuracy for landing placement, fuel consumption, and performance of the conditions for safe lunar landing are obtained.

  19. Beat-to-beat heart rate estimation fusing multimodal video and sensor data.

    PubMed

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.

  20. Optimal estimates of the diffusion coefficient of a single Brownian trajectory.

    PubMed

    Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb

    2012-03-01

    Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.

  1. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Derek B.; Greger, Paul D.

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographingmore » only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.« less

  2. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.

    PubMed

    Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L

    2017-07-01

    Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.

  3. Fast 3D shape measurements with reduced motion artifacts

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua

    2017-10-01

    Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  4. Flight-path estimation in passive low-altitude flight by visual cues

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, S.

    1993-01-01

    A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.

  5. syris: a flexible and efficient framework for X-ray imaging experiments simulation.

    PubMed

    Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo

    2017-11-01

    An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.

  6. Increasing accuracy in the assessment of motion sickness: A construct methodology

    NASA Technical Reports Server (NTRS)

    Stout, Cynthia S.; Cowings, Patricia S.

    1993-01-01

    The purpose is to introduce a new methodology that should improve the accuracy of the assessment of motion sickness. This construct methodology utilizes both subjective reports of motion sickness and objective measures of physiological correlates to assess motion sickness. Current techniques and methods used in the framework of a construct methodology are inadequate. Current assessment techniques for diagnosing motion sickness and space motion sickness are reviewed, and attention is called to the problems with the current methods. Further, principles of psychophysiology that when applied will probably resolve some of these problems are described in detail.

  7. User-Independent Motion State Recognition Using Smartphone Sensors

    PubMed Central

    Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga

    2015-01-01

    The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users’ data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people’s motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human’s motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy. PMID:26690163

  8. User-Independent Motion State Recognition Using Smartphone Sensors.

    PubMed

    Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga

    2015-12-04

    The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users' data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people's motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human's motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.

  9. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  10. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.

  11. Estimating the Heading Direction Using Normal Flow

    DTIC Science & Technology

    1994-01-01

    understood (Faugeras and Maybank 1990), 3 Kinetic Stabilization under the assumption that optic flow or correspon- dence is known with some uncertainty...accelerometers can achieve very It can easily be shown (Koenderink and van Doom high accuracy, the same is not true for inexpensive 1975; Maybank 1985... Maybank . ’Motion from point matches: Multi- just don’t compute normal flow there (see Section 6). plicity of solutions". Int’l J. Computer Vision 4

  12. TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Yuan, L; Sheng, Y

    Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra-beam prostate motion range. Excellent delivery accuracy was confirmed with very small leaf motion deviation.« less

  13. Spatial and temporal processing in healthy aging: implications for perceptions of driving skills.

    PubMed

    Conlon, Elizabeth; Herkes, Kathleen

    2008-07-01

    Sensitivity to the attributes of a stimulus (form or motion) and accuracy when detecting rapidly presented stimulus information were measured in older (N = 36) and younger (N = 37) groups. Before and after practice, the older group was significantly less sensitive to global motion (but not to form) and less accurate on a rapid sequencing task when detecting the individual elements presented in long but not short sequences. These effect sizes produced power for the different analyses that ranged between 0.5 and 1.00. The reduced sensitivity found among older individuals to temporal but not spatial stimuli, adds support to previous findings of a selective age-related deficit in temporal processing. Older women were significantly less sensitive than older men, younger men and younger women on the global motion task. Gender effects were evident when, in response to global motion stimuli, complex extraction and integration processes needed to be undertaken rapidly. Significant moderate correlations were found between age, global motion sensitivity and reports of perceptions of other vehicles and road signs when driving. These associations suggest that reduced motion sensitivity may produce functional difficulties for the older adults when judging speeds or estimating gaps in traffic while driving.

  14. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  15. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of cloud motion vectors from the GEO/LEO IR based precipitation estimates and the CFS Reanalysis (CFSR) precipitation fields. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the CFSR precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. Error function is experimented to best reflect the performance of the satellite IR based estimates and the CFSR in capturing the movements of precipitating cloud systems over different regions and for different seasons. Quantitative experiments are conducted to optimize the LEO IR based precipitation estimation technique and the 2D-VAR based motion vector analysis system. Detailed results will be reported at the EGU.

  16. Earth Rotation Parameter Solutions using BDS and GPS Data from MEGX Network

    NASA Astrophysics Data System (ADS)

    Xu, Tianhe; Yu, Sumei; Li, Jiajing; He, Kaifei

    2014-05-01

    Earth rotation parameters (ERPs) are necessary parameters to achieve mutual transformation of the celestial reference frame and earth-fix reference frame. They are very important for satellite precise orbit determination (POD), high-precision space navigation and positioning. In this paper, the determination of ERPs including polar motion (PM), polar motion rate (PMR) and length of day (LOD) are presented using BDS and GPS data of June 2013 from MEGX network based on least square (LS) estimation with constraint condition. BDS and GPS data of 16 co-location stations from MEGX network are the first time used to estimate the ERPs. The results show that the RMSs of x and y component errors of PM and PM rate are about 0.9 mas, 1.0 mas, 0.2 mas/d and 0.3 mas/d respectively using BDS data. The RMS of LOD is about 0.03 ms/d using BDS data. The RMSs of x and y component errors of PM and PM rate are about 0.2 mas, 0.2 mas/d respectively using GPS data. The RMS of LOD is about 0.02 ms/d using GPS data. The optimal relative weight is determined by using variance component estimation when combining BDS and GPS data. The accuracy improvements of adding BDS data is between 8% to 20% for PM and PM rate. There is no obvious improvement in LOD when BDS data is involved. System biases between BDS and GPS are also resolved per station. They are very stable from day to day with the average accuracy of about 20 cm. Keywords: Earth rotation parameter; International GNSS Service; polar motion; length of day; least square with constraint condition Acknowledgments: This work was supported by Natural Science Foundation of China (41174008) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B51) .

  17. Accuracy of the dose-shift approximation in estimating the delivered dose in SBRT of lung tumors considering setup errors and breathing motions.

    PubMed

    Karlsson, Kristin; Lax, Ingmar; Lindbäck, Elias; Poludniowski, Gavin

    2017-09-01

    Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D 98% ) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.

  18. Strength reduction factors for seismic analyses of buildings exposed to near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Qu, Honglue; Zhang, Jianjing; Zhao, J. X.

    2011-06-01

    To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors ( R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-µ- T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.

  19. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    PubMed

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  20. A novel unscented predictive filter for relative position and attitude estimation of satellite formation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2015-07-01

    This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.

  1. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  2. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.

    PubMed

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart

    2015-02-21

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  3. Nutation determination using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Yao, Kunliang; Capitaine, Nicole; Umnig, Elke; Weber, Robert

    2012-08-01

    VLBI observation of extragalactic radio sources is the only technique that allows high accuracy determination of nutation on a regular basis. However, this is limited to periods of nutation greater than about 30 days due to the current resolution of VL BI estimation. It is there fore important to use another technique to improve nutation at shorter periods. It has been shown by Rothacher et al. (1999) and Weber & Rothacher (2001) that GPS is a potential technique for the determination of the short period terms of nutation. The met hod, which is based on the estimation of nutation rates with respect to an a priori model, is limited to nutation terms in the higher frequency range (with periods up to about 21 days) due to deficiencies in the modeling of the satellite orbits. The high accuracy and high time resolution of the GPS observations that are now achieved give us the possibility to estimate the nutation variations with respect to the IAU2000A nutation, with an expected precision of 10 microarcseconds (μas ). The purpose of our study is to use recent GPS observations obtained by 140 IGS stations (IGS08 Core Reference Frame sites included) to estimate the short period nutations. Two methods are applied: one is to investigate the retrograde diurnal term of polar motion with nutation fixed to the IAU 2006/2000 precession - nutation, using CNES/GRGS software GINS/DYNAMO at Observatoire de Paris; another one is to investigate the nutation time derivative, with polar motion fixed, using Bernese GPS software at University of Technology in Vienna. In this poster, we report on our preliminary results with data set covering a period of 3 years (2009 - 2011), with appropriate time resolutions and on the comparison between the two approaches.

  4. Development of a new calibration procedure and its experimental validation applied to a human motion capture system.

    PubMed

    Royo Sánchez, Ana Cristina; Aguilar Martín, Juan José; Santolaria Mazo, Jorge

    2014-12-01

    Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.

  5. SU-E-J-118: Verification of Intrafractional Positional Accuracy Using Ultrasound Autoscan Tracking for Prostate Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Hristov, D; Phillips, T

    Purpose: Transperineal ultrasound imaging is attractive option for imageguided radiation therapy as there is no need to implant fiducials, no extra imaging dose, and real time continuous imaging is possible during treatment. The aim of this study is to verify the tracking accuracy of a commercial ultrasound system under treatment conditions with a male pelvic phantom. Methods: A CT and ultrasound scan were acquired for the male pelvic phantom. The phantom was then placed in a treatment mimicking position on a motion platform. The axial and lateral tracking accuracy of the ultrasound system were verified using an independent optical trackingmore » system. The tracking accuracy was evaluated by tracking the phantom position detected by the ultrasound system, and comparing it to the optical tracking system under the conditions of beam on (15 MV), beam off, poor image quality with an acoustic shadow introduced, and different phantom motion cycles (10 and 20 second periods). Additionally, the time lag between the ultrasound-detected and actual phantom motion was investigated. Results: Displacement amplitudes reported by the ultrasound system and optical system were within 0.5 mm of each other for both directions and all conditions. The ultrasound tracking performance in axial direction was better than in lateral direction. Radiation did not interfere with ultrasound tracking while image quality affected tracking accuracy. The tracking accuracy was better for periodic motion with 20 second period. The time delay between the ultrasound tracking system and the phantom motion was clinically acceptable. Conclusion: Intrafractional prostate motion is a potential source of treatment error especially in the context of emerging SBRT regimens. It is feasible to use transperineal ultrasound daily to monitor prostate motion during treatment. Our results verify the tracking accuracy of a commercial ultrasound system to be better than 1 mm under typical external beam treatment conditions.« less

  6. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  7. Estimation of the center of rotation using wearable magneto-inertial sensors.

    PubMed

    Crabolu, M; Pani, D; Raffo, L; Cereatti, A

    2016-12-08

    Determining the center of rotation (CoR) of joints is fundamental to the field of human movement analysis. CoR can be determined using a magneto-inertial measurement unit (MIMU) using a functional approach requiring a calibration exercise. We systematically investigated the influence of different experimental conditions that can affect precision and accuracy while estimating the CoR, such as (a) angular joint velocity, (b) distance between the MIMU and the CoR, (c) type of the joint motion implemented, (d) amplitude of the angular range of motion, (e) model of the MIMU used for data recording, (f) amplitude of additive noise on inertial signals, and (g) amplitude of the errors in the MIMU orientation. The evaluation process was articulated at three levels: assessment through experiments using a mechanical device, mathematical simulation, and an analytical propagation model of the noise. The results reveal that joint angular velocity significantly impacted CoR identification, and hence, slow joint movement should be avoided. An accurate estimation of the MIMU orientation is also fundamental for accurately subtracting the contribution owing to gravity to obtain the coordinate acceleration. The unit should be preferably attached close to the CoR, but both type and range of motion do not appear to be critical. When the proposed methodology is correctly implemented, error in the CoR estimates is expected to be <3mm (best estimates=2±0.5mm). The findings of the present study foster the need to further investigate this methodology for application in human subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  9. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  10. [Image processing applying in analysis of motion features of cultured cardiac myocyte in rat].

    PubMed

    Teng, Qizhi; He, Xiaohai; Luo, Daisheng; Wang, Zhengrong; Zhou, Beiyi; Yuan, Zhirun; Tao, Dachang

    2007-02-01

    Study of mechanism of medicine actions, by quantitative analysis of cultured cardiac myocyte, is one of the cutting edge researches in myocyte dynamics and molecular biology. The characteristics of cardiac myocyte auto-beating without external stimulation make the research sense. Research of the morphology and cardiac myocyte motion using image analysis can reveal the fundamental mechanism of medical actions, increase the accuracy of medicine filtering, and design the optimal formula of medicine for best medical treatments. A system of hardware and software has been built with complete sets of functions including living cardiac myocyte image acquisition, image processing, motion image analysis, and image recognition. In this paper, theories and approaches are introduced for analysis of living cardiac myocyte motion images and implementing quantitative analysis of cardiac myocyte features. A motion estimation algorithm is used for motion vector detection of particular points and amplitude and frequency detection of a cardiac myocyte. Beatings of cardiac myocytes are sometimes very small. In such case, it is difficult to detect the motion vectors from the particular points in a time sequence of images. For this reason, an image correlation theory is employed to detect the beating frequencies. Active contour algorithm in terms of energy function is proposed to approximate the boundary and detect the changes of edge of myocyte.

