Science.gov

Sample records for accuracy precision navigation

  1. Voyager navigation strategy and accuracy

    NASA Technical Reports Server (NTRS)

    Jones, J. B.; Mcdanell, J. P.; Bantell, M. H., Jr.; Chadwick, C.; Jacobson, R. A.; Miller, L. J.; Synnott, S. P.; Van Allen, R. E.

    1977-01-01

    The paper presents the results of the prelaunch navigation studies conducted for the Mariner spacecraft launched toward encounters with the giant planets. The navigation system and the strategy for using this system are described. The requirements on the navigation system demanded by the goals of the project are mentioned, and the predicted navigational capability relative to each of the requirements is discussed. Baseline navigation results for three possible trajectories are analyzed.

  2. Accuracy and precision of manual baseline determination.

    PubMed

    Jirasek, A; Schulze, G; Yu, M M L; Blades, M W; Turner, R F B

    2004-12-01

    Vibrational spectra often require baseline removal before further data analysis can be performed. Manual (i.e., user) baseline determination and removal is a common technique used to perform this operation. Currently, little data exists that details the accuracy and precision that can be expected with manual baseline removal techniques. This study addresses this current lack of data. One hundred spectra of varying signal-to-noise ratio (SNR), signal-to-baseline ratio (SBR), baseline slope, and spectral congestion were constructed and baselines were subtracted by 16 volunteers who were categorized as being either experienced or inexperienced in baseline determination. In total, 285 baseline determinations were performed. The general level of accuracy and precision that can be expected for manually determined baselines from spectra of varying SNR, SBR, baseline slope, and spectral congestion is established. Furthermore, the effects of user experience on the accuracy and precision of baseline determination is estimated. The interactions between the above factors in affecting the accuracy and precision of baseline determination is highlighted. Where possible, the functional relationships between accuracy, precision, and the given spectral characteristic are detailed. The results provide users of manual baseline determination useful guidelines in establishing limits of accuracy and precision when performing manual baseline determination, as well as highlighting conditions that confound the accuracy and precision of manual baseline determination.

  3. Navigation in Orthognathic Surgery: 3D Accuracy.

    PubMed

    Badiali, Giovanni; Roncari, Andrea; Bianchi, Alberto; Taddei, Fulvia; Marchetti, Claudio; Schileo, Enrico

    2015-10-01

    This article aims to determine the absolute accuracy of maxillary repositioning during orthognathic surgery according to simulation-guided navigation, that is, the combination of navigation and three-dimensional (3D) virtual surgery. We retrospectively studied 15 patients treated for asymmetric dentofacial deformities at the Oral and Maxillofacial Surgery Unit of the S.Orsola-Malpighi University Hospital in Bologna, Italy, from January 2010 to January 2012. Patients were scanned with a cone-beam computed tomography before and after surgery. The virtual surgical simulation was realized with a dedicated software and loaded on a navigation system to improve intraoperative reproducibility of the preoperative planning. We analyzed the outcome following two protocols: (1) planning versus postoperative 3D surface analysis; (2) planning versus postoperative point-based analysis. For 3D surface comparison, the mean Hausdorff distance was measured, and median among cases was 0.99 mm. Median reproducibility < 1 mm was 61.88% and median reproducibility < 2 mm was 85.46%. For the point-based analysis, with sign, the median distance was 0.75 mm in the frontal axis, -0.05 mm in the caudal-cranial axis, -0.35 mm in the lateral axis. In absolute value, the median distance was 1.19 mm in the frontal axis, 0.59 mm in the caudal-cranial axis, and 1.02 mm in the lateral axis. We suggest that simulation-guided navigation makes accurate postoperative outcomes possible for maxillary repositioning in orthognathic surgery, if compared with the surgical computer-designed project realized with a dedicated software, particularly for the vertical dimension, which is the most challenging to manage.

  4. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement. PMID:27044032

  5. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  6. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  7. Precise laser gyroscope for autonomous inertial navigation

    SciTech Connect

    Kuznetsov, A G; Molchanov, A V; Izmailov, E A; Chirkin, M V

    2015-01-31

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)

  8. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  9. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  10. [History, accuracy and precision of SMBG devices].

    PubMed

    Dufaitre-Patouraux, L; Vague, P; Lassmann-Vague, V

    2003-04-01

    Self-monitoring of blood glucose started only fifty years ago. Until then metabolic control was evaluated by means of qualitative urinary blood measure often of poor reliability. Reagent strips were the first semi quantitative tests to monitor blood glucose, and in the late seventies meters were launched on the market. Initially the use of such devices was intended for medical staff, but thanks to handiness improvement they became more and more adequate to patients and are now a necessary tool for self-blood glucose monitoring. The advanced technologies allow to develop photometric measurements but also more recently electrochemical one. In the nineties, improvements were made mainly in meters' miniaturisation, reduction of reaction time and reading, simplification of blood sampling and capillary blood laying. Although accuracy and precision concern was in the heart of considerations at the beginning of self-blood glucose monitoring, the recommendations of societies of diabetology came up in the late eighties. Now, the French drug agency: AFSSAPS asks for a control of meter before any launching on the market. According to recent publications very few meters meet reliability criteria set up by societies of diabetology in the late nineties. Finally because devices may be handled by numerous persons in hospitals, meters use as possible source of nosocomial infections have been recently questioned and is subject to very strict guidelines published by AFSSAPS.

  11. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  12. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  13. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  14. [Accuracy and precision in the evaluation of computer assisted surgical systems. A definition].

    PubMed

    Strauss, G; Hofer, M; Korb, W; Trantakis, C; Winkler, D; Burgert, O; Schulz, T; Dietz, A; Meixensberger, J; Koulechov, K

    2006-02-01

    Accuracy represents the outstanding criterion for navigation systems. Surgeons have noticed a great discrepancy between the values from the literature and system specifications on one hand, and intraoperative accuracy on the other. A unitary understanding for the term accuracy does not exist in clinical practice. Furthermore, an incorrect equality for the terms precision and accuracy can be found in the literature. On top of this, clinical accuracy differs from mechanical (technical) accuracy. From a clinical point of view, we had to deal with remarkably many different terms all describing accuracy. This study has the goals of: 1. Defining "accuracy" and related terms, 2. Differentiating between "precision" and "accuracy", 3. Deriving the term "surgical accuracy", 4. Recommending use of the the term "surgical accuracy" for a navigation system. To a great extent, definitions were applied from the International Standardisation Organisation-ISO and the norm from the Deutsches Institut für Normung e.V.-DIN (the German Institute for Standardization). For defining surgical accuracy, the terms reference value, expectation, accuracy and precision are of major interest. Surgical accuracy should indicate the maximum values for the deviation between test results and the reference value (true value) A(max), and additionally indicate precision P(surg). As a basis for measurements, a standardized technical model was used. Coordinates of the model were acquired by CT. To determine statistically and reality relevant results for head surgery, 50 measurements with an accuracy of 50, 75, 100 and 150 mm from the centre of the registration geometry are adequate. In the future, we recommend labeling the system's overall performance with the following specifications: maximum accuracy deviation A(max), precision P and information on the measurement method. This could be displayed on a seal of quality.

  15. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay

    1993-01-01

    As the baseline navigation system for the Earth Observing System (EOS)-AM1 spacecraft, the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is required to provide precise position and velocity information for imaging instrument calibration and routine operations. This paper presents the results of real-time navigation performance evaluations with respect to TONS-based orbit and frequency determination to satisfy this requirement. Both covariance and simulation analysis of EOS-AM1 navigation accuracy and analysis using operational data from Landsat-4 are presented. Local (half orbit) and global (multiple orbits) tracking are considered using a way-forward link services. Improvements in navigation accuracies by using enhanced gravity models beyond the Goddard Earth Model (GEM)-T3 are also discussed. Key objectives of the analysis are to evaluate nominal performance and potential sensitivities and to address algorithm improvements such as TDRS ephemeris biasing, ionosphere model, and gravity process noise models slated for implementation. Results indicate that TONS can be configured to meet the proposed instrument navigation requirements of 20 meters, 3-sigma.

  16. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  17. Assessing the Accuracy of the Precise Point Positioning Technique

    NASA Astrophysics Data System (ADS)

    Bisnath, S. B.; Collins, P.; Seepersad, G.

    2012-12-01

    The Precise Point Positioning (PPP) GPS data processing technique has developed over the past 15 years to become a standard method for growing categories of positioning and navigation applications. The technique relies on single receiver point positioning combined with the use of precise satellite orbit and clock information and high-fidelity error modelling. The research presented here uniquely addresses the current accuracy of the technique, explains the limits of performance, and defines paths to improvements. For geodetic purposes, performance refers to daily static position accuracy. PPP processing of over 80 IGS stations over one week results in few millimetre positioning rms error in the north and east components and few centimetres in the vertical (all one sigma values). Larger error statistics for real-time and kinematic processing are also given. GPS PPP with ambiguity resolution processing is also carried out, producing slight improvements over the float solution results. These results are categorised into quality classes in order to analyse the root error causes of the resultant accuracies: "best", "worst", multipath, site displacement effects, satellite availability and geometry, etc. Also of interest in PPP performance is solution convergence period. Static, conventional solutions are slow to converge, with approximately 35 minutes required for 95% of solutions to reach the 20 cm or better horizontal accuracy. Ambiguity resolution can significantly reduce this period without biasing solutions. The definition of a PPP error budget is a complex task even with the resulting numerical assessment, as unlike the epoch-by-epoch processing in the Standard Position Service, PPP processing involving filtering. An attempt is made here to 1) define the magnitude of each error source in terms of range, 2) transform ranging error to position error via Dilution Of Precision (DOP), and 3) scale the DOP through the filtering process. The result is a deeper

  18. Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Montgomery, James F.

    2008-01-01

    The driving precision landing requirement for the Autonomous Landing and Hazard Avoidance Technology project is to autonomously land within 100m of a predetermined location on the lunar surface. Traditional lunar landing approaches based on inertial sensing do not have the navigational precision to meet this requirement. The purpose of Terrain Relative Navigation (TRN) is to augment inertial navigation by providing position or bearing measurements relative to known surface landmarks. From these measurements, the navigational precision can be reduced to a level that meets the 100m requirement. There are three different TRN functions: global position estimation, local position estimation and velocity estimation. These functions can be achieved with active range sensing or passive imaging. This paper gives a survey of many TRN approaches and then presents some high fidelity simulation results for contour matching and area correlation approaches to TRN using active sensors. Since TRN requires an a-priori reference map, the paper concludes by describing past and future lunar imaging and digital elevation map data sets available for this purpose.

  19. Comparison of Precision between Optical and Electromagnetic Navigation Systems in Total Knee Arthroplasty

    PubMed Central

    Rhee, Seung Joon; Park, Shi Hwan; Cho, He Myung

    2014-01-01

    Purpose The purpose of this study is to compare and analyze the precision of optical and electromagnetic navigation systems in total knee arthroplasty (TKA). Materials and Methods We retrospectively reviewed 60 patients who underwent TKA using an optical navigation system and 60 patients who underwent TKA using an electromagnetic navigation system from June 2010 to March 2012. The mechanical axis that was measured on preoperative radiographs and by the intraoperative navigation systems were compared between the groups. The postoperative positions of the femoral and tibial components in the sagittal and coronal plane were assessed. Results The difference of the mechanical axis measured on the preoperative radiograph and by the intraoperative navigation systems was 0.6 degrees more varus in the electromagnetic navigation system group than in the optical navigation system group, but showed no statistically significant difference between the two groups (p>0.05). The positions of the femoral and tibial components in the sagittal and coronal planes on the postoperative radiographs also showed no statistically significant difference between the two groups (p>0.05). Conclusions In TKA, both optical and electromagnetic navigation systems showed high accuracy and reproducibility, and the measurements from the postoperative radiographs showed no significant difference between the two groups. PMID:25505703

  20. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  1. SpaceNav - A high accuracy navigation system for space applications

    NASA Astrophysics Data System (ADS)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  2. A study of laseruler accuracy and precision (1986-1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate Laserruler accuracy and precision. Tests were performed on 0.050 in., 0.100 in., and 0.120 in. gauge block standards. Results showed and accuracy of 3.7 {mu}in. for the 0.12 in. standard, with higher accuracies for the two thinner blocks. The Laserruler precision was 4.83 {mu}in. for the 0.120 in. standard, 3.83 {mu}in. for the 0.100 in. standard, and 4.2 {mu}in. for the 0.050 in. standard.

  3. Assessment of the accuracy of infrared and electromagnetic navigation using an industrial robot: Which factors are influencing the accuracy of navigation?

    PubMed

    Liodakis, Emmanouil; Chu, Kongfai; Westphal, Ralf; Krettek, Christian; Citak, Musa; Gosling, Thomas; Kenawey, Mohamed

    2011-10-01

    Our objectives were to detect factors that influence the accuracy of surgical navigation (magnitude of deformity, plane of deformity, position of the navigation bases) and compare the accuracy of infrared with electromagnetic navigation. Human cadaveric femora were used. A robot connected with a computer moved one of the bony fragments in a desired direction. The bases of the infrared navigation (BrainLab) and the receivers of the electromagnetic device (Fastrak-Pohlemus) were attached to the proximal and distal parts of the bone. For the first part of the study, deformities were classified in eight groups (e.g., 0 to 5(°)). For the second part, the bases were initially placed near the osteotomy and then far away. The mean absolute differences between both navigation system measurements and the robotic angles were significantly affected by the magnitude of angulation with better accuracy for smaller angulations (p < 0.001). The accuracy of infrared navigation was significantly better in the frontal and sagittal plane. Changing the position of the navigation bases near and far away from the deformity apex had no significant effect on the accuracy of infrared navigation; however, it influenced the accuracy of electromagnetic navigation in the frontal plane (p < 0.001). In conclusion, the use of infrared navigation systems for corrections of small angulation-deformities in the frontal or sagittal plane provides the most accurate results, irrespectively from the positioning of the navigation bases.

  4. An innovative high accuracy autonomous navigation method for the Mars rovers

    NASA Astrophysics Data System (ADS)

    Guan, Xujun; Wang, Xinlong; Fang, Jiancheng; Feng, Shaojun

    2014-11-01

    Autonomous navigation is an important function for a Mars rover to fulfill missions successfully. It is a critical technique to overcome the limitations of ground tracking and control traditionally used. This paper proposes an innovative method based on SINS (Strapdown Inertial Navigation System) with the aid of star sensors to accurately determine the rover's position and attitude. This method consists of two parts: the initial alignment and navigation. The alignment consists of a coarse position and attitude initial alignment approach and fine initial alignment approach. The coarse one is used to determine approximate position and attitude for the rover. This is followed by fine alignment to tune the approximate solution to accurate one. Upon the completion of initial alignment, the system can be used to provide real-time navigation solutions for the rover. An autonomous navigation algorithm is proposed to estimate and compensate the accumulated errors of SINS in real time. High accuracy attitude information from star sensor is used to correct errors in SINS. Simulation results demonstrate that the proposed methods can achieve a high precision autonomous navigation for Mars rovers.

  5. Preliminary assessment of the basic navigation and precise positioning performance of BDS

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Hu, Zhigang; Li, Min; Guo, Jing; Shi, Chuang; Liu, Jingnan

    2014-05-01

    Following the general guideline of starting with regional services and then expanding to global services, the BeiDou Navigation Satellite System(BDS) is steadily accelerating the construction. By the end of 2012, the BDS already consists of fourteen networking satellites, including five GEO satellites, five IGSO satellites, and four MEO satellites, and owns full operational capability for China and its surrounding areas. Both basic navigation and precise positioning performance of current BDS (with 5GEO+5IGSO+4MEO satellites) during January to December of 2013 are evaluated in this presentation. In China and its surrounding area, the positioning accuracy using BDS opening service is about 10 meters in both horizontal and vertical direction. Users can get high precise service using BDS only, and both BDS and GPS users can be benefitted from combination of the two systems.

  6. Precision and accuracy in diffusion tensor magnetic resonance imaging.

    PubMed

    Jones, Derek K

    2010-04-01

    This article reviews some of the key factors influencing the accuracy and precision of quantitative metrics derived from diffusion magnetic resonance imaging data. It focuses on the study pipeline beginning at the choice of imaging protocol, through preprocessing and model fitting up to the point of extracting quantitative estimates for subsequent analysis. The aim was to provide the newcomers to the field with sufficient knowledge of how their decisions at each stage along this process might impact on precision and accuracy, to design their study/approach, and to use diffusion tensor magnetic resonance imaging in the clinic. More specifically, emphasis is placed on improving accuracy and precision. I illustrate how careful choices along the way can substantially affect the sample size needed to make an inference from the data.

  7. Accuracy and precision of temporal artery thermometers in febrile patients.

    PubMed

    Wolfson, Margaret; Granstrom, Patsy; Pomarico, Bernie; Reimanis, Cathryn

    2013-01-01

    The noninvasive temporal artery thermometer offers a way to measure temperature when oral assessment is contraindicated, uncomfortable, or difficult to obtain. In this study, the accuracy and precision of the temporal artery thermometer exceeded levels recommended by experts for use in acute care clinical practice.

  8. Soft tissue navigation using needle-shaped markers: Evaluation of navigation aid tracking accuracy and CT registration

    NASA Astrophysics Data System (ADS)

    Maier-Hein, L.; Maleike, D.; Neuhaus, J.; Franz, A.; Wolf, I.; Meinzer, H.-P.

    2007-03-01

    We evaluate two core modules of a novel soft tissue navigation system. The system estimates the position of a hidden target (e.g. a tumor) during a minimally invasive intervention from the location of a set of optically tracked needle-shaped navigation aids which are placed in the vicinity of the target. The initial position of the target relative to the navigation aids is obtained from a CT scan. The accuracy of the entire system depends on (a) the accuracy for locating a set of navigation aids in a CT image, (b) the accuracy for determining the positions of the navigation aids during the intervention by means of optical tracking, (c) the accuracy for tracking the applicator (e.g. the biopsy needle), and (d) the accuracy of the real-time deformation model which continuously computes the location of the initially determined target point from the current positions of the navigation aids. In this paper, we focus on the first two aspects. We introduce the navigation aids we constructed for our system and show that the needle tips can be tracked with submillimeter accuracy. Furthermore, we present and evaluate three methods for registering a set of navigation aid models with a given CT image. The fully-automatic algorithm outperforms both the manual method and the semi-automatic algorithm, yielding an average distance of 0.27 +/- 0.08 mm between the estimated needle tip position and the reference position.

  9. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  10. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems.

    PubMed

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  11. Accuracy-precision trade-off in visual orientation constancy.

    PubMed

    De Vrijer, M; Medendorp, W P; Van Gisbergen, J A M

    2009-02-09

    Using the subjective visual vertical task (SVV), previous investigations on the maintenance of visual orientation constancy during lateral tilt have found two opposite bias effects in different tilt ranges. The SVV typically shows accurate performance near upright but severe undercompensation at tilts beyond 60 deg (A-effect), frequently with slight overcompensation responses (E-effect) in between. Here we investigate whether a Bayesian spatial-perception model can account for this error pattern. The model interprets A- and E-effects as the drawback of a computational strategy, geared at maintaining visual stability with optimal precision at small tilt angles. In this study, we test whether these systematic errors can be seen as the consequence of a precision-accuracy trade-off when combining a veridical but noisy signal about eye orientation in space with the visual signal. To do so, we used a psychometric approach to assess both precision and accuracy of the SVV in eight subjects laterally tilted at 9 different tilt angles (-120 degrees to 120 degrees). Results show that SVV accuracy and precision worsened with tilt angle, according to a pattern that could be fitted quite adequately by the Bayesian model. We conclude that spatial vision essentially follows the rules of Bayes' optimal observer theory.

  12. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-02-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  13. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao

    2016-09-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h‑1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h‑1. Flight simulations and road tests show its outstanding performance over the traditional NGM.

  14. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao

    2016-09-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h-1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4-0.75 nm h-1. Flight simulations and road tests show its outstanding performance over the traditional NGM.

  15. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and

  16. The Plus or Minus Game - Teaching Estimation, Precision, and Accuracy

    NASA Astrophysics Data System (ADS)

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-03-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in TPT (Larry Weinstein's "Fermi Questions.") For several years the authors (a college physics professor, a retired algebra teacher, and a fifth-grade teacher) have been playing a game, primarily at home to challenge each other for fun, but also in the classroom as an educational tool. We call the game "The Plus or Minus Game." The game combines estimation with the principle of precision and uncertainty in a competitive and fun way.

  17. Fluorescence Axial Localization with Nanometer Accuracy and Precision

    SciTech Connect

    Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

    2012-06-15

    We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

  18. Robot-Assisted Navigation versus Computer-Assisted Navigation in Primary Total Knee Arthroplasty: Efficiency and Accuracy.

    PubMed

    Clark, Tanner C; Schmidt, Frank H

    2013-01-01

    Background. Since the introduction of robot-assisted navigation in primary total knee arthroplasty (TKA), there has been little research conducted examining the efficiency and accuracy of the system compared to computer-assisted navigation systems. Objective. To compare the efficiency and accuracy of Praxim robot-assisted navigation (RAN) and Stryker computer-assisted navigation (CAN) in primary TKA. Methods. This was a retrospective study consisting of 52 patients who underwent primary TKA utilizing RAN and 29 patients utilizing CAN. The primary outcome measure was navigation time. Secondary outcome measures included intraoperative final mechanical axis alignment, intraoperative robot-assisted bone cut accuracy, tourniquet time, and hospitalization length. Results. RAN navigation times were, on average, 9.0 minutes shorter compared to CAN after adjustment. The average absolute intraoperative malalignment was 0.5° less in the RAN procedures compared to the CAN procedures after adjustment. Patients in the RAN group tended to be discharged 0.6 days earlier compared to patients in the CAN group after adjustment. Conclusions. Among patients undergoing TKA, there was decreased navigation time, decreased final malalignment, and decreased hospitalization length associated with the use of RAN when compared to CAN independent of age, BMI, and pre-replacement alignment.

  19. Impact of age and obstacles on navigation precision and reaction time during blind navigation in dual-task conditions.

    PubMed

    Richer, Natalie; Paquet, Nicole; Lajoie, Yves

    2014-03-01

    Navigation without vision is a skill that is often employed in our daily lives, such as walking in the dark at night. Navigating without vision to a remembered target has previously been studied. However, little is known about the impact of age or obstacles on the attentional demands of a blind navigation task. This study examined the impacts of age and obstacles on reaction time (RT) and navigation precision during blind navigation in dual-task conditions. The aims were to determine the effects of age, obstacles, and auditory stimulus location on RT and navigation precision in a blind navigation task. Ten healthy young adults (24.5±2.5 years) and ten healthy older adults (69.5±2.9 years) participated in the study. Participants were asked to walk to a target located 8m ahead. In half the trials, the path was obstructed with hanging obstacles. Participants performed this task in the absence of vision, while executing a discrete RT task. Results demonstrated that older adults presented increased RT, linear distance travelled (LDT), and obstacle contact; that obstacle presence significantly increased RT compared to trials with no obstacles; and that an auditory stimulus emitted early versus late in the path increased LDT. Results suggest that the attentional demands of blind navigation are higher in older than young adults, as well as when obstacles are present. Furthermore, navigation precision is affected by age and when participants are distracted by the secondary task early in navigation, presumably because the secondary task interferes with path estimation.

  20. An effective approach to improving low-cost GPS positioning accuracy in real-time navigation.

    PubMed

    Islam, Md Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4-10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy.

  1. An Effective Approach to Improving Low-Cost GPS Positioning Accuracy in Real-Time Navigation

    PubMed Central

    Islam, Md. Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4–10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  2. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  3. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  4. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  5. Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking

    NASA Astrophysics Data System (ADS)

    Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.

    2015-03-01

    Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.

  6. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  7. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2016-07-12

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  8. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    SciTech Connect

    Olivi, Alessandro, M.D.

    2010-08-28

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  9. Measure of the accuracy of navigational sensors for autonomous path tracking

    NASA Astrophysics Data System (ADS)

    Motazed, Ben

    1994-02-01

    Outdoor mobile robot path tracking for an extended period of time and distance is a formidable task. The difficulty lies in the ability of robot navigation systems to reliably and accurately report on the position and orientation of the vehicle. This paper addresses the accurate navigation of mobile robots in the context of non-line of sight autonomous convoying. Dead-reckoning, GPS and vision based autonomous road following navigational schemes are integrated through a Kalman filter formulation to derive mobile robot position and orientation. The accuracy of these navigational schemes and their sufficiency to achieve autonomous path tracking for long duration are examined.

  10. [Navigation in implantology: Accuracy assessment regarding the literature].

    PubMed

    Barrak, Ibrahim Ádám; Varga, Endre; Piffko, József

    2016-06-01

    Our objective was to assess the literature regarding the accuracy of the different static guided systems. After applying electronic literature search we found 661 articles. After reviewing 139 articles, the authors chose 52 articles for full-text evaluation. 24 studies involved accuracy measurements. Fourteen of our selected references were clinical and ten of them were in vitro (modell or cadaver). Variance-analysis (Tukey's post-hoc test; p < 0.05) was conducted to summarize the selected publications. Regarding 2819 results the average mean error at the entry point was 0.98 mm. At the level of the apex the average deviation was 1.29 mm while the mean of the angular deviation was 3,96 degrees. Significant difference could be observed between the two methods of implant placement (partially and fully guided sequence) in terms of deviation at the entry point, apex and angular deviation. Different levels of quality and quantity of evidence were available for assessing the accuracy of the different computer-assisted implant placement. The rapidly evolving field of digital dentistry and the new developments will further improve the accuracy of guided implant placement. In the interest of being able to draw dependable conclusions and for the further evaluation of the parameters used for accuracy measurements, randomized, controlled single or multi-centered clinical trials are necessary. PMID:27544966

  11. [Navigation in implantology: Accuracy assessment regarding the literature].

    PubMed

    Barrak, Ibrahim Ádám; Varga, Endre; Piffko, József

    2016-06-01

    Our objective was to assess the literature regarding the accuracy of the different static guided systems. After applying electronic literature search we found 661 articles. After reviewing 139 articles, the authors chose 52 articles for full-text evaluation. 24 studies involved accuracy measurements. Fourteen of our selected references were clinical and ten of them were in vitro (modell or cadaver). Variance-analysis (Tukey's post-hoc test; p < 0.05) was conducted to summarize the selected publications. Regarding 2819 results the average mean error at the entry point was 0.98 mm. At the level of the apex the average deviation was 1.29 mm while the mean of the angular deviation was 3,96 degrees. Significant difference could be observed between the two methods of implant placement (partially and fully guided sequence) in terms of deviation at the entry point, apex and angular deviation. Different levels of quality and quantity of evidence were available for assessing the accuracy of the different computer-assisted implant placement. The rapidly evolving field of digital dentistry and the new developments will further improve the accuracy of guided implant placement. In the interest of being able to draw dependable conclusions and for the further evaluation of the parameters used for accuracy measurements, randomized, controlled single or multi-centered clinical trials are necessary.

  12. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  13. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  14. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  15. A High Accuracy Hybrid Navigation System for Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kumagai, Hideo; Numajima, Toru; Sugimoto, Sueo

    The development of small, light weight, low power navigation system for guidance of both tethered and autonomous Unmanned Underwater Vehicle (UUV) is required in applications such as deep salvage, oil and gas well head and pipe line laying and maintenance, etc. All have stringent position requirements in order to define target locations followings the initial find, minimize search time for return missions, as well as support of autopilot functions. In these applications mainly an accurate Sonar Doppler Velocity Log (DVL) was used for Inertial Navigation System (INS) error corrections. But the settlement of DVL is not affordable to various UUV so that not convenient to low cost and small UUV. In this paper we propose a new algorithm for combining the low cost but highly accurate INS with Water Screw Speed (WSS) of the UUV efficiently. In order to evaluate our algorithm we produced the data acquisition system and after several experimental run, we simulated this algorithm searching the error correlation time and noise variance of these estimations.