  11. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy.

    PubMed

    Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi

    2015-01-01

    Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

  12. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  13. Benchmarking real-time RGBD odometry for light-duty UAVs

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Sahawneh, Laith R.; Brink, Kevin M.

    2016-06-01

    This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.

  14. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  15. The Gould’s Belt Distances Survey (GOBELINS). I. Trigonometric Parallax Distances and Depth of the Ophiuchus Complex

    NASA Astrophysics Data System (ADS)

    Ortiz-León, Gisela N.; Loinard, Laurent; Kounkel, Marina A.; Dzib, Sergio A.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Torres, Rosa M.; González-Lópezlira, Rosa A.; Pech, Gerardo; Rivera, Juana L.; Hartmann, Lee; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.; Galli, Phillip A. B.; Gudehus, Donald

    2017-01-01

    We present the first results of the Gould’s Belt Distances Survey (GOBELINS), a project aimed at measuring the proper motion and trigonometric parallax of a large sample of young stars in nearby regions using multi-epoch Very Long Baseline Array (VLBA) radio observations. Enough VLBA detections have now been obtained for 16 stellar systems in Ophiuchus to derive their parallax and proper motion. This leads to distance determinations for individual stars with an accuracy of 0.3 to a few percent. In addition, the orbits of six multiple systems were modelled by combining absolute positions with VLBA (and, in some cases, near-infrared) angular separations. Twelve stellar systems are located in the dark cloud Lynds 1688 the individual distances for this sample are highly consistent with one another and yield a mean parallax for Lynds 1688 of \\varpi =7.28+/- 0.06 mas, corresponding to a distance d=137.3+/- 1.2 pc. This represents an accuracy greater than 1%. Three systems for which astrometric elements could be measured are located in the eastern streamer (Lynds 1689) and yield an estimate of \\varpi =6.79+/- 0.16 mas, corresponding to a distance d=147.3+/- 3.4 pc. This suggests that the eastern streamer is located about 10 pc farther than the core, but this conclusion needs to be confirmed by observations of additional sources in the eastern streamer (currently being collected). From the measured proper motions, we estimate the one-dimensional velocity dispersion in Lynds 1688 to be 2.8 ± 1.8 and 3.0 ± 2.0 km s-1, in R.A. and decl., respectively; these are larger than, but still consistent within 1σ of, those found in other studies.

  16. WE-G-BRD-02: Characterizing Information Loss in a Sparse-Sampling-Based Dynamic MRI Sequence (k-T BLAST) for Lung Motion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, T; Nofiele, J; Sawant, A

    2015-06-15

    Purpose: Rapid MRI is an attractive, non-ionizing tool for soft-tissue-based monitoring of respiratory motion in thoracic and abdominal radiotherapy. One big challenge is to achieve high temporal resolution while maintaining adequate spatial resolution. K-t BLAST, sparse-sampling and reconstruction sequence based on a-priori information represents a potential solution. In this work, we investigated how much “true” motion information is lost as a-priori information is progressively added for faster imaging. Methods: Lung tumor motions in superior-inferior direction obtained from ten individuals were replayed into an in-house, MRI-compatible, programmable motion platform (50Hz refresh and 100microns precision). Six water-filled 1.5ml tubes were placed onmore » it as fiducial markers. Dynamic marker motion within a coronal slice (FOV: 32×32cm{sup 2}, resolution: 0.67×0.67mm{sup 2}, slice-thickness: 5mm) was collected on 3.0T body scanner (Ingenia, Philips). Balanced-FFE (TE/TR: 1.3ms/2.5ms, flip-angle: 40degrees) was used in conjunction with k-t BLAST. Each motion was repeated four times as four k-t acceleration factors 1, 2, 5, and 16 (corresponding frame rates were 2.5, 4.7, 9.8, and 19.1Hz, respectively) were compared. For each image set, one average motion trajectory was computed from six marker displacements. Root mean square error (RMS) was used as a metric of spatial accuracy where measured trajectories were compared to original data. Results: Tumor motion was approximately 10mm. The mean(standard deviation) of respiratory rates over ten patients was 0.28(0.06)Hz. Cumulative distributions of tumor motion frequency spectra (0–25Hz) obtained from the patients showed that 90% of motion fell on 3.88Hz or less. Therefore, the frame rate must be a double or higher for accurate monitoring. The RMS errors over patients for k-t factors of 1, 2, 5, and 16 were.10(.04),.17(.04), .21(.06) and.26(.06)mm, respectively. Conclusions: K-t factor of 5 or higher can cover the high frequency component of tumor respiratory motion, while the estimated error of spatial accuracy was approximately.2mm.« less

  17. Determination of the Ephemeris Accuracy for AJISAI, LAGEOS and ETALON Satellites, Obtained with A Simplified Numerical Motion Model Using the ILRS Coordinates

    NASA Astrophysics Data System (ADS)

    Kara, I. V.

    This paper describes a simplified numerical model of passive artificial Earth satellite (AES) motion. The model accuracy is determined using the International Laser Ranging Service (ILRS) highprecision coordinates. Those data are freely available on http://ilrs.gsfc.nasa.gov. The differential equations of the AES motion are solved by the Everhart numerical method of 17th and 19th orders with the integration step automatic correction. The comparison between the AES coordinates computed with the motion model and the ILRS coordinates enabled to determine the accuracy of the ephemerides obtained. As a result, the discrepancy of the computed Etalon-1 ephemerides from the ILRS data is about 10'' for a one-year ephemeris.

  18. Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2013-03-01

    Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.

  19. High-precision numerical integration of equations in dynamics

    NASA Astrophysics Data System (ADS)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  20. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.

    PubMed

    Zhang, You; Yin, Fang-Fang; Segars, W Paul; Ren, Lei

    2013-12-01

    To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy. Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground-truth" onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)∕4.9 mm (±3.0 mm), 96.07% (±31.48%)∕12.1 mm (±3.9 mm) and 11.45% (±9.37%)∕1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)∕4.9 mm (±3.0 mm), 75.98% (±27.21%)∕9.9 mm (±4.0 mm), and 5.22% (±2.12%)∕0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)∕3.2 mm (±2.2 mm), 24.57% (±18.18%)∕2.9 mm (±2.0 mm), and 10.48% (±9.50%)∕1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD∕COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased. The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.

  1. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes tomore » the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion in estimated and “ground-truth” onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)/4.9 mm (±3.0 mm), 96.07% (±31.48%)/12.1 mm (±3.9 mm) and 11.45% (±9.37%)/1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)/4.9 mm (±3.0 mm), 75.98% (±27.21%)/9.9 mm (±4.0 mm), and 5.22% (±2.12%)/0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)/3.2 mm (±2.2 mm), 24.57% (±18.18%)/2.9 mm (±2.0 mm), and 10.48% (±9.50%)/1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD/COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased.Conclusions: The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.« less

  2. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations

    NASA Astrophysics Data System (ADS)

    Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko

    2018-04-01

    Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p  <  0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.

  3. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  4. The Feasibility of 3d Point Cloud Generation from Smartphones

    NASA Astrophysics Data System (ADS)

    Alsubaie, N.; El-Sheimy, N.

    2016-06-01

    This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  5. Efficacy of time-lapse photography and repeated counts abundance estimation for white-tailed deer populations

    USGS Publications Warehouse

    Keever, Allison; McGowan, Conor P.; Ditchkoff, Stephen S.; Acker, S.A.; Grand, James B.; Newbolt, Chad H.

    2017-01-01

    Automated cameras have become increasingly common for monitoring wildlife populations and estimating abundance. Most analytical methods, however, fail to account for incomplete and variable detection probabilities, which biases abundance estimates. Methods which do account for detection have not been thoroughly tested, and those that have been tested were compared to other methods of abundance estimation. The goal of this study was to evaluate the accuracy and effectiveness of the N-mixture method, which explicitly incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by using camera surveys and a known, marked population to collect data and estimate abundance. Motion-triggered camera surveys were conducted at Auburn University’s deer research facility in 2010. Abundance estimates were generated using N-mixture models and compared to the known number of marked deer in the population. We compared abundance estimates generated from a decreasing number of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, CREPUSCULAR, ALL TIMES). Accurate abundance estimates were generated using 24 h of data and nighttime only data. Accuracy of abundance estimates increased with increasing number of survey days until day 5, and there was no improvement with additional data. This suggests that, for our system, 5-day camera surveys conducted at night were adequate for abundance estimation and population monitoring. Further, our study demonstrates that camera surveys and N-mixture models may be a highly effective method for estimation and monitoring of ungulate populations.

  6. Determination of Galactic Aberration from VLBI Measurements and Its Effect on VLBI Reference Frames and Earth Orientation Parameters.

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2014-12-01

    Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.

  7. Gravitational acceleration as a cue for absolute size and distance?

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Kaiser, M. K.; Banks, M. S.

    1996-01-01

    When an object's motion is influenced by gravity, as in the rise and fall of a thrown ball, the vertical component of acceleration is roughly constant at 9.8 m/sec2. In principle, an observer could use this information to estimate the absolute size and distance of the object (Saxberg, 1987a; Watson, Banks, von Hofsten, & Royden, 1992). In five experiments, we examined people's ability to utilize the size and distance information provided by gravitational acceleration. Observers viewed computer simulations of an object rising and falling on a trajectory aligned with the gravitational vector. The simulated objects were balls of different diameters presented across a wide range of simulated distances. Observers were asked to identify the ball that was presented and to estimate its distance. The results showed that observers were much more sensitive to average velocity than to the gravitational acceleration pattern. Likewise, verticality of the motion and visibility of the trajectory's apex had negligible effects on the accuracy of size and distance judgments.

  8. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  9. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  10. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.

    PubMed

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-12-02

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  11. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV

    PubMed Central

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-01-01

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy. PMID:27918422

  12. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle

    PubMed Central

    Atallah, Vincent; Escarmant, Patrick; Vinh‐Hung, Vincent

    2016-01-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in‐house‐made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real‐time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high‐contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep‐breathing patterns. This low‐cost, computer‐vision system for real‐time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km PMID:27685116

  13. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  14. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Cerveri, P.; Riboldi, M.; Pella, A.; Baroni, G.

    2012-11-01

    In radiotherapy, organ motion mitigation by means of dynamic tumor tracking requires continuous information about the internal tumor position, which can be estimated relying on external/internal correlation models as a function of external surface surrogates. In this work, we propose a validation of a time-independent artificial neural networks-based tumor tracking method in the presence of changes in the breathing pattern, evaluating the performance on two datasets. First, simulated breathing motion traces were specifically generated to include gradually increasing respiratory irregularities. Then, seven publically available human liver motion traces were analyzed for the assessment of tracking accuracy, whose sensitivity with respect to the structural parameters of the model was also investigated. Results on simulated data showed that the proposed method was not affected by hysteretic target trajectories and it was able to cope with different respiratory irregularities, such as baseline drift and internal/external phase shift. The analysis of the liver motion traces reported an average RMS error equal to 1.10 mm, with five out of seven cases below 1 mm. In conclusion, this validation study proved that the proposed method is able to deal with respiratory irregularities both in controlled and real conditions.

  15. Blind motion image deblurring using nonconvex higher-order total variation model

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo

    2016-09-01

    We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.

  16. WIYN OPEN CLUSTER STUDY. LV. ASTROMETRY AND MEMBERSHIP IN NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platais, Imants; Gosnell, Natalie M.; Meibom, Soren

    2013-08-01

    We present proper motions and astrometric membership analysis for 15,750 stars around the intermediate-age open cluster NGC 6819. The accuracy of relative proper motions for well-measured stars ranges from {approx}0.2 mas yr{sup -1} within 10' of the cluster center to 1.1 mas yr{sup -1} outside this radius. In the proper motion vector-point diagram, the separation between the cluster members and field stars is convincing down to V {approx} 18 and within 10' from the cluster center. The formal sum of membership probabilities indicates a total of {approx}2500 cluster members down to V {approx} 22. We confirm the cluster membership ofmore » several variable stars, including some eclipsing binaries. The estimated absolute proper motion of NGC 6819 is {mu}{sub x}{sup abs}=-2.6{+-}0.5 and {mu}{sub y}{sup abs}=-4.2{+-}0.5 mas yr{sup -1}. A cross-identification between the proper motion catalog and a list of X-ray sources in the field of NGC 6819 resulted in a number of new likely optical counterparts, including a candidate CV. For the first time we show that there is significant differential reddening toward NGC 6819.« less

  17. Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

    NASA Astrophysics Data System (ADS)

    Lee, Eunji; Park, Sang-Young; Shin, Bumjoon; Cho, Sungki; Choi, Eun-Jung; Jo, Junghyun; Park, Jang-Hyun

    2017-03-01

    The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

  18. Accounting for speed-accuracy tradeoff in perceptual learning

    PubMed Central

    Liu, Charles C.; Watanabe, Takeo

    2011-01-01

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d’. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. PMID:21958757

  19. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  20. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology

    NASA Astrophysics Data System (ADS)

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-01

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.

  1. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology.

    PubMed

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-13

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.

  2. Region-confined restoration method for motion-blurred star image of the star sensor under dynamic conditions.

    PubMed

    Ma, Liheng; Bernelli-Zazzera, Franco; Jiang, Guangwen; Wang, Xingshu; Huang, Zongsheng; Qin, Shiqiao

    2016-06-10

    Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise. Subsequently, a restoration strategy is employed in the extracted regions, taking the time consumption and SNR improvement into consideration simultaneously. Simulation results indicate that the region-confined restoration method is effective in removing noise and improving the centroiding accuracy. The identification rate and the average number of identified stars in the experiments verify the advantages of the region-confined restoration method.

  3. Preliminary evaluation of the dosimetric accuracy of cone-beam computed tomography for cases with respiratory motion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee

    2014-04-01

    Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.

  4. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  5. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    PubMed

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  6. Learning receptor positions from imperfectly known motions

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1990-01-01

    An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.

  7. Sea ice motion measurements from Seasat SAR images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Raggam, J.; Elachi, C.; Campbell, W. J.

    1983-01-01

    Data from the Seasat synthetic aperture radar (SAR) experiment are analyzed in order to determine the accuracy of this information for mapping the distribution of sea ice and its motion. Data from observations of sea ice in the Beaufort Sea from seven sequential orbits of the satellite were selected to study the capabilities and limitations of spaceborne radar application to sea-ice mapping. Results show that there is no difficulty in identifying homologue ice features on sequential radar images and the accuracy is entirely controlled by the accuracy of the orbit data and the geometric calibration of the sensor. Conventional radargrammetric methods are found to serve well for satellite radar ice mapping, while ground control points can be used to calibrate the ice location and motion measurements in the cases where orbit data and sensor calibration are lacking. The ice motion was determined to be approximately 6.4 + or - 0.5 km/day. In addition, the accuracy of pixel location was found over land areas. The use of one control point in 10,000 sq km produced an accuracy of about + or 150 m, while with a higher density of control points (7 in 1000 sq km) the location accuracy improves to the image resolution of + or - 25 m. This is found to be applicable for both optical and digital data.

  8. Accuracy of clinical observations of push-off during gait after stroke.

    PubMed

    McGinley, Jennifer L; Morris, Meg E; Greenwood, Ken M; Goldie, Patricia A; Olney, Sandra J

    2006-06-01

    To determine the accuracy (criterion-related validity) of real-time clinical observations of push-off in gait after stroke. Criterion-related validity study of gait observations. Rehabilitation hospital in Australia. Eleven participants with stroke and 8 treating physical therapists. Not applicable. Pearson product-moment correlation between physical therapists' observations of push-off during gait and criterion measures of peak ankle power generation from a 3-dimensional motion analysis system. A high correlation was obtained between the observational ratings and the measurements of peak ankle power generation (Pearson r =.98). The standard error of estimation of ankle power generation was .32W/kg. Physical therapists can make accurate real-time clinical observations of push-off during gait following stroke.

  9. Representing motion in a static image: constraints and parallels in art, science, and popular culture.

    PubMed

    Cutting, James E

    2002-01-01

    Representing motion in a picture is a challenge to artists, scientists, and all other imagemakers. Moreover, it presents a problem that will not go away with electronic and digital media, because often the pedagogical purpose of the representation of motion is more important than the motion itself. All satisfactory solutions evoke motion-for example, dynamic balance (or broken symmetry), stroboscopic sequences, affine shear (or forward lean), and photographic blur-but they also typically sacrifice the accuracy of the motion represented, a solution often unsuitable for science. Vector representations superimposed on static images allow for accuracy, but are not applicable to all situations. Workable solutions are almost certainly case specific and subject to continual evolution through exploration by imagemakers.

  10. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing

    PubMed Central

    Najafi, Bijan; Lee-Eng, Jacqueline; Wrobel, James S.; Goebel, Ruben

    2015-01-01

    This study suggests a wearable sensor technology to estimate center of mass (CoM) trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®). Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon®) for angle measurement (r > 0.99, random error <1.2° (1.5%) for anterior-posterior; <0.9° (2%) for medial-lateral; and <3.6° (2.5%) for internal-external direction). The two-link model yielded a better agreement with the reference system compared to one-link model (r > 0.93 v. r = 0.52, respectively). On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error <1cm (7.7%) and <2cm (10.4%) for M-L). The proposed system appears to accurately quantify the kinematics of CoM trajectory as a surrogate of dynamic postural control during an athlete’s movement and its portability, makes it feasible to fit the competitive environment without restricting surface type. Key points This study demonstrates that wearable technology based on inertial sensors are accurate to estimate center of mass trajectory in complex athletic task (e.g., golf swing) This study suggests that two-link model of human body provides optimum tradeoff between accuracy and minimum number of sensor module for estimation of center of mass trajectory in particular during fast movements. Wearable technologies based on inertial sensors are viable option for assessing dynamic postural control in complex task outside of gait laboratory and constraints of cameras, surface, and base of support. PMID:25983585

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, W; Hrycushko, B; Yan, Y

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less

  12. Dynamical analysis of nearby clusters. Automated astrometry from the ground: precision proper motions over a wide field

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Moraux, E.; Cuillandre, J.-C.; Bouvier, J.; Barrado, D.; Solano, E.; Bayo, A.

    2013-06-01

    Context. The kinematic properties of the different classes of objects in a given association hold important clues about the history of its members, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. Aims: DANCe (standing for dynamical analysis of nearby clusters) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1 kpc) young (<500 Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Methods: Combining deep wide-field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derived accurate proper motions for the sources in the field of the survey. The datasets cover ≈80 square degrees, centered around the Seven Sisters. Results: Using new tools, we have computed a catalog of 6 116 907 unique sources, including proper motion measurements for 3 577 478 of them. The catalog covers the magnitude range between i = 12 ~ 24 mag, achieving a proper motion accuracy <1 mas y-1 for sources as faint as i = 22.5 mag. We estimate that our final accuracy reaches 0.3 mas yr-1 in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  13. Automatic online and real-time tumour motion monitoring during stereotactic liver treatments on a conventional linac by combined optical and sparse monoscopic imaging with kilovoltage x-rays (COSMIK)

    NASA Astrophysics Data System (ADS)

    Bertholet, Jenny; Toftegaard, Jakob; Hansen, Rune; Worm, Esben S.; Wan, Hanlin; Parikh, Parag J.; Weber, Britta; Høyer, Morten; Poulsen, Per R.

    2018-03-01

    The purpose of this study was to develop, validate and clinically demonstrate fully automatic tumour motion monitoring on a conventional linear accelerator by combined optical and sparse monoscopic imaging with kilovoltage x-rays (COSMIK). COSMIK combines auto-segmentation of implanted fiducial markers in cone-beam computed tomography (CBCT) projections and intra-treatment kV images with simultaneous streaming of an external motion signal. A pre-treatment CBCT is acquired with simultaneous recording of the motion of an external marker block on the abdomen. The 3-dimensional (3D) marker motion during the CBCT is estimated from the auto-segmented positions in the projections and used to optimize an external correlation model (ECM) of internal motion as a function of external motion. During treatment, the ECM estimates the internal motion from the external motion at 20 Hz. KV images are acquired every 3 s, auto-segmented, and used to update the ECM for baseline shifts between internal and external motion. The COSMIK method was validated using Calypso-recorded internal tumour motion with simultaneous camera-recorded external motion for 15 liver stereotactic body radiotherapy (SBRT) patients. The validation included phantom experiments and simulations hereof for 12 fractions and further simulations for 42 fractions. The simulations compared the accuracy of COSMIK with ECM-based monitoring without model updates and with model updates based on stereoscopic imaging as well as continuous kilovoltage intrafraction monitoring (KIM) at 10 Hz without an external signal. Clinical real-time tumour motion monitoring with COSMIK was performed offline for 14 liver SBRT patients (41 fractions) and online for one patient (two fractions). The mean 3D root-mean-square error for the four monitoring methods was 1.61 mm (COSMIK), 2.31 mm (ECM without updates), 1.49 mm (ECM with stereoscopic updates) and 0.75 mm (KIM). COSMIK is the first combined kV/optical real-time motion monitoring method used clinically online on a conventional accelerator. COSMIK gives less imaging dose than KIM and is in addition applicable when the kV imager cannot be deployed such as during non-coplanar fields.

  14. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    PubMed

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor

    PubMed Central

    Rueckauer, Bodo; Delbruck, Tobi

    2016-01-01

    In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS). For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240 × 180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS). This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera. PMID:27199639

  16. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    PubMed Central

    Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide

    2017-01-01

    Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889

  17. Slow motion in films and video clips: Music influences perceived duration and emotion, autonomic physiological activation and pupillary responses.

    PubMed

    Wöllner, Clemens; Hammerschmidt, David; Albrecht, Henning

    2018-01-01

    Slow motion scenes are ubiquitous in screen-based audiovisual media and are typically accompanied by emotional music. The strong effects of slow motion on observers are hypothetically related to heightened emotional states in which time seems to pass more slowly. These states are simulated in films and video clips, and seem to resemble such experiences in daily life. The current study investigated time perception and emotional response to media clips containing decelerated human motion, with or without music using psychometric and psychophysiological testing methods. Participants were presented with slow-motion scenes taken from commercial films, ballet and sports footage, as well as the same scenes converted to real-time. Results reveal that slow-motion scenes, compared to adapted real-time scenes, led to systematic underestimations of duration, lower perceived arousal but higher valence, lower respiration rates and smaller pupillary diameters. The presence of music compared to visual-only presentations strongly affected results in terms of higher accuracy in duration estimates, higher perceived arousal and valence, higher physiological activation and larger pupillary diameters, indicating higher arousal. Video genre affected responses in addition. These findings suggest that perceiving slow motion is not related to states of high arousal, but rather affects cognitive dimensions of perceived time and valence. Music influences these experiences profoundly, thus strengthening the impact of stretched time in audiovisual media.

  18. Fitting a function to time-dependent ensemble averaged data.

    PubMed

    Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias

    2018-05-03

    Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.

  19. Accelerometer-based on-body sensor localization for health and medical monitoring applications

    PubMed Central

    Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid

    2011-01-01

    In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840

  20. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua

    2018-04-01

    Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.

  1. Smartphone-Based Cardiac Rehabilitation Program: Feasibility Study.

    PubMed

    Chung, Heewon; Ko, Hoon; Thap, Tharoeun; Jeong, Changwon; Noh, Se-Eung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We introduce a cardiac rehabilitation program (CRP) that utilizes only a smartphone, with no external devices. As an efficient guide for cardiac rehabilitation exercise, we developed an application to automatically indicate the exercise intensity by comparing the estimated heart rate (HR) with the target heart rate zone (THZ). The HR is estimated using video images of a fingertip taken by the smartphone's built-in camera. The introduced CRP app includes pre-exercise, exercise with intensity guidance, and post-exercise. In the pre-exercise period, information such as THZ, exercise type, exercise stage order, and duration of each stage are set up. In the exercise with intensity guidance, the app estimates HR from the pulse obtained using the smartphone's built-in camera and compares the estimated HR with the THZ. Based on this comparison, the app adjusts the exercise intensity to shift the patient's HR to the THZ during exercise. In the post-exercise period, the app manages the ratio of the estimated HR to the THZ and provides a questionnaire on factors such as chest pain, shortness of breath, and leg pain during exercise, as objective and subjective evaluation indicators. As a key issue, HR estimation upon signal corruption due to motion artifacts is also considered. Through the smartphone-based CRP, we estimated the HR accuracy as mean absolute error and root mean squared error of 6.16 and 4.30bpm, respectively, with signal corruption due to motion artifacts being detected by combining the turning point ratio and kurtosis.