  16. Accuracy of navigation in hip resurfacing with different surgeons and varying anatomy.

    PubMed

    Schleicher, Iris; Haselbacher, Matthias; Mayr, Eckart; Kaiser, Peter M; Lenze, Florian W; Keiler, Alexander; Nogler, Michael

    2012-01-01

    The accuracy of a commercial imageless navigation system for hip resurfacing and its reproducibility among different surgeons and for varying femoral anatomy was tested by comparing conventional and navigated implantation of the femoral component on different sawbones in a hip simulator. The position of the component was measured on postoperative radiographs. Variance for varus/valgus alignment and anteversion was higher for conventional implantation. Among the three surgeons, operation time, chosen implant size and anteversion were significantly different for conventional implantation but not for the navigated method. Using navigation, no difference was found for normal and abnormal anatomy. Values obtained with the navigation system were consistent with those measured on radiographs. Navigation appeared to be accurate and helped to reduce outliers. This was true for the three different surgeons and in varying anatomical situations.

  17. Accuracy of lesion boundary tracking in navigated breast tumor excision

    NASA Astrophysics Data System (ADS)

    Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor

    2016-03-01

    PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.

  18. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  19. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  20. Precise point positioning with the BeiDou navigation satellite system.

    PubMed

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  1. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  2. Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing

    NASA Technical Reports Server (NTRS)

    Sands, Obed S.; Connolly, Joseph W.; Welch, Bryan W.; Carpenter, James R.; Ely, Todd A.; Berry, Kevin

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e., GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  3. A state dynamics method for integrated GPS/INS navigation and its application to aircraft precision approach

    NASA Astrophysics Data System (ADS)

    Chan, Fang-Cheng

    In recent years, GPS navigation systems have found widespread use in many diverse applications. The achievements of GPS navigation systems in positioning and navigation services have been nothing short of extraordinary. With the use of carrier phase measurements and Differential GPS (DGPS), centimeter-level performance is achievable today. Therefore, the principal issues for modern navigation are not related to accuracy per se, but robustness. Unfortunately in this regard, all radionavigation systems are subject to Radio Frequency Interference (RFI). In response, this research is focused on the development of interference-robust navigation systems for aviation applications. A new dual-frequency Carrier-phase DGPS (CDGPS) architecture has been developed in this research and its performance was evaluated relative to the requirements for a unique shipboard landing application. RFI vulnerability was addressed for this application by directly incorporating a single frequency architecture as a back-up in the event of hostile jamming on one frequency. For critical civil aviation applications without access to dual frequency GPS signals, a novel method for tightly-coupling GPS and Inertial Navigation Sensors (INS) was developed to address the signal vulnerability issue. The new hybrid navigation system, based on the direct fusion of GPS and INS using state dynamics, is a mathematically rigorous approach, yet it is more direct and simpler to implement than existing GPS/INS integration schemes. The hybrid navigation system was validated with flight data, and predicted system performance was evaluated using a covariance analysis method. Necessary conditions on INS sensor and gravity model quality were derived to ensure that the hybrid system performance is compliant with navigation requirements for aircraft precision approach and landing. In addition, a new fault detection algorithm, based on integrated Kalman filter innovations, was developed and evaluated against other

  4. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  5. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Earth-Based Assets

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. These regions are known to have poor Earth visibility, but unknown is the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in these areas. This report presents a dilution-of-precision (DoP)-based analysis of the performance of a network of Earth-based assets. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum provider elevation angle, nadir and zenith beam widths, and a total single failure in one of the Earth-based assets. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometrical DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  6. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. Since these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this report, a dilution-of-precision (DoP)-based analysis of the performance of a network of Moon orbiting satellites is provided. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum surface user elevation angle and a total single satellite failure in the lunar network. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometric DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  7. High-accuracy Mars approach navigation with radio metric and optical data

    NASA Technical Reports Server (NTRS)

    Konopliv, Alex; Wood, Lincoln J.

    1990-01-01

    The aerocapture of a space vehicle on hyperbolic approach to Mars results in tight navigation requirements at atmospheric entry. The purpose of this paper is to examine several different methods for approach navigation and to determine what accuracies are possible. The methods are broken into four groups as follows (1) navigation with only Deep Space Network (DSN) tracking of the approach vehicle, (2) navigation with the DSN plus ranging between the approach vehicle and spacecraft in orbit about Mars, (3) navigation with the DSN plus optical data involving the Martian moons, and (4) navigation with DSN range data and differenced range data involving the approach spacecraft and orbiters at Mars. If the current modeling errors that affect earth-based radio metric data, such as errors in tracking station locations, the Martian ephemeris, and differences in the quasar and planetary coordinate frames, are improved, then perhaps earth-based tracking could meet the entry error requirements imposed by aerocapture. If not, then the other three options of intervehicular range, optical data, or differenced range provide highly accurate entry knowledge at least twelve hours before entry.

  8. Accuracy and precision in measurements of biomass oxidative ratios

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.

    2005-12-01

    One fundamental property of the Earth system is the oxidative ratio (OR) of the terrestrial biosphere, or the mols CO2 fixed per mols O2 released via photosynthesis. This is also an essential, poorly constrained parameter in the calculation of the size of the terrestrial and oceanic carbon sinks via atmospheric O2 and CO2 measurements. We are pursuing a number of techniques to accurately measure natural variations in above- and below-ground OR. For aboveground biomass, OR can be calculated directly from percent C, H, N, and O data measured via elemental analysis; however, the precision of this technique is a function of 4 measurements, resulting in increased data variability. It is also possible to measure OR via bomb calorimetry and percent C, using relationships between the heat of combustion of a sample and its OR. These measurements hold the potential for generation of more precise data, as error depends only on 2 measurements instead of 4. We present data comparing these two OR measurement techniques.

  9. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  10. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.

  11. Gamma-Ray Peak Integration: Accuracy and Precision

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    The accuracy of singlet gamma-ray peak areas obtained by a peak analysis program is immaterial. If the same algorithm is used for sample measurement as for calibration and if the peak shapes are similar, then biases in the integration method cancel. Reproducibility is the only important issue. Even the uncertainty of the areas computed by the program is trivial because the true standard uncertainty can be experimentally assessed by repeated measurements of the same source. Reproducible peak integration was important in a recent standard reference material certification task. The primary tool used for spectrum analysis was SUM, a National Institute of Standards and Technology interactive program to sum peaks and subtract a linear background, using the same channels to integrate all 20 spectra. For comparison, this work examines other peak integration programs. Unlike some published comparisons of peak performance in which synthetic spectra were used, this experiment used spectra collected for a real (though exacting) analytical project, analyzed by conventional software used in routine ways. Because both components of the 559- to 564-keV doublet are from {sup 76}As, they were integrated together with SUM. The other programs, however, deconvoluted the peaks. A sensitive test of the fitting algorithm is the ratio of reported peak areas. In almost all the cases, this ratio was much more variable than expected from the reported uncertainties reported by the program. Other comparisons to be reported indicate that peak integration is still an imperfect tool in the analysis of gamma-ray spectra.

  12. Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing

    NASA Technical Reports Server (NTRS)

    Sands, Obed S.; Connolly, Joseph W.; Welch, Bryan W.; Carpenter, James R.; Ely, Todd A.; Berry, Kevin

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e. GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver. A significant innovation described in this paper is the "Generalized" Dilution of Precision. In the same sense that the various versions of DoP can be represented as a functional of the observability grammian, Generalized DoP is defined as a functional of the sum of observability grammians associated with a batch of radiometric measurements. Generalized DoP extends the DoP concept to cases in which radiometric range and range-rate measurements are integrated over time to develop an estimate of user position (referred to here as a 'dynamic' solution.) Generalized DoP allows for the inclusion of cases in which the receiver location is underdetermined when

  13. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  14. Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1998-01-01

    Expands upon the concepts of precision and accuracy at a level suitable for general chemistry. Serves as a bridge to the more extensive treatments in analytical chemistry textbooks and the advanced literature on error analysis. Contains 22 references. (DDR)

  15. The influence of gyro drift on system integrity of integrated GPS-INS precision navigation systems

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    In highly maneuverable vehicle applications, the dynamic response of GPS receivers and the shadowing of the GPS antennas by parts of the vehicle may significantly reduce the accuracy and the integrity of the system. It is shown that the navigation errors of GPS can be significantly reduced by using differential mode and carrier phase measurements. A complementary INS sensor system will improve the integrity. In flight tests, accuracies better than 30 cm in position (3 components) and 7 cm/sec in velocity have been demonstrated.

  16. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance

  17. Accuracy and precision of silicon based impression media for quantitative areal texture analysis.

    PubMed

    Goodall, Robert H; Darras, Laurent P; Purnell, Mark A

    2015-05-20

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis.

  18. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  19. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  20. Improvement of orbit determination accuracy for Beidou Navigation Satellite System with Two-way Satellite Time Frequency Transfer

    NASA Astrophysics Data System (ADS)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Guo, Rui; He, Feng; Liu, Li; Zhu, Lingfeng; Li, Xiaojie; Wu, Shan; Zhao, Gang; Yu, Yang; Cao, Yueling

    2016-10-01

    The Beidou Navigation Satellite System (BDS) manages to estimate simultaneously the orbits and clock offsets of navigation satellites, using code and carrier phase measurements of a regional network within China. The satellite clock offsets are also directly measured with Two-way Satellite Time Frequency Transfer (TWSTFT). Satellite laser ranging (SLR) residuals and comparisons with the precise ephemeris indicate that the radial error of GEO satellites is much larger than that of IGSO and MEO satellites and that the BDS orbit accuracy is worse than GPS. In order to improve the orbit determination accuracy for BDS, a new orbit determination strategy is proposed, in which the satellite clock measurements from TWSTFT are fixed as known values, and only the orbits of the satellites are solved. However, a constant systematic error at the nanosecond level can be found in the clock measurements, which is obtained and then corrected by differencing the clock measurements and the clock estimates from orbit determination. The effectiveness of the new strategy is verified by a GPS regional network orbit determination experiment. With the IGS final clock products fixed, the orbit determination and prediction accuracy for GPS satellites improve by more than 50% and the 12-h prediction User Range Error (URE) is better than 0.12 m. By processing a 25-day of measurement from the BDS regional network, an optimal strategy for the satellite-clock-fixed orbit determination is identified. User Equivalent Ranging Error is reduced by 27.6% for GEO satellites, but no apparent reduction is found for IGSO/MEO satellites. The SLR residuals exhibit reductions by 59% and 32% for IGSO satellites but no reductions for GEO and MEO satellites.

  1. Accuracy of navigated control concepts using an Er: Yag-laser for cavity preparation.

    PubMed

    Wolff, Regine; Weitz, Jochen; Poitzsch, Luise; Hohlweg-Majert, Bettina; Deppe, Herbert; Lueth, Tim C

    2011-01-01

    This paper describes a method for measuring the shape accuracy of a cylindrical hole which is created by means of an automatically power-controlled laser system using navigated control. In dental surgery, drills or mills are used for bone treatment. For most patients the use of these instruments is very inconvenient. Furthermore, the bone treatment with rotating instruments can lead to thermal necrosis. Using a laser system could be a good alternative for the patient. The utilization of a laser system could also facilitate bone treatment without any severe thermal damage. An optical navigation system can be used for a safer handling of a laser system. The position and the orientation of the laser handpiece relative to the patient can be calculated. Thereby, the laser can be automatically switched off, if the end of the laser beam does not hit the preoperative planned area. In order to measure the accuracy of such a laser system, we created several cavities in a phantom with a manually guided, automatically power-controlled laser. Afterwards, the deviation between the planned shape and the shape created by manually guided automatically power-controlled laser treatment has been measured. The application of this system showed, that the required accuracy of <1 mm for dental implantology applications, could not be reached.

  2. Testing of the High Accuracy Inertial Navigation System in the Shuttle Avionics Integration Laboratory

    NASA Astrophysics Data System (ADS)

    Strachan, Russell L.; Evans, James M.

    The authors present a description, results, and interpretation of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and the KT-70 Inertial Measurement Unit (IMU). The objective of the tests was to demonstrate that the HAINS can replace the KT-70 IMU in the Space Shuttle Orbiter, both singularly and totally. The most significant improvement of performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4-hour specification requirement. The performance of the HAINS demonstrated the transparency of operation with respect to the KT-70 IMU. In addition, an internally compensated INS is compatible with the Orbiter avionics and flight software.

  3. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  4. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  5. Screw Placement Accuracy and Outcomes Following O-Arm-Navigated Atlantoaxial Fusion: A Feasibility Study.

    PubMed

    Smith, Jacob D; Jack, Megan M; Harn, Nicholas R; Bertsch, Judson R; Arnold, Paul M

    2016-06-01

    Study Design Case series of seven patients. Objective C2 stabilization can be challenging due to the complex anatomy of the upper cervical vertebrae. We describe seven cases of C1-C2 fusion using intraoperative navigation to aid in the screw placement at the atlantoaxial (C1-C2) junction. Methods Between 2011 and 2014, seven patients underwent posterior atlantoaxial fusion using intraoperative frameless stereotactic O-arm Surgical Imaging and StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, Minnesota, United States). Outcome measures included screw accuracy, neurologic status, radiation dosing, and surgical complications. Results Four patients had fusion at C1-C2 only, and in the remaining three, fixation extended down to C3 due to anatomical considerations for screw placement recognized on intraoperative imaging. Out of 30 screws placed, all demonstrated minimal divergence from desired placement in either C1 lateral mass, C2 pedicle, or C3 lateral mass. No neurovascular compromise was seen following the use of intraoperative guided screw placement. The average radiation dosing due to intraoperative imaging was 39.0 mGy. All patients were followed for a minimum of 12 months. All patients went on to solid fusion. Conclusion C1-C2 fusion using computed tomography-guided navigation is a safe and effective way to treat atlantoaxial instability. Intraoperative neuronavigation allows for high accuracy of screw placement, limits complications by sparing injury to the critical structures in the upper cervical spine, and can help surgeons make intraoperative decisions regarding complex pathology. PMID:27190736

  6. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery.

    PubMed

    Huang, Huajun; Hsieh, Ming-Fa; Zhang, Guodong; Ouyang, Hanbin; Zeng, Canjun; Yan, Bin; Xu, Jing; Yang, Yang; Wu, Zhanglin; Huang, Wenhua

    2015-03-01

    This study was aimed to improve the surgical accuracy of plating and screwing for complicated tibial plateau fracture assisted by 3D implants library and 3D-printed navigational template. Clinical cases were performed whereby complicated tibial plateau fractures were imaged using computed tomography and reconstructed into 3D fracture prototypes. The preoperative planning of anatomic matching plate with appropriate screw trajectories was performed with the help of the library of 3D models of implants. According to the optimal planning, patient-specific navigational templates produced by 3D printer were used to accurately guide the real surgical implantation. The fixation outcomes in term of the deviations of screw placement between preoperative and postoperative screw trajectories were measured and compared, including the screw lengths, entry point locations and screw directions. With virtual preoperative planning, we have achieved optimal and accurate fixation outcomes in the real clinical surgeries. The deviations of screw length was 1.57 ± 5.77 mm, P > 0.05. The displacements of the entry points in the x-, y-, and z-axis were 0.23 ± 0.62, 0.83 ± 1.91, and 0.46 ± 0.67 mm, respectively, P > 0.05. The deviations of projection angle in the coronal (x-y) and transverse (x-z) planes were 6.34 ± 3.42° and 4.68 ± 3.94°, respectively, P > 0.05. There was no significant difference in the deviations of screw length, entry point and projection angle between the ideal and real screw trajectories. The ideal and accurate preoperative planning of plating and screwing can be achieved in the real surgery assisted by the 3D models library of implants and the patient-specific navigational template. This technology improves the accuracy and efficiency of personalized internal fixation surgery and we have proved this in our clinical applications.

  7. A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes

    NASA Astrophysics Data System (ADS)

    Alvarez, Pablo; Fishbein, Amos E.; Hyland, Michael W.; Kight, Cheyne L.; Lopez, Hairold; Navarro, Tanya; Rosas, Carlos A.; Schachter, Aubrey E.; Summers, Molly A.; Weise, Eric D.; Hoffman, Megan A.; Mires, Robert C.; Johnson, Jolyon M.; Genet, Russell M.; White, Robin

    2009-01-01

    Using a manual Meade 6" Newtonian telescope and a computerized Meade 10" Schmidt-Cassegrain telescope, students from Arroyo Grande High School measured the well-known separation and position angle of the bright visual double star Albireo. The precision and accuracy of the observations from the two telescopes were compared to each other and to published values of Albireo taken as the standard. It was hypothesized that the larger, computerized telescope would be both more precise and more accurate.

  8. Evaluation of optoelectronic Plethysmography accuracy and precision in recording displacements during quiet breathing simulation.

    PubMed

    Massaroni, C; Schena, E; Saccomandi, P; Morrone, M; Sterzi, S; Silvestri, S

    2015-08-01

    Opto-electronic Plethysmography (OEP) is a motion analysis system used to measure chest wall kinematics and to indirectly evaluate respiratory volumes during breathing. Its working principle is based on the computation of marker displacements placed on the chest wall. This work aims at evaluating the accuracy and precision of OEP in measuring displacement in the range of human chest wall displacement during quiet breathing. OEP performances were investigated by the use of a fully programmable chest wall simulator (CWS). CWS was programmed to move 10 times its eight shafts in the range of physiological displacement (i.e., between 1 mm and 8 mm) at three different frequencies (i.e., 0.17 Hz, 0.25 Hz, 0.33 Hz). Experiments were performed with the aim to: (i) evaluate OEP accuracy and precision error in recording displacement in the overall calibrated volume and in three sub-volumes, (ii) evaluate the OEP volume measurement accuracy due to the measurement accuracy of linear displacements. OEP showed an accuracy better than 0.08 mm in all trials, considering the whole 2m(3) calibrated volume. The mean measurement discrepancy was 0.017 mm. The precision error, expressed as the ratio between measurement uncertainty and the recorded displacement by OEP, was always lower than 0.55%. Volume overestimation due to OEP linear measurement accuracy was always <; 12 mL (<; 3.2% of total volume), considering all settings. PMID:26736504

  9. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  10. The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy

    ERIC Educational Resources Information Center

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-01-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…

  11. The effect of different Global Navigation Satellite System methods on positioning accuracy in elite alpine skiing.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-10-03

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications.

  12. The Effect of Different Global Navigation Satellite System Methods on Positioning Accuracy in Elite Alpine Skiing

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-01-01

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications. PMID:25285461

  13. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    SciTech Connect

    Ballesteros-Zebadua, P.; Larrga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Juarez, J.; Prieto, I.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  14. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  15. EM-Navigated Catheter Placement for Gynecologic Brachytherapy: An Accuracy Study

    PubMed Central

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-01-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and/or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems. PMID:25076828

  16. Parameter Analysis of Lunar Surface Navigation Utilizing Dilution-of-Precision Methodology With Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    With the NASA Vision for Space Exploration focusing on the return of astronauts to the Moon and eventually to Mars, architectures for new navigation concepts must be derived and analyzed. One such concept, developed by the Space Communications Architecture Working Group (SCAWG), is to place a constellation of satellites around the Moon. Previously completed analyses examined the performance of multiple satellite constellations and recommended a constellation oriented as a Walker polar 6/2/1 with a semimajor axis (SMA) of 9250 km. One requirement of the constellations that were examined was that they have continuous access to any location on the lunar surface. In this report, the polar 6/2/1 and polar 8/2/1, with equal SMAs, are examined in greater detail. The dilution-of-precision (DoP) methodology is utilized to examine the effects of longitude surface points, latitude surface points, elevation requirements, and modified failure modes for these two constellations with regard to system availability. Longitude study results show that points along a meridian closely approximate the results of a global set of data points. Latitude study results show that previous assumptions with regard to latitude spacing are adequate to simulate global system availability. Elevation study results show that global system availability curves follow a reverse sigmoid function. Modified failure mode study results show that the benefits of reorienting a failure mode constellation depend on the type of navigation system and the length of the integration period being used.

  17. Accuracy analysis of direct georeferenced UAV images utilising low-cost navigation sensors

    NASA Astrophysics Data System (ADS)

    Briese, Christian; Wieser, Martin; Verhoeven, Geert; Glira, Philipp; Doneus, Michael; Pfeifer, Norbert

    2014-05-01

    Unmanned aerial vehicles (UAVs), also known as unmanned airborne systems (UAS) or remotely piloted airborne systems (RPAS), are an established platform for close range airborne photogrammetry. Compared to manned platforms, the acquisition of local remote sensing data by UAVs is a convenient and very flexible option. For the application in photogrammetry UAVs are typically equipped with an autopilot and a lightweight digital camera. The autopilot includes several navigation sensors, which might allow an automated waypoint flight and offer a systematic data acquisition of the object resp. scene of interest. Assuming a sufficient overlap between the captured images, the position (3 coordinates: x, y, z) and the orientation (3 angles: roll, pitch, yaw) of the images can be estimated within a bundle block adjustment. Subsequently, coordinates of observed points that appear in at least two images, can be determined by measuring their image coordinates or a dense surface model can be generated from all acquired images by automated image matching. For the bundle block adjustment approximate values of the position and the orientation of the images are needed. To gather this information, several methods exist. We introduce in this contribution one of them: the direct georeferencing of images by using the navigation sensors (mainly GNSS and INS) of a low-cost on-board autopilot. Beside automated flights, the autopilot offers the possibility to record the position and the orientation of the platform during the flight. These values don't correspond directly to those of the images. To compute the position and the orientation of the images two requirements must be fulfilled. First the misalignment angles and the positional differences between the camera and the autopilot must be determined (mounting calibration). Second the synchronization between the camera and the autopilot has to be established. Due to the limited accuracy of the navigation sensors, a small number of ground

  18. Sensor modeling for precision ship-relative navigation in degraded visual environment conditions

    NASA Astrophysics Data System (ADS)

    Singh, Sanjiv; Sherwin, Gary; Hoffman, Regis; Grocholsky, Benjamin; Grabe, Volker; Nalbone, Samuel; Chamberlain, Lyle; Spiker, Spencer; Bergerman, Marcel; Wilkinson, Colin; Findlay, David

    2015-05-01

    The Navy and Marine Corps will increasingly need to operate unmanned air vehicles from ships at sea. Fused multi-sensor systems are desirable to ensure these operations are highly reliable under the most demanding at-sea conditions, particularly in degraded visual environments. The US Navy Sea-Based Automated Launch & Recovery System (SALRS) program aims at enabling automated/semi-automated launch and recovery of sea-based, manned and unmanned, fixed- and rotary-wing naval aircraft, and to utilize automated or pilot-augmented flight mechanics for carefree shipboard operations. This paper describes the goals and current results of SALRS Phase 1, which aims at understanding the capabilities and limitations of various sensor types through sensor characterization, modeling, and simulation, and assessing how the sensor models can be used for aircraft navigation to provide sufficient accuracy, integrity, continuity, and availability across all anticipated maritime conditions.

  19. Sensitivity Analysis for Characterizing the Accuracy and Precision of JEM/SMILES Mesospheric O3

    NASA Astrophysics Data System (ADS)

    Esmaeili Mahani, M.; Baron, P.; Kasai, Y.; Murata, I.; Kasaba, Y.

    2011-12-01

    The main purpose of this study is to evaluate the Superconducting sub-Millimeter Limb Emission Sounder (SMILES) measurements of mesospheric ozone, O3. As the first step, the error due to the impact of Mesospheric Temperature Inversions (MTIs) on ozone retrieval has been determined. The impacts of other parameters such as pressure variability, solar events, and etc. on mesospheric O3 will also be investigated. Ozone, is known to be important due to the stratospheric O3 layer protection of life on Earth by absorbing harmful UV radiations. However, O3 chemistry can be studied purely in the mesosphere without distraction of heterogeneous situation and dynamical variations due to the short lifetime of O3 in this region. Mesospheric ozone is produced by the photo-dissociation of O2 and the subsequent reaction of O with O2. Diurnal and semi-diurnal variations of mesospheric ozone are associated with variations in solar activity. The amplitude of the diurnal variation increases from a few percent at an altitude of 50 km, to about 80 percent at 70 km. Although despite the apparent simplicity of this situation, significant disagreements exist between the predictions from the existing models and observations, which need to be resolved. SMILES is a highly sensitive radiometer with a few to several tens percent of precision from upper troposphere to the mesosphere. SMILES was developed by the Japanese Aerospace eXploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT) located at the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES has successfully measured the vertical distributions and the diurnal variations of various atmospheric species in the latitude range of 38S to 65N from October 2009 to April 2010. A sensitivity analysis is being conducted to investigate the expected precision and accuracy of the mesospheric O3 profiles (from 50 to 90 km height) due to the impact of Mesospheric Temperature

  20. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering. PMID:21125324

  1. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  2. Comparison between predicted and actual accuracies for an Ultra-Precision CNC measuring machine

    SciTech Connect

    Thompson, D.C.; Fix, B.L.

    1995-05-30

    At the 1989 CIRP annual meeting, we reported on the design of a specialized, ultra-precision CNC measuring machine, and on the error budget that was developed to guide the design process. In our paper we proposed a combinatorial rule for merging estimated and/or calculated values for all known sources of error, to yield a single overall predicted accuracy for the machine. In this paper we compare our original predictions with measured performance of the completed instrument.

  3. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics.

    PubMed

    Tusting, Lucy S; Bousema, Teun; Smith, David L; Drakeley, Chris

    2014-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review 11 metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs and presenting an overall critique. We also review the nonlinear scaling relationships between five metrics of malaria transmission: the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our chapter highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, seroconversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection.

  4. Precision and accuracy of 3D lower extremity residua measurement systems

    NASA Astrophysics Data System (ADS)

    Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.; Hildebolt, Charles F.; Pilgram, Thomas K.

    1996-04-01

    Accurate and reproducible geometric measurement of lower extremity residua is required for custom prosthetic socket design. We compared spiral x-ray computed tomography (SXCT) and 3D optical surface scanning (OSS) with caliper measurements and evaluated the precision and accuracy of each system. Spiral volumetric CT scanned surface and subsurface information was used to make external and internal measurements, and finite element models (FEMs). SXCT and OSS were used to measure lower limb residuum geometry of 13 below knee (BK) adult amputees. Six markers were placed on each subject's BK residuum and corresponding plaster casts and distance measurements were taken to determine precision and accuracy for each system. Solid models were created from spiral CT scan data sets with the prosthesis in situ under different loads using p-version finite element analysis (FEA). Tissue properties of the residuum were estimated iteratively and compared with values taken from the biomechanics literature. The OSS and SXCT measurements were precise within 1% in vivo and 0.5% on plaster casts, and accuracy was within 3.5% in vivo and 1% on plaster casts compared with caliper measures. Three-dimensional optical surface and SXCT imaging systems are feasible for capturing the comprehensive 3D surface geometry of BK residua, and provide distance measurements statistically equivalent to calipers. In addition, SXCT can readily distinguish internal soft tissue and bony structure of the residuum. FEM can be applied to determine tissue material properties interactively using inverse methods.

  5. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  6. Verifying the Accuracy of Geostationary Weather Satellite Image Navigation and Registration

    NASA Astrophysics Data System (ADS)

    Carr, J. L.; Herndon, D.; Reehl, S.

    2012-12-01

    The next generation GOES-R geostationary weather satellites will provide imagery products with improved spatial and temporal resolutions and with more spectral bands than previous systems. Image Navigation and Registration (INR), which enables users to accurately pinpoint severe weather and stabilizes movie loops, will also improve. As INR performance improves, so must the technology for measuring INR performance. We describe our Product Monitoring (PM) system being deployed with the GOES-R ground system. It automatically measures INR performance using landmarks that are positioned with respect to a digital map created from the Shuttle Radar Topographic Mission (SRTM). Performance testing with Meteosat Second Generation (MSG) proxy data is part of the verification of the PM system, which is the main focus of this paper. A legacy system ironically called the Replacement Product Monitor (RPM) is in operational use on the GOES-NOP program. It is generally assumed that this system is capable of measuring the absolute position of landmark features relative to their mapped locations with an accuracy of about 0.5 pixels. This is plausible given that observed INR navigation error is about 1 pixel at the finest GOES-NOP resolution. However, a few landmark sites are observed to have biases possibly related to mapping error in the legacy digital map (not SRTM). Because the GOES-R system has finer spatial resolution than the GOES-NOP system and more stringent INR requirements, errors at the GOES-NOP pixel level are quite important. Our verification work with the GOES-R PM seeks to systematically characterize the measurement errors in a controlled test environment to demonstrate its suitability for a GOES-R mission with finer spatial resolution and more stringent INR requirements in comparison with GOES-NOP.

  7. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  8. Accuracy and precision of ice stream bed topography derived from ground-based radar surveys

    NASA Astrophysics Data System (ADS)

    King, Edward

    2016-04-01

    There is some confusion within the glaciological community as to the accuracy of the basal topography derived from radar measurements. A number of texts and papers state that basal topography cannot be determined to better than one quarter of the wavelength of the radar system. On the other hand King et al (Nature Geoscience, 2009) claimed that features of the bed topography beneath Rutford Ice Stream, Antarctica can be distinguished to +/- 3m using a 3 MHz radar system (which has a quarter wavelength of 14m in ice). These statements of accuracy are mutually exclusive. I will show in this presentation that the measurement of ice thickness is a radar range determination to a single strongly-reflective target. This measurement has much higher accuracy than the resolution of two targets of similar reflection strength, which is governed by the quarter-wave criterion. The rise time of the source signal and the sensitivity and digitisation interval of the recording system are the controlling criteria on radar range accuracy. A dataset from Pine Island Glacier, West Antarctica will be used to illustrate these points, as well as the repeatability or precision of radar range measurements, and the influence of gridding parameters and positioning accuracy on the final DEM product.

  9. Wound Area Measurement with Digital Planimetry: Improved Accuracy and Precision with Calibration Based on 2 Rulers

    PubMed Central

    Foltynski, Piotr

    2015-01-01

    Introduction In the treatment of chronic wounds the wound surface area change over time is useful parameter in assessment of the applied therapy plan. The more precise the method of wound area measurement the earlier may be identified and changed inappropriate treatment plan. Digital planimetry may be used in wound area measurement and therapy assessment when it is properly used, but the common problem is the camera lens orientation during the taking of a picture. The camera lens axis should be perpendicular to the wound plane, and if it is not, the measured area differ from the true area. Results Current study shows that the use of 2 rulers placed in parallel below and above the wound for the calibration increases on average 3.8 times the precision of area measurement in comparison to the measurement with one ruler used for calibration. The proposed procedure of calibration increases also 4 times accuracy of area measurement. It was also showed that wound area range and camera type do not influence the precision of area measurement with digital planimetry based on two ruler calibration, however the measurements based on smartphone camera were significantly less accurate than these based on D-SLR or compact cameras. Area measurement on flat surface was more precise with the digital planimetry with 2 rulers than performed with the Visitrak device, the Silhouette Mobile device or the AreaMe software-based method. Conclusion The calibration in digital planimetry with using 2 rulers remarkably increases precision and accuracy of measurement and therefore should be recommended instead of calibration based on single ruler. PMID:26252747

  10. Initial results of precise orbit and clock determination for COMPASS navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Li, Min; Qu, Lizhong; Hu, Zhigang; Shi, Chuang; Liu, Jingnan

    2013-05-01

    The development of the COMPASS satellite system is introduced, and the regional tracking network and data availability are described. The precise orbit determination strategy of COMPASS satellites is presented. Data of June 2012 are processed. The obtained orbits are evaluated by analysis of post-fit residuals, orbit overlap comparison and SLR (satellite laser ranging) validation. The RMS (root mean square) values of post-fit residuals for one month's data are smaller than 2.0 cm for ionosphere-free phase measurements and 2.6 m for ionosphere-free code observations. The 48-h orbit overlap comparison shows that the RMS values of differences in the radial component are much smaller than 10 cm and those of the cross-track component are smaller than 20 cm. The SLR validation shows that the overall RMS of observed minus computed residuals is 68.5 cm for G01 and 10.8 cm for I03. The static and kinematic PPP solutions are produced to further evaluate the accuracy of COMPASS orbit and clock products. The static daily COMPASS PPP solutions achieve an accuracy of better than 1 cm in horizontal and 3 cm in vertical. The accuracy of the COMPASS kinematic PPP solutions is within 1-2 cm in the horizontal and 4-7 cm in the vertical. In addition, we find that the COMPASS kinematic solutions are generally better than the GPS ones for the selected location. Furthermore, the COMPASS/GPS combinations significantly improve the accuracy of GPS only PPP solutions. The RMS values are basically smaller than 1 cm in the horizontal components and 3-4 cm in the vertical component.

  11. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  12. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler.

    PubMed

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-10-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  13. The tradeoff between accuracy and precision in latent variable models of mediation processes

    PubMed Central

    Ledgerwood, Alison; Shrout, Patrick E.

    2016-01-01

    Social psychologists place high importance on understanding mechanisms, and frequently employ mediation analyses to shed light on the process underlying an effect. Such analyses can be conducted using observed variables (e.g., a typical regression approach) or latent variables (e.g., a SEM approach), and choosing between these methods can be a more complex and consequential decision than researchers often realize. The present paper adds to the literature on mediation by examining the relative tradeoff between accuracy and precision in latent versus observed variable modeling. Whereas past work has shown that latent variable models tend to produce more accurate estimates, we demonstrate that observed variable models tend to produce more precise estimates, and examine this relative tradeoff both theoretically and empirically in a typical three-variable mediation model across varying levels of effect size and reliability. We discuss implications for social psychologists seeking to uncover mediating variables, and recommend practical approaches for maximizing both accuracy and precision in mediation analyses. PMID:21806305

  14. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler

    PubMed Central

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-01-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  15. Accuracy, precision, usability, and cost of free chlorine residual testing methods.

    PubMed

    Murray, Anna; Lantagne, Daniele

    2015-03-01

    Chlorine is the most widely used disinfectant worldwide, partially because residual protection is maintained after treatment. This residual is measured using colorimetric test kits varying in accuracy, precision, training required, and cost. Seven commercially available colorimeters, color wheel and test tube comparator kits, pool test kits, and test strips were evaluated for use in low-resource settings by: (1) measuring in quintuplicate 11 samples from 0.0-4.0 mg/L free chlorine residual in laboratory and natural light settings to determine accuracy and precision; (2) conducting volunteer testing where participants used and evaluated each test kit; and (3) comparing costs. Laboratory accuracy ranged from 5.1-40.5% measurement error, with colorimeters the most accurate and test strip methods the least. Variation between laboratory and natural light readings occurred with one test strip method. Volunteer participants found test strip methods easiest and color wheel methods most difficult, and were most confident in the colorimeter and least confident in test strip methods. Costs range from 3.50-444 USD for 100 tests. Application of a decision matrix found colorimeters and test tube comparator kits were most appropriate for use in low-resource settings; it is recommended users apply the decision matrix themselves, as the appropriate kit might vary by context.

  16. Accuracy and precision of stream reach water surface slopes estimated in the field and from maps

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.; Krueger, K.L.

    1999-01-01

    The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.

  17. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  18. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    PubMed Central

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    Introduction An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001). Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient’s body temperature in the intensive care units because of high accuracy and acceptable precision.

  19. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    PubMed Central

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    Introduction An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001). Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient’s body temperature in the intensive care units because of high accuracy and acceptable precision. PMID:27621673

  20. Assessing accuracy and precision for field and laboratory data: a perspective in ecosystem restoration

    USGS Publications Warehouse

    Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly

    2016-01-01

    Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.

  1. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  2. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi.

    PubMed

    Hospodsky, Denina; Yamamoto, Naomichi; Peccia, Jordan

    2010-11-01

    Real-time quantitative PCR (qPCR) for rapid and specific enumeration of microbial agents is finding increased use in aerosol science. The goal of this study was to determine qPCR accuracy, precision, and method detection limits (MDLs) within the context of indoor and ambient aerosol samples. Escherichia coli and Bacillus atrophaeus vegetative bacterial cells and Aspergillus fumigatus fungal spores loaded onto aerosol filters were considered. Efficiencies associated with recovery of DNA from aerosol filters were low, and excluding these efficiencies in quantitative analysis led to underestimating the true aerosol concentration by 10 to 24 times. Precision near detection limits ranged from a 28% to 79% coefficient of variation (COV) for the three test organisms, and the majority of this variation was due to instrument repeatability. Depending on the organism and sampling filter material, precision results suggest that qPCR is useful for determining dissimilarity between two samples only if the true differences are greater than 1.3 to 3.2 times (95% confidence level at n = 7 replicates). For MDLs, qPCR was able to produce a positive response with 99% confidence from the DNA of five B. atrophaeus cells and less than one A. fumigatus spore. Overall MDL values that included sample processing efficiencies ranged from 2,000 to 3,000 B. atrophaeus cells per filter and 10 to 25 A. fumigatus spores per filter. Applying the concepts of accuracy, precision, and MDL to qPCR aerosol measurements demonstrates that sample processing efficiencies must be accounted for in order to accurately estimate bioaerosol exposure, provides guidance on the necessary statistical rigor required to understand significant differences among separate aerosol samples, and prevents undetected (i.e., nonquantifiable) values for true aerosol concentrations that may be significant.

  3. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  4. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  5. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  6. An analysis of approach navigation accuracy and guidance requirements for the grand tour mission to the outer planets

    NASA Technical Reports Server (NTRS)

    Jones, D. W.

    1971-01-01

    The navigation and guidance process for the Jupiter, Saturn and Uranus planetary encounter phases of the 1977 Grand Tour interior mission was simulated. Reference approach navigation accuracies were defined and the relative information content of the various observation types were evaluated. Reference encounter guidance requirements were defined, sensitivities to assumed simulation model parameters were determined and the adequacy of the linear estimation theory was assessed. A linear sequential estimator was used to provide an estimate of the augmented state vector, consisting of the six state variables of position and velocity plus the three components of a planet position bias. The guidance process was simulated using a nonspherical model of the execution errors. Computation algorithms which simulate the navigation and guidance process were derived from theory and implemented into two research-oriented computer programs, written in FORTRAN.

  7. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  8. Improvement in precision, accuracy, and efficiency in sstandardizing the characterization of granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Benyahia, Sofiane; Mei, Joseph; Guenther, Chris; Koepke, M. E.

    2013-01-01

    Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future desig

  9. Hepatic perfusion in a tumor model using DCE-CT: an accuracy and precision study

    NASA Astrophysics Data System (ADS)

    Stewart, Errol E.; Chen, Xiaogang; Hadway, Jennifer; Lee, Ting-Yim

    2008-08-01

    In the current study we investigate the accuracy and precision of hepatic perfusion measurements based on the Johnson and Wilson model with the adiabatic approximation. VX2 carcinoma cells were implanted into the livers of New Zealand white rabbits. Simultaneous dynamic contrast-enhanced computed tomography (DCE-CT) and radiolabeled microsphere studies were performed under steady-state normo-, hyper- and hypo-capnia. The hepatic arterial blood flows (HABF) obtained using both techniques were compared with ANOVA. The precision was assessed by the coefficient of variation (CV). Under normo-capnia the microsphere HABF were 51.9 ± 4.2, 40.7 ± 4.9 and 99.7 ± 6.0 ml min-1 (100 g)-1 while DCE-CT HABF were 50.0 ± 5.7, 37.1 ± 4.5 and 99.8 ± 6.8 ml min-1 (100 g)-1 in normal tissue, tumor core and rim, respectively. There were no significant differences between HABF measurements obtained with both techniques (P > 0.05). Furthermore, a strong correlation was observed between HABF values from both techniques: slope of 0.92 ± 0.05, intercept of 4.62 ± 2.69 ml min-1 (100 g)-1 and R2 = 0.81 ± 0.05 (P < 0.05). The Bland-Altman plot comparing DCE-CT and microsphere HABF measurements gives a mean difference of -0.13 ml min-1 (100 g)-1, which is not significantly different from zero. DCE-CT HABF is precise, with CV of 5.7, 24.9 and 1.4% in the normal tissue, tumor core and rim, respectively. Non-invasive measurement of HABF with DCE-CT is accurate and precise. DCE-CT can be an important extension of CT to assess hepatic function besides morphology in liver diseases.

  10. Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

    PubMed Central

    Kim, Soo-Hwan; Jung, Woo-Young; Seo, Yu-Jin; Kim, Kyung-A; Park, Ki-Ho

    2015-01-01

    Objective A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D® scanner (Morpheus Co., Seoul, Korea). Methods The sample comprised 30 subjects aged 24-34 years (mean 29.0 ± 2.5 years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D® scanner is therefore a clinically acceptable method of recording facial integumental data. PMID:26023538

  11. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  12. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  13. Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Ivanov, Tonislav I.

    2011-01-01

    To increase safety and land near pre-deployed resources, future NASA missions to the moon will require precision landing. A LIDAR-based terrain relative navigation (TRN) approach can achieve precision landing under any lighting conditions. This paper presents results from processing flash lidar and laser altimeter field test data that show LIDAR TRN can obtain position estimates less than 90m while automatically detecting and eliminating incorrect measurements using internal metrics on terrain relief and data correlation. Sensitivity studies show that the algorithm has no degradation in matching performance with initial position uncertainties up to 1.6 km

  14. Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels

    NASA Astrophysics Data System (ADS)

    Jeon, S. M.; Jang, G. H.; Choi, H. C.; Park, S. H.; Park, J. O.

    2012-04-01

    Different magnetic navigation systems (MNSs) have been investigated for the wireless manipulation of microrobots in human blood vessels. Here we propose a MNS and methodology for generation of both the precise helical and translational motions of a microrobot to improve its maneuverability in complex human blood vessel. We then present experiments demonstrating the helical and translational motions of a spiral-type microrobot to verify the proposed MNS.

  15. Estimated results analysis and application of the precise point positioning based high-accuracy ionosphere delay

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.

  16. Precision and accuracy testing of FMCW ladar-based length metrology.

    PubMed

    Mateo, Ana Baselga; Barber, Zeb W

    2015-07-01

    The calibration and traceability of high-resolution frequency modulated continuous wave (FMCW) ladar sources is a requirement for their use in length and volume metrology. We report the calibration of FMCW ladar length measurement systems by use of spectroscopy of molecular frequency references HCN (C-band) or CO (L-band) to calibrate the chirp rate of the FMCW sources. Propagating the stated uncertainties from the molecular calibrations provided by NIST and measurement errors provide an estimated uncertainty of a few ppm for the FMCW system. As a test of this calibration, a displacement measurement interferometer with a laser wavelength close to that of our FMCW system was built to make comparisons of the relative precision and accuracy. The comparisons performed show <10  ppm agreement, which was within the combined estimated uncertainties of the FMCW system and interferometer. PMID:26193146

  17. Accuracy improvement of protrusion angle of carbon nanotube tips by precision multiaxis nanomanipulator

    SciTech Connect

    Young Song, Won; Young Jung, Ki; O, Beom-Hoan; Park, Byong Chon

    2005-02-01

    In order to manufacture a carbon nanotube (CNT) tip in which the attachment angle and position of CNT were precisely adjusted, a nanomanipulator was installed inside a scanning electron microscope (SEM). A CNT tip, atomic force microscopy (AFM) probe to which a nanotube is attached, is known to be the most appropriate probe for measuring the shape of high aspect ratio. The developed nanomanipulator has two sets of modules with the degree of freedom of three-directional rectilinear motion and one-directional rotational motion at an accuracy of tens of nanometers, so it enables the manufacturing of more accurate CNT tips. The present study developed a CNT tip with the error of attachment angle less then 10 deg. through three-dimensional operation of a multiwalled carbon nanotube and an AFM probe inside a SEM.

  18. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence ofmore » a significant quantity of 238U in the samples.« less

  19. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence of a significant quantity of 238U in the samples.

  20. Accuracy and precision of estimating age of gray wolves by tooth wear

    USGS Publications Warehouse

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  1. Accuracy, Precision, and Reliability of Chemical Measurements in Natural Products Research

    PubMed Central

    Betz, Joseph M.; Brown, Paula N.; Roman, Mark C.

    2010-01-01

    Natural products chemistry is the discipline that lies at the heart of modern pharmacognosy. The field encompasses qualitative and quantitative analytical tools that range from spectroscopy and spectrometry to chromatography. Among other things, modern research on crude botanicals is engaged in the discovery of the phytochemical constituents necessary for therapeutic efficacy, including the synergistic effects of components of complex mixtures in the botanical matrix. In the phytomedicine field, these botanicals and their contained mixtures are considered the active pharmaceutical ingredient (API), and pharmacognosists are increasingly called upon to supplement their molecular discovery work by assisting in the development and utilization of analytical tools for assessing the quality and safety of these products. Unlike single-chemical entity APIs, botanical raw materials and their derived products are highly variable because their chemistry and morphology depend on the genotypic and phenotypic variation, geographical origin and weather exposure, harvesting practices, and processing conditions of the source material. Unless controlled, this inherent variability in the raw material stream can result in inconsistent finished products that are under-potent, over-potent, and/or contaminated. Over the decades, natural products chemists have routinely developed quantitative analytical methods for phytochemicals of interest. Quantitative methods for the determination of product quality bear the weight of regulatory scrutiny. These methods must be accurate, precise, and reproducible. Accordingly, this review discusses the principles of accuracy (relationship between experimental and true value), precision (distribution of data values), and reliability in the quantitation of phytochemicals in natural products. PMID:20884340

  2. Transfer accuracy and precision scoring in planar bone cutting validated with ex vivo data.

    PubMed

    Milano, Federico Edgardo; Ritacco, Lucas Eduardo; Farfalli, Germán Luis; Bahamonde, Luis Alberto; Aponte-Tinao, Luis Alberto; Risk, Marcelo

    2015-05-01

    The use of interactive surgical scenarios for virtual preoperative planning of osteotomies has increased in the last 5 years. As it has been reported by several authors, this technology has been used in tumor resection osteotomies, knee osteotomies, and spine surgery with good results. A digital three-dimensional preoperative plan makes possible to quantitatively evaluate the transfer process from the virtual plan to the anatomy of the patient. We introduce an exact definition of accuracy and precision of this transfer process for planar bone cutting. We present a method to compute these properties from ex vivo data. We also propose a clinical score to assess the goodness of a cut. A computer simulation is used to characterize the definitions and the data generated by the measurement method. The definitions and method are evaluated in 17 ex vivo planar cuts of tumor resection osteotomies. The results show that the proposed method and definitions are highly correlated with a previous definition of accuracy based in ISO 1101. The score is also evaluated by showing that it distinguishes among different transfer techniques based in its distribution location and shape. The introduced definitions produce acceptable results in cases where the ISO-based definition produce counter intuitive results.

  3. Accuracy and precision of gait events derived from motion capture in horses during walk and trot.

    PubMed

    Boye, Jenny Katrine; Thomsen, Maj Halling; Pfau, Thilo; Olsen, Emil

    2014-03-21

    This study aimed to create an evidence base for detection of stance-phase timings from motion capture in horses. The objective was to compare the accuracy (bias) and precision (SD) for five published algorithms for the detection of hoof-on and hoof-off using force plates as the reference standard. Six horses were walked and trotted over eight force plates surrounded by a synchronised 12-camera infrared motion capture system. The five algorithms (A-E) were based on: (A) horizontal velocity of the hoof; (B) Fetlock angle and horizontal hoof velocity; (C) horizontal displacement of the hoof relative to the centre of mass; (D) horizontal velocity of the hoof relative to the Centre of Mass and; (E) vertical acceleration of the hoof. A total of 240 stance phases in walk and 240 stance phases in trot were included in the assessment. Method D provided the most accurate and precise results in walk for stance phase duration with a bias of 4.1% for front limbs and 4.8% for hind limbs. For trot we derived a combination of method A for hoof-on and method E for hoof-off resulting in a bias of -6.2% of stance in the front limbs and method B for the hind limbs with a bias of 3.8% of stance phase duration. We conclude that motion capture yields accurate and precise detection of gait events for horses walking and trotting over ground and the results emphasise a need for different algorithms for front limbs versus hind limbs in trot.

  4. Gaining Precision and Accuracy on Microprobe Trace Element Analysis with the Multipoint Background Method

    NASA Astrophysics Data System (ADS)

    Allaz, J. M.; Williams, M. L.; Jercinovic, M. J.; Donovan, J. J.

    2014-12-01

    Electron microprobe trace element analysis is a significant challenge, but can provide critical data when high spatial resolution is required. Due to the low peak intensity, the accuracy and precision of such analyses relies critically on background measurements, and on the accuracy of any pertinent peak interference corrections. A linear regression between two points selected at appropriate off-peak positions is a classical approach for background characterization in microprobe analysis. However, this approach disallows an accurate assessment of background curvature (usually exponential). Moreover, if present, background interferences can dramatically affect the results if underestimated or ignored. The acquisition of a quantitative WDS scan over the spectral region of interest is still a valuable option to determine the background intensity and curvature from a fitted regression of background portions of the scan, but this technique retains an element of subjectivity as the analyst has to select areas in the scan, which appear to represent background. We present here a new method, "Multi-Point Background" (MPB), that allows acquiring up to 24 off-peak background measurements from wavelength positions around the peaks. This method aims to improve the accuracy, precision, and objectivity of trace element analysis. The overall efficiency is amended because no systematic WDS scan needs to be acquired in order to check for the presence of possible background interferences. Moreover, the method is less subjective because "true" backgrounds are selected by the statistical exclusion of erroneous background measurements, reducing the need for analyst intervention. This idea originated from efforts to refine EPMA monazite U-Th-Pb dating, where it was recognised that background errors (peak interference or background curvature) could result in errors of several tens of million years on the calculated age. Results obtained on a CAMECA SX-100 "UltraChron" using monazite

  5. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    van de Kraats, Everine B.; Carelsen, Bart; Fokkens, Wytske J.; Boon, Sjirk N.; Noordhoek, Niels; Niessen, Wiro J.; van Walsum, Theo

    2005-12-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  6. Systematic accuracy and precision analysis of video motion capturing systems--exemplified on the Vicon-460 system.

    PubMed

    Windolf, Markus; Götzen, Nils; Morlock, Michael

    2008-08-28

    With rising demand on highly accurate acquisition of small motion the use of video-based motion capturing becomes more and more popular. However, the performance of these systems strongly depends on a variety of influencing factors. A method was developed in order to systematically assess accuracy and precision of motion capturing systems with regard to influential system parameters. A calibration and measurement robot was designed to perform a repeatable dynamic calibration and to determine the resultant system accuracy and precision in a control volume investigating small motion magnitudes (180 x 180 x 150 mm3). The procedure was exemplified on the Vicon-460 system. Following parameters were analyzed: Camera setup, calibration volume, marker size and lens filter application. Equipped with four cameras the Vicon-460 system provided an overall accuracy of 63+/-5 microm and overall precision (noise level) of 15 microm for the most favorable parameter setting. Arbitrary changes in camera arrangement revealed variations in mean accuracy between 76 and 129 microm. The noise level normal to the cameras' projection plane was found higher compared to the other coordinate directions. Measurements including regions unaffected by the dynamic calibration reflected considerably lower accuracy (221+/-79 microm). Lager marker diameters led to higher accuracy and precision. Accuracy dropped significantly when using an optical lens filter. This study revealed significant influence of the system environment on the performance of video-based motion capturing systems. With careful configuration, optical motion capturing provides a powerful measuring opportunity for the majority of biomechanical applications.

  7. Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Wei

    The quantitative understanding of cellular and molecular responses in living cells is important for many reasons, including identifying potential molecular targets for treatments of diseases like cancer. Fluorescence lifetime imaging microscopy (FLIM) can quantitatively measure these responses in living cells by producing spatially resolved images of fluorophore lifetime, and has advantages over intensity-based measurements. However, in live-cell microscopy applications using high-intensity light sources such as lasers, maintaining biological viability remains critical. Although high-speed, time-gated FLIM significantly reduces light delivered to live cells, making measurements at low light levels remains a challenge affecting quantitative FLIM results. We can significantly improve both accuracy and precision in gated FLIM applications. We use fluorescence resonance energy transfer (FRET) with fluorescent proteins to detect molecular interactions in living cells: the use of FLIM, better fluorophores, and temperature/CO2 controls can improve live-cell FRET results with higher consistency, better statistics, and less non-specific FRET (for negative control comparisons, p-value = 0.93 (physiological) vs. 9.43E-05 (non-physiological)). Several lifetime determination methods are investigated to optimize gating schemes. We demonstrate a reduction in relative standard deviation (RSD) from 52.57% to 18.93% with optimized gating in an example under typical experimental conditions. We develop two novel total variation (TV) image denoising algorithms, FWTV ( f-weighted TV) and UWTV (u-weighted TV), that can achieve significant improvements for real imaging systems. With live-cell images, they improve the precision of local lifetime determination without significantly altering the global mean lifetime values (<5% lifetime changes). Finally, by combining optimal gating and TV denoising, even low-light excitation can achieve precision better than that obtained in high

  8. Effects of Instruction Modality and Readback on Accuracy in Following Navigation Commands

    ERIC Educational Resources Information Center

    Schneider, Vivian I.; Healy, Alice F.; Barshi, Immanuel

    2004-01-01

    In 3 experiments, the authors simulated air traffic controllers giving pilots navigation instructions of various lengths. Participants either heard or read the instructions; repeated either all, a reduced form, or none of the instructions; and then followed them by clicking on the specified locations in a space represented by grids on a computer…

  9. Using GLONASS for precise determination of navigation parameters under interference from various sources*

    NASA Astrophysics Data System (ADS)

    Tyapkin, V. N.; Fateev, Yu L.; Dmitriev, D. D.; Kartsan, I. N.; Zelenkov, P. V.; Goncharov, A. E.; Nasyrov, I. R.

    2016-04-01

    This article discusses the main approaches to the designs of systems for determining location and spatial attitude based on satellite navigation equipment. The article describes possible solutions for constructing an angular attitude measurement system capable of spatial interference selection on the basis of a single antenna system.

  10. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  11. Accuracy of sun localization in the second step of sky-polarimetric Viking navigation for north determination: a planetarium experiment.