  2. Smartphone-Based Cardiac Rehabilitation Program: Feasibility Study

    PubMed Central

    Chung, Heewon; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We introduce a cardiac rehabilitation program (CRP) that utilizes only a smartphone, with no external devices. As an efficient guide for cardiac rehabilitation exercise, we developed an application to automatically indicate the exercise intensity by comparing the estimated heart rate (HR) with the target heart rate zone (THZ). The HR is estimated using video images of a fingertip taken by the smartphone’s built-in camera. The introduced CRP app includes pre-exercise, exercise with intensity guidance, and post-exercise. In the pre-exercise period, information such as THZ, exercise type, exercise stage order, and duration of each stage are set up. In the exercise with intensity guidance, the app estimates HR from the pulse obtained using the smartphone’s built-in camera and compares the estimated HR with the THZ. Based on this comparison, the app adjusts the exercise intensity to shift the patient’s HR to the THZ during exercise. In the post-exercise period, the app manages the ratio of the estimated HR to the THZ and provides a questionnaire on factors such as chest pain, shortness of breath, and leg pain during exercise, as objective and subjective evaluation indicators. As a key issue, HR estimation upon signal corruption due to motion artifacts is also considered. Through the smartphone-based CRP, we estimated the HR accuracy as mean absolute error and root mean squared error of 6.16 and 4.30bpm, respectively, with signal corruption due to motion artifacts being detected by combining the turning point ratio and kurtosis. PMID:27551969

  3. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    NASA Astrophysics Data System (ADS)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  4. Detection of motion and posture change using an IR-UWB radar.

    PubMed

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary A

    2016-08-01

    Impulse radio ultra-wide band (IR-UWB) radar has recently emerged as a promising candidate for non-contact monitoring of respiration and heart rate. Different studies have reported various radar based algorithms for estimation of these physiological parameters. The radar can be placed under a subject's mattress as he lays stationary on his back or it can be attached to the ceiling directly above the subject's bed. However, advertent or inadvertent movement on part of the subject and different postures can affect the radar returned signal and also the accuracy of the estimated parameters from it. The detection and analysis of these postural changes can not only lead to improvement in estimation algorithms but also towards prevention of bed sores and ulcers in patients who require periodic posture changes. In this paper, we present an algorithm that detects and quantifies different types of motion events using an under-the-mattress IR-UWB radar. The algorithm also indicates a change in posture after a macro-movement event. Based on the findings of this paper, we anticipate that IR-UWB radar can be used for extracting posture related information in non-clinical enviroments for patients who are bed-ridden.

  5. Camera pose estimation for augmented reality in a small indoor dynamic scene

    NASA Astrophysics Data System (ADS)

    Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.

  6. Multi-oriented windowed harmonic phase reconstruction for robust cardiac strain imaging.

    PubMed

    Cordero-Grande, Lucilio; Royuela-del-Val, Javier; Sanz-Estébanez, Santiago; Martín-Fernández, Marcos; Alberola-López, Carlos

    2016-04-01

    The purpose of this paper is to develop a method for direct estimation of the cardiac strain tensor by extending the harmonic phase reconstruction on tagged magnetic resonance images to obtain more precise and robust measurements. The extension relies on the reconstruction of the local phase of the image by means of the windowed Fourier transform and the acquisition of an overdetermined set of stripe orientations in order to avoid the phase interferences from structures outside the myocardium and the instabilities arising from the application of a gradient operator. Results have shown that increasing the number of acquired orientations provides a significant improvement in the reproducibility of the strain measurements and that the acquisition of an extended set of orientations also improves the reproducibility when compared with acquiring repeated samples from a smaller set of orientations. Additionally, biases in local phase estimation when using the original harmonic phase formulation are greatly diminished by the one here proposed. The ideas here presented allow the design of new methods for motion sensitive magnetic resonance imaging, which could simultaneously improve the resolution, robustness and accuracy of motion estimates. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Basic research and data analysis for the national geodetic satellite program and for the earth and ocean physics applications program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Activities related to the National Geodetic Satellite Program are reported and include a discussion of Ohio State University's OSU275 set of tracking station coordinates and transformation parameters, determination of network distortions, and plans for data acquisition and processing. The problems encountered in the development of the LAGEOS satellite are reported in an account of activities related to the Earth and Ocean Physics Applications Program. The LAGEOS problem involves transmission and reception of the laser pulse designed to make accurate determinations of the earth's crustal and rotational motions. Pulse motion, ephemeris, arc range measurements, and accuracy estimates are discussed in view of the problem. Personnel involved in the two programs are also listed, along with travel activities and reports published to date.

  8. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  9. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data

    PubMed Central

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul

    2017-01-01

    Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522

  10. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    NASA Astrophysics Data System (ADS)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  11. Anatomical Calibration through Post-Processing of Standard Motion Tests Data.

    PubMed

    Kong, Weisheng; Sessa, Salvatore; Zecca, Massimiliano; Takanishi, Atsuo

    2016-11-28

    The inertial measurement unit is popularly used as a wearable and flexible tool for human motion tracking. Sensor-to-body alignment, or anatomical calibration (AC), is fundamental to improve accuracy and reliability. Current AC methods either require extra movements or are limited to specific joints. In this research, the authors propose a novel method to achieve AC from standard motion tests (such as walking, or sit-to-stand), and compare the results with the AC obtained from specially designed movements. The proposed method uses the limited acceleration range on medial-lateral direction, and applies principal component analysis to estimate the sagittal plane, while the vertical direction is estimated from acceleration during quiet stance. The results show a good correlation between the two sets of IMUs placed on frontal/back and lateral sides of head, trunk and lower limbs. Moreover, repeatability and convergence were verified. The AC obtained from sit-to-stand and walking achieved similar results as the movements specifically designed for upper and lower body AC, respectively, except for the feet. Therefore, the experiments without AC performed can be recovered through post-processing on the walking and sit-to-stand data. Moreover, extra movements for AC can be avoided during the experiment and instead achieved through the proposed method.

  12. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  13. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  14. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  15. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.

    PubMed

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Vandewiele, Stijn; Neyts, Kristiaan; Beunis, Filip

    2015-09-01

    Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    USGS Publications Warehouse

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  17. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  18. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  19. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas

    PubMed Central

    2018-01-01

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites. PMID:29673230

  20. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    PubMed

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  1. a Robust Method for Stereo Visual Odometry Based on Multiple Euclidean Distance Constraint and Ransac Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Tong, X.; Liu, S.; Lu, X.; Liu, S.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Visual Odometry (VO) is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB) features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC) and Random Sample Consensus (RANSAC) algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF) matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation). The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.

  2. Groupwise registration of cardiac perfusion MRI sequences using normalized mutual information in high dimension

    NASA Astrophysics Data System (ADS)

    Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise

    2011-03-01

    In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.

  3. Effects of translational and rotational motions and display polarity on visual performance.

    PubMed

    Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe

    2008-10-01

    This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.

  4. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    PubMed Central

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  5. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  6. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  7. WE-DE-BRA-11: A Study of Motion Tracking Accuracy of Robotic Radiosurgery Using a Novel CCD Camera Based End-To-End Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; M Yang, Y; Nelson, B

    Purpose: A novel end-to-end test system using a CCD camera and a scintillator based phantom (XRV-124, Logos Systems Int’l) capable of measuring the beam-by-beam delivery accuracy of Robotic Radiosurgery (CyberKnife) was developed and reported in our previous work. This work investigates its application in assessing the motion tracking (Synchrony) accuracy for CyberKnife. Methods: A QA plan with Anterior and Lateral beams (with 4 different collimator sizes) was created (Multiplan v5.3) for the XRV-124 phantom. The phantom was placed on a motion platform (superior and inferior movement), and the plans were delivered on the CyberKnife M6 system using four motion patterns:more » static, Sine- wave, Sine with 15° phase shift, and a patient breathing pattern composed of 2cm maximum motion with 4 second breathing cycle. Under integral recording mode, the time-averaged beam vectors (X, Y, Z) were measured by the phantom and compared with static delivery. In dynamic recording mode, the beam spots were recorded at a rate of 10 frames/second. The beam vector deviation from average position was evaluated against the various breathing patterns. Results: The average beam position of the six deliveries with no motion and three deliveries with Synchrony tracking on ideal motion (sinewave without phase shift) all agree within −0.03±0.00 mm, 0.10±0.04, and 0.04±0.03 in the X, Y, and X directions. Radiation beam width (FWHM) variations are within ±0.03 mm. Dynamic video record showed submillimeter tracking stability for both regular and irregular breathing pattern; however the tracking error up to 3.5 mm was observed when a 15 degree phase shift was introduced. Conclusion: The XRV-124 system is able to provide 3D and 4D targeting accuracy for CyberKnife delivery with Synchrony. The experimental results showed sub-millimeter delivery in phantom with excellent correlation in target to breathing motion. The accuracy was degraded when irregular motion and phase shift was introduced.« less

  8. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Zhen, X; Zhou, L

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yieldmore » the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation monitoring in lung cancer radiotherapy. This work is supported in part by grant from VARIAN MEDICAL SYSTEMS INC, the National Natural Science Foundation of China (no 81428019 and no 81301940), the Guangdong Natural Science Foundation (2015A030313302)and the 2015 Pearl River S&T Nova Program of Guangzhou (201506010096).« less

  9. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  10. Real-time identification of vehicle motion-modes using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Lifu; Zhang, Nong; Du, Haiping

    2015-01-01

    A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method.

  11. Diagnostic Performance of a Novel Coronary CT Angiography Algorithm: Prospective Multicenter Validation of an Intracycle CT Motion Correction Algorithm for Diagnostic Accuracy.

    PubMed

    Andreini, Daniele; Lin, Fay Y; Rizvi, Asim; Cho, Iksung; Heo, Ran; Pontone, Gianluca; Bartorelli, Antonio L; Mushtaq, Saima; Villines, Todd C; Carrascosa, Patricia; Choi, Byoung Wook; Bloom, Stephen; Wei, Han; Xing, Yan; Gebow, Dan; Gransar, Heidi; Chang, Hyuk-Jae; Leipsic, Jonathon; Min, James K

    2018-06-01

    Motion artifact can reduce the diagnostic accuracy of coronary CT angiography (CCTA) for coronary artery disease (CAD). The purpose of this study was to compare the diagnostic performance of an algorithm dedicated to correcting coronary motion artifact with the performance of standard reconstruction methods in a prospective international multicenter study. Patients referred for clinically indicated invasive coronary angiography (ICA) for suspected CAD prospectively underwent an investigational CCTA examination free from heart rate-lowering medications before they underwent ICA. Blinded core laboratory interpretations of motion-corrected and standard reconstructions for obstructive CAD (≥ 50% stenosis) were compared with ICA findings. Segments unevaluable owing to artifact were considered obstructive. The primary endpoint was per-subject diagnostic accuracy of the intracycle motion correction algorithm for obstructive CAD found at ICA. Among 230 patients who underwent CCTA with the motion correction algorithm and standard reconstruction, 92 (40.0%) had obstructive CAD on the basis of ICA findings. At a mean heart rate of 68.0 ± 11.7 beats/min, the motion correction algorithm reduced the number of nondiagnostic scans compared with standard reconstruction (20.4% vs 34.8%; p < 0.001). Diagnostic accuracy for obstructive CAD with the motion correction algorithm (62%; 95% CI, 56-68%) was not significantly different from that of standard reconstruction on a per-subject basis (59%; 95% CI, 53-66%; p = 0.28) but was superior on a per-vessel basis: 77% (95% CI, 74-80%) versus 72% (95% CI, 69-75%) (p = 0.02). The motion correction algorithm was superior in subgroups of patients with severely obstructive (≥ 70%) stenosis, heart rate ≥ 70 beats/min, and vessels in the atrioventricular groove. The motion correction algorithm studied reduces artifacts and improves diagnostic performance for obstructive CAD on a per-vessel basis and in selected subgroups on a per-subject basis.