    PubMed

    Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Blahó, Miklós; Barta, András; Nehéz, Dóra; Bernáth, Balázs; Horváth, Gábor

    2014-07-01

    It is a widely discussed hypothesis that Viking seafarers might have been able to locate the position of the occluded sun by means of dichroic or birefringent crystals, the mysterious sunstones, with which they could analyze skylight polarization. Although the atmospheric optical prerequisites and certain aspects of the efficiency of this sky-polarimetric Viking navigation have been investigated, the accuracy of the main steps of this method has not been quantitatively examined. To fill in this gap, we present here the results of a planetarium experiment in which we measured the azimuth and elevation errors of localization of the invisible sun. In the planetarium sun localization was performed in two selected celestial points on the basis of the alignments of two small sections of two celestial great circles passing through the sun. In the second step of sky-polarimetric Viking navigation the navigator needed to determine the intersection of two such celestial circles. We found that the position of the sun (solar elevation θ(S), solar azimuth φ(S)) was estimated with an average error of +0.6°≤Δθ≤+8.8° and -3.9°≤Δφ≤+2.0°. We also calculated the compass direction error when the estimated sun position is used for orienting with a Viking sun-compass. The northern direction (ω(North)) was determined with an error of -3.34°≤Δω(North)≤+6.29°. The inaccuracy of the second step of this navigation method was high (Δω(North)=-16.3°) when the solar elevation was 5°≤θ(S)≤25°, and the two selected celestial points were far from the sun (at angular distances 95°≤γ(1), γ(2)≤115°) and each other (125°≤δ≤145°). Considering only this second step, the sky-polarimetric navigation could be more accurate in the mid-summer period (June and July), when in the daytime the sun is high above the horizon for long periods. In the spring (and autumn) equinoctial period, alternative methods (using a twilight board, for example) might be more

  12. Parallaxes and Proper Motions of QSOs: A Test of Astrometric Precision and Accuracy

    NASA Astrophysics Data System (ADS)

    Harris, Hugh C.; Dahn, Conard C.; Zacharias, Norbert; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Monet, David G.; Pier, Jeffrey R.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.; Johnston, Kenneth J.

    2016-11-01

    Optical astrometry of 12 fields containing quasi-stellar objects (QSOs) is presented. The targets are radio sources in the International Celestial Reference Frame with accurate radio positions that also have optical counterparts. The data are used to test several quantities: the internal precision of the relative optical astrometry, the relative parallaxes and proper motions, the procedures to correct from relative to absolute parallax and proper motion, the accuracy of the absolute parallaxes and proper motions, and the stability of the optical photocenters for these optically variable QSOs. For these 12 fields, the mean error in absolute parallax is 0.38 mas and the mean error in each coordinate of absolute proper motion is 1.1 mas yr‑1. The results yield a mean absolute parallax of ‑0.03 ± 0.11 mas. For 11 targets, we find no significant systematic motions of the photocenters at the level of 1–2 mas over the 10 years of this study; for one BL Lac object, we find a possible motion of 4 mas correlated with its brightness.

  13. Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Ivanov, Tonislav I.

    2010-01-01

    Capability for precise lunar landing is the goal for future NASA missions. A LIDAR-based terrain relative navigation (TRN) approach lets us achieve this goal and also land under any illumination conditions. Results from field test data showed that the LIDAR TRN algorithm obtained position estimates with mean error of about 20 meters and standard deviations of about 10 meters. Moreover, the algorithm was capable of providing 99 percent correct estimates by assessing the local terrain relief in the data. Also, the algorithm was able to handle initial position uncertainty of up to 1.6 kilometers without performance degradation.

  14. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  15. Accuracy of navigation-assisted acetabular component positioning studied by computed tomography measurements: methods and results.

    PubMed

    Ybinger, Thomas; Kumpan, W; Hoffart, H E; Muschalik, B; Bullmann, W; Zweymüller, K

    2007-09-01

    The postoperative position of the acetabular component is key for the outcome of total hip arthroplasty. Various aids have been developed to support the surgeon during implant placement. In a prospective study involving 4 centers, the computer-recorded cup alignment of 37 hip systems at the end of navigation-assisted surgery was compared with the cup angles measured on postoperative computerized tomograms. This comparison showed an average difference of 3.5 degrees (SD, 4.4 degrees ) for inclination and 6.5 degrees (SD, 7.3 degrees ) for anteversion angles. The differences in inclination correlated with the thickness of the soft tissue overlying the anterior superior iliac spine (r = 0.44; P = .007), whereas the differences in anteversion showed a correlation with the thickness of the soft tissue overlying the pubic tubercles (r = 0.52; P = .001). In centers experienced in the use of navigational tools, deviations were smaller than in units with little experience in their use. PMID:17826270

  16. Evaluation of Accuracy in Kinematic GPS Analyses Using a Precision Roving Antenna Platform

    NASA Astrophysics Data System (ADS)

    Miura, S.; Sweeney, A.; Fujimoto, H.; Osaki, H.; Kawai, E.; Ichikawa, R.; Kondo, T.; Osada, Y.; Chadwell, C. D.

    2002-12-01

    Most tectonic plate boundaries and seismogenic zones of interplate earthquakes exist beneath the ocean and our knowledge on interplate coupling and on generation processes of those earthquakes remain limited. Seafloor geodesy will consequently play a very important role in improving our understanding of the physical process near plate boundaries. Seafloor positioning using a GPS/Acoustic technique is the one potential method to detect the displacement occurring at the ocean bottom. The accuracy of the technique depends on two parts: acoustic ranging in seawater, and kinematic GPS (KGPS) analysis. Accuracy of KGPS have evaluated with following way: 1) Static test: First, we carried out an experiment to confirm the capability of the KGPS analysis using GIPSY/OASIS-II for a long baseline of about 310 km. We used two GPS stations on land, one as a reference station in Sendai, and the other in Tokyo as a rover one, whose coordinate can vary from epoch to epoch. This baseline length is required for our project because the farthest seafloor transponder array is 280 km east of the nearest coastal GPS station. The 1 cm stability of the KGPS solution was achieved in the horizontal components of the 310-km baseline over the course of one day. The vertical component showed fluctuation probably due to parameters unmodeled in the analysis such as multipath and/or tropospheric delay. 2) Sea surface experiment: During cruise KT01-11 of the R/V Tansei-maru, Ocean Research Institute (ORI), University of Tokyo, around the Japan Trench in late July 2001, we deployed three precision acoustic transponders on both the Pacific plate (280 km from the coast, depth around 5450 m) and the landward slope (110 km from the coast, depth around 1600 m). We used a surface buoy with 3 GPS antennas, a motion sensor, a hydrophone, and a computer for data acquisition and control to make combined GPS/Acoustic observations. The buoy was towed about 80 m away from the R/V to reduce the impact of ship

  17. Precision of image-based registration for intraoperative navigation in the presence of metal artifacts: Application to corrective osteotomy surgery.

    PubMed

    Dobbe, J G G; Curnier, F; Rondeau, X; Streekstra, G J

    2015-06-01

    Navigation for corrective osteotomy surgery requires patient-to-image registration. When registration is based on intraoperative 3-D cone-beam CT (CBCT) imaging, metal landmarks may be used that deteriorate image quality. This study investigates whether metal artifacts influence the precision of image-to-patient registration, either with or without intermediate user intervention during the registration procedure, in an application for corrective osteotomy of the distal radius. A series of 3-D CBCT scans is made of a cadaver arm with and without metal landmarks. Metal artifact reduction (MAR) based on inpainting techniques is used to improve 3-D CBCT images hampered by metal artifacts. This provides three sets of images (with metal, with MAR, and without metal), which enable investigating the differences in precision of intraoperative registration. Gray-level based point-to-image registration showed a better correlation coefficient if intraoperative images with MAR are used, indicating a better image similarity. The precision of registration without intermediate user intervention during the registration procedure, expressed as the residual angulation and displacement error after repetitive registration was very low and showed no improvement when MAR was used. By adding intermediate user intervention to the registration procedure however, precision was very high but was not affected by the presence of metal artifacts in the specific application.

  18. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  19. Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment

    NASA Technical Reports Server (NTRS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-01-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  20. Cooperative navigation and localization for multiple UUVs

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chuan; Xu, De-Min; Liu, Ming-Yong; Yan, Wei-Sheng

    2009-09-01

    The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.

  1. Precise Satellite Navigation Combining Kinematic and Dynamic Techniques in Support of Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Colombo, O. L.; Rowlands, D. D.; Chinn, D.; Poulose, S.

    2002-05-01

    A precise orbit determination method combining kinematic and dynamic techniques has been used to analyze two full days of on-board GPS receiver data from TOPEX and from a set of 20 IGS ground sites around the world. The resulting orbits agree, to better than 4 cm rms in height and a total of 10 cm rms in three-dimensions, with the corresponding Goddard Precise Orbit Estimates (POE). These POE, produced by NASA for the TOPEX Geophysical Data Records, are based only on laser and DORIS Doppler tracking data, so they can be used as a totally independent control for GPS-based results. There are two main steps:(1) A preliminary 24-hour kinematic trajectory, precise to a few meters, is obtained from double-differenced pseudo-range data. A one-day orbit is fitted to this trajectory, using the classical dynamic approach (in this case, as implemented in the Goddard SFC program GEODYN). (2) The fitted orbit is used to help correct cycle-slips in the carrier phase data. The corrected phase data, alone, are used to get a more precise kinematic trajectory. A new dynamic orbit fit is made to this trajectory to obtain the final, precise orbit. For the dynamic orbit determination, the forces acting on the satellite have been modeled, as for the POE, with a fixed box-wing model for the effect of solar radiation and drag on the satellite, and the gravitational acceleration with the JGM3 gravity field model, developed for TOPEX. In addition, a few force parameters were estimated, along with the orbit initial conditions: one drag scale factor every four hours, and one daily set of four empirical parameters representing unmodeled and mismodeled forces, for a total of 16 unknowns in each 24-hour solution. This approach combines the high precision of the dynamic method with the efficient data processing of the kinematic method, and has been implemented at Goddard using only pre-existing software. In general, this method could be used in support of remote sensing from space, when it is

  2. Precision Navigation of Cassini Images Using Rings, Icy Satellites, and Fuzzy Bodies

    NASA Astrophysics Data System (ADS)

    French, Robert S.; Showalter, Mark R.; Gordon, Mitchell K.

    2016-10-01

    Before images from the Cassini spacecraft can be analyzed, errors in the published pointing information (up to ~110 pixels for the Imaging Science Subsystem Narrow Angle Camera) must be corrected so that the line of sight vector for each pixel is known. This complicated and labor-intensive process involves matching the image contents with known features such as stars, rings, or moons. Metadata, such as lighting geometry or ring radius and longitude, must be computed for each pixel as well. Both steps require mastering the SPICE toolkit, a highly capable piece of software with a steep learning curve. Only after these steps are completed can the actual scientific investigation begin.We have embarked on a three-year project to perform these steps for all 400,000+ Cassini ISS images as well as images taken by the VIMS, UVIS, and CIRS instruments. The result will be a series of SPICE kernels that include accurate pointing information and a series of backplanes that include precomputed metadata for each pixel. All data will be made public through the PDS Ring-Moon Systems Node (http://www.pds-rings.seti.org). We expect this project to dramatically decrease the time required for scientists to analyze Cassini data.In a previous poster (French et al. 2014, DPS #46, 422.01) we discussed our progress navigating images using stars, simple ring models, and well-defined icy bodies. In this poster we will report on our current progress including the use of more sophisticated ring models, navigation of "fuzzy" bodies such as Titan and Saturn, and use of crater matching on high-resolution images of the icy satellites.

  3. Star magnitude and manual navigation sighting accuracy using the Apollo T2 sextant.

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Mayhew, L. B., Jr.

    1971-01-01

    This laboratory study investigated the effect of four star magnitudes (0, +1, +2, +3) upon the angular sighting accuracy attainable between a star and a lunar limb using a space-rated sextant with an 8-power telescope. Four males were tested. The results indicated that over a series of daily sightings sighting accuracy increases as star magnitude decreases; i.e., the angle between the actual lunar limb and the perceived lunar limb decreases as the intensity of the star increases. The significant subject and day main effects that were found indicate that each individual must be calibrated against himself and that extreme care must be taken to center the various images correctly within the sextant's field of view each time the instrument is set up. These findings are discussed in relation to further refinement of a graphic model of the distribution of energy on the retina. A discussion is also presented on the differences between sextant sighting research conducted in the laboratory and in the real, high-altitude or space environment.

  4. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  5. Accuracy and precision of total mixed rations fed on commercial dairy farms.

    PubMed

    Sova, A D; LeBlanc, S J; McBride, B W; DeVries, T J

    2014-01-01

    Despite the significant time and effort spent formulating total mixed rations (TMR), it is evident that the ration delivered by the producer and that consumed by the cow may not accurately reflect that originally formulated. The objectives of this study were to (1) determine how TMR fed agrees with or differs from TMR formulation (accuracy), (2) determine daily variability in physical and chemical characteristics of TMR delivered (precision), and (3) investigate the relationship between daily variability in ration characteristics and group-average measures of productivity [dry matter intake (DMI), milk yield, milk components, efficiency, and feed sorting] on commercial dairy farms. Twenty-two commercial freestall herds were visited for 7 consecutive days in both summer and winter months. Fresh and refusal feed samples were collected daily to assess particle size distribution, dry matter, and chemical composition. Milk test data, including yield, fat, and protein were collected from a coinciding Dairy Herd Improvement test. Multivariable mixed-effect regression models were used to analyze associations between productivity measures and daily ration variability, measured as coefficient of variation (CV) over 7d. The average TMR [crude protein=16.5%, net energy for lactation (NEL) = 1.7 Mcal/kg, nonfiber carbohydrates = 41.3%, total digestible nutrients = 73.3%, neutral detergent fiber=31.3%, acid detergent fiber=20.5%, Ca = 0.92%, p=0.42%, Mg = 0.35%, K = 1.45%, Na = 0.41%] delivered exceeded TMR formulation for NEL (+0.05 Mcal/kg), nonfiber carbohydrates (+1.2%), acid detergent fiber (+0.7%), Ca (+0.08%), P (+0.02%), Mg (+0.02%), and K (+0.04%) and underfed crude protein (-0.4%), neutral detergent fiber (-0.6%), and Na (-0.1%). Dietary measures with high day-to-day CV were average feed refusal rate (CV = 74%), percent long particles (CV = 16%), percent medium particles (CV = 7.7%), percent short particles (CV = 6.1%), percent fine particles (CV = 13%), Ca (CV = 7

  6. Space shuttle guidance, navigation and control equation document no. 4: Precision state and filter weighting matrix extrapolation

    NASA Technical Reports Server (NTRS)

    Robertson, W. M.

    1972-01-01

    The Precision State and Filter Weighting Matrix Extrapolation Routine is described which provides the capability to extrapolate any spacecraft geocentric state vector either backwards or forwards in time through a force field consisting of the earth's primary central-force gravitational attraction and a superimposed perturbing acceleration. The routine also provides the capability of extrapolating the filter-weighting matrix along the precision trajectory. This matrix is a square root form of the error covariance matrix and contains statistical information relative to the accuracies of the state vectors and certain other optionally estimated quantities. The routine is a cooled algorithm for the numerical solution of modified forms of the basic differential equations which are satisfied by the geocentric state vector of the spacecraft's center of mass and by the filter-weighting matrix.

  7. Accuracy and precisions of water quality parameters retrieved from particle swarm optimisation in a sub-tropical lake

    NASA Astrophysics Data System (ADS)

    Campbell, Glenn; Phinn, Stuart R.

    2009-09-01

    Optical remote sensing has been used to map and monitor water quality parameters such as the concentrations of hydrosols (chlorophyll and other pigments, total suspended material, and coloured dissolved organic matter). In the inversion / optimisation approach a forward model is used to simulate the water reflectance spectra from a set of parameters and the set that gives the closest match is selected as the solution. The accuracy of the hydrosol retrieval is dependent on an efficient search of the solution space and the reliability of the similarity measure. In this paper the Particle Swarm Optimisation (PSO) was used to search the solution space and seven similarity measures were trialled. The accuracy and precision of this method depends on the inherent noise in the spectral bands of the sensor being employed, as well as the radiometric corrections applied to images to calculate the subsurface reflectance. Using the Hydrolight® radiative transfer model and typical hydrosol concentrations from Lake Wivenhoe, Australia, MERIS reflectance spectra were simulated. The accuracy and precision of hydrosol concentrations derived from each similarity measure were evaluated after errors associated with the air-water interface correction, atmospheric correction and the IOP measurement were modelled and applied to the simulated reflectance spectra. The use of band specific empirically estimated values for the anisotropy value in the forward model improved the accuracy of hydrosol retrieval. The results of this study will be used to improve an algorithm for the remote sensing of water quality for freshwater impoundments.

  8. Nano-accuracy measurements and the surface profiler by use of Monolithic Hollow Penta-Prism for precision mirror testing

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Wayne, Lewis; Idir, Mourad

    2014-09-01

    We developed a Monolithic Hollow Penta-Prism Long Trace Profiler-NOM (MHPP-LTP-NOM) to attain nano-accuracy in testing plane- and near-plane-mirrors. A new developed Monolithic Hollow Penta-Prism (MHPP) combined with the advantages of PPLTP and autocollimator ELCOMAT of the Nano-Optic-Measuring Machine (NOM) is used to enhance the accuracy and stability of our measurements. Our precise system-alignment method by using a newly developed CCD position-monitor system (PMS) assured significant thermal stability and, along with our optimized noise-reduction analytic method, ensured nano-accuracy measurements. Herein we report our tests results; all errors are about 60 nrad rms or less in tests of plane- and near-plane- mirrors.

  9. Simulations of thermally transferred OSL signals in quartz: Accuracy and precision of the protocols for equivalent dose evaluation

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Adamiec, Grzegorz; Athanassas, C.; Chen, Reuven; Baker, Atlee; Larsen, Meredith; Thompson, Zachary

    2011-06-01

    Thermally-transferred optically stimulated luminescence (TT-OSL) signals in sedimentary quartz have been the subject of several recent studies, due to the potential shown by these signals to increase the range of luminescence dating by an order of magnitude. Based on these signals, a single aliquot protocol termed the ReSAR protocol has been developed and tested experimentally. This paper presents extensive numerical simulations of this ReSAR protocol. The purpose of the simulations is to investigate several aspects of the ReSAR protocol which are believed to cause difficulties during application of the protocol. Furthermore, several modified versions of the ReSAR protocol are simulated, and their relative accuracy and precision are compared. The simulations are carried out using a recently published kinetic model for quartz, consisting of 11 energy levels. One hundred random variants of the natural samples were generated by keeping the transition probabilities between energy levels fixed, while allowing simultaneous random variations of the concentrations of the 11 energy levels. The relative intrinsic accuracy and precision of the protocols are simulated by calculating the equivalent dose (ED) within the model, for a given natural burial dose of the sample. The complete sequence of steps undertaken in several versions of the dating protocols is simulated. The relative intrinsic precision of these techniques is estimated by fitting Gaussian probability functions to the resulting simulated distribution of ED values. New simulations are presented for commonly used OSL sensitivity tests, consisting of successive cycles of sample irradiation with the same dose, followed by measurements of the sensitivity corrected L/T signals. We investigate several experimental factors which may be affecting both the intrinsic precision and intrinsic accuracy of the ReSAR protocol. The results of the simulation show that the four different published versions of the ReSAR protocol can

  10. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  11. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  12. Application of aircraft navigation sensors to enhanced vision systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.

    1993-01-01

    In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.

  13. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study

    PubMed Central

    Olivecrona, Henrik; Maguire, Gerald Q.; Noz, Marilyn E.; Zeleznik, Michael P.

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting. PMID:27478832

  14. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    PubMed

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting. PMID:27478832

  15. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  16. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  17. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  18. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.

    PubMed

    Choe, Kyoung Whan; Blake, Randolph; Lee, Sang-Hun

    2016-01-01

    Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task.

  19. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.

    PubMed

    Choe, Kyoung Whan; Blake, Randolph; Lee, Sang-Hun

    2016-01-01

    Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task. PMID:25578924

  20. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  1. A simple device for high-precision head image registration: Preliminary performance and accuracy tests

    SciTech Connect

    Pallotta, Stefania

    2007-05-15

    The purpose of this paper is to present a new device for multimodal head study registration and to examine its performance in preliminary tests. The device consists of a system of eight markers fixed to mobile carbon pipes and bars which can be easily mounted on the patient's head using the ear canals and the nasal bridge. Four graduated scales fixed to the rigid support allow examiners to find the same device position on the patient's head during different acquisitions. The markers can be filled with appropriate substances for visualisation in computed tomography (CT), magnetic resonance, single photon emission computer tomography (SPECT) and positron emission tomography images. The device's rigidity and its position reproducibility were measured in 15 repeated CT acquisitions of the Alderson Rando anthropomorphic phantom and in two SPECT studies of a patient. The proposed system displays good rigidity and reproducibility characteristics. A relocation accuracy of less than 1,5 mm was found in more than 90% of the results. The registration parameters obtained using such a device were compared to those obtained using fiducial markers fixed on phantom and patient heads, resulting in differences of less than 1 deg. and 1 mm for rotation and translation parameters, respectively. Residual differences between fiducial marker coordinates in reference and in registered studies were less than 1 mm in more than 90% of the results, proving that the device performed as accurately as noninvasive stereotactic devices. Finally, an example of multimodal employment of the proposed device is reported.

  2. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms. PMID:27686111

  3. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  4. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  5. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong.

  6. A Method of Determining Accuracy and Precision for Dosimeter Systems Using Accreditation Data

    SciTech Connect

    Rick Cummings and John Flood

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively.

  7. A method of determining accuracy and precision for dosimeter systems using accreditation data.

    PubMed

    Cummings, Frederick; Flood, John R

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively. PMID:21068596

  8. Accuracy and Precision of Equine Gait Event Detection during Walking with Limb and Trunk Mounted Inertial Sensors

    PubMed Central

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of −7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with −0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of −4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely. PMID:22969392

  9. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  10. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    PubMed

    Wells, Emma; Wolfe, Marlene K; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4-19% error), then test strips (5.2-48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration. Given the

  11. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    PubMed

    Wells, Emma; Wolfe, Marlene K; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4-19% error), then test strips (5.2-48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration. Given the

  12. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions

    PubMed Central

    Wells, Emma; Wolfe, Marlene K.; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4–19% error), then test strips (5.2–48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5–11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14–37 for test strips and $33–609 for titration

  13. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  14. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  15. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.

    PubMed

    Suehiro, Koichi; Joosten, Alexandre; Murphy, Linda Suk-Ling; Desebbe, Olivier; Alexander, Brenton; Kim, Sang-Hyun; Cannesson, Maxime

    2016-10-01

    Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. The inter-study heterogeneity was also assessed using an I(2) statistic. A total of 20 studies (624 patients) were included. The overall random-effects pooled bias, and mean percentage error were 0.13 ± 0.44 l min(-1) and 29.1 %, respectively. Significant inter-study heterogeneity was detected (P < 0.0001, I(2) = 98.3 %). In the sub-analysis regarding the device, electrical cardiometry showed the smallest bias (-0.03 l min(-1)) and lowest percentage error (23.6 %). Significant residual heterogeneity remained after conducting sensitivity and subgroup analyses based on the various study characteristics. By meta-regression analysis, we found no independent effects of study characteristics on weighted mean difference between reference and tested methods. Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics. PMID:26315477

  16. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  17. Cascade impactor (CI) mensuration--an assessment of the accuracy and precision of commercially available optical measurement systems.

    PubMed

    Chambers, Frank; Ali, Aziz; Mitchell, Jolyon; Shelton, Christopher; Nichols, Steve

    2010-03-01

    Multi-stage cascade impactors (CIs) are the preferred measurement technique for characterizing the aerodynamic particle size distribution of an inhalable aerosol. Stage mensuration is the recommended pharmacopeial method for monitoring CI "fitness for purpose" within a GxP environment. The Impactor Sub-Team of the European Pharmaceutical Aerosol Group has undertaken an inter-laboratory study to assess both the precision and accuracy of a range of makes and models of instruments currently used for optical inspection of impactor stages. Measurement of two Andersen 8-stage 'non-viable' cascade impactor "reference" stages that were representative of jet sizes for this instrument type (stages 2 and 7) confirmed that all instruments evaluated were capable of reproducible jet measurement, with the overall capability being within the current pharmacopeial stage specifications for both stages. In the assessment of absolute accuracy, small, but consistent differences (ca. 0.6% of the certified value) observed between 'dots' and 'spots' of a calibrated chromium-plated reticule were observed, most likely the result of treatment of partially lit pixels along the circumference of this calibration standard. Measurements of three certified ring gauges, the smallest having a nominal diameter of 1.0 mm, were consistent with the observation where treatment of partially illuminated pixels at the periphery of the projected image can result in undersizing. However, the bias was less than 1% of the certified diameter. The optical inspection instruments evaluated are fully capable of confirming cascade impactor suitability in accordance with pharmacopeial practice.

  18. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    USGS Publications Warehouse

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  19. An evaluation of the accuracy and precision of a stand-alone submersible continuous ruminal pH measurement system.

    PubMed

    Penner, G B; Beauchemin, K A; Mutsvangwa, T

    2006-06-01

    The objectives of this study were 1) to develop and evaluate the accuracy and precision of a new stand-alone submersible continuous ruminal pH measurement system called the Lethbridge Research Centre ruminal pH measurement system (LRCpH; Experiment 1); 2) to establish the accuracy and precision of a well-documented, previously used continuous indwelling ruminal pH system (CIpH) to ensure that the new system (LRCpH) was as accurate and precise as the previous system (CIpH; Experiment 2); and 3) to determine the required frequency for pH electrode standardization by comparing baseline millivolt readings of pH electrodes in pH buffers 4 and 7 after 0, 24, 48, and 72 h of ruminal incubation (Experiment 3). In Experiment 1, 6 pregnant Holstein heifers, 3 lactating, primiparous Holstein cows, and 2 Black Angus heifers were used. All experimental animals were fitted with permanent ruminal cannulas. In Experiment 2, the 3 cannulated, lactating, primiparous Holstein cows were used. In both experiments, ruminal pH was determined continuously using indwelling pH electrodes. Subsequently, mean pH values were then compared with ruminal pH values obtained using spot samples of ruminal fluid (MANpH) obtained at the same time. A correlation coefficient accounting for repeated measures was calculated and results were used to calculate the concordance correlation to examine the relationships between the LRCpH-derived values and MANpH, and the CIpH-derived values and MANpH. In Experiment 3, the 6 pregnant Holstein heifers were used along with 6 new submersible pH electrodes. In Experiments 1 and 2, the comparison of the LRCpH output (1- and 5-min averages) to MANpH had higher correlation coefficients after accounting for repeated measures (0.98 and 0.97 for 1- and 5-min averages, respectively) and concordance correlation coefficients (0.96 and 0.97 for 1- and 5-min averages, respectively) than the comparison of CIpH to MANpH (0.88 and 0.87, correlation coefficient and concordance

  20. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  1. Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Kanning, G.; Cicolani, L. S.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.

  2. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing.

    PubMed

    Hombach, Michael; Maurer, Florian P; Pfiffner, Tamara; Böttger, Erik C; Furrer, Reinhard

    2015-12-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 10(8) CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of

  3. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing.

    PubMed

    Hombach, Michael; Maurer, Florian P; Pfiffner, Tamara; Böttger, Erik C; Furrer, Reinhard

    2015-12-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 10(8) CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of

  4. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  5. Determination of the precision and accuracy of morphological measurements using the Kinect™ sensor: comparison with standard stereophotogrammetry.

    PubMed

    Bonnechère, B; Jansen, B; Salvia, P; Bouzahouene, H; Sholukha, V; Cornelis, J; Rooze, M; Van Sint Jan, S

    2014-01-01

    The recent availability of the Kinect™ sensor, a low-cost Markerless Motion Capture (MMC) system, could give new and interesting insights into ergonomics (e.g. the creation of a morphological database). Extensive validation of this system is still missing. The aim of the study was to determine if the Kinect™ sensor can be used as an easy, cheap and fast tool to conduct morphology estimation. A total of 48 subjects were analysed using MMC. Results were compared with measurements obtained from a high-resolution stereophotogrammetric system, a marker-based system (MBS). Differences between MMC and MBS were found; however, these differences were systematically correlated and enabled regression equations to be obtained to correct MMC results. After correction, final results were in agreement with MBS data (p = 0.99). Results show that measurements were reproducible and precise after applying regression equations. Kinect™ sensors-based systems therefore seem to be suitable for use as fast and reliable tools to estimate morphology. Practitioner Summary: The Kinect™ sensor could eventually be used for fast morphology estimation as a body scanner. This paper presents an extensive validation of this device for anthropometric measurements in comparison to manual measurements and stereophotogrammetric devices. The accuracy is dependent on the segment studied but the reproducibility is excellent. PMID:24646374

  6. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Rettinger, M.; Jones, N.

    2011-05-01

    We present a strategy (MIR-GBM v1.0) for the retrieval of column-averaged dry-air mole fractions of methane (XCH4) with a precision <0.3 % (1-σ diurnal variation, 7-min integration) and a seasonal bias <0.14 % from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations). This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON) with time series dating back 15 yr or so before TCCON operations began. MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release) and 3 spectral micro windows (2613.70-2615.40 cm-1, 2835.50-2835.80 cm-1, 2921.00-2921.60 cm-1). A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the ratio of root-mean-square spectral residuals and information content (<0.15 %). Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP) interpolated to the time of measurement. MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008). Dominant errors of the non-optimum retrieval strategies are HDO/H2O-CH4 interference errors (seasonal bias up to ≈4 %). Therefore interference errors have been quantified at 3 test sites covering clear-sky integrated water vapor levels representative for all NDACC sites (Wollongong maximum = 44.9 mm, Garmisch mean = 14.9 mm

  7. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Rettinger, M.; Jones, N.

    2011-09-01

    We present a strategy (MIR-GBM v1.0) for the retrieval of column-averaged dry-air mole fractions of methane (XCH4) with a precision <0.3% (1-σ diurnal variation, 7-min integration) and a seasonal bias <0.14% from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations). This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON) with time series dating back 15 years or so before TCCON operations began. MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release) and 3 spectral micro windows (2613.70-2615.40 cm-1, 2835.50-2835.80 cm-1, 2921.00-2921.60 cm-1). A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the goodness of fit (χ2 < 1) as well as for the ratio of root-mean-square spectral noise and information content (<0.15%). Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP) interpolated to the time of measurement. MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008). Dominant errors of the non-optimum retrieval strategies are systematic HDO/H2O-CH4 interference errors leading to a seasonal bias up to ≈5%. Therefore interference errors have been quantified at 3 test sites covering clear-sky integrated water vapor levels representative for all NDACC

  8. An analysis of GDOP in global positioning system navigation

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1980-01-01

    The accuracy of user navigation fix based on the NAVSTAR global positioning system is described. The trace of this matrix serves as a convenient navigation performance index and the square root of the trace is called geometric dilution of precision (GDOP). Certain theoretical results concerning the general properties of the navigation performance are derived. An efficient algorithm for the computation of GDOP is given. Applications of the results are illustrated by numerical examples.

  9. Investigations on the Accuracy of the Navigation Data of Unmanned Aerial Vehicles Using the Example of the System Mikrokopter

    NASA Astrophysics Data System (ADS)

    Bäumker, M.; Przybilla, H.-J.

    2011-09-01

    Bochum University of Applied Sciences (HS BO) is currently involved in an UAV project, whose fundamental developments are the result of an internet community. The MikroKopter system, being built by the laboratory, is a manually and autonomous flying platform. With regard to the implementation of an autonomous flight the MikroKopter is equipped with appropriate sensors for the flight control. The interaction of these components allows horizontal and vertical stabilized positioning of the system, as well as the return to the launch site. Using these positioning data a stabilization and orientation of the camera occurs, followed by a manual or automatically triggering of the camera to the predetermined positions. All flight data is completely recorded and can be evaluated at a later date. Investigations to the quality of navigation data are presented. Based on different flights at the Bochum test field, combined with the use of alternative navigation sensors, an evaluation of the standard components of the MikroKopter system occurs. Another focus is given by efforts to optimize the control, stabilization and orientation of the camera.

  10. Accuracy, precision and response time of consumer fork, remote digital probe and disposable indicator thermometers for cooked ground beef patties and chicken breasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine different commercially available instant-read consumer thermometers (forks, remotes, digital probe and disposable color change indicators) were tested for accuracy and precision compared to a calibrated thermocouple in 80 percent and 90 percent lean ground beef patties, and boneless and bone-in...

  11. An Examination of the Precision and Technical Accuracy of the First Wave of Group-Randomized Trials Funded by the Institute of Education Sciences

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Raudenbush, Stephen W.

    2009-01-01

    This article examines the power analyses for the first wave of group-randomized trials funded by the Institute of Education Sciences. Specifically, it assesses the precision and technical accuracy of the studies. The authors identified the appropriate experimental design and estimated the minimum detectable standardized effect size (MDES) for each…

  12. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    SciTech Connect

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-11-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures.

  13. International normalised ratio (INR) measured on the CoaguChek S and XS compared with the laboratory for determination of precision and accuracy.

    PubMed

    Christensen, Thomas D; Larsen, Torben B; Jensen, Claus; Maegaard, Marianne; Sørensen, Benny

    2009-03-01

    Oral anticoagulation therapy is monitored by the use of international normalised ratio (INR). Patients performing self-management estimate INR using a coagulometer, but studies have been partly flawed regarding the estimated precision and accuracy. The objective was to estimate the imprecision and accuracy for two different coagulometers (CoaguChek S and XS). Twenty-four patients treated with coumarin were prospectively followed for six weeks. INR's were analyzed weekly in duplicates on both coagulometers, and compared with results from the hospital laboratory. Statistical analysis included Bland-Altman plot, 95% limits of agreement, coefficient of variance (CV), and an analysis of variance using a mixed effect model. Comparing 141 duplicate measurements (a total of 564 measurements) of INR, we found that the CoaguChek S and CoaguChek XS had a precision (CV) of 3.4% and 2.3%, respectively. Regarding analytical accuracy, the INR measurements tended to be lower on the coagulometers, and regarding diagnostic accuracy the CoaguChek S and CoaguChek XS deviated more than 15% from the laboratory measurements in 40% and 43% of the measurements, respectively. In conclusion, the precision of the coagulometers was found to be good, but only the CoaguChek XS had a precision within the predefined limit of 3%. Regarding analytical accuracy, the INR measurements tended to be lower on the coagulometers, compared to the laboratory. A large proportion of measurement of the coagulometers deviated more than 15% from the laboratory measurements. Whether this will have a clinical impact awaits further studies.

  14. PTTI applications to deep space navigation

    NASA Technical Reports Server (NTRS)

    Curkendall, D. W.

    1979-01-01

    Radio metric deep space navigation relies nearly exclusively upon coherent, two way, Doppler and ranging for all precise applications. These data types and the navigational accuracies they can produce are reviewed. The deployment of hydrogen maser frequency standards and the development of Very Long Baseline Interferometry (VLBI) systems within the Deep Space Network are used in the development of non-coherent, one way data forms that promise much greater inherent navigational accuracy. The underlying structure between each data class and clock performance is charted. VLBI observations of the natural radio sources are the planned instrument for the synchronization task. This method and a navigational scheme using differential measurements between the spacecraft and nearby quasars are described.

  15. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  16. The precision and accuracy of iterative and non-iterative methods of photopeak integration in activation analysis, with particular reference to the analysis of multiplets

    USGS Publications Warehouse

    Baedecker, P.A.

    1977-01-01

    The relative precisions obtainable using two digital methods, and three iterative least squares fitting procedures of photopeak integration have been compared empirically using 12 replicate counts of a test sample with 14 photopeaks of varying intensity. The accuracy by which the various iterative fitting methods could analyse synthetic doublets has also been evaluated, and compared with a simple non-iterative approach. ?? 1977 Akade??miai Kiado??.

  17. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment

    NASA Astrophysics Data System (ADS)

    Ernstsen, Verner B.; Noormets, Riko; Hebbeln, Dierk; Bartholomä, Alex; Flemming, Burg W.

    2006-09-01

    Over 4 years, repetitive bathymetric measurements of a shipwreck in the Grådyb tidal inlet channel in the Danish Wadden Sea were carried out using a state-of-the-art high-resolution multibeam echosounder (MBES) coupled with a real-time long range kinematic (LRK™) global positioning system. Seven measurements during a single survey in 2003 ( n=7) revealed a horizontal and vertical precision of the MBES system of ±20 and ±2 cm, respectively, at a 95% confidence level. By contrast, four annual surveys from 2002 to 2005 ( n=4) yielded a horizontal and vertical precision (at 95% confidence level) of only ±30 and ±8 cm, respectively. This difference in precision can be explained by three main factors: (1) the dismounting of the system between the annual surveys, (2) rougher sea conditions during the survey in 2004 and (3) the limited number of annual surveys. In general, the precision achieved here did not correspond to the full potential of the MBES system, as this could certainly have been improved by an increase in coverage density (soundings/m2), achievable by reducing the survey speed of the vessel. Nevertheless, precision was higher than that reported to date for earlier offshore test surveys using comparable equipment.

  18. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  19. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    PubMed Central

    Kamiński, Radosław; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-01-01

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3–4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample. PMID:20567080

  20. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  1. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  2. Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster.

    PubMed

    Kannan, Nisha N; Vaze, Koustubh M; Sharma, Vijay Kumar

    2012-10-15

    Although circadian clocks are believed to have evolved under the action of periodic selection pressures (selection on phasing) present in the geophysical environment, there is very little rigorous and systematic empirical evidence to support this. In the present study, we examined the effect of selection for adult emergence in a narrow window of time on the circadian rhythms of fruit flies Drosophila melanogaster. Selection was imposed in every generation by choosing flies that emerged during a 1 h window of time close to the emergence peak of baseline/control flies under 12 h:12 h light:dark cycles. To study the effect of selection on circadian clocks we estimated several quantifiable features that reflect inter- and intra-individual variance in adult emergence and locomotor activity rhythms. The results showed that with increasing generations, incidence of adult emergence and activity of adult flies during the 1 h selection window increased gradually in the selected populations. Flies from the selected populations were more homogenous in their clock period, were more coherent in their phase of entrainment, and displayed enhanced accuracy and precision in their emergence and activity rhythms compared with controls. These results thus suggest that circadian clocks in D. melanogaster evolve enhanced accuracy and precision when subjected to selection for emergence in a narrow window of time.

  3. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Schmidlin, F. J.; Oltmans, S. J.; Smit, H. G. J.

    2004-01-01

    Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 ozone profiles over eleven southern hemisphere tropical and subtropical stations. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used to measure ozone. The data are archived at: &ttp://croc.gsfc.nasa.gov/shadoz>. In analysis of ozonesonde imprecision within the SHADOZ dataset, Thompson et al. [JGR, 108,8238,20031 we pointed out that variations in ozonesonde technique (sensor solution strength, instrument manufacturer, data processing) could lead to station-to-station biases within the SHADOZ dataset. Imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. First, SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release). As for TOMS version 7, satellite total ozone is usually higher than the integrated column amount from the sounding. Discrepancies between the sonde and satellite datasets decline two percentage points on average, compared to version 7 TOMS offsets. Second, the SHADOZ station data are compared to results of chamber simulations (JOSE-2000, Juelich Ozonesonde Intercomparison Experiment) in which the various SHADOZ techniques were evaluated. The range of JOSE column deviations from a standard instrument (-10%) in the chamber resembles that of the SHADOZ station data. It appears that some systematic variations in the SHADOZ ozone record are accounted for by differences in solution strength, data processing and instrument type (manufacturer).

  4. TanDEM-X IDEM precision and accuracy assessment based on a large assembly of differential GNSS measurements in Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Baade, J.; Schmullius, C.

    2016-09-01

    High resolution Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years, the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unprecedented geometric resolution, precision and accuracy. First TanDEM Intermediate Digital Elevation Models (i.e. IDEM) with a geometric resolution from 0.4 to 3 arcsec have been made available for scientific purposes in November 2014. This includes four 1° × 1° tiles covering the Kruger National Park in South Africa. Here, we document the results of a local scale IDEM height accuracy validation exercise utilizing over 10,000 RTK-GNSS-based ground survey points from fourteen sites characterized by mainly pristine Savanna vegetation. The vertical precision of the ground checkpoints is 0.02 m (1σ). Selected precursor data sets (SRTMGL1, SRTM41, ASTER-GDEM2) are included in the analysis to facilitate the comparison. Although IDEM represents an intermediate product on the way to the new global TanDEM-X DEM, expected to be released in late 2016, it allows first insight into the properties of the forthcoming product. Remarkably, the TanDEM-X tiles include a number of auxiliary files providing detailed information pertinent to a user-based quality assessment. We present examples for the utilization of this information in the framework of a local scale study including the identification of height readings contaminated by water. Furthermore, this study provides evidence for the high precision and accuracy of IDEM height readings and the sensitivity to canopy cover. For open terrain, the 0.4 arcsec resolution edition (IDEM04) yields an average bias of 0.20 ± 0.05 m (95% confidence interval, Cl95), a RMSE = 1.03 m and an absolute vertical height error (LE90) of 1.5 [1.4, 1.7] m (Cl95). The corresponding values for the lower resolution IDEM editions are about the same and provide evidence for the high quality of the IDEM products

  5. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  6. The science of and advanced technology for cost-effective manufacture of high precision engineering products. Volume 4. Thermal effects on the accuracy of numerically controlled machine tool

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Barash, M. M.; Liu, C. R.

    1985-10-01

    Thermal effects on the accuracy of numerically controlled machine tools are specially important in the context of unmanned manufacture or under conditions of precision metal cutting. Removal of the operator from the direct control of the metal cutting process has created problems in terms of maintaining accuracy. The objective of this research is to study thermal effects on the accuracy of numerically controlled machine tools. The initial part of the research report is concerned with the analysis of a hypothetical machine. The thermal characteristics of this machine are studied. Numerical methods for evaluating the errors exhibited by the slides of the machine are proposed and the possibility of predicting thermally induced errors by the use of regression equations is investigated. A method for computing the workspace error is also presented. The final part is concerned with the actual measurement of errors on a modern CNC machining center. Thermal influences on the errors is the main objective of the experimental work. Thermal influences on the errors of machine tools are predictable. Techniques for determining thermal effects on machine tools at a design stage are also presented. ; Error models and prediction; Metrology; Automation.

  7. SU-E-J-147: Monte Carlo Study of the Precision and Accuracy of Proton CT Reconstructed Relative Stopping Power Maps

    SciTech Connect

    Dedes, G; Asano, Y; Parodi, K; Arbor, N; Dauvergne, D; Testa, E; Letang, J; Rit, S

    2015-06-15

    Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)

  8. Measuring the bias, precision, accuracy, and validity of self-reported height and weight in assessing overweight and obesity status among adolescents using a surveillance system

    PubMed Central

    2015-01-01

    Background Evidence regarding bias, precision, and accuracy in adolescent self-reported height and weight across demographic subpopulations is lacking. The bias, precision, and accuracy of adolescent self-reported height and weight across subpopulations were examined using a large, diverse and representative sample of adolescents. A second objective was to develop correction equations for self-reported height and weight to provide more accurate estimates of body mass index (BMI) and weight status. Methods A total of 24,221 students from 8th and 11th grade in Texas participated in the School Physical Activity and Nutrition (SPAN) surveillance system in years 2000–2002 and 2004–2005. To assess bias, the differences between the self-reported and objective measures, for height and weight were estimated. To assess precision and accuracy, the Lin’s concordance correlation coefficient was used. BMI was estimated for self-reported and objective measures. The prevalence of students’ weight status was estimated using self-reported and objective measures; absolute (bias) and relative error (relative bias) were assessed subsequently. Correction equations for sex and race/ethnicity subpopulations were developed to estimate objective measures of height, weight and BMI from self-reported measures using weighted linear regression. Sensitivity, specificity and positive predictive values of weight status classification using self-reported measures and correction equations are assessed by sex and grade. Results Students in 8th- and 11th-grade overestimated their height from 0.68cm (White girls) to 2.02 cm (African-American boys), and underestimated their weight from 0.4 kg (Hispanic girls) to 0.98 kg (African-American girls). The differences in self-reported versus objectively-measured height and weight resulted in underestimation of BMI ranging from -0.23 kg/m2 (White boys) to -0.7 kg/m2 (African-American girls). The sensitivity of self-reported measures to classify weight

  9. An experimental analysis of accuracy and precision of a high-speed strain-gage system based on the direct-resistance method

    NASA Astrophysics Data System (ADS)

    Cappa, P.; del Prete, Z.

    1992-03-01

    An experimental study on the relative merits of using a high-speed digital-acquisition system to measure directly the strain-gage resistance, rather than using a conventional Wheatstone bridge, is carried out. Both strain gages, with a nominal resistance of 120 ohm and 1 kohm, were simulated with precision resistors, and the output signals were acquired over a time of 48 and 144 hours; furthermore, the effects in metrological performances caused by a statistical filtering were evaluated. The results show that the implementation of the statistical filtering gains a considerable improvement in gathering strain-gage-resistance readings. On the other hand, such a procedure causes, obviously, a loss of performance with regard to the acquisition rate, and therefore to the dynamic data-collecting capabilities. In any case, the intrinsic resolution of the 12-bit a/d converter, utilized in the present experimental analysis, causes a limitation for measurement accuracy in the range of hundreds microns/m.

  10. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source.

    PubMed

    Grulkowski, Ireneusz; Liu, Jonathan J; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Jiang, James; Fujimoto, James G; Cable, Alex E

    2013-03-01

    We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivo human-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications of OCT.

  11. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  12. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  13. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  14. Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems

    NASA Astrophysics Data System (ADS)

    Dautermann, Thomas

    2014-05-01

    Advancement in augmented satellite navigation enables a new class of instrument approach procedures for aircraft. These approaches are based on regional augmentation systems which broadcast corrections via a geostationary satellite. The enhanced GNSS navigation solution using the corrections from the satellite provides the necessary accuracy and integrity to perform approaches with vertical and lateral angular guidance to a given runway threshold. This enables cost effective and simple procedure generation with low descent minima even for small airports. Moreover, it supports high precision en-route navigation and future high precision flight guidance applications.

  15. Pedestrian navigation algorithm based on MIMU with building heading/magnetometer

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-bin; Pan, Xian-fei; Chen, Chang-hao; Hu, Xiao-ping

    2016-01-01

    In order to improve the accuracy of the low-cost MIMU Inertial navigation system in the application of pedestrian navigation.And to reduce the effect of the heading error because of the low accuracy of the component of MIMU. A novel algorithm was put forward, which fusing the building heading constraint information and the magnetic heading information to achieve more advantages. We analysed the application condition and the modified effect of building heading and magnetic heading. Then experiments were conducted in indoor environment. The results show that the algorithm proposed has a better effect to restrict the heading drift problem and to achieve a higher navigation precision.

  16. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    NASA Astrophysics Data System (ADS)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were

  17. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods.

    PubMed

    He, Bin; Frey, Eric C

    2010-06-21

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed (111)In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were

  18. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  19. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  20. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  1. Quantitative error analysis for computer assisted navigation: a feasibility study

    PubMed Central

    Güler, Ö.; Perwög, M.; Kral, F.; Schwarm, F.; Bárdosi, Z. R.; Göbel, G.; Freysinger, W.

    2013-01-01

    Purpose The benefit of computer-assisted navigation depends on the registration process, at which patient features are correlated to some preoperative imagery. The operator-induced uncertainty in localizing patient features – the User Localization Error (ULE) - is unknown and most likely dominating the application accuracy. This initial feasibility study aims at providing first data for ULE with a research navigation system. Methods Active optical navigation was done in CT-images of a plastic skull, an anatomic specimen (both with implanted fiducials) and a volunteer with anatomical landmarks exclusively. Each object was registered ten times with 3, 5, 7, and 9 registration points. Measurements were taken at 10 (anatomic specimen and volunteer) and 11 targets (plastic skull). The active NDI Polaris system was used under ideal working conditions (tracking accuracy 0.23 mm root mean square, RMS; probe tip calibration was 0.18 mm RMS. Variances of tracking along the principal directions were measured as 0.18 mm2, 0.32 mm2, and 0.42 mm2. ULE was calculated from predicted application accuracy with isotropic and anisotropic models and from experimental variances, respectively. Results The ULE was determined from the variances as 0.45 mm (plastic skull), 0.60 mm (anatomic specimen), and 4.96 mm (volunteer). The predicted application accuracy did not yield consistent values for the ULE. Conclusions Quantitative data of application accuracy could be tested against prediction models with iso- and anisotropic noise models and revealed some discrepancies. This could potentially be due to the facts that navigation and one prediction model wrongly assume isotropic noise (tracking is anisotropic), while the anisotropic noise prediction model assumes an anisotropic registration strategy (registration is isotropic in typical navigation systems). The ULE data are presumably the first quantitative values for the precision of localizing anatomical landmarks and implanted fiducials

  2. Improved Accuracy and Precision in LA-ICP-MS U-Th/Pb Dating of Zircon through the Reduction of Crystallinity Related Bias

    NASA Astrophysics Data System (ADS)

    Matthews, W.; McDonald, A.; Hamilton, B.; Guest, B.

    2015-12-01

    The accuracy of zircon U-Th/Pb ages generated by LA-ICP-MS is limited by systematic bias resulting from differences in crystallinity of the primary reference and that of the unknowns being analyzed. In general, the use of a highly crystalline primary reference will tend to bias analyses of materials of lesser crystallinity toward older ages. When dating igneous rocks, bias can be minimized by matching the crystallinity of the primary reference to that of the unknowns. However, the crystallinity of the unknowns is often not well constrained prior to ablation, as it is a function of U and Th concentration, crystallization age, and thermal history. Likewise, selecting an appropriate primary reference is impossible when dating detrital rocks where zircons with differing ages, protoliths, and thermal histories are analyzed in the same session. We investigate the causes of systematic bias using Raman spectroscopy and measurements of the ablated pit geometry. The crystallinity of five zircon reference materials with ages between 28.2 Ma and 2674 Ma was estimated using Raman spectroscopy. Zircon references varied from being highly crystalline to highly metamict, with individual reference materials plotting as distinct clusters in peak wavelength versus Full-Width Half-Maximum (FWHM) space. A strong positive correlation (R2=0.69) was found between the FWHM for the band at ~1000 cm-1 in the Raman spectrum of the zircon and its ablation rate, suggesting the degree of crystallinity is a primary control on ablation rate in zircons. A moderate positive correlation (R2=0.37) was found between ablation rate and the difference between the age determined by LA-ICP-MS and the accepted ID-TIMS age (ΔAge). We use the measured, intra-sessional relationship between ablation rate and ΔAge of secondary references to reduce systematic bias. Rapid, high-precision measurement of ablated pit geometries using an optical profilometer and custom MatLab algorithm facilitates the implementation

  3. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  4. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    PubMed Central

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-01-01

    Purpose: To determine the precision and accuracy of CTDI100 measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI100. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%–2.7% for OSL and 0.08% ± 0.06%, range = 0.02%–0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI100 values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI100 relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI100 with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI100 values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile. PMID:23127052

  5. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors.

    PubMed

    Paraskevopoulos, Dimitrios; Unterberg, Andreas; Metzner, Roland; Dreyhaupt, Jens; Eggers, Georg; Wirtz, Christian Rainer

    2010-04-01

    This study aimed at comparing the accuracy of two commercial neuronavigation systems. Error assessment and quantification of clinical factors and surface registration, often resulting in decreased accuracy, were intended. Active (Stryker Navigation) and passive (VectorVision Sky, BrainLAB) neuronavigation systems were tested with an anthropomorphic phantom with a deformable layer, simulating skin and soft tissue. True coordinates measured by computer numerical control were compared with coordinates on image data and during navigation, to calculate software and system accuracy respectively. Comparison of image and navigation coordinates was used to evaluate navigation accuracy. Both systems achieved an overall accuracy of <1.5 mm. Stryker achieved better software accuracy, whereas BrainLAB better system and navigation accuracy. Factors with conspicuous influence (P<0.01) were imaging, instrument replacement, sterile cover drape and geometry of instruments. Precision data indicated by the systems did not reflect measured accuracy in general. Surface matching resulted in no improvement of accuracy, confirming former studies. Laser registration showed no differences compared to conventional pointers. Differences between the two systems were limited. Surface registration may improve inaccurate point-based registrations but does not in general affect overall accuracy. Accuracy feedback by the systems does not always match with true target accuracy and requires critical evaluation from the surgeon.

  6. Navigation strategy with the spacecraft communications blackout for Mars entry

    NASA Astrophysics Data System (ADS)

    Wang, Xichen; Xia, Yuanqing

    2015-02-01

    Future Mars missions require precision entry navigation capability, especially in the presence of communications blackout. On the mission of Mars Science Laboratory (MSL), there was a 70-s communications blackout period during atmospheric entry phase. In allusion to the spacecraft communications blackout encountered, this paper predicts an upper-bound for any possible blackout period firstly, improves the default integrated navigation measurements based on IMU and surface radiometric beacons, and proposes innovative attitude observation model based on IMU and range observation model based on orbiters finally. To verify the accuracy and effectiveness of the proposed observation models in the presence of communications blackout, unscented Kalman filter is utilized to demonstrate the navigation performance. The results show that navigation errors based on improved observation models proposed in this paper degrade an order of magnitude compared with the default observation models even if the communications blackout takes place, which satisfies the requirements of future Mars landing missions.

  7. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  8. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  9. Mars Exploration Rovers navigation results

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.