  12. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, AH; Liu, X; Wiersma, R

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less

  13. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  14. A detector interferometric calibration experiment for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-11-01

    Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, I; Yan, H; Yin, F

    Purpose: To assure that tumor motion is within the radiation field during high-dose and high-precision radiosurgery, real-time imaging and surrogate monitoring are employed. These methods are useful in providing real-time tumor/surrogate motion but no future information is available. In order to anticipate future tumor/surrogate motion and track target location precisely, an algorithm is developed and investigated for estimating surrogate motion multiple-steps ahead. Methods: The study utilized a one-dimensional surrogate motion signal divided into three components: (a) training component containing the primary data including the first frame to the beginning of the input subsequence; (b) input subsequence component of the surrogatemore » signal used as input to the prediction algorithm: (c) output subsequence component is the remaining signal used as the known output of the prediction algorithm for validation. The prediction algorithm consists of three major steps: (1) extracting subsequences from training component which best-match the input subsequence according to given criterion; (2) calculating weighting factors from these best-matched subsequence; (3) collecting the proceeding parts of the subsequences and combining them together with assigned weighting factors to form output. The prediction algorithm was examined for several patients, and its performance is assessed based on the correlation between prediction and known output. Results: Respiratory motion data was collected for 20 patients using the RPM system. The output subsequence is the last 50 samples (∼2 seconds) of a surrogate signal, and the input subsequence was 100 (∼3 seconds) frames prior to the output subsequence. Based on the analysis of correlation coefficient between predicted and known output subsequence, the average correlation is 0.9644±0.0394 and 0.9789±0.0239 for equal-weighting and relative-weighting strategies, respectively. Conclusion: Preliminary results indicate that the prediction algorithm is effective in estimating surrogate motion multiple-steps in advance. Relative-weighting method shows better prediction accuracy than equal-weighting method. More parameters of this algorithm are under investigation.« less

  16. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems

    PubMed Central

    Rys, Dawid

    2017-01-01

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy. PMID:28880215

  17. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems.

    PubMed

    Burnos, Piotr; Rys, Dawid

    2017-09-07

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy.

  18. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.

    PubMed

    Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-03-08

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.

  19. Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging

    NASA Astrophysics Data System (ADS)

    Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.

    2016-03-01

    Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.

  20. Effects of changes in size, speed and distance on the perception of curved 3D trajectories

    PubMed Central

    Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.

    2012-01-01

    Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204

  1. Motion Tracking of the Carotid Artery Wall From Ultrasound Image Sequences: a Nonlinear State-Space Approach.

    PubMed

    Gao, Zhifan; Li, Yanjie; Sun, Yuanyuan; Yang, Jiayuan; Xiong, Huahua; Zhang, Heye; Liu, Xin; Wu, Wanqing; Liang, Dong; Li, Shuo

    2018-01-01

    The motion of the common carotid artery (CCA) wall has been established to be useful in early diagnosis of atherosclerotic disease. However, tracking the CCA wall motion from ultrasound images remains a challenging task. In this paper, a nonlinear state-space approach has been developed to track CCA wall motion from ultrasound sequences. In this approach, a nonlinear state-space equation with a time-variant control signal was constructed from a mathematical model of the dynamics of the CCA wall. Then, the unscented Kalman filter (UKF) was adopted to solve the nonlinear state transfer function in order to evolve the state of the target tissue, which involves estimation of the motion trajectory of the CCA wall from noisy ultrasound images. The performance of this approach has been validated on 30 simulated ultrasound sequences and a real ultrasound dataset of 103 subjects by comparing the motion tracking results obtained in this study to those of three state-of-the-art methods and of the manual tracing method performed by two experienced ultrasound physicians. The experimental results demonstrated that the proposed approach is highly correlated with (intra-class correlation coefficient ≥ 0.9948 for the longitudinal motion and ≥ 0.9966 for the radial motion) and well agrees (the 95% confidence interval width is 0.8871 mm for the longitudinal motion and 0.4159 mm for the radial motion) with the manual tracing method on real data and also exhibits high accuracy on simulated data (0.1161 ~ 0.1260 mm). These results appear to demonstrate the effectiveness of the proposed approach for motion tracking of the CCA wall.

  2. A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion.

    PubMed

    Sairanen, V; Kuusela, L; Sipilä, O; Savolainen, S; Vanhatalo, S

    2017-02-15

    Diffusion Tensor Imaging (DTI) is commonly challenged by subject motion during data acquisition, which often leads to corrupted image data. Currently used procedure in DTI analysis is to correct or completely reject such data before tensor estimations, however assessing the reliability and accuracy of the estimated tensor in such situations has evaded previous studies. This work aims to define the loss of data accuracy with increasing image rejections, and to define a robust method for assessing reliability of the result at voxel level. We carried out simulations of every possible sub-scheme (N=1,073,567,387) of Jones30 gradient scheme, followed by confirming the idea with MRI data from four newborn and three adult subjects. We assessed the relative error of the most commonly used tensor estimates for DTI and tractography studies, fractional anisotropy (FA) and the major orientation vector (V1), respectively. The error was estimated using two measures, the widely used electric potential (EP) criteria as well as the rotationally variant condition number (CN). Our results show that CN and EP are comparable in situations with very few rejections, but CN becomes clearly more sensitive to depicting errors when more gradient vectors and images were rejected. The error in FA and V1 was also found depend on the actual FA level in the given voxel; low actual FA levels were related to high relative errors in the FA and V1 estimates. Finally, the results were confirmed with clinical MRI data. This showed that the errors after rejections are, indeed, inhomogeneous across brain regions. The FA and V1 errors become progressively larger when moving from the thick white matter bundles towards more superficial subcortical structures. Our findings suggest that i) CN is a useful estimator of data reliability at voxel level, and ii) DTI preprocessing with data rejections leads to major challenges when assessing brain tissue with lower FA levels, such as all newborn brain, as well as the adult superficial, subcortical areas commonly traced in precise connectivity analyses between cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, Y; Liu, Y

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE.more » Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different DIR methods was also observed.« less

  4. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  5. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  6. Active depth-guiding handheld micro-forceps for membranectomy based on CP-SSOCT

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong Woo; Lee, Phillip; Gonenc, Berk; Gehlbach, Peter L.; Kang, Jin U.

    2016-03-01

    In this study, we demonstrate a handheld motion-compensated micro-forceps system using common-path swept source optical coherence tomography with highly accurate depth-targeting and depth-locking for Epiretinal Membrane Peeling. Two motors and a touch sensor were used to separate the two independent motions: motion compensation and tool-tip manipulation. A smart motion monitoring and guiding algorithm was devised for precise and intuitive freehand control. Ex-vivo bovine eye experiments were performed to evaluate accuracy in a bovine retina retinal membrane peeling model. The evaluation demonstrates system capabilities of 40 um accuracy when peeling the epithelial layer of bovine retina.

  7. Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method.

    PubMed

    Li, Mengxuan; Li, Pengfei; Tian, Shanshan; Tang, Kai; Chen, Xi

    2018-05-28

    Accurate estimation of gait parameters is essential for obtaining quantitative information on motor deficits in Parkinson's disease and other neurodegenerative diseases, which helps determine disease progression and therapeutic interventions. Due to the demand for high accuracy, unobtrusive measurement methods such as optical motion capture systems, foot pressure plates, and other systems have been commonly used in clinical environments. However, the high cost of existing lab-based methods greatly hinders their wider usage, especially in developing countries. In this study, we present a low-cost, noncontact, and an accurate temporal gait parameters estimation method by sensing and analyzing the electrostatic field generated from human foot stepping. The proposed method achieved an average 97% accuracy on gait phase detection and was further validated by comparison to the foot pressure system in 10 healthy subjects. Two results were compared using the Pearson coefficient r and obtained an excellent consistency ( r = 0.99, p < 0.05). The repeatability of the purposed method was calculated between days by intraclass correlation coefficients (ICC), and showed good test-retest reliability (ICC = 0.87, p < 0.01). The proposed method could be an affordable and accurate tool to measure temporal gait parameters in hospital laboratories and in patients' home environments.

  8. Estimation of Cardiopulmonary Parameters From Ultra Wideband Radar Measurements Using the State Space Method.

    PubMed

    Naishadham, Krishna; Piou, Jean E; Ren, Lingyun; Fathy, Aly E

    2016-12-01

    Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.

  9. Numerical integration and optimization of motions for multibody dynamic systems

    NASA Astrophysics Data System (ADS)

    Aguilar Mayans, Joan

    This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.

  10. SU-F-T-255: Accuracy and Precision of Dynamic Tracking Irradiation with VERO-4DRT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, N; Takada, Y; Mizuno, T

    2016-06-15

    Purpose: The VERO-4DRT system is able to provide dynamic tracking irradiation (DTI) for the target with respiratory motion. This technique requires enough commissioning for clinical implementation. The purpose of this study is to make sure the accuracy and precision of DTI using VERO- 4DRT through commissioning from fundamental evaluation to end-to-end test. Method: We evaluated several contents for DTI commissioning: the accuracy of absorption dose at isocenter in DTI, the field size and penumbra of DTI, the accuracy of 4D modeling in DTI. All evaluations were performed by respiratory motion phantom (Quasar phantom). These contents were compared the results betweenmore » static irradiation and DTI. The shape of radiation field was set to square from 3 cm × 3 cm to 10 cm × 10 cm. The micro 3D chamber and Gafchromic EBT3 film were used for absorbed dose and relative dose distribution measurement, respectively. The sine and irregular shaped waves were used for demonstrative respiratory motion. The visicoil was implanted into the phantom for guidance of respiratory motion. The respiration patterns of frequency and motion amount were set to 10–15 BPM and 1–2 cm, respectively. Results: As the result of absorbed dose of DTI in comparison with static irradiation, the average dose error at isocenter was 0.5% even though various respiratory patterns were set on. As the result of relative dose distribution, the field size (set it on 50% dose line) was not significantly changed in all respiratory patterns. However, the penumbra was larger in greater respiratory motion (up to 4.1 mm). The 4D modeling coincidence between actual and created waves was within 1%. Conclusion: The DTI using VERO-4DRT can provide sufficient accuracy and precision in absorbed dose and distribution. However, the patientspecific quantitative internal margin corresponding respiratory motion should be taken into consideration with image guidance.« less

  11. Retrospective data-driven respiratory gating for PET/CT

    NASA Astrophysics Data System (ADS)

    Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.

    2009-04-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  12. Assessment of modal-pushover-based scaling procedure for nonlinear response history analysis of ordinary standard bridges

    USGS Publications Warehouse

    Kalkan, E.; Kwong, N.

    2012-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case in the central United States) or when high-intensity records are needed (as is the case in San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure was recently developed to determine scale factors for a small number of records such that the scaled records provide accurate and efficient estimates of “true” median structural responses. The adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. In this paper, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing Ordinary Standard bridges typical of reinforced concrete bridge construction in California. These bridges are the single-bent overpass, multi-span bridge, curved bridge, and skew bridge. As compared with benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the EDPs. Thus, it is a useful tool for scaling ground motions as input to nonlinear RHAs of Ordinary Standard bridges.

  13. Documentation for assessment of modal pushover-based scaling procedure for nonlinear response history analysis of "ordinary standard" bridges

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2010-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground-motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case for the central United States), or when high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure recently was developed to determine scale factors for a small number of records, such that the scaled records provide accurate and efficient estimates of 'true' median structural responses. The adjective 'accurate' refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective 'efficient' refers to the record-to-record variability of responses. Herein, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 'ordinary standard' bridges typical of reinforced-concrete bridge construction in California. These bridges are the single-bent overpass, multi span bridge, curved-bridge, and skew-bridge. As compared to benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the responses. Thus, the MPS procedure is a useful tool for scaling ground motions as input to nonlinear RHAs of 'ordinary standard' bridges.

  14. BEM-based simulation of lung respiratory deformation for CT-guided biopsy.

    PubMed

    Chen, Dong; Chen, Weisheng; Huang, Lipeng; Feng, Xuegang; Peters, Terry; Gu, Lixu

    2017-09-01

    Accurate and real-time prediction of the lung and lung tumor deformation during respiration are important considerations when performing a peripheral biopsy procedure. However, most existing work focused on offline whole lung simulation using 4D image data, which is not applicable in real-time image-guided biopsy with limited image resources. In this paper, we propose a patient-specific biomechanical model based on the boundary element method (BEM) computed from CT images to estimate the respiration motion of local target lesion region, vessel tree and lung surface for the real-time biopsy guidance. This approach applies pre-computation of various BEM parameters to facilitate the requirement for real-time lung motion simulation. The resulting boundary condition at end inspiratory phase is obtained using a nonparametric discrete registration with convex optimization, and the simulation of the internal tissue is achieved by applying a tetrahedron-based interpolation method depend on expert-determined feature points on the vessel tree model. A reference needle is tracked to update the simulated lung motion during biopsy guidance. We evaluate the model by applying it for respiratory motion estimations of ten patients. The average symmetric surface distance (ASSD) and the mean target registration error (TRE) are employed to evaluate the proposed model. Results reveal that it is possible to predict the lung motion with ASSD of [Formula: see text] mm and a mean TRE of [Formula: see text] mm at largest over the entire respiratory cycle. In the CT-/electromagnetic-guided biopsy experiment, the whole process was assisted by our BEM model and final puncture errors in two studies were 3.1 and 2.0 mm, respectively. The experiment results reveal that both the accuracy of simulation and real-time performance meet the demands of clinical biopsy guidance.