    2004-01-01

    The twin Mars Exploration Rovers, Spirit and Opportunity, were launched on June 10, 2003, and July 8, 2003, from Cape Canaveral, Florida. Spirit and Opportunity were targeted for landings at Gusev Crater (arrival on January 4, 2004) and Meridiani Planum (arrival on January 25, 2004). The primary navigation challenge was to deliver each spacecraft to the desired atmospheric entry interface point with sufficient accuracy such that each lander would touch down within a specified landing ellipse (about 70 km x 5 km) determined to be safe for landing and also judged to be scientifically interesting. In order to achieve landing within the target ellipse, precise control of the inertial entry flight path angle (FPA) at atmospheric entry was required. The maximum allowable errors in FPA following TCM-5 (trajectory correction maneuver #5) at Entry (E) -2 days were +/-0.12 deg(3 sigma) for Spirit and +/-0.14 deg(3 sigma) for Opportunity. Achieving these entry delivery accuracies necessitated significant improvements to the interplanetary navigation system used for MER. These improvements included new processes and software for orbit determination, propulsive maneuver design, and entry, descent, and landing (EDL) trajectory simulation. The actual achieved atmospheric entry accuracies for Spirit and Opportunity significantly exceeded the requirements. At the navigation data cutoff for the TCM-5 final design, the orbit determination FPA knowledge error was 0.028 deg(3 sigma) for Spirit and 0.035 deg(3 sigma) for Opportunity. Because of exceptionally accurate navigation performance, TCM-5 (E - 2 days) and TCM-6 (E - 4 hours) were canceled for both Spirit and Opportunity. The actual landing locations (determined from in-situ Doppler tracking between the MER rovers and the Mars Odyssey orbiter) differed from the target landing points by 10.1 km (downtrack) for Spirit and 24.6 km (downtrack) for Opportunity. The majority of the landing position offsets for both landers was

  10. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  11. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  12. Investigation into the propagation of Omega very low frequency signals and techniques for improvement of navigation accuracy including differential and composite omega

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of Very Low Frequency propagation in the atmosphere in the 10-14 kHz range leads to a discussion of some of the more significant causes of phase perturbation. The method of generating sky-wave corrections to predict the Omega phase is discussed. Composite Omega is considered as a means of lane identification and of reducing Omega navigation error. A simple technique for generating trapezoidal model (T-model) phase prediction is presented and compared with the Navy predictions and actual phase measurements. The T-model prediction analysis illustrates the ability to account for the major phase shift created by the diurnal effects on the lower ionosphere. An analysis of the Navy sky-wave correction table is used to provide information about spatial and temporal correlation of phase correction relative to the differential mode of operation.

  13. Control of a three-dimensional magnetic force generated from a magnetic navigation system to precisely manipulate the locomotion of a magnetic microrobot

    NASA Astrophysics Data System (ADS)

    Nam, J. K.; Jeon, S. M.; Lee, W. S.; Jang, G. H.

    2015-05-01

    We propose a method to generate a three-dimensional (3D) magnetic force to manipulate a magnetic microrobot in various environments by using a magnetic navigation system. The proposed method is based on the control of the magnetic force with respect to the change in the magnetization direction of the microrobot and an external magnetic flux gradient. We derived the nonlinear constraint equations which can determine the required direction of the uniform magnetic fields and magnetic gradients to generate the 3D magnetic force of a microrobot. The solutions of the equations were calculated using a geometrical analysis of the equations without any singular point. The proposed methodology was verified on 3D planar environments considering gravitational force, and we also conducted an experiment in a 3D water-filled tubular environment to verify the possibility of the clinical application in human blood vessels.

  14. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  15. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  16. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  17. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  18. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  19. Mars Exploration Rovers navigation results

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.

    2004-01-01

    The twin Mars Exploration Rovers, Spirit and Opportunity, were launched on June 10, 2003(dagger), and July 8, 2003, from Cape Canaveral, Florida. Spirit and Opportunity were targeted for landings at Gusev Crater (arrival on January 4, 2004) and Meridiani Planum (arrival on January 25, 2004). The primary navigation challenge was to deliver each spacecraft to the desired atmospheric entry interface point with sufficient accuracy such that each lander would touch down within a specified landing ellipse (about 70 km x 5 km) determined to be safe for landing and also judged to be scientifically interesting. In order to achieve landing within the target ellipse, precise control of the inertial entry flight path angle (FPA) at atmospheric entry was required. The maximum allowable errors in FPA following TCM-5 (trajectory correction maneuver #5) at Entry (E) - 2 days were +/-0.12(deg) (3(sigma)) for Spirit and +/-0.14(deg) (3(sigma)) for Opportunity. Achieving these entry delivery accuracies necessitated significant improvements to the interplanetary avigation system used for MER. These improvements included new processes and software for orbit determination, propulsive maneuver design, and entry, descent, and landing (EDL) trajectory simulation. The actual achieved atmospheric entry accuracies for Spirit and Opportunity significantly exceeded the requirements. At the navigation data cutoff for the TCM-5 final design, the orbit determination FPA knowledge error was +/-0.028(deg) (3(sigma) ) for Spirit and +/-0.035(deg) (3(sigma)) for Opportunity. Because of exceptionally accurate navigation performance, TCM-5 (E - 2 days) and TCM-6 (E - 4 hours) were canceled for both Spirit and Opportunity. The actual landing locations (determined from in-situ Doppler tracking between the MER rovers and the Mars Odyssey orbiter) differed from the target landing points by 10.1 km (downtrack) for Spirit and 24.6 km (downtrack) for Opportunity. The majority of the landing position offsets

  20. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  1. Inertial sensors for smartphones navigation.

    PubMed

    Dabove, P; Ghinamo, G; Lingua, A M

    2015-01-01

    The advent of smartphones and tablets, means that we can constantly get information on our current geographical location. These devices include not only GPS/GNSS chipsets but also mass-market inertial platforms that can be used to plan activities, share locations on social networks, and also to perform positioning in indoor and outdoor scenarios. This paper shows the performance of smartphones and their inertial sensors in terms of gaining information about the user's current geographical locatio n considering an indoor navigation scenario. Tests were carried out to determine the accuracy and precision obtainable with internal and external sensors. In terms of the attitude and drift estimation with an updating interval equal to 1 s, 2D accuracies of about 15 cm were obtained with the images. Residual benefits were also obtained, however, for large intervals, e.g. 2 and 5 s, where the accuracies decreased to 50 cm and 2.2 m, respectively. PMID:26753121

  2. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  3. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  4. Introductory Course on Satellite Navigation

    ERIC Educational Resources Information Center

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  5. Application of Phase Smoothing Pseudo Range PPP/INS Tightly Coupled Technique in Improving the Results of Low Precision MEMS

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2015-12-01

    In land surveying and engineering surveying, we need to obtain high precision navigation results. However, due to the inertial device costs less than a introduction, commonly used low precision inertial navigation equipment with tightly coupled GPS / INS integrated to get high precision navigation results. Many studies have improved the accuracy of error by using the UKF and CKF filtering algorithm, but it is still using the traditional pseudo code directly, the improvement effect is not obvious, and the disturbance is large. In this study, the PPP /INSmodel is improved by using the carrier phase smoothing pseudo range algorithm. Experimental results show that based on phase smoothing pseudo range PPP/INS tight coupled method, the position precision and the velocity precision for of the measured data of higher accuracy of MEMS and GPS receiver can get to a decimeter level and centimeter level. This coupling method has higher accuracy, stronger anti disturbance and Have a better convergence than the traditional C/A code. Based on different phase smoothing epoch number combination the accuracy and smoothing effect is also different, the larger smooth epoch number is, the better treatment effect it has and The higher precision it has. For high precision measurement, the equipment cost is saved. It has a practical significance meaning in the measurement of outdoor ground.

  6. An improved robust hand-eye calibration for endoscopy navigation system

    NASA Astrophysics Data System (ADS)

    He, Wei; Kang, Kumsok; Li, Yanfang; Shi, Weili; Miao, Yu; He, Fei; Yan, Fei; Yang, Huamin; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2016-03-01

    Endoscopy is widely used in clinical application, and surgical navigation system is an extremely important way to enhance the safety of endoscopy. The key to improve the accuracy of the navigation system is to solve the positional relationship between camera and tracking marker precisely. The problem can be solved by the hand-eye calibration method based on dual quaternions. However, because of the tracking error and the limited motion of the endoscope, the sample motions may contain some incomplete motion samples. Those motions will cause the algorithm unstable and inaccurate. An advanced selection rule for sample motions is proposed in this paper to improve the stability and accuracy of the methods based on dual quaternion. By setting the motion filter to filter out the incomplete motion samples, finally, high precision and robust result is achieved. The experimental results show that the accuracy and stability of camera registration have been effectively improved by selecting sample motion data automatically.

  7. VINSIA: visual navigator for surgical information access.

    PubMed

    Luo, Lingyun; Rowbottom, James; Craker, John; Xu, Rong; Zhang, Guo-Qiang

    2013-07-01

    Information access at the point of care presents a different set of requirements than those for traditional search engines. Critical care in remote (e.g., battle field) and rural settings not only requires access to clinical guidelines and medical libraries with surgical precision but also with minimal user effort and time. Our development of a graphical, anatomy-driven navigator called Visual Navigator for Surgical Information Access (VINSIA) fulfills the goal for providing evidence-based clinical decision support, specifically in perioperative and critical care settings, to allow rapid and precise information access through a portable stand-alone system. It comes with a set of unique characteristics: (a) a high precision, interactive visual interface driven by human anatomy; (b) direct linkage of anatomical structures to associated content such as clinical guidelines, literature, and medical libraries; and (c) an administrative content management interface allowing only an accredited, expert-level curator to edit and update the clinical content to ensure accuracy and currency. We believe that the deployment of VINSIA will improve quality, safety, and evidence-based standardization of patient care.

  8. Accuracy analysis of the 2014-2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network

    NASA Astrophysics Data System (ADS)

    Mukul, Manas; Srivastava, Vinee; Mukul, Malay

    2016-07-01

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth Sciences without an estimation of their accuracy and reliability even though large outliers exist in them. The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has been recently released (2014-2015) outside North America. We present the first global assessment of the vertical accuracy of C-30 data using Ground Control Points (GCPs) from the International GNSS Service (IGS) Network of high-precision static fiducial stations that define the International Terrestrial Reference Frame (ITRF). Large outliers (height error ranging from -1285 to 2306 m) were present in the C-30 dataset and 14% of the data were removed to reduce the root mean square error (RMSE) of the dataset from ˜187 to 10.3 m which is close to the SRTM goal of an absolute vertical accuracy of RMSE ˜10 m. Globally, for outlier-filtered data from 287 GCPs, the error or difference between IGS and SRTM heights exhibited a non-normal distribution with a mean and standard error of 6.5 ± 0.5 m. Continent-wise, only Australia, North and South America complied with the SRTM goal. At stations where all the X- and C-Band SRTM data were present, the RMSE of the outlier-filtered C-30 data was 11.7 m. However, the RMSE of outlier-included dataset where C- and X-Band data were present was ˜233 m. The results suggest that the SRTM data must only be used after regional accuracy analysis and removal of outliers. If used raw, they may produce results that are statistically insignificant with RMSE in 100s of meters.

  9. Navigation Upgrades to the National Deep Submergence Facility Vehicles D.S.V. Alvin, Jason 2, and the DSL-120A

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Kinsey, J. C.; Yoerger, D. R.; Taylor, C. L.; Bowen, A. D.; Walden, B. B.; Fornari, D. J.

    2003-12-01

    We report on recently completed enhancements to the navigation systems employed on the 4500m submersible Alvin and the 6500m ROV Jason 2 and DSL-120A sonar system of the UNOLS National Deep Submergence Facility (NDSF) of the Woods Hole Oceanographic Institution (WHOI). Over the last two years we have significantly improved the accuracy and update rate of the six degree-of-freedom vehicle position and velocity navigation data available for these vehicles, thus improving the quantitative accuracy of acoustic surveys, optical surveys, and sampling operations. The navigation upgrades have also enabled improvements in the closed-loop dynamic positioning accuracy of the Jason 2 ROV, thus improving the vehicle tracking precision during survey and sampling operations. We have sought to employ more a uniform suite of navigation instruments, navigation data processing software systems, and data logging format standards for NDSF vehicles to improve the utility and ease-of-use of data by science users. Improved navigation instruments deployed on each of these vehicles in 2001 and 2002 include the following: (a) A 1200 KHz Bottom Lock Doppler Sonar (RDInstruments Inc.) providing three dimensional vehicle velocity information with respect to the ocean floor and the water column at an update rate of up to 10 Hz, providing a single-ping beam-velocity error standard deviation of 0.3% for a nominal advance velocity of 1 meter/sec. (b) A north-seeking fiber-optic gyroscope (IXSEA Inc.) providing true-north heading, pitch, and roll with a rated accuracy of 0.1 degree. Improved navigation data processing software systems deployed on these vehicles in 2001 and 2002 includes Dvlnav, an interactive navigation program developed at JHU for precision navigation of underwater vehicles and submersibles. DVLNAV employs a variety of sensors including bottom lock Doppler sonar, long baseline (LBL) acoustic navigation, gyro compasses, magnetic compasses, depth sensors, altimeters, and (when

  10. Mariner 9 navigation

    NASA Technical Reports Server (NTRS)

    Neil, W. J.; Jordan, J. F.; Zielenbach, J. W.; Wong, S. K.; Mitchell, R. T.; Webb, W. A.; Koskela, P. E.

    1973-01-01

    A final, comprehensive description of the navigation of Mariner 9-the first U.S. spacecraft to orbit another planet is provided. The Mariner 9 navigation function included not only precision flight path control but also pointing of the spacecraft's scientific instruments mounted on a two degree of freedom scan platform. To the extent appropriate, each section describes the perflight analyses on which the operational strategies and performance predictions were based. Inflight results are then discussed and compared with the preflight predictions. Postflight analyses, which were primarily concerned with developing a thorough understanding of unexpected in-flight results, are also presented.

  11. Improved precision and accuracy for high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometric exact mass measurement of small molecules from the simultaneous and controlled introduction of internal calibrants via a second electrospray nebuliser.

    PubMed

    Herniman, Julie M; Bristow, Tony W T; O'Connor, Gavin; Jarvis, Jackie; Langley, G John

    2004-01-01

    The use of a second electrospray nebuliser has proved to be highly successful for exact mass measurement during high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (HPLC/FTICRMS). Much improved accuracy and precision of mass measurement were afforded by the introduction of the internal calibration solution, thus overcoming space charge issues due to the lack of control over relative ion abundances of the species eluting from the HPLC column. Further, issues of suppression of ionisation, observed when using a T-piece method, are addressed and this simple system has significant benefits over other more elaborate approaches providing data that compares very favourably with these other approaches. The technique is robust, flexible and transferable and can be used in conjunction with HPLC, infusion or flow injection analysis (FIA) to provide constant internal calibration signals to allow routine, accurate and precise mass measurements to be recorded.

  12. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988--1990; Water-resources investigations report 93-4025

    SciTech Connect

    Boucher, M.S.

    1994-05-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the US Department of Energy`s Yucca Mountain Project, which is an evaluation of the area to determine its suit-ability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988--90.

  13. Precise Point Positioning Based on BDS and GPS Observations

    NASA Astrophysics Data System (ADS)

    Gao, ZhouZheng; Zhang, Hongping; Shen, Wenbin

    2014-05-01

    BeiDou Navigation Satellite System (BDS) has obtained the ability applying initial navigation and precise point services for the Asian-Pacific regions at the end of 2012 with the constellation of 5 Geostationary Earth Orbit (GEO), 5 Inclined Geosynchronous Orbit (IGSO) and 4 Medium Earth Orbit (MEO). Till 2020, it will consist with 5 GEO, 3 IGSO and 27 MEO, and apply global navigation service similar to GPS and GLONASS. As we known, GPS precise point positioning (PPP) is a powerful tool for crustal deformation monitoring, GPS meteorology, orbit determination of low earth orbit satellites, high accuracy kinematic positioning et al. However, it accuracy and convergence time are influenced by the quality of pseudo-range observations and the observing geometry between user and Global navigation satellites system (GNSS) satellites. Usually, it takes more than 30 minutes even hours to obtain centimeter level position accuracy for PPP while using GPS dual-frequency observations only. In recent years, many researches have been done to solve this problem. One of the approaches is smooth pseudo-range by carrier-phase observations to improve pseudo-range accuracy. By which can improve PPP initial position accuracy and shorten PPP convergence time. Another sachems is to change position dilution of precision (PDOP) with multi-GNSS observations. Now, BDS has the ability to service whole Asian-Pacific regions, which make it possible to use GPS and BDS for precise positioning. In addition, according to researches on GNSS PDOP distribution, BDS can improve PDOP obviously. Therefore, it necessary to do some researches on PPP performance using both GPS observations and BDS observations, especially in Asian-Pacific regions currently. In this paper, we focus on the influences of BDS to GPS PPP mainly in three terms including BDS PPP accuracy, PDOP improvement and convergence time of PPP based on GPS and BDS observations. Here, the GPS and BDS two-constellation data are collected from

  14. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  15. Accuracy and precision of reconstruction of complex refractive index in near-field single-distance propagation-based phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Gureyev, Timur; Mohammadi, Sara; Nesterets, Yakov; Dullin, Christian; Tromba, Giuliana

    2013-10-01

    We investigate the quantitative accuracy and noise sensitivity of reconstruction of the 3D distribution of complex refractive index, n(r)=1-δ(r)+iβ(r), in samples containing materials with different refractive indices using propagation-based phase-contrast computed tomography (PB-CT). Our present study is limited to the case of parallel-beam geometry with monochromatic synchrotron radiation, but can be readily extended to cone-beam CT and partially coherent polychromatic X-rays at least in the case of weakly absorbing samples. We demonstrate that, except for regions near the interfaces between distinct materials, the distribution of imaginary part of the refractive index, β(r), can be accurately reconstructed from a single projection image per view angle using phase retrieval based on the so-called homogeneous version of the Transport of Intensity equation (TIE-Hom) in combination with conventional CT reconstruction. In contrast, the accuracy of reconstruction of δ(r) depends strongly on the choice of the "regularization" parameter in TIE-Hom. We demonstrate by means of an instructive example that for some multi-material samples, a direct application of the TIE-Hom method in PB-CT produces qualitatively incorrect results for δ(r), which can be rectified either by collecting additional projection images at each view angle, or by utilising suitable a priori information about the sample. As a separate observation, we also show that, in agreement with previous reports, it is possible to significantly improve signal-to-noise ratio by increasing the sample-to-detector distance in combination with TIE-Hom phase retrieval in PB-CT compared to conventional ("contact") CT, with the maximum achievable gain of the order of 0.3δ /β. This can lead to improved image quality and/or reduction of the X-ray dose delivered to patients in medical imaging.

  16. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  17. Assessment of the OsteoMark-Navigation System for Oral and Maxillofacial Surgery

    PubMed Central

    Peacock, Zachary S.; Magill, John C.; Tricomi, Brad J.; Murphy, Brian A.; Nikonovskiy, Vladimir; Hata, Nobuhiko; Chauvin, Laurent; Troulis, Maria J.

    2015-01-01

    Purpose To assess the accuracy of a novel navigation system for maxillofacial surgery using human cadavers and a live minipig model. Methods We describe and test an electromagnetic tracking system (OsteoMark Navigation) that uses simple sensors to determine position and orientation of a hand held pencil-like marking device. The device can translate 3-dimensional computed tomographic data intraoperatively to allow the surgeon to localize and draw a proposed osteotomy or the margins of a tumor on the bone. The accuracy of OsteoMark-Navigation in locating and marking osteotomies and screw positions in human cadaver heads was assessed. In Group 1 (n=3, 6 sides), Osteomark-Navigation marked osteotomies and screw positions were compared to virtual treatment plans In Group 2 (n=3, 6 sides), marked osteotomies and screw positions for distraction osteogenesis devices were compared to those carried out using fabricated guide-stents. Three metrics were used to document precision and accuracy. In Group 3 (n=1), the system was tested in a standard operating room environment. Results For Group 1, the mean error between points was 0.7mm (horizontal) and 1.7mm (vertical). When compared to the posterior and inferior mandibular border the mean error was 1.2 and 1.7mm, respectively. For Group 2, the mean discrepancy between points marked by Osteomark-Navigation and the surgical guides was 1.9 mm (range 0-4.1 mm). The system maintained accuracy on a live minipig in a standard operating room environment. Conclusion Based on this research OsteoMark-Navigation is potentially a powerful tool for clinical use in maxillofacial surgery. It has accuracy and precision comparable to existing clinical applications. PMID:25865717

  18. The accuracy and precision of a micro computer tomography volumetric measurement technique for the analysis of in-vitro tested total disc replacements.

    PubMed

    Vicars, R; Fisher, J; Hall, R M

    2009-04-01

    Total disc replacements (TDRs) in the spine have been clinically successful in the short term, but there are concerns over long-term failure due to wear, as seen in other joint replacements. Simulators have been used to investigate the wear of TDRs, but only gravimetric measurements have been used to assess material loss. Micro computer tomography (microCT) has been used for volumetric measurement of explanted components but has yet to be used for in-vitro studies with the wear typically less than < 20 mm3 per 10(6) cycles. The aim of this study was to compare microCT volume measurements with gravimetric measurements and to assess whether microCT can quantify wear volumes of in-vitro tested TDRs. microCT measurements of TDR polyethylene cores were undertaken and the results compared with gravimetric assessments. The effects of repositioning, integration time, and scan resolution were investigated. The best volume measurement resolution was found to be +/- 3 mm3, at least three orders of magnitude greater than those determined for gravimetric measurements. In conclusion, the microCT measurement technique is suitable for quantifying in-vitro TDR polyethylene wear volumes and can provide qualitative data (e.g. wear location), and also further quantitative data (e.g. height loss), assisting comparisons with in-vivo and ex-vivo data. It is best used alongside gravimetric measurements to maintain the high level of precision that these measurements provide.

  19. Leaf Vein Length per Unit Area Is Not Intrinsically Dependent on Image Magnification: Avoiding Measurement Artifacts for Accuracy and Precision1[W][OPEN

    PubMed Central

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-01-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems. PMID:25096977

  20. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  1. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset 1998-2000 in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Schmidlin, F. J.; Oltmans, S. J.; McPeters, R. D.; Smit, H. G. J.

    2003-01-01

    A network of 12 southern hemisphere tropical and subtropical stations in the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 profiles of stratospheric and tropospheric ozone since 1998. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used with standard radiosondes for pressure, temperature and relative humidity measurements. The archived data are available at:http: //croc.gsfc.nasa.gov/shadoz. In Thompson et al., accuracies and imprecisions in the SHADOZ 1998- 2000 dataset were examined using ground-based instruments and the TOMS total ozone measurement (version 7) as references. Small variations in ozonesonde technique introduced possible biases from station-to-station. SHADOZ total ozone column amounts are now compared to version 8 TOMS; discrepancies between the two datasets are reduced 2\\% on average. An evaluation of ozone variations among the stations is made using the results of a series of chamber simulations of ozone launches (JOSIE-2000, Juelich Ozonesonde Intercomparison Experiment) in which a standard reference ozone instrument was employed with the various sonde techniques used in SHADOZ. A number of variations in SHADOZ ozone data are explained when differences in solution strength, data processing and instrument type (manufacturer) are taken into account.

  2. Precision positioning of earth orbiting remote sensing systems

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Yunck, T. P.; Wu, S. C.

    1987-01-01

    Decimeter tracking accuracy is sought for a number of precise earth sensing satellites to be flown in the 1990's. This accuracy can be achieved with techniques which use the Global Positioning System (GPS) in a differential mode. A precisely located global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite states. Three basic navigation approaches include classical dynamic, wholly nondynamic, and reduced dynamic or hybrid formulations. The first two are simply special cases of the third, which promises to deliver subdecimeter accuracy for dynamically unpredictable vehicles down to the lowest orbit altitudes. The potential of these techniques for tracking and gravity field recovery will be demonstrated on NASA's Topex satellite beginning in 1991. Applications to the Shuttle, Space Station, and dedicated remote sensing platforms are being pursued.

  3. Precision visual guidance for agricultural applicator aircraft

    NASA Astrophysics Data System (ADS)

    Hartt, Joseph R.; Bletzacker, Frank R.; Forgette, T. J.; Vetter, Alan A.

    1992-07-01

    The in-cockpit swath centerline identifier (SCI) for aerial applicators uses differentially corrected global positioning system (GPS) signals to determine precise ground track of an aircraft and provide guidance to the pilot for flying patterns for aerial application of materials such as pesticides, herbicides, and fertilizers. Cross track distance from the swath centerline is provided by a heads up light bar display while detailed navigation, position, and status information is provided on an alphanumeric display on a panel mounted console. This system provides straight line guidance when executing a swath and turn-in guidance when proceeding from one swath to the next. It provides a record of the swaths which were sprayed and logs all of the associated navigation and operational data, including time. In addition, it provides navigation information from base to the fields, between fields, and return. The SCI eliminates the need for flaggers while providing improved accuracy of application. Reduced exposure to liability and improved quality control results as the position, altitude, time, and spray status are logged for post flight analysis. The SCI has been used in commercial agricultural applications. Demonstrations of the SCI showed better precision than anticipated.

  4. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  5. Multi-GNSS real-time precise orbit/clock/UPD products and precise positioning service at GFZ

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Liu, Yang; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2016-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeters are still achievable in the horizontal components even with 40° elevation cutoff.

  6. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Stein, Holly J.; Morgan, John W.; Markey, Richard J.; Watanabe, Yasushi

    2014-04-01

    deposit geochronology. The timing and duration of mineralization from Re-Os dating of ore minerals is more precise than estimates from previously reported 40Ar/39Ar and K-Ar ages on alteration minerals. The Re-Os results suggest that the mineralization is temporally distinct from pre-mineral rhyolite porphyry (42.63 ± 0.28 Ma) and is immediately prior to or overlapping with post-mineral latite dike emplacement (41.16 ± 0.48 Ma). Based on the Re-Os and other geochronologic data, the Middle Eocene intrusive activity in the El Salvador district is divided into three pulses: (1) 44-42.5 Ma for weakly mineralized porphyry intrusions, (2) 41.8-41.2 Ma for intensely mineralized porphyry intrusions, and (3) ∼41 Ma for small latite dike intrusions without major porphyry stocks. The orientation of igneous dikes and porphyry stocks changed from NNE-SSW during the first pulse to WNW-ESE for the second and third pulses. This implies that the WNW-ESE striking stress changed from σ3 (minimum principal compressive stress) during the first pulse to σHmax (maximum principal compressional stress in a horizontal plane) during the second and third pulses. Therefore, the focus of intense porphyry Cu-Mo mineralization occurred during a transient geodynamic reconfiguration just before extinction of major intrusive activity in the region.

  7. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  8. Interplanetary navigation using a continental baseline large antenna arrays

    NASA Technical Reports Server (NTRS)

    Haeberle, Dennis W.; Spencer, David B.; Ely, Todd A.

    2004-01-01

    Navigation is a key component of interplanetary missions and must continue to be precise with the changing landscape of antenna design. Improvements for the Deep Space Network (DSN) may include the use of antenna arrays to simulate the power of a larger single antenna at much lower operating and construction costs. Therefore, it is necessary to test the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of delta one-way range measurements using a shorter baseline with more data collection then current systems use. With all other parameter equal, the longer the baseline, the better the accuracy for navigation making the number of data packets very important. This trade study compares baseline distances ranging from 1 to 1000km with an in use baseline, looking at a due east baseline, a due north baseline at 45 degrees East of North. The precision of the baseline systems can be found through a simulated created for this purpose using the Jet Propulsion Lab based Monte navigation and mission design tool. The simulation combines the delta one-way range measurements with two-range and two-way Doppler measurements and puts the measurements through a Kalman filter to determine an orbit solution. Noise is added along with initial errors to give the simulation realism. This study is an important step towards the assessment of the utility of arrays for navigational purposes. The preliminary results have showed a decrease in reliability as the baseline is shortened but the larger continental baselines show comparable results t that of the current Goldstone to Canberra.

  9. Fully autonomous navigation for the NASA cargo transfer vehicle

    NASA Technical Reports Server (NTRS)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  10. Electromagnetically navigated laparoscopic ultrasound.