  15. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  16. Development of a four-axis moving phantom for patient-specific QA of surrogate signal-based tracking IMRT.

    PubMed

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2016-12-01

    The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.

  17. Evaluation of left ventricular function using electrocardiographically gated myocardial SPECT with (123)I-labeled fatty acid analog.

    PubMed

    Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H

    2001-12-01

    Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.

  18. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  19. Accounting for speed-accuracy tradeoff in perceptual learning.

    PubMed

    Liu, Charles C; Watanabe, Takeo

    2012-05-15

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d'. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Flight instrumentation specification for parameter identification: Program user's guide. [instrument errors/error analysis

    NASA Technical Reports Server (NTRS)

    Mohr, R. L.

    1975-01-01

    A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.

  1. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  2. Accuracy Assessment of Coastal Topography Derived from Uav Images

    NASA Astrophysics Data System (ADS)

    Long, N.; Millescamps, B.; Pouget, F.; Dumon, A.; Lachaussée, N.; Bertin, X.

    2016-06-01

    To monitor coastal environments, Unmanned Aerial Vehicle (UAV) is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR) or Terrestrial Laser Scanning (TLS), this solution produces Digital Surface Model (DSM) with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee) combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm), a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs) and the influence of spatial image resolution (4.6 cm vs 2 cm). The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm). The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm); the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  3. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is tracked. The respiratory motion tracking error was between 1.00 % and 1.09 %. The estimated dynamic vessel masks yielded a Sørensen-Dice coefficient between 0.94 and 0.96. Finally, the accuracy of the vessel contours was measured in terms of the 99th percentile of the error, which ranged between 0.64 and 0.96 mm. The presented results show that the approach is feasible for respiratory motion tracking and compensation and could therefore considerably improve the workflow of minimally invasive procedures in the thorax and abdomen

  4. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  5. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  6. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  7. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    PubMed Central

    2011-01-01

    Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533

  8. Earthquake early warning using P-waves that appear after initial S-waves

    NASA Astrophysics Data System (ADS)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al., 2013) reached the local maximum several seconds after the P-filter peaks appeared. These findings indicate that the proposed P-wave detector allows wavefield-estimation approaches to predict the peak ground motion of SMGAs with a certain lead time.

  9. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid

    PubMed Central

    Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-01-01

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474

  10. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain.

    PubMed

    Sarig Bahat, Hilla; Chen, Xiaoqi; Reznik, David; Kodesh, Einat; Treleaven, Julia

    2015-04-01

    Chronic neck pain has been consistently shown to be associated with impaired kinematic control including reduced range, velocity and smoothness of cervical motion, that seem relevant to daily function as in quick neck motion in response to surrounding stimuli. The objectives of this study were: to compare interactive cervical kinematics in patients with neck pain and controls; to explore the new measures of cervical motion accuracy; and to find the sensitivity, specificity, and optimal cutoff values for defining impaired kinematics in those with neck pain. In this cross-section study, 33 patients with chronic neck pain and 22 asymptomatic controls were assessed for their cervical kinematic control using interactive virtual reality hardware and customized software utilizing a head mounted display with built-in head tracking. Outcome measures included peak and mean velocity, smoothness (represented by number of velocity peaks (NVP)), symmetry (represented by time to peak velocity percentage (TTPP)), and accuracy of cervical motion. Results demonstrated significant and strong effect-size differences in peak and mean velocities, NVP and TTPP in all directions excluding TTPP in left rotation, and good effect-size group differences in 5/8 accuracy measures. Regression results emphasized the high clinical value of neck motion velocity, with very high sensitivity and specificity (85%-100%), followed by motion smoothness, symmetry and accuracy. These finding suggest cervical kinematics should be evaluated clinically, and screened by the provided cut off values for identification of relevant impairments in those with neck pain. Such identification of presence or absence of kinematic impairments may direct treatment strategies and additional evaluation when needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu

    2015-11-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less

  12. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.

    PubMed

    Woods, Kyle; Rong, Yi

    2015-11-01

    To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.

  13. Handheld pose tracking using vision-inertial sensors with occlusion handling

    NASA Astrophysics Data System (ADS)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  14. Mean of Microaccelerations Estimate in the Small Spacecraft Internal Environment with the Use of Fuzzy Sets

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.

    2018-05-01

    Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.

  15. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  16. The accuracy of ultrasound for measurement of mobile- bearing motion.

    PubMed

    Aigner, Christian; Radl, Roman; Pechmann, Michael; Rehak, Peter; Stacher, Rudolf; Windhager, Reinhard

    2004-04-01

    After anterior cruciate ligament-sacrificing total knee replacement, mobile bearings sometimes have paradoxic movement but the implications of such movement on function, wear, and implant survival are not known. To study this potential problem accurate, reliable, and widely available inexpensive tools for in vivo mobile-bearing motion analyses are needed. We developed a method using an 8-MHz ultrasound to analyze mobile-bearing motion and ascertained accuracy, precision, and reliability compared with plain and standard digital radiographs. The anterior rim of the mobile bearing was the target for all methods. The radiographs were taken in a horizontal plane at neutral rotation and incremental external and internal rotations. Five investigators examined four positions of the mobile bearing with all three methods. The accuracy and precision were: ultrasound, 0.7 mm and 0.2 mm; digital radiograph, 0.4 mm and 0.2 mm; and plain radiographs, 0.7 mm and 0.3 mm. The interrater and intrarater reliability ranged between 0.3 to 0.4 mm and 0.1 to 0.2 mm, respectively. The difference between the methods was not significant for neutral rotation but ultrasound was significantly more accurate than any one degree of rotation or higher. Ultrasound of 8 MHz provides an accuracy and reliability that is suitable for evaluation of in vivo meniscal bearing motion. Whether this method or others are sufficiently accurate to detect motion leading to abnormal wear is not known.

  17. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  18. Automated reference-free detection of motion artifacts in magnetic resonance images.

    PubMed

    Küstner, Thomas; Liebgott, Annika; Mauch, Lukas; Martirosian, Petros; Bamberg, Fabian; Nikolaou, Konstantin; Yang, Bin; Schick, Fritz; Gatidis, Sergios

    2018-04-01

    Our objectives were to provide an automated method for spatially resolved detection and quantification of motion artifacts in MR images of the head and abdomen as well as a quality control of the trained architecture. T1-weighted MR images of the head and the upper abdomen were acquired in 16 healthy volunteers under rest and under motion. Images were divided into overlapping patches of different sizes achieving spatial separation. Using these patches as input data, a convolutional neural network (CNN) was trained to derive probability maps for the presence of motion artifacts. A deep visualization offers a human-interpretable quality control of the trained CNN. Results were visually assessed on probability maps and as classification accuracy on a per-patch, per-slice and per-volunteer basis. On visual assessment, a clear difference of probability maps was observed between data sets with and without motion. The overall accuracy of motion detection on a per-patch/per-volunteer basis reached 97%/100% in the head and 75%/100% in the abdomen, respectively. Automated detection of motion artifacts in MRI is feasible with good accuracy in the head and abdomen. The proposed method provides quantification and localization of artifacts as well as a visualization of the learned content. It may be extended to other anatomic areas and used for quality assurance of MR images.

  19. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  20. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  1. Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor

    NASA Astrophysics Data System (ADS)

    Ponce Wong, Ruben D.; Hellman, Randall B.; Santos, Veronica J.

    2014-06-01

    Haptic perception remains a grand challenge for artificial hands. Dexterous manipulators could be enhanced by "haptic intelligence" that enables identification of objects and their features via touch alone. Haptic perception of local shape would be useful when vision is obstructed or when proprioceptive feedback is inadequate, as observed in this study. In this work, a robot hand outfitted with a deformable, bladder-type, multimodal tactile sensor was used to replay four human-inspired haptic "exploratory procedures" on fingertip-sized geometric features. The geometric features varied by type (bump, pit), curvature (planar, conical, spherical), and footprint dimension (1.25 - 20 mm). Tactile signals generated by active fingertip motions were used to extract key parameters for use as inputs to supervised learning models. A support vector classifier estimated order of curvature while support vector regression models estimated footprint dimension once curvature had been estimated. A distal-proximal stroke (along the long axis of the finger) enabled estimation of order of curvature with an accuracy of 97%. Best-performing, curvature-specific, support vector regression models yielded R2 values of at least 0.95. While a radial-ulnar stroke (along the short axis of the finger) was most helpful for estimating feature type and size for planar features, a rolling motion was most helpful for conical and spherical features. The ability to haptically perceive local shape could be used to advance robot autonomy and provide haptic feedback to human teleoperators of devices ranging from bomb defusal robots to neuroprostheses.

  2. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  3. Simple to complex modeling of breathing volume using a motion sensor.

    PubMed

    John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-06-01

    To compare simple and complex modeling techniques to estimate categories of low, medium, and high ventilation (VE) from ActiGraph™ activity counts. Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories of low (<19.3 l/min), medium (19.3 to 35.4 l/min) and high (>35.4 l/min) VEs were derived from activity intensity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the accuracy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex (random forest technique) modeling technique in predicting VE from activity counts. Prediction accuracy of the complex random forest technique was marginally better than the simple multiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both techniques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm. There were minor differences in prediction accuracy between the multiple regression and the random forest technique. This study provides methods to objectively estimate VE categories using activity monitors that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the dose-response relationship between internal exposure to pollutants and disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  5. Estimation of muscle strength during motion recognition using multichannel surface EMG signals.

    PubMed

    Nagata, Kentaro; Nakano, Takemi; Magatani, Kazushige; Yamada, Masafumi

    2008-01-01

    The use of kinesiological electromyography is established as an evaluation tool for various kinds of applied research, and surface electromyogram (SEMG) has been widely used as a control source for human interfaces such as in a myoelectric prosthetic hand (we call them 'SEMG interfaces'). It is desirable to be able to control the SEMG interfaces with the same feeling as body movement. The existing SEMG interface mainly focuses on how to achieve accurate recognition of the intended movement. However, detecting muscular strength and reduced number of electrodes are also an important factor in controlling them. Therefore, our objective in this study is the development of and the estimation method for muscular strength that maintains the accuracy of hand motion recognition to reflect the result of measured power in a controlled object. Although the muscular strength can be evaluated by various methods, in this study a grasp force index was applied to evaluate the muscular strength. In order to achieve our objective, we directed our attention to measuring all valuable information for SEMG. This work proposes an application method of two simple linear models, and the selection method of an optimal electrode configuration to use them effectively. Our system required four SEMG measurement electrodes in which locations differed for every subject depending on the individual's characteristics, and those were selected from a 96ch multi electrode using the Monte Carlo method. From the experimental results, the performance in six normal subjects indicated that the recognition rate of four motions were perfect and the grasp force estimated result fit well with the actual measurement result.

  6. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  7. Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.

    2010-01-01

    Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363

  8. Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.

  9. Evaluating motion parallax and stereopsis as depth cues for autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Braun, Marius; Leiner, Ulrich; Ruschin, Detlef

    2011-03-01

    The perception of space in the real world is based on multifaceted depth cues, most of them monocular, some binocular. Developing 3D-displays raises the question, which of these depth cues are predominant and should be simulated by computational means in such a panel. Beyond the cues based on image content, such as shadows or patterns, Stereopsis and depth from motion parallax are the most significant mechanisms supporting observers with depth information. We set up a carefully designed test situation, widely excluding undesired other distance hints. Thereafter we conducted a user test to find out, which of these two depth cues is more relevant and whether a combination of both would increase accuracy in a depth estimation task. The trials were conducting utilizing our autostereoscopic "Free2C"-displays, which are capable to detect the user eye position and steer the image lobes dynamically into that direction. At the same time, eye position was used to update the virtual camera's location and thereby offering motion parallax to the observer. As far as we know, this was the first time that such a test has been conducted using an autosteresocopic display without any assistive technologies. Our results showed, in accordance with prior experiments, that both cues are effective, however Stereopsis is by order of magnitude more relevant. Combining both cues improved the precision of distance estimation by another 30-40%.