    PubMed

    Wilheim, Dirk; Feussner, Hubertus; Schneider, Armin; Harms, Jens

    2003-01-01

    A three-dimensional (3D) representation of laparoscopic ultrasound examinations could be helpful in diagnostic and therapeutic laparoscopy, but has not yet been realised with flexible laparoscopic ultrasound probes. Therefore, an electromagnetic navigation system was integrated into the tip of a conventional laparoscopic ultrasound probe. Navigated 3D laparoscopic ultrasound was compared with the imaging data of 3D navigated transcutaneous ultrasound and 3D computed tomography (CT) scan. The 3D CT scan served as the "gold standard". Clinical applicability in standardized operating room (OR) settings, imaging quality, diagnostic potential, and accuracy in volumetric assessment of various well-defined hepatic lesions were analyzed. Navigated 3D laparoscopic ultrasound facilitates exact definition of tumor location and margins. As compared with the "gold standard" of the 3D CT scans, 3D laparoscopic ultrasound has a tendency to underestimate the volume of the region of interest (ROI) (Delta3.1%). A comparison of 3D laparoscopy and transcutaneous 3D ultrasonography demonstrated clearly that the former is more accurate for volumetric assessment of the ROI and facilitates a more detailed display of the lesions. 3D laparoscopic ultrasound imaging with a navigated probe is technically feasible. The technique facilitates detailed ultrasound evaluation of laparoscopic procedures that involve visual, in-depth, and volumetric perception of complex liver pathologies. Navigated 3D laparoscopic ultrasound may have the potential to promote the practical role of laparoscopic ultrasonography, and become a valuable tool for local ablative therapy. In this article, our clinical experiences with a certified prototype of a 3D laparoscopic ultrasound probe, as well as its in vitro and in vivo evaluation, is reported.

  11. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  12. Acceptability, Precision and Accuracy of 3D Photonic Scanning for Measurement of Body Shape in a Multi-Ethnic Sample of Children Aged 5-11 Years: The SLIC Study

    PubMed Central

    Wells, Jonathan C. K.; Stocks, Janet; Bonner, Rachel; Raywood, Emma; Legg, Sarah; Lee, Simon; Treleaven, Philip; Lum, Sooky

    2015-01-01

    Background Information on body size and shape is used to interpret many aspects of physiology, including nutritional status, cardio-metabolic risk and lung function. Such data have traditionally been obtained through manual anthropometry, which becomes time-consuming when many measurements are required. 3D photonic scanning (3D-PS) of body surface topography represents an alternative digital technique, previously applied successfully in large studies of adults. The acceptability, precision and accuracy of 3D-PS in young children have not been assessed. Methods We attempted to obtain data on girth, width and depth of the chest and waist, and girth of the knee and calf, manually and by 3D-PS in a multi-ethnic sample of 1484 children aged 5–11 years. The rate of 3D-PS success, and reasons for failure, were documented. Precision and accuracy of 3D-PS were assessed relative to manual measurements using the methods of Bland and Altman. Results Manual measurements were successful in all cases. Although 97.4% of children agreed to undergo 3D-PS, successful scans were only obtained in 70.7% of these. Unsuccessful scans were primarily due to body movement, or inability of the software to extract shape outputs. The odds of scan failure, and the underlying reason, differed by age, size and ethnicity. 3D-PS measurements tended to be greater than those obtained manually (p<0.05), however ranking consistency was high (r2>0.90 for most outcomes). Conclusions 3D-PS is acceptable in children aged ≥5 years, though with current hardware/software, and body movement artefacts, approximately one third of scans may be unsuccessful. The technique had poorer technical success than manual measurements, and had poorer precision when the measurements were viable. Compared to manual measurements, 3D-PS showed modest average biases but acceptable limits of agreement for large surveys, and little evidence that bias varied substantially with size. Most of the issues we identified could be

  13. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  14. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  15. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    PubMed

    Zhao, Huijie; Xu, Wujian

    2016-01-01

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.

  16. A Bionic Polarization Navigation Sensor and Its Calibration Method

    PubMed Central

    Zhao, Huijie; Xu, Wujian

    2016-01-01

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects’ polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor’s signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation. PMID:27527171

  17. Navigation of the EPOXI Spacecraft to Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Abrahamson, Matt; Chesley, Steven; Chung, Min-Kun; Halsell, Allen; Haw, Robert; Helfrich, Cliff; Jefferson, David; Kennedy, Brian; McElrath, Tim; Owen, William; Rush, Brian; Smith, Jonathon; Wang, Tseng-Chan; Yen, Chen-Wan

    2011-01-01

    On November 4, 2010, the EPOXI spacecraft flew by the comet Hartley 2, marking the fourth time that a NASA spacecraft successfully captured high resolution images of a cometary nucleus. EPOXI is the extended mission of the Deep Impact mission, which delivered an impactor on comet Tempel-1 on July 4, 2005. EPOXI officially started in September 2007 and eventually took over 3 years of flight time and had 3 Earth gravity assists to achieve the proper encounter conditions. In the process, the mission was redesigned to accommodate a new comet as the target and changes in the trajectory to achieve better imaging conditions at encounter. Challenges in navigation of the spacecraft included precision targeting of several Earth flybys and the comet encounter, uncertainties in determining the ephemeris of the comet relative to the spacecraft, and the high accuracy trajectory knowledge needed to image the comet during the encounter. This paper presents an overview of the navigation process used for the mission.

  18. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    PubMed

    Zhao, Huijie; Xu, Wujian

    2016-01-01

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation. PMID:27527171

  19. Viking navigation

    NASA Technical Reports Server (NTRS)

    Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.

    1979-01-01

    A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.

  20. A New Centimeter-Level Real-Time Global Navigation and Positioning Capability with GPS

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz

    2001-01-01

    NASA/JPL has developed a new, precise, global, GPS-based capability for real-time terrestrial and space platform navigation. It has been demonstrated on Earth's surface and is 10 times more accurate than other real-time GPS-based systems. The new system poses certain advantages for Earth science remote sensing, including: the onboard generation of science data products in real-time, sensor control and reduction of data transmission bandwidth, improved environmental forecasting, autonomous and intelligent platform control, operations cost savings, and technology transfer and commercial partnership opportunities. The system's measurement capabilities and applications, demonstrated orbit accuracies, and precision LEO and spacecraft positioning and timing are highlighted.

  1. Comparative Analysis of the Equivital EQ02 Lifemonitor with Holter Ambulatory ECG Device for Continuous Measurement of ECG, Heart Rate, and Heart Rate Variability: A Validation Study for Precision and Accuracy

    PubMed Central

    Akintola, Abimbola A.; van de Pol, Vera; Bimmel, Daniel; Maan, Arie C.; van Heemst, Diana

    2016-01-01

    Background: The Equivital (EQ02) is a multi-parameter telemetric device offering both real-time and/or retrospective, synchronized monitoring of ECG, HR, and HRV, respiration, activity, and temperature. Unlike the Holter, which is the gold standard for continuous ECG measurement, EQO2 continuously monitors ECG via electrodes interwoven in the textile of a wearable belt. Objective: To compare EQ02 with the Holter for continuous home measurement of ECG, heart rate (HR), and heart rate variability (HRV). Methods: Eighteen healthy participants wore, simultaneously for 24 h, the Holter and EQ02 monitors. Per participant, averaged HR, and HRV per 5 min from the two devices were compared using Pearson correlation, paired T-test, and Bland-Altman analyses. Accuracy and precision metrics included mean absolute relative difference (MARD). Results: Artifact content of EQ02 data varied widely between (range 1.93–56.45%) and within (range 0.75–9.61%) participants. Comparing the EQ02 to the Holter, the Pearson correlations were respectively 0.724, 0.955, and 0.997 for datasets containing all data and data with < 50 or < 20% artifacts respectively. For datasets containing respectively all data, data with < 50, or < 20% artifacts, bias estimated by Bland-Altman analysis was −2.8, −1.0, and −0.8 beats per minute and 24 h MARD was 7.08, 3.01, and 1.5. After selecting a 3-h stretch of data containing 1.15% artifacts, Pearson correlation was 0.786 for HRV measured as standard deviation of NN intervals (SDNN). Conclusions: Although the EQ02 can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact content. This is a limitation for clinical use in individual patients. However, the advantages of the EQ02 (ability to simultaneously monitor several physiologic parameters) may outweigh its disadvantages (higher artifact load) for research purposes and/ or for home monitoring in larger groups of study participants. Further studies can be aimed

  2. Using measurements of muscle color, pH, and electrical impedance to augment the current USDA beef quality grading standards and improve the accuracy and precision of sorting carcasses into palatability groups.

    PubMed

    Wulf, D M; Page, J K

    2000-10-01

    This research was conducted to determine whether objective measures of muscle color, muscle pH, and(or) electrical impedance are useful in segregating palatable beef from unpalatable beef, and to determine whether the current USDA quality grading standards for beef carcasses could be revised to improve their effectiveness at distinguishing palatable from unpalatable beef. One hundred beef carcasses were selected from packing plants in Texas, Illinois, and Ohio to represent the full range of muscle color observed in the U.S. beef carcass population. Steaks from these 100 carcasses were used to determine shear force on eight cooked beef muscles and taste panel ratings on three cooked beef muscles. It was discovered that the darkest-colored 20 to 25% of the beef carcasses sampled were less palatable and considerably less consistent than the other 75 to 80% sampled. Marbling score, by itself, explained 12% of the variation in beef palatability; hump height, by itself, explained 8% of the variation in beef palatability; measures of muscle color or pH, by themselves, explained 15 to 23% of the variation in beef palatability. When combined together, marbling score, hump height, and some measure of muscle color or pH explained 36 to 46% of the variation in beef palatability. Alternative quality grading systems were proposed to improve the accuracy and precision of sorting carcasses into palatability groups. The two proposed grading systems decreased palatability variation by 29% and 39%, respectively, within the Choice grade and decreased palatability variation by 37% and 12%, respectively, within the Select grade, when compared with current USDA standards. The percentage of unpalatable Choice carcasses was reduced from 14% under the current USDA grading standards to 4% and 1%, respectively, for the two proposed systems. The percentage of unpalatable Select carcasses was reduced from 36% under the current USDA standards to 7% and 29%, respectively, for the proposed systems

  3. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  4. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  5. Nonlinear trajectory navigation

    NASA Astrophysics Data System (ADS)

    Park, Sang H.

    Trajectory navigation entails the solution of many different problems that arise due to uncertain knowledge of the spacecraft state, including orbit prediction, correction maneuver design, and trajectory estimation. In practice, these problems are usually solved based on an assumption that linear dynamical models sufficiently approximate the local trajectory dynamics and their associated statistics. However, astrodynamics problems are nonlinear in general and linear spacecraft dynamics models can fail to characterize the true trajectory dynamics when the system is subject to a highly unstable environment or when mapped over a long time period. This limits the performance of traditional navigation techniques and can make it difficult to perform precision analysis or robust navigation. This dissertation presents an alternate method for spacecraft trajectory navigation based on a nonlinear local trajectory model and their statistics in an analytic framework. For a given reference trajectory, we first solve for the higher order Taylor series terms that describe the localized nonlinear motion and develop an analytic expression for the relative solution flow. We then discuss the nonlinear dynamical mapping of a spacecraft's probability density function by solving the Fokker-Planck equation for a deterministic system. From this result we derive an analytic method for orbit uncertainty propagation which can replicate Monte-Carlo simulations with the benefit of added flexibility in initial orbit statistics. Using this approach, we introduce the concept of the statistically correct trajectory where we directly incorporate statistical information about an orbit state into the trajectory design process. As an extension of this concept, we define a nonlinear statistical targeting method where we solve for a correction maneuver which intercepts the desired target on average. Then we apply our results to a Bayesian filtering problem to obtain a general filtering algorithm for

  6. Study of precise positioning at L-band using communications satellites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The L-band positioning experiment is reported which encompassed experiment design, experimentation, and data reduction and analysis. In the experiment the ATS-5 synchronous satellite L-band transponder was used in conjunction with the modified ALPHA 2 navigation receivers to demonstrate the technical capability of precision position fixing for oceanographic purposes. The feasibility of using relative ranging techniques implemented by two identical receiving systems, properly calibrated, to determine a line of position accurately on the surface of the earth was shown. The program demonstrated the level of resolution, repeatibility, precision, and accuracy of existing modest-cost effective navigation equipment. The experiment configuration and data reduction techniques were developed in parallel with the hardware modification tasks. Test results verify the ability of a satellite-based system to satisfy the requirements of precision position fixing.

  7. Autonomous navigation using lunar beacons

    NASA Technical Reports Server (NTRS)

    Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.

    1983-01-01

    The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.

  8. Study on UKF based federal integrated navigation for high dynamic aviation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie

    2011-08-01

    High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is

  9. Relative Accuracy Evaluation

    PubMed Central

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  10. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  11. Recent advances in surgical planning & navigation for tumor biopsy and resection.

    PubMed

    Wang, Defeng; Ma, Diya; Wong, Matthew Lun; Wáng, Yì Xiáng J

    2015-10-01

    This paper highlights recent advancements in imaging technologies for surgical planning and navigation in tumor biopsy and resection which need high-precision in detection and characterization of lesion margin in preoperative planning and intraoperative navigation. Multimodality image-guided surgery platforms brought great benefits in surgical planning and operation accuracy via registration of various data sets with information on morphology [X-ray, magnetic resonance (MR), computed tomography (CT)], function connectivity [functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), rest-status fMRI], or molecular activity [positron emission tomography (PET)]. These image-guided platforms provide a correspondence between the pre-operative surgical planning and intra-operative procedure. We envisage that the combination of advanced multimodal imaging, three-dimensional (3D) printing, and cloud computing will play increasingly important roles in planning and navigation of surgery for tumor biopsy and resection in the coming years. PMID:26682133

  12. Motion states extraction with optical flow for rat-robot automatic navigation.

    PubMed

    Zhang, Xinlu; Sun, Chao; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    The real-time acquisition of precise motion states is significant and difficult for bio-robot automatic navigation. In this paper, we propose a real-time video-tracking algorithm to extract motion states of rat-robots in complex environment using optical flow. The rat-robot's motion states, including location, speed and motion trend, are acquired accurately in real time. Compared with the traditional methods based on single frame image, our algorithm using consecutive frames provides more exact and rich motion information for the automatic navigation of bio-robots. The video of the manual navigation experiments on rat-robots in eight-arm maze is applied to test this algorithm. The average computation time is 25.76 ms which is less than the speed of image acquisition. The results show that our method could extract the motion states with good performance of accuracy and time consumption.

  13. Recent advances in surgical planning & navigation for tumor biopsy and resection

    PubMed Central

    Ma, Diya; Wong, Matthew Lun; Wáng, Yì Xiáng J.

    2015-01-01

    This paper highlights recent advancements in imaging technologies for surgical planning and navigation in tumor biopsy and resection which need high-precision in detection and characterization of lesion margin in preoperative planning and intraoperative navigation. Multimodality image-guided surgery platforms brought great benefits in surgical planning and operation accuracy via registration of various data sets with information on morphology [X-ray, magnetic resonance (MR), computed tomography (CT)], function connectivity [functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), rest-status fMRI], or molecular activity [positron emission tomography (PET)]. These image-guided platforms provide a correspondence between the pre-operative surgical planning and intra-operative procedure. We envisage that the combination of advanced multimodal imaging, three-dimensional (3D) printing, and cloud computing will play increasingly important roles in planning and navigation of surgery for tumor biopsy and resection in the coming years. PMID:26682133

  14. Compact Atomic Magnetometer for Global Navigation (NAV-CAM)

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael

    2014-05-01

    Northrop Grumman Navigation Systems Division is developing an atom-based magnetometer technology that has the potential for providing a global position reference independent of GPS. The NAV-CAM sensor is a direct outgrowth of the Nuclear Magnetic Resonance Gyro under development by the same technical team. It will be the only known magnetic field sensor capable of providing all 3 axes of magnetic vector direction and magnitude simultaneously with a whole-field scalar measurement, all within a single multi-axis sensing element measuring 4mm cube or smaller, essentially eliminating many of the problems encountered when using physically separate sensors or sensing elements. According to information presented by Ariyur et al. at the 2010 American Control Conference [1], the anticipated accuracy of 10 pico-Tesla (pT) and precision of <0.5 pT of the NAV-CAM sensor will enable magnetic determination of position with 20 meter accuracy and 1 meter resolution.

  15. Formation design and relative navigation in high Earth orbits

    NASA Astrophysics Data System (ADS)

    Lane, Christopher Morgan

    This dissertation focuses on three key elements of precision satellite formation flying: formation design; relative navigation; and sensor and measurement modeling. Formation flying in high Earth orbit (HEO) is complicated by the difficulty of accurately modeling relative dynamics in highly eccentric orbits and the sparse nature of tracking data at high altitudes. This research develops a formation design tool and extended Kalman filter that mitigate these factors by representing the relative motion in Keplerian element space rather than conventional rectangular position and velocity coordinates and presents the measurement models and preliminary data generation techniques necessary for processing reflected GPS and reflected crosslink observations in a relative navigation filter. Geometrical methods for formation design based on simple relative motion models originally intended for rendezvous in low Earth orbit (LEO) have been previously developed and used to specify desired relative motions in near circular orbits. A comparable set of geometrical relationships for formations in eccentric orbits are developed here. This approach offers valuable insight into the relative motion and allows for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separations, or a particular geometric shape. The expressions formulate the relative motion in terms of a constant set of Keplerian element differences and are valid for arbitrary eccentricities. The use of these relationships to investigate formation designs and their evolution in time is demonstrated. In addition, the long-term effects of unmodeled perturbations on the desired formation geometry are shown in several examples. Formation flying in HEO relies on accurate relative navigation information for precise formation control and accurate interpretation of science data. An extended Kalman filter for relative navigation in HEO is

  16. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  17. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  18. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  19. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    SciTech Connect

    Zhang, D; Wang, W; Jiang, B; Fu, D

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  20. Research on aided navigation based on terrain elevation matching and simulation

    NASA Astrophysics Data System (ADS)

    He, Yanping; Liu, Xinxue; Cai, Yanping; Zhu, Yu

    2016-01-01

    The matching function of terrain-aided navigation is not only related to the algorithm, also associated with the terrain characteristics of matching area. Aiming at terrain matching area selection and matching algorithm of the terrain height matching system, the method of terrain information entropy is put forward on the basis of statistical characteristics of the terrain roughness, signal-to-noise ratio, and then COR algorithm, MAD algorithm, MSD algorithm is adopted for real-time map and reference map matching, finally shows the simulation comparison of three kinds of matching algorithm. Result of simulation shows that among the index of matching accuracy and speed of three kinds of algorithm, COR algorithm possess fastest calculation speed and lowest precision, matching accuracy of MSD is slightly higher than MAD algorithm and calculation speed of MSD is placed in the middle, and the simulation results provide selection basis for terrain-aided inertial navigation.

  1. Vision-Based Navigation Around Small Bodies

    NASA Astrophysics Data System (ADS)

    Kicman, Pawel; Lisowski, Jakub; Bidaux-Sokolowski, Ambroise

    The paper is focused on the vision-based navigation around small bodies, starting with general overview of methods used in space navigation. The mission scenario is based on the latest guidelines for the ESA's Phobos Sample Return mission (until recently known as Phootprint) and the focus of the presented research is placed on the body relative navigation methods that are applicable for use around asteroids and small moons. In particular, detailed analysis of absolute navigation with reference to the body surface is performed. The results section contains analysis of the positioning accuracy achieved by the presented algorithms on a set of images generated using PANGU software.

  2. Space Shuttle Orbiter entry through landing navigation

    NASA Technical Reports Server (NTRS)

    Ewell, J. J., Jr.

    1982-01-01

    The Space Shuttle Orbiter navigation system must be capable of determining its position and velocity throughout a variety of operational regimes. The design and operation of the entry through landing navigation system is described as it operates during a nominal end of mission from the orbital coasting phase throughout atmospheric flight and landing. Design and operation of the Kalman filter is described. Stabilization of the altitude channel prior to acquisition of external measurement data is described. Utilization of the Tactical Air Navigation (TACAN), barometric altimeter, and Microwave Scan Beam Landing System external measurement data is described. A comparison is made between predicted performance and the navigation accuracy observed during flight.

  3. Indoor inertial navigation application for smartphones with Android

    NASA Astrophysics Data System (ADS)

    Kamiński, Ł.; Tarapata, G.

    2015-09-01

    Inertial navigation is widely used by the military, in logistics and sailing. In mobile devices, inertial sensors are mostly used as a support for GPS and Wi-Fi-based navigation systems. Inertial-based navigation might prove useful on mobile devices running Android OS. At present, in spite of the accelerometer sensor's precision having been greatly improved, as well as the devices' computing power continuously rising, inertial navigation's precision still suffers. For smartphones, the key solution seems to be the usage of sensor fusion and signal smart filtering, both discussed in this paper. The paper also describes implementation of inertial navigation in Android devices, their analysis as well as test results.

  4. Application of AFINCH as a Tool for Evaluating the Effects of Streamflow-Gaging-Network Size and Composition on the Accuracy and Precision of Streamflow Estimates at Ungaged Locations in the Southeast Lake Michigan Hydrologic Subregion

    USGS Publications Warehouse

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations. Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971-2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages). Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the size

  5. Analysis of Ares 1 Ascent Navigation Options

    NASA Technical Reports Server (NTRS)

    Norris, Lee; Tao, Yee-Chee; Hall, Robert; Chuang, Jason; Whorton, Mark

    2008-01-01

    The paper documents a collaborative analysis of ascent Navigation options for the Ares 1 launch vehicle by the NASA Marshall Space Flight Center (MSFC) and the C. S. Draper Laboratory. The objective of the work was the development of a Navigation concept and supporting requirements which meet the Ares 1 accuracy specification in a manner which is straightforward, reliable, and cost effective. Six primary Navigation architectures were considered. In each case analysis was performed to determine under what conditions the required accuracy at second stage cutoff could be achieved. Those architectures which met the accuracy requirements were then assessed in terms of cost, complexity, and reliability to determine a baseline Navigation approach and the primary supporting requirements.

  6. Vision assisted aircraft lateral navigation

    NASA Astrophysics Data System (ADS)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  7. Novel navigation sensor for autonomous guide vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Wenwei; Zhuang, Bao Hua; Zhang, YanXin

    2000-09-01

    We describe a novel navigation sensor used for real-time navigation in which a position-sensitive detector is used. According to the features of the position-sensitive detector, the special floor mark stuck on the predefined path is developed. In addition, the formulas for the centroid position of the image of incident laser line on the position-sensitive detector, which is determined by the relative position between the floor mark and the navigation sensor, are derived. The navigation sensor, which can obtain proper navigation accuracy and controlling signal, navigates the autonomous guide vehicle running on the predefined path. It is suitable for application in autonomous guide vehicles and other automatic instruments. The experimental results are given.

  8. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  9. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  10. Modelling group navigation: transitive social structures improve navigational performance

    PubMed Central

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-01-01

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements. PMID:26063820

  11. NAVIGATION IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    da Mota e Albuquerque, Roberto Freire

    2015-01-01

    Navigation was the most significant advance in instrumentation for total knee arthroplasty over the last decade. It provides surgeons with a precision tool for carrying out surgery, with the possibility of intraoperative simulation and objective control over various anatomical and surgical parameters and references. Since the first systems, which were basically used to control the alignment of bone cutting referenced to the mechanical axis of the lower limb, many other surgical steps have been incorporated, such as component rotation, ligament balancing and arranging the symmetry of flexion and extension spaces, among others. Its efficacy as a precision tool with an effective capacity for promoting better alignment of the lower-limb axis has been widely proven in the literature, but the real value of optimized alignment and the impact of navigation on clinical results and the longevity of arthroplasty have yet to be established. PMID:27026979

  12. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    NASA Astrophysics Data System (ADS)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  13. Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.

  14. Mars-Approach Navigation Using In Situ Orbiters

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney; Ely, Todd; Lightsey, E. Glenn

    2007-01-01

    A document discusses the continuing development of a navigation system that would enable a spacecraft to approach Mars on a trajectory precise enough to enable the spacecraft to land within 1 km of a specified location on the Martian surface. This degree of accuracy would represent an order-of-magnitude improvement over that now obtained in radiometric tracking by use of the Deep Space Network. The navigation system would be implemented largely in software running in digital processors in the Electra transceiver, the Mars Network s standard radio transceiver, that would be in both the approaching spacecraft and Mars Network orbiter. The Mars Network is an ad hoc constellation of existing and future Mars science orbiters and dedicated telecommunication orbiters that has been established as a communication and navigation infrastructure to support the exploration of Mars. The software would exploit the sensory and data-processing capabilities of the Electra transceivers to gather Doppler-shift and other radiometric tracking data and process those data into trajectories data that would be accurate to within 0.3 km at the point of entry into the Martian atmosphere (as needed to land within 1 km of a target surface location).

  15. Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.

    PubMed

    Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H

    2001-11-01

    Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.

  16. GPS and Glonass Combined Static Precise Point Positioning (ppp)

    NASA Astrophysics Data System (ADS)

    Pandey, D.; Dwivedi, R.; Dikshit, O.; Singh, A. K.

    2016-06-01

    With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment gLAB 2.2.7 as well as magicGNSS software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.

  17. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Lian, Xiaofeng; Navarro-Ramirez, Rodrigo; Berlin, Connor; Jada, Ajit; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. "Total navigation" (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement.

  18. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    NASA Astrophysics Data System (ADS)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  19. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Lian, Xiaofeng; Navarro-Ramirez, Rodrigo; Berlin, Connor; Jada, Ajit; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. "Total navigation" (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  20. Optical 3D laser measurement system for navigation of autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  1. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  2. Initial Results of an Acetabular Center Axis Registration Technique in Navigated Hip Arthroplasty with Deformed Acetabular Rims

    PubMed Central

    Wada, Hiroshi; Mishima, Hajime; Yoshizawa, Tomohiro; Sugaya, Hisashi; Nishino, Tomofumi; Yamazaki, Masashi

    2016-01-01

    Background In cementless total hip arthroplasty, imageless computer-assisted navigation is usually used to register the anterior pelvic plane (APP). The accuracy of this method is influenced by the subcutaneous tissues overlying the registration landmarks. On the other hand, the acetabular center axis (ACA) is determined from the acetabular rim. Precise registration of the ACA is possible because of direct palpation using a pointer. Imageless navigation using the ACA usually targets patients with normal acetabular morphology. The aim of this study was to investigate the accuracy of imageless navigation using the ACA instead of the APP in patients with normal or deformed acetabular rims. Methods The intraoperative cup position was compared with that obtained from the postoperative computed tomography (CT) images in 18 cases. Results The inclination angle derived from the navigation system was 3.4 ± 5.3 degrees smaller and the anteversion angle was 1.4 ± 3.1 degrees larger than those derived from the CT images. Conclusion The inclination cup angle of the navigation system was significantly inferior to the true value, particularly in cases with large anterior osteophytes. PMID:27073586

  3. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  4. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections.

    PubMed

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  5. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  6. Optical Navigation for the EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Rush, Brian P.; Owen, William M. , Jr.; Bhaskaran, Shyam; Synnott, Stephen P.

    2011-01-01

    The Deep Impact spacecraft flew by comet Hartley 2 on November 4, 2010 as part of its extended mission called EPOXI. Successful navigation depended critically on the quality and timing of optical navigation data processing, since pictures of the comet provided the most precise comet-relative position of the spacecraft. This paper describes the planning, including the picture timing and pointing; the methods used to determine the center of the comet image in each picture; and the optical navigation results, which provided the necessary information to allow the cameras to accurately target the comet for science imaging at encounter.

  7. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  8. Integration of Omega and satellite navigation systems

    NASA Astrophysics Data System (ADS)

    Schlachta, Henry B.