  10. On the Analysis of Multistep-Out-of-Grid Method for Celestial Mechanics Tasks

    NASA Astrophysics Data System (ADS)

    Olifer, L.; Choliy, V.

    2016-09-01

    Occasionally, there is a necessity in high-accurate prediction of celestial body trajectory. The most common way to do that is to solve Kepler's equation analytically or to use Runge-Kutta or Adams integrators to solve equation of motion numerically. For low-orbit satellites, there is a critical need in accounting geopotential and another forces which influence motion. As the result, the right side of equation of motion becomes much bigger, and classical integrators will not be quite effective. On the other hand, there is a multistep-out-of-grid (MOG) method which combines Runge-Kutta and Adams methods. The MOG method is based on using m on-grid values of the solution and n × m off-grid derivative estimations. Such method could provide stable integrators of maximum possible order, O (hm+mn+n-1). The main subject of this research was to implement and analyze the MOG method for solving satellite equation of motion with taking into account Earth geopotential model (ex. EGM2008 (Pavlis at al., 2008)) and with possibility to add other perturbations such as atmospheric drag or solar radiation pressure. Simulations were made for satellites on low orbit and with various eccentricities (from 0.1 to 0.9). Results of the MOG integrator were compared with results of Runge-Kutta and Adams integrators. It was shown that the MOG method has better accuracy than classical ones of the same order and less right-hand value estimations when is working on high orders. That gives it some advantage over "classical" methods.

  11. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  12. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection.

    PubMed

    Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).

  13. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection

    PubMed Central

    Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888

  14. Quantification of the uncertainty in coronary CTA plaque measurements using dynamic cardiac phantom and 3D-printed plaque models

    NASA Astrophysics Data System (ADS)

    Richards, Taylor; Sturgeon, Gregory M.; Ramirez-Giraldo, Juan Carlos; Rubin, Geoffrey; Segars, Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to quantify the accuracy of coronary computed tomography angiography (CTA) stenosis measurements using newly developed physical coronary plaque models attached to a base dynamic cardiac phantom (Shelley Medical DHP-01). Coronary plaque models (5 mm diameter, 50% stenosis, and 32 mm long) were designed and 3D-printed with tissue equivalent materials (calcified plaque with iodine enhanced lumen). Realistic cardiac motion was achieved by fitting known cardiac motion vectors to left ventricle volume-time curves to create synchronized heart motion profiles executed by the base cardiac phantom. Realistic coronary CTA acquisition was accomplished by synthesizing corresponding ECG waveforms for gating and reconstruction purposes. All scans were acquired using a retrospective gating technique on a dual-source CT system (Siemens SOMATOM FLASH) with 75ms temporal resolution. Multi-planar reformatted images were reconstructed along vessel centerlines and the enhanced lumens were manually segmented by 5 independent operators. On average, the stenosis measurement accuracy was 0.9% positive bias for the motion free condition (0 bpm). The measurement accuracy monotonically decreased to 18.5% negative bias at 90 bpm. Contrast-tonoise (CNR), vessel circularity, and segmentation conformity also decreased monotonically with increasing heart rate. These results demonstrate successful implementation of the base cardiac phantom with 3D-printed coronary plaque models, adjustable motion profiles, and coordinated ECG waveforms. They further show the utility of the model to ascertain metrics of coronary CT accuracy and image quality under a variety of plaque, motion, and acquisition conditions.

  15. Computerized method to compensate for breathing body motion in dynamic chest radiographs

    NASA Astrophysics Data System (ADS)

    Matsuda, H.; Tanaka, R.; Sanada, S.

    2017-03-01

    Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.

  16. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.

  18. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  19. Accuracy analysis of point cloud modeling for evaluating concrete specimens

    NASA Astrophysics Data System (ADS)

    D'Amico, Nicolas; Yu, Tzuyang

    2017-04-01

    Photogrammetric methods such as structure from motion (SFM) have the capability to acquire accurate information about geometric features, surface cracks, and mechanical properties of specimens and structures in civil engineering. Conventional approaches to verify the accuracy in photogrammetric models usually require the use of other optical techniques such as LiDAR. In this paper, geometric accuracy of photogrammetric modeling is investigated by studying the effects of number of photos, radius of curvature, and point cloud density (PCD) on estimated lengths, areas, volumes, and different stress states of concrete cylinders and panels. Four plain concrete cylinders and two plain mortar panels were used for the study. A commercially available mobile phone camera was used in collecting all photographs. Agisoft PhotoScan software was applied in photogrammetric modeling of all concrete specimens. From our results, it was found that the increase of number of photos does not necessarily improve the geometric accuracy of point cloud models (PCM). It was also found that the effect of radius of curvature is not significant when compared with the ones of number of photos and PCD. A PCD threshold of 15.7194 pts/cm3 is proposed to construct reliable and accurate PCM for condition assessment. At this PCD threshold, all errors for estimating lengths, areas, and volumes were less than 5%. Finally, from the study of mechanical property of a plain concrete cylinder, we have found that the increase of stress level inside the concrete cylinder can be captured by the increase of radial strain in its PCM.

  20. Real-time 3D motion tracking for small animal brain PET

    NASA Astrophysics Data System (ADS)

    Kyme, A. Z.; Zhou, V. W.; Meikle, S. R.; Fulton, R. R.

    2008-05-01

    High-resolution positron emission tomography (PET) imaging of conscious, unrestrained laboratory animals presents many challenges. Some form of motion correction will normally be necessary to avoid motion artefacts in the reconstruction. The aim of the current work was to develop and evaluate a motion tracking system potentially suitable for use in small animal PET. This system is based on the commercially available stereo-optical MicronTracker S60 which we have integrated with a Siemens Focus-220 microPET scanner. We present measured performance limits of the tracker and the technical details of our implementation, including calibration and synchronization of the system. A phantom study demonstrating motion tracking and correction was also performed. The system can be calibrated with sub-millimetre accuracy, and small lightweight markers can be constructed to provide accurate 3D motion data. A marked reduction in motion artefacts was demonstrated in the phantom study. The techniques and results described here represent a step towards a practical method for rigid-body motion correction in small animal PET. There is scope to achieve further improvements in the accuracy of synchronization and pose measurements in future work.

  1. Estimating satellite pose and motion parameters using a novelty filter and neural net tracker

    NASA Technical Reports Server (NTRS)

    Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne

    1989-01-01

    A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.

  2. Non-contact estimation of heart rate and oxygen saturation using ambient light.

    PubMed

    Bal, Ufuk

    2015-01-01

    We propose a robust method for automated computation of heart rate (HR) from digital color video recordings of the human face. In order to extract photoplethysmographic signals, two orthogonal vectors of RGB color space are used. We used a dual tree complex wavelet transform based denoising algorithm to reduce artifacts (e.g. artificial lighting, movement, etc.). Most of the previous work on skin color based HR estimation performed experiments with healthy volunteers and focused to solve motion artifacts. In addition to healthy volunteers we performed experiments with child patients in pediatric intensive care units. In order to investigate the possible factors that affect the non-contact HR monitoring in a clinical environment, we studied the relation between hemoglobin levels and HR estimation errors. Low hemoglobin causes underestimation of HR. Nevertheless, we conclude that our method can provide acceptable accuracy to estimate mean HR of patients in a clinical environment, where the measurements can be performed remotely. In addition to mean heart rate estimation, we performed experiments to estimate oxygen saturation. We observed strong correlations between our SpO2 estimations and the commercial oximeter readings.

  3. Non-contact estimation of heart rate and oxygen saturation using ambient light

    PubMed Central

    Bal, Ufuk

    2014-01-01

    We propose a robust method for automated computation of heart rate (HR) from digital color video recordings of the human face. In order to extract photoplethysmographic signals, two orthogonal vectors of RGB color space are used. We used a dual tree complex wavelet transform based denoising algorithm to reduce artifacts (e.g. artificial lighting, movement, etc.). Most of the previous work on skin color based HR estimation performed experiments with healthy volunteers and focused to solve motion artifacts. In addition to healthy volunteers we performed experiments with child patients in pediatric intensive care units. In order to investigate the possible factors that affect the non-contact HR monitoring in a clinical environment, we studied the relation between hemoglobin levels and HR estimation errors. Low hemoglobin causes underestimation of HR. Nevertheless, we conclude that our method can provide acceptable accuracy to estimate mean HR of patients in a clinical environment, where the measurements can be performed remotely. In addition to mean heart rate estimation, we performed experiments to estimate oxygen saturation. We observed strong correlations between our SpO2 estimations and the commercial oximeter readings PMID:25657877

  4. Efficient biprediction decision scheme for fast high efficiency video coding encoding

    NASA Astrophysics Data System (ADS)

    Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won

    2016-11-01

    An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.

  5. A Locally Adaptive Regularization Based on Anisotropic Diffusion for Deformable Image Registration of Sliding Organs

    PubMed Central

    Pace, Danielle F.; Aylward, Stephen R.; Niethammer, Marc

    2014-01-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall. PMID:23899632

  6. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs.

    PubMed

    Pace, Danielle F; Aylward, Stephen R; Niethammer, Marc

    2013-11-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall.

  7. Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L

    2009-01-01

    The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.

  8. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  9. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    PubMed Central

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated that the accuracy of probe placement was significantly better with the robotic instrument guide (4.1 mm) than without the guide (6.3 mm, p<0.001), even in the presence of body motion. When independent organ motion was artificially added, in addition to body motion, the advantage of accurate probe placement using the robotic instrument guide disappeared statistically [i.e., 6.0 mm with the robotic guide and 5.9 mm without the robotic guide (p = 0.906)]. When the robotic instrument guide was used, the total time required to complete the procedure was reduced from 19.6 to 12.7 min (p<0.001). Multivariable analysis indicated that the robotic instrument guide, not the organ motion, was the cause of statistical significance. The statistical power the authors obtained was 88% in accuracy assessment and 99% higher in duration measurement. Conclusions: The body-mounted robotic instrument guide allows positioning of the probe during image-guided cryotherapy of renal cancer and was done in fewer attempts and in less time than the free-hand approach. The accuracy of the placement of the cryotherapy probe was better using the robotic instrument guide than without the guide when no organ motion was present. The accuracy between the robotic and free-hand approach becomes comparable when organ motion was present. PMID:26843245

  10. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  11. A Quasi-Static Method for Determining the Characteristics of a Motion Capture Camera System in a "Split-Volume" Configuration

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Mulavara, Ajitkumar; Bloomberg, Jacob

    2001-01-01

    To confidently report any data collected from a video-based motion capture system, its functional characteristics must be determined, namely accuracy, repeatability and resolution. Many researchers have examined these characteristics with motion capture systems, but they used only two cameras, positioned 90 degrees to each other. Everaert used 4 cameras, but all were aligned along major axes (two in x, one in y and z). Richards compared the characteristics of different commercially available systems set-up in practical configurations, but all cameras viewed a single calibration volume. The purpose of this study was to determine the accuracy, repeatability and resolution of a 6-camera Motion Analysis system in a split-volume configuration using a quasistatic methodology.

  12. Simulation of intrafraction motion and overall geometric accuracy of a frameless intracranial radiosurgery process

    PubMed Central

    Walker, Luke; Chinnaiyan, Prakash; Forster, Kenneth

    2008-01-01

    We conducted a comprehensive evaluation of the clinical accuracy of an image‐guided frameless intracranial radiosurgery system. All links in the process chain were tested. Using healthy volunteers, we evaluated a novel method to prospectively quantify the range of target motion for optimal determination of the planning target volume (PTV) margin. The overall system isocentric accuracy was tested using a rigid anthropomorphic phantom containing a hidden target. Intrafraction motion was simulated in 5 healthy volunteers. Reinforced head‐and‐shoulders thermoplastic masks were used for immobilization. The subjects were placed in a treatment position for 15 minutes (the maximum expected time between repeated isocenter localizations) and the six‐degrees‐of‐freedom target displacements were recorded with high frequency by tracking infrared markers. The markers were placed on a customized piece of thermoplastic secured to the head independently of the immobilization mask. Additional data were collected with the subjects holding their breath, talking, and deliberately moving. As compared with fiducial matching, the automatic registration algorithm did not introduce clinically significant errors (<0.3 mm difference). The hidden target test confirmed overall system isocentric accuracy of ≤1 mm (total three‐dimensional displacement). The subjects exhibited various patterns and ranges of head motion during the mock treatment. The total displacement vector encompassing 95% of the positional points varied from 0.4 mm to 2.9 mm. Pre‐planning motion simulation with optical tracking was tested on volunteers and appears promising for determination of patient‐specific PTV margins. Further patient study is necessary and is planned. In the meantime, system accuracy is sufficient for confident clinical use with 3 mm PTV margins. PACS number: 87.53.Ly

  13. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  14. Note: high precision angle generator using multiple ultrasonic motors and a self-calibratable encoder.

    PubMed

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics

  15. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang; Chen, Fa

    2016-12-01

    Hand physiological tremor of surgeons can cause vibration at the surgical instrument tip, which may make it difficult for the surgeon to perform fine manipulations of tissue, needles, and sutures. A zero phase adaptive fuzzy Kalman filter (ZPAFKF) is proposed to suppress hand tremor and vibration of a robotic surgical system. The involuntary motion can be reduced by adding a compensating signal that has the same magnitude and frequency but opposite phase with the tremor signal. Simulations and experiments using different filters were performed. Results show that the proposed filter can avoid the loss of useful motion information and time delay, and better suppress minor and varying tremor. The ZPAFKF can provide less error, preferred accuracy, better tremor estimation, and more desirable compensation performance, to suppress hand tremor and decrease vibration at the surgical instrument tip. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Online attitude determination of a passively magnetically stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Burton, R.; Rock, S.; Springmann, J.; Cutler, J.

    2017-04-01

    An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.

  17. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    NASA Astrophysics Data System (ADS)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  18. Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction

    NASA Astrophysics Data System (ADS)

    Pontin, A.; Bonaldi, M.; Borrielli, A.; Marconi, L.; Marino, F.; Pandraud, G.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Marin, F.

    2018-03-01

    According to quantum mechanics, if we keep observing a continuous variable we generally disturb its evolution. For a class of observables, however, it is possible to implement a so-called quantum nondemolition measurement: by confining the perturbation to the conjugate variable, the observable is estimated with arbitrary accuracy, or prepared in a well-known state. For instance, when the light bounces on a movable mirror, its intensity is not perturbed (the effect is just seen on the phase of the radiation), but the radiation pressure allows one to trace back its fluctuations by observing the mirror motion. In this work, we implement a cavity optomechanical experiment based on an oscillating micromirror, and we measure correlations between the output light intensity fluctuations and the mirror motion. We demonstrate that the uncertainty of the former is reduced below the shot-noise level determined by the corpuscular nature of light.

  19. Classification of motor intent in transradial amputees using sonomyography and spatio-temporal image analysis

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Aklaghi, Nima; Baker, Clayton A.; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha

    2016-04-01

    In spite of major advances in biomechanical design of upper extremity prosthetics, these devices continue to lack intuitive control. Conventional myoelectric control strategies typically utilize electromyography (EMG) signal amplitude sensed from forearm muscles. EMG has limited specificity in resolving deep muscle activity and poor signal-to-noise ratio. We have been investigating alternative control strategies that rely on real-time ultrasound imaging that can overcome many of the limitations of EMG. In this work, we present an ultrasound image sequence classification method that utilizes spatiotemporal features to describe muscle activity and classify motor intent. Ultrasound images of the forearm muscles were obtained from able-bodied subjects and a trans-radial amputee while they attempted different hand movements. A grid-based approach is used to test the feasibility of using spatio-temporal features by classifying hand motions performed by the subjects. Using the leave-one-out cross validation on image sequences acquired from able-bodied subjects, we observe that the grid-based approach is able to discern four hand motions with 95.31% accuracy. In case of the trans-radial amputee, we are able to discern three hand motions with 80% accuracy. In a second set of experiments, we study classification accuracy by extracting spatio-temporal sub-sequences the depict activity due to the motion of local anatomical interfaces. Short time and space limited cuboidal sequences are initially extracted and assigned an optical flow behavior label, based on a response function. The image space is clustered based on the location of cuboids and features calculated from the cuboids in each cluster. Using sequences of known motions, we extract feature vectors that describe said motion. A K-nearest neighbor classifier is designed for classification experiments. Using the leave-one-out cross validation on image sequences for an amputee subject, we demonstrate that the classifier is able to discern three important hand motions with an accuracy of 93.33% accuracy, 91-100% precision and 80-100% recall rate. We anticipate that ultrasound imaging based methods will address some limitations of conventional myoelectric sensing, while adding advantages inherent to ultrasound imaging.

  20. A comparison between a new model and current models for estimating trunk segment inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A

    2009-01-05

    Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.

  1. Image-derived input function in PET brain studies: blood-based methods are resistant to motion artifacts.

    PubMed

    Zanotti-Fregonara, Paolo; Liow, Jeih-San; Comtat, Claude; Zoghbi, Sami S; Zhang, Yi; Pike, Victor W; Fujita, Masahiro; Innis, Robert B

    2012-09-01

    Image-derived input function (IDIF) from carotid arteries is an elegant alternative to full arterial blood sampling for brain PET studies. However, a recent study using blood-free IDIFs found that this method is particularly vulnerable to patient motion. The present study used both simulated and clinical [11C](R)-rolipram data to assess the robustness of a blood-based IDIF method (a method that is ultimately normalized with blood samples) with regard to motion artifacts. The impact of motion on the accuracy of IDIF was first assessed with an analytical simulation of a high-resolution research tomograph using a numerical phantom of the human brain, equipped with internal carotids. Different degrees of translational (from 1 to 20 mm) and rotational (from 1 to 15°) motions were tested. The impact of motion was then tested on the high-resolution research tomograph dynamic scans of three healthy volunteers, reconstructed with and without an online motion correction system. IDIFs and Logan-distribution volume (VT) values derived from simulated and clinical scans with motion were compared with those obtained from the scans with motion correction. In the phantom scans, the difference in the area under the curve (AUC) for the carotid time-activity curves was up to 19% for rotations and up to 66% for translations compared with the motionless simulation. However, for the final IDIFs, which were fitted to blood samples, the AUC difference was 11% for rotations and 8% for translations. Logan-VT errors were always less than 10%, except for the maximum translation of 20 mm, in which the error was 18%. Errors in the clinical scans without motion correction appeared to be minor, with differences in AUC and Logan-VT always less than 10% compared with scans with motion correction. When a blood-based IDIF method is used for neurological PET studies, the motion of the patient affects IDIF estimation and kinetic modeling only minimally.

  2. Three-dimensional kinematic estimation of mobile-bearing total knee arthroplasty from x-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi

    2011-03-01

    To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.

  3. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns.

    PubMed

    Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand

    2017-01-23

    Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  4. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  5. A Study of Vicon System Positioning Performance.

    PubMed

    Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier

    2017-07-07

    Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  6. WE-G-213CD-06: Implementation of Real-Time Tumor Tracking Using Robotic Couch.

    PubMed

    Buzurovic, I; Yu, Y; Podder, T

    2012-06-01

    The purpose of this study was to present a novel method for real- time tumor tracking using a commercially available robotic treatment couch, and to evaluate tumor tracking accuracy. Commercially available robotic couches are capable of positioning patients with high level of accuracy; however, currently there is no provision for compensating tumor motion using these systems. Elekta's existing commercial couch (PreciseTM Table) was used without changing its design. To establish the real-time couch motion for tracking, a novel control system was developed and implemented. The tabletop could be moved in horizontal plane (laterally and longitudinally) using two Maxon-24V motors with gearbox combination. Vertical motion was obtained using robust 70V-Rockwell Automation motor. For vertical motor position sensing, we used Model 755A-Accu- Coder encoder. Two Baumer-ITD_01_4mm shaft encoders were used for the lateral and longitudinal motions of the couch. Motors were connected to the Advance Motion Controls (AMC) amplifiers: for the vertical motion, motor AMC-20A20-INV amplifier was used, and two AMC-Z6A8 amplifiers were applied for the lateral and longitudinal couch motions. The Galil DMC-4133 controller was connected to standard PC computer using USB port. The system had two independent power supplies: Galil PSR-12- 24-12A, 24vdc power supply with diodes for controller and 24vdc motors and amplifiers, and Galil-PS300W72 72vdc power supply for vertical motion. Control algorithms were developed for position and velocity adjustment. The system was tested for real-time tracking in the range of 50mm in all 3 directions (superior-inferior, lateral, anterior- posterior). Accuracies were 0.15, 0.20, and 0.18mm, respectively. Repeatability of the desired motion was within ± 0.2mm. Experimental results of couch tracking show feasibility of real-time tumor tracking with high level of accuracy (within sub-millimeter range). This tracking technique potentially offers a simple and effective method to minimize healthy tissues irradiation.Acknowledgement: Study supported by Elekta,Ltd. Study supported by Elekta, Ltd. © 2012 American Association of Physicists in Medicine.

  7. Cardiac gating with a pulse oximeter for dual-energy imaging

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2008-11-01

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, timp, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HRthresh. For rates at or below HRthresh, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [timp(HR) = 0]. Above HRthresh, a characteristic timp(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers independently measured the artifact in 111 patient DE images. The data indicate that successful diastolic gating results in a statistically significant reduction (p < 0.001) in the magnitude of cardiac motion artifact, with residual artifact attributed primarily to gross patient motion.

  8. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task

    NASA Astrophysics Data System (ADS)

    Crouch, Dustin L.; (Helen Huang, He

    2017-06-01

    Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r  =  0.25, p  <  0.0001). The amputee subject could coordinate movement between the wrist and MCP joints, but favored metacarpophalangeal joint motion more highly than able-bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.

  9. A Bayesian and Physics-Based Ground Motion Parameters Map Generation System

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.

    2014-12-01

    We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the computations, and present some examples of recent earthquakes. We conclude that the system provides information with a fair goodness-of-fit against observations. This project is partially supported by DGAPA-PAPIIT (UNAM) project TB100313-RR170313.

  10. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    PubMed Central

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  11. Motion compensation for cone-beam CT using Fourier consistency conditions

    NASA Astrophysics Data System (ADS)

    Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.

    2017-09-01

    In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.

  12. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    PubMed

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  13. The mathematical modeling of the experiment on the determination of correlation coefficients in neutron beta-decay

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Zherebtsov, O. M.; Klyushnikov, G. N.

    2018-05-01

    An experiment on the measurement of the ratio of the axial coupling constant to the vector one is under development. The main idea of the experiment is to measure the values of A and B in the same setup. An additional measurement of the polarization is not necessary. The accuracy achieved to date in measuring λ is 2 × 10-3. It is expected that in the experiment the accuracy will be of the order of 10-4. Some particular problems of mathematical modeling concerning the experiment on the measurement of the ratio of the axial coupling constant to the vector one are considered. The force lines for the given tabular field of a magnetic trap are studied. The dependences of the longitudinal and transverse field non-uniformity coefficients on the coordinates are regarded. A special computational algorithm based on the law of a charged particle motion along a local magnetic force line is performed for the calculation of the electrons and protons motion time as well as for the evaluation of the total number of electrons colliding with the detector surface. The average values of the cosines of the angles with the coefficients of a, A and B have been estimated.

  14. Structure preserving clustering-object tracking via subgroup motion pattern segmentation

    NASA Astrophysics Data System (ADS)

    Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen

    2018-01-01

    Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.

  15. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  16. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-08-25

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  17. Validation of enhanced kinect sensor based motion capturing for gait assessment

    PubMed Central

    Müller, Björn; Ilg, Winfried; Giese, Martin A.

    2017-01-01

    Optical motion capturing systems are expensive and require substantial dedicated space to be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations however flexibility is required and the motion capturing system can only temporarily be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis promising results have been published. We here present a motion capturing system that is easy to set up, flexible with respect to the sensor locations and delivers high accuracy in gait parameters comparable to a gold standard motion capturing system (VICON). Further, we demonstrate that sensor setups which track the person only from one-side are less accurate and should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, especially step width, our system shows higher agreement with the VICON system than previous reports. PMID:28410413

  18. New test of general relativity - Measurement of de Sitter geodetic precession rate for lunar perigee

    NASA Technical Reports Server (NTRS)

    Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L.

    1987-01-01

    According to general relativity, the calculated rate of motion of lunar perigee should include a contribution of 19.2 msec/yr from geodetic precession. It is shown that existing analyses of lunar-laser-ranging data confirm the general-relativistic rate for geodetic precession with respect to the planetary dynamical frame. In addition, the comparison of earth-rotation results from lunar laser ranging and from VLBI shows that the relative drift of the planetary dynamical frame and the extragalactic VLBI reference frame is small. The estimated accuracy is about 10 percent.

  19. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  20. The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change

    NASA Astrophysics Data System (ADS)

    Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.

    2015-12-01

    The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.

Top