    An extensive series of laboratory tests and flight trials has established that the hybrid Omega/VLF/GPS system effectively applies GPS to the enhancement of Omega with a cost-effective operator installation. The accuracy enhancement thus achieved also increases the reliability of navigation and furnishes aviation fuel savings superior to those of Omega, as a result of reduced flight-path wavering. The prospective GPS/GLONASS navigation system currently undergoing definition will be the first certifiable as a sole means on navigation; the Omega/VLF/GPS hybrid can serve as a transitional system.

  9. Conic state extrapolation. [computer program for space shuttle navigation and guidance requirements

    NASA Technical Reports Server (NTRS)

    Shepperd, S. W.; Robertson, W. M.

    1973-01-01

    The Conic State Extrapolation Routine provides the capability to conically extrapolate any spacecraft inertial state vector either backwards or forwards as a function of time or as a function of transfer angle. It is merely the coded form of two versions of the solution of the two-body differential equations of motion of the spacecraft center of mass. Because of its relatively fast computation speed and moderate accuracy, it serves as a preliminary navigation tool and as a method of obtaining quick solutions for targeting and guidance functions. More accurate (but slower) results are provided by the Precision State Extrapolation Routine.

  10. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    SciTech Connect

    Amstutz, Christoph A.; Bechrakis, Nikolaos E.; Foerster, Michael H.; Heufelder, Jens; Kowal, Jens H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial position of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.

  11. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  12. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  13. One high-accuracy camera calibration algorithm based on computer vision images

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    Camera calibration is the first step of computer vision and one of the most active research fields nowadays. In order to improve the measurement precision, the internal parameters of the camera should be accurately calibrated. So one high-accuracy camera calibration algorithm is proposed based on the images of planar targets or tridimensional targets. By using the algorithm, the internal parameters of the camera are calibrated based on the existing planar target at the vision-based navigation experiment. The experimental results show that the accuracy of the proposed algorithm is obviously improved compared with the conventional linear algorithm, Tsai general algorithm, and Zhang Zhengyou calibration algorithm. The algorithm proposed by the article can satisfy the need of computer vision and provide reference for precise measurement of the relative position and attitude.

  14. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  15. Stardust Navigation Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  16. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  17. GPS vertical axis performance enhancement for helicopter precision landing approach

    NASA Technical Reports Server (NTRS)

    Denaro, Robert P.; Beser, Jacques

    1986-01-01

    Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.

  18. New multi-station and multi-decadal trend data on precipitable water. Recipe to match FTIR retrievals from NDACC long-time records to radio sondes within 1 mm accuracy/precision

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Borsdorff, T.; Rettinger, M.; Camy-Peyret, C.; Demoulin, P.; Duchatelet, P.; Mahieu, E.

    2009-04-01

    We present an original optimum strategy for retrieval of precipitable water from routine ground-based mid-infrared FTS measurements performed at a number globally distributed stations within the NDACC network. The strategy utilizes FTIR retrievals which are set in a way to match standard radio sonde operations. Thereby, an unprecedented accuracy and precision for measurements of precipitable water can be demonstrated: the correlation between Zugspitze FTIR water vapor columns from a 3 months measurement campaign with total columns derived from coincident radio sondes shows a regression coefficient of R = 0.988, a bias of 0.05 mm, a standard deviation of 0.28 mm, an intercept of 0.01 mm, and a slope of 1.01. This appears to be even better than what can be achieved with state-of-the-art micro wave techniques, see e.g., Morland et al. (2006, Fig. 9 therein). Our approach is based upon a careful selection of spectral micro windows, comprising a set of both weak and strong water vapor absorption lines between 839.4 - 840.6 cm-1, 849.0 - 850.2 cm-1, and 852.0 - 853.1 cm-1, which is not contaminated by interfering absorptions of any other trace gases. From existing spectroscopic line lists, a careful selection of the best available parameter set was performed, leading to nearly perfect spectral fits without significant forward model parameter errors. To set up the FTIR water vapor profile inversion, a set of FTIR measurements and coincident radio sondes has been utilized. To eliminate/minimize mismatch in time and space, the Tobin best estimate of the state of the atmosphere principle has been applied to the radio sondes. This concept uses pairs of radio sondes launched with a 1-hour separation, and derives the gradient from the two radio sonde measurements, in order to construct a virtual PTU profile for a certain time and location. Coincident FTIR measurements of water vapor columns (two hour mean values) have then been matched to the water columns obtained by

  19. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  20. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  1. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  2. Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Bartel, Celia; Kaharkar, Anish; Shaid, Tesheen

    2012-04-01

    (VBN/GPS/IMU) shows that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/GPS/IMU/ADM) shows promising results since the achieved attitude accuracy is higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there is a need for a frequent re-initialisation of the ADM data module, which is strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed. Finally, the output provided by the VBN and integrated navigation sensor systems is used to design a flight control system using a hybrid Fuzzy Logic and Proportional-Integral-Derivative (PID) controller for the Aerosonde UAV.

  3. Microcomputers and astronomical navigation.

    NASA Astrophysics Data System (ADS)

    Robin-Jouan, Y.

    1996-04-01

    Experienced navigators remember ancient astronomical navigation and its limitations. Using microcomputers in small packages and selecting up-to-date efficient methods will overcome many of these limitations. Both features lead to focus on observations, and encourage an increase in their numbers. With no intention of competing with satellite navigation, sextant navigation in the open sea can then be accessed again by anybody. It can be considered for demonstrative use or as a complement to the GPS.

  4. Interoperability of satellite-based augmentation systems for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  5. Using wide area differential GPS to improve total system error for precision flight operations

    NASA Astrophysics Data System (ADS)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  6. GPS/INS generalized evaluation tool (GIGET) for the design and testing of integrated navigation systems

    NASA Astrophysics Data System (ADS)

    Gautier, Jennifer Denise

    GIGET, the GPS/INS Generalized Evaluation Tool, experimentally tests, evaluates, and compares navigation systems that combine the Global Positioning System (GPS) with Inertial Navigation Systems (INS). GPS is a precise and reliable navigation aid but can be susceptible to interference, multi-path, or other outages. An INS is very accurate over short periods, but its errors drift unbounded over time. Blending GPS with INS can remedy the performance issues of both. However, there are many types of integration methods, and sensors vary greatly, from the complex and expensive, to the simple and inexpensive. It is difficult to determine the best combination for any desired application; most of the integrated systems built to date have been point designs for very specific applications. GIGET aids in the selection of sensor combinations for any general application or set of requirements; hence, GIGET is the generalized way to evaluate the performance of integrated systems. GIGET is a combination of easily re-configurable hardware and analysis tools that can provide real-time comparisons of multiple integrated navigation systems. It includes a unique, multi-antenna GPS receiver and a tactical grade inertial measurement unit. GIGET is quickly outfitted onto a variety of vehicle platforms to experimentally test and compare navigation performance. In side-by-side experiments, GIGET compares loosely coupled and tightly coupled integrated navigation schemes blending navigation, tactical, or automotive grade inertial sensors with GPS. These results formulate a trade study to map previously uncharted territory of the GPS/INS space that trades accuracy and expense versus complexity of design. These GIGET results can be used to determine acceptable sensor quality in these integration methods for a variety of dynamic environments. As a demonstration of its utility as a hardware evaluation tool, GIGET is used to design a navigation system on the DragonFly Unmanned Air Vehicle (UAV

  7. A novel laser Doppler velocimeter and its integrated navigation system with strapdown inertial navigation

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Nie, Xiaoming; Lin, Jun

    2014-12-01

    In order to suppress the error accumulation effect of inertial navigation system (INS), an idea of building an integrated navigation system using a laser Doppler velocimeter (LDV) together with strapdown inertial navigation (SIN) is proposed. The basic principle of LDV is expounded while a novel LDV with advanced optical structure is designed based on the split and reuse technique, and the process of dead reckoning using an integrated system which consists of LDV and SIN is discussed detailedly. The results of theory and experiment show that: the split and reuse type LDV has great advantages of high accuracy and signal-to-noise ratio, which has greatly enhanced the position accuracy of the navigation system. The position error has been decreased from 1166 m in 2 h with pure SIN to 20 m in 2 h with the integrated system.

  8. Joint Line Reconstruction in Navigated Total Knee Arthroplasty Revision

    ClinicalTrials.gov

    2012-05-16

    Revision Total Knee Arthroplasty Because of; Loosening; Instability; Impingement; or Other Reasons Accepted as Indications for TKA Exchange.; The Focus is to Determine the Precision of Joint Line Restoration in Navigated vs. Conventional Revision Total Knee Arthroplasty

  9. DARPA looks beyond GPS for positioning, navigating, and timing

    SciTech Connect

    Kramer, David

    2014-10-01

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  10. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    PubMed Central

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  11. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints.

    PubMed

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-04-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component.

  12. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints.

    PubMed

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  13. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  14. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  15. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-08-22

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield.

  16. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Lian, Xiaofeng; Berlin, Connor; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. “Total navigation” (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  17. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield

    PubMed Central

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%–36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  18. Innovations in Total Knee Arthroplasty: Improved Technical Precision, But Unclear Clinical Benefits.

    PubMed

    Keeney, James A

    2016-07-01

    Total knee arthroplasty has been an effective treatment for advanced degenerative joint disease. Traditional knee designs and surgical approaches have resulted in consistently high performance, but some patients may remain dissatisfied after their surgery. Several surgical innovations, including accelerometer-based navigation, patient-specific instrumentation, and robotic-assisted total knee arthroplasty, have been developed to improve the accuracy and precision of total knee arthroplasty surgery, with anticipated secondary benefits of improved functional outcomes and implant survivorship. This article reviews the current status of these technologies as reported in contemporary orthopedic literature. [Orthopedics. 2016; 39(4):217-220.]. PMID:27434889

  19. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  20. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  1. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation. PMID:19141895

  2. An overview of optical gyroscopes for navigation

    NASA Astrophysics Data System (ADS)

    Mark, J. G.; Tazartes, D. A.

    1992-11-01

    In the 1980's, Ring Laser Gyroscopes (RLG) displaced the mechanical (spinning wheel) gyroscope as the angular sensor of choice for navigation. While the RLG remains the standard navigation grade instrument, several other optical gyroscopes have recently appeared. The multi oscillator (or four-mode gyro) represents a new generation in laser gyroscopes. Systems based on this technology are now being delivered for use on commercial and military aircraft. Another optical sensor, the fiber optic gyroscope (FOG) has been incorporated in inertial measurement units (IMU) and proved itself capable of AHRS (attitude and heading reference system) accuracy. This gyroscope should find many applications in aided navigation systems. Integrated FOG/GPS systems appear attractive as low cost navigators. This paper addresses technology involved in these optical gyroscopes and discusses their advantages and disadvantages in relation to present and future applications.

  3. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  4. Space shuttle entry and landing navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Crawford, B. S.

    1974-01-01

    A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

  5. A novel research platform for electromagnetic navigated bronchoscopy using cone beam CT imaging and an animal model.

    PubMed

    Leira, Håkon Olav; Amundsen, Tore; Tangen, Geir Arne; Bø, Lars Eirik; Manstad-Hulaas, Frode; Langø, Thomas

    2011-01-01

    Electromagnetic guided bronchoscopy is a new field of research, essential for the development of advanced investigation of the airways and lung tissue. Consecutive problem-based solutions and refinements are urgent requisites to achieve improvements. For that purpose, our intention is to build a complete research platform for electromagnetic guided bronchoscopy. The experimental interventional electromagnetic field tracking system in conjunction with a C-arm cone beam CT unit is presented in this paper. The animal model and the navigation platform performed well and the aims were achieved; the 3D localization of foreign bodies and their navigated and tracked removal, assessment of tracking accuracy that showed a high level of precision, and assessment of image quality. The platform may prove to be a suitable platform for further research and development and a full-fledged electromagnetic guided bronchoscopy navigation system. The inclusion of the C-arm cone beam CT unit in the experimental setup adds a number of new possibilities for diagnostic procedures and accuracy measurements. Among other future challenges that need to be solved are the interaction between the C-arm and the electromagnetic navigation field, as we demonstrate in this feasibility study.

  6. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  7. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  8. Research on Temperature Modeling of Strapdown Inertial Navigation System

    NASA Astrophysics Data System (ADS)

    Huang, XiaoJuan; Zhao, LiJian; Xu, RuXiang; Yang, Heng

    2016-02-01

    Strapdown inertial navigation system with laser gyro has been deployed in space tracking ship and compared with the conventional platform inertial navigation system, it has substantial advantage in performance, accuracy and stabilization. Environmental and internal temperature affects the gyro, accelerator, electrical circuits and mechanical structure significantly but the existing temperature compensation model is not accurate enough especially when there is a big temperature change.

  9. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  10. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  11. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  12. Sequential filter design for precision orbit determination and physical constant refinement

    NASA Technical Reports Server (NTRS)

    Curkendall, D. W.; Leondes, C. T.

    1974-01-01

    Earth-based spacecraft tracking data have historically been processed with classical least squares filtering techniques both for navigation purposes and for physical constant determination. The small, stochastic nongravitational forces acting on the spacecraft are described to motivate the use of sequential estimation as an alternative to the least squares fitting procedures. The stochastic forces are investigated both in terms of their effect on the tracking data and their influence on estimation accuracy. A flexible sequential filter design which leaves the existing trajectory, variational equations, data observable and partial computations undisturbed is described. A detailed filter design is presented that meets the precision demands and flexibility requirements of deep space navigation and of scientific problems.

  13. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  14. Assessing the Accuracy and Precision of Inorganic Geochemical Data Produced through Flux Fusion and Acid Digestions: Multiple (60+) Comprehensive Analyses of BHVO-2 and the Development of Improved "Accepted" Values

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Scudder, R.; Dunlea, A. G.; Anderson, C. H.; Murray, R. W.

    2014-12-01

    The use of geological standard reference materials (SRMs) to assess both the accuracy and the reproducibility of geochemical data is a vital consideration in determining the major and trace element abundances of geologic, oceanographic, and environmental samples. Calibration curves commonly are generated that are predicated on accurate analyses of these SRMs. As a means to verify the robustness of these calibration curves, a SRM can also be run as an unknown item (i.e., not included as a data point in the calibration). The experimentally derived composition of the SRM can thus be compared to the certified (or otherwise accepted) value. This comparison gives a direct measure of the accuracy of the method used. Similarly, if the same SRM is analyzed as an unknown over multiple analytical sessions, the external reproducibility of the method can be evaluated. Two common bulk digestion methods used in geochemical analysis are flux fusion and acid digestion. The flux fusion technique is excellent at ensuring complete digestion of a variety of sample types, is quick, and does not involve much use of hazardous acids. However, this technique is hampered by a high amount of total dissolved solids and may be accompanied by an increased analytical blank for certain trace elements. On the other hand, acid digestion (using a cocktail of concentrated nitric, hydrochloric and hydrofluoric acids) provides an exceptionally clean digestion with very low analytical blanks. However, this technique results in a loss of Si from the system and may compromise results for a few other elements (e.g., Ge). Our lab uses flux fusion for the determination of major elements and a few key trace elements by ICP-ES, while acid digestion is used for Ti and trace element analyses by ICP-MS. Here we present major and trace element data for BHVO-2, a frequently used SRM derived from a Hawaiian basalt, gathered over a period of over two years (30+ analyses by each technique). We show that both digestion

  15. An Efficient Real-Time Precise Point Positioning (RT-PPP) Solution for Offshore Surveys in Turkey

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Mohamed; Nurhan Çelik, Rahmi

    2016-07-01

    Recently, the international global navigation satellite systems (GNSS) service (IGS) has launched the real-time service (IGS-RTS). The IGS-RTS has shown promise accuracy in precise point positioning applications. Currently, the precise point positioning technique is used extensively in marine applications. In this study, we evaluate the accuracy of the real-time precise point positioning (RT-PPP) solution using the IGS-RTS for offshore surveys in Turkey. Dual-frequency GPS data is collected onboard a vessel and then processed using the Bernese 5.2 PPP module. The IGS-RTS precise orbit and clock products are used in order to account for the satellite orbit and clock products. To investigate the accuracy of the RT-PPP technique, the positioning accuracy is assessed and compared with the traditional double-difference solution. It is shown that the RT-PPP solution has good agreement with the double-difference solution. Also, the proposed solution efficiently fulfills the international maritime organization (IMO) standards for the offshore surveys.

  16. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-11-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved.

  17. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  18. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  19. Registering spherical navigators with spherical harmonic expansions to measure three-dimensional rotations in magnetic resonance imaging.

    PubMed

    Costa, Andreu F; Yen, Yi-Fen; Drangova, Maria

    2010-02-01

    Subject motion remains a challenging problem to overcome in clinical and research applications of magnetic resonance imaging (MRI). Subject motion degrades the quality of MR images and the integrity of experimental data. A promising method to correct for subject motion in MRI is the spherical navigator (SNAV) echo. Spherical navigators acquire k-space data on the surface of a sphere in order to measure three-dimensional (3D) rigid-body motion. Analysis begins by registering the magnitude of two SNAVs to determine the 3D rotation between them. Several different methods to register SNAV data exist, each with specific capabilities and limitations. In this study, we assessed the accuracy, precision and computational requirements of measuring rotations about all three coordinate axes by correlating the spherical harmonic expansions of SNAV data. We compare the results of this technique to previous SNAV studies and show that, although computationally expensive, the spherical harmonic technique is a highly accurate, precise and robust method to register SNAVs and detect 3D rotations in MRI. A key advantage to the spherical harmonic technique is the ability to optimize the accuracy, precision, processing time and memory requirements by adjusting parameters used in the registration. While present developments are aimed at improving the programming efficiency and memory handling of the algorithm, this registration technique is currently well suited for retrospective motion correction applications, such as removing motion-related image artifacts and aligning slices within a high-resolution 3D volume.

  20. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study.

    PubMed

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-06-16

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients' time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries.

  1. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  2. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  3. Realtime and High Accuracy VLBI in Chinese Lunar Exploration Project

    NASA Astrophysics Data System (ADS)

    Weimin, Zheng

    The Chinese VLBI (Very Long Baseline Interferometry) Network - CVN consists of five radio telescopes and one data processing center. CVN is a powerful tracking and navigation tool in the Chinese lunar exploration projects. To meet the quick response of the CE lunar probes navigation requirements, station observation data must be sent to the VLBI center and processed in the real time mode. CVN has demonstrated its ability in the CE -1 and CE-2 missions. In December 2013, the CE-3 lander was successfully sent to the lunar surface and the Yutu rover was released. The new VLBI center and Tianma antenna came into use. During the mission, the lander carried the special Differential Oneway Range (DOR) beacon instead of the normal continuous spectrum VLBI signals. To get the high-precision result, CVN used the delta-DOR technique to track the lander with very extreme accuracy. VLBI delay residuals after orbit determination was nearly 0.5ns. The accuracy of landing position is better than 100 meters. The e-VLBI technique made the observable turnover time as short as 20~40 seconds. The same beam VLBI was used to determine the relative position between the lander and rover with meter accuracy. In the subsequent lunar missions, the new deep stations will join CVN and extend the baseline length. After the soft landing and sampling, the lander will be launched from the lunar surface and finish rendezvous and docking with the orbiter. The VLBI synthesis mapping method and the same beam VLBI can get the accurate lander location and support the rendezvous and docking procedure.

  4. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  5. Navigation and Obstacle Avoidance For Safe Moon Landing

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Sasa, S.; Katayama, Y.; Fujiwara, T.; Ninomiya, T.; Hamada, Y.; Yamamoto, H.

    is assumed for the geological exploration. The dry weight of the lander is assumed about 400 kg as the design target, and for the science mission payload about 50 kg is assumed, including the rover system. After precise powered descent from the circular orbit, the lander will descent vertically to the target area on the moon. The vertical descent will be started from 2-4km height. During this vertical descent phase, landing site safety shall be recognized, searched, navigated, and controlled by the obstacle detection and avoidance systems. 1 Precise navigation on the orbit, by Laser altimeter and Digital Elevation Map: For the precise landing for a desired point on the moon, which is decided mainly from the scientific need, on orbit precise navigation before the powered descent is essentially required. Also during the descent phase, the accumulation error of the navigation sen- sor will be very severe problems for the accurate landing to the predetermined explo- ration point. For the vertical descent phase from 2-4km above the moon, the accuracy requirement for the starting point shall be within 1km to reduce the fuel loss. For the precise on-orbit navigation scheme, the combined algorithm of the Laser altimeter and Digital Elevation Map (DEM) of the moon is studying. This DEM will be obtained by the preceding SELENE project. By initial study of the statistical analysis, the accuracy of this navigation algorithm will be less than 100-200m. Obstacle detection using stereo camera system: For the safe Moon landing, obstacle detection and avoidance is essential. Those obstacles are assumed as the large rocks (> 50cm), large craters (> 2m), and the steep sloop (> 30deg). After the great success of Appollo at 30 years ago, the landing site selection criteria will be biased to the stronger scientific motivation than that from the landing safety. Thus for the obstacle detection sub-system shall assume and detect against some large rocks or anomaly configuration of the

  6. Celestial Navigation on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.

  7. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  8. Precision guided parachute LDRD final report

    SciTech Connect

    Gilkey, J.C.

    1996-07-01

    This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.

  9. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  10. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  11. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  12. High-precision onboard orbit determination for small satellites - the GPS-based XNSon X-SAT

    NASA Astrophysics Data System (ADS)

    Gill, E.; Montenbruck, O.; Arichandran, K.; Tan, S.H.; Bretschneider

    2004-11-01

    X-SAT is a mini-satellite developed by the Satellite Engineering Centre of the Nanyang Technological University at Singapore. The focus of the technology- driven mission is the high-resolution remote sensing of the Southeast Asian region for environmental monitoring. To achieve the ambitious mission objectives, the GPS-based X-SAT Navigation System (XNS) will provide high-precision onboard orbit determination solutions as well as orbit forecasts. With a targeted real-time position accuracy of about 1-2 m 3D r.m.s., the XNS provides an unprecedented accuracy performance and thus enables the support of any satellite mission which requires precise onboard position knowledge.

  13. Sensor fusion for improved indoor navigation

    NASA Astrophysics Data System (ADS)

    Emilsson, Erika; Rydell, Joakim

    2012-09-01

    A reliable indoor positioning system providing high accuracy has the potential to increase the safety of first responders and military personnel significantly. To enable navigation in a broad range of environments and obtain more accurate and robust positioning results, we propose a multi-sensor fusion approach. We describe and evaluate a positioning system, based on sensor fusion between a foot-mounted inertial measurement unit (IMU) and a camera-based system for simultaneous localization and mapping (SLAM). The complete system provides accurate navigation in many relevant environments without depending on preinstalled infrastructure. The camera-based system uses both inertial measurements and visual data, thereby enabling navigation also in environments and scenarios where one of the sensors provides unreliable data during a few seconds. When sufficient light is available, the camera-based system generally provides good performance. The foot-mounted system provides accurate positioning when distinct steps can be detected, e.g., during walking and running, even in dark or smoke-filled environments. By combining the two systems, the integrated positioning system can be expected to enable accurate navigation in almost all kinds of environments and scenarios. In this paper we present results from initial tests, which show that the proposed sensor fusion improves the navigation solution considerably in scenarios where either the foot-mounted or camera-based system is unable to navigate on its own.

  14. Reliable Location-Based Services from Radio Navigation Systems

    PubMed Central

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  15. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  16. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  17. Precision orbit determination for Topex

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Ries, J. C.; Shum, C. K.

    1990-01-01

    The ability of radar altimeters to measure the distance from a satellite to the ocean surface with a precision of the order of 2 cm imposes unique requirements for the orbit determination accuracy. The orbit accuracy requirements will be especially demanding for the joint NASA/CNES Ocean Topography Experiment (Topex/Poseidon). For this mission, a radial orbit accuracy of 13 centimeters will be required for a mission period of three to five years. This is an order of magnitude improvement in the accuracy achieved during any previous satellite mission. This investigation considers the factors which limit the orbit accuracy for the Topex mission. Particular error sources which are considered include the geopotential, the radiation pressure and the atmospheric drag model.

  18. A new method based on WMRA and ANN for GPS/SINS integration for aerocraft navigation

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefen; Chen, Xiyuan; Li, Zigang

    2006-11-01

    Global Positioning System (GPS) can provide precise positioning information to an unlimited number of users anywhere on the earth. However, the defect cannot be neglected, because there exists one blind district when the aerocraft flying through some altitude space. During the short time in the blind district, all radio signals can't be attained including the GPS signals. An integrated GPS/SINS (Strapdown Inertial Navigation System) Navigation system is presented in this paper. The SINS based on numerical computing platform has many advantages such as high reliability, small bulk and low cost ect. The integration of GPS and SINS, therefore, provides a navigation system that has superior performance in comparison with either a GPS or a SINS stand-alone system. This paper presents a new model-less algorithm that can perform the self-following of the aerocraft under all conditions. For improving the precision of the hybrid GPS/SINS navigation system, fusing data from a SINS and GPS hardware utilizes wavelet multi-resolution analysis (WMRA) and Radial Basis Function (RBF) Artificial Neural Networks (ANN). The WMRA is used to compare the SINS and GPS position outputs at different resolution levels. These differences represent, in general, the SINS errors, which are used to correct for the SINS outputs during GPS outages. The RBF-ANN model is then trained to predict the SINS position errors in real time and provide accurate positioning of the moving aerocraft. The simulations show that good results in SINS/GPS positioning accuracy can be obtained by applying the WMRA and RBF-ANN methods.

  19. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  20. Application of surgical navigation in styloidectomy for treating Eagle’s syndrome

    PubMed Central

    Dou, Geng; Zhang, Yu; Zong, Chunlin; Chen, Yuanli; Guo, Yuxuan; Tian, Lei

    2016-01-01

    Purpose The present study aimed to evaluate the feasibility, accuracy, and clinical effect of intraoperative navigation for resection of elongated styloid process (ESP) in Eagle’s syndrome. Patients and methods Twelve patients with Eagle’s syndrome with clinically and radiologically established diagnoses of ESP were included in this study. Preoperatively, all patients accepted three-dimensional computed tomography scan, and their skulls’ digital imaging and communications in medicine data were inputed into the navigation system workstation to make a virtual surgical plan in advance. During surgery, the intraoperative navigation was performed to excise the ESP accurately for both intraoral (without tonsillectomy) and extraoral approaches following the virtual plan. Postoperatively, the amount of bleeding, duration of operation and hospitalization, and the length of resected styloid process (SP) were measured and compared with those cases that had traditional styloidectomy without the help of surgical navigation (SN). A simple visual analog scale questionnaire was also used to assess patients’ satisfaction and the surgery effect after 3 months. Results In total, 17 SPs from 12 patients were precisely resected by intraoral parapharyngeal approach and small cervical approach with the aid of SN. No severe complications occurred in any patients. The length of resected SPs was 21.93±14.26 mm. The average amount of bleeding and duration of operation were 22.50±8.54 mL and 40.35±11.81 minutes, respectively, which were all less than with traditional styloidectomy. The visual analog scale analysis showed that the discomfort in all patients was relieved, while ten patients’ symptoms were improved greatly, and two patients had some improvement. Conclusion The higher accuracy of surgery, lesser amount of bleeding, decreased duration of surgery and hospitalization, absence of complications, and improved subjective symptoms indicated that SN is an effective and

  1. Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2015-11-01

    Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O (10 ) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q ,χBH)=(7 ,±0.4 ),(7 ,±0.6 ) , and (5 ,-0.9 ). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3 , with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit

  2. Algorithmic solution for autonomous vision-based off-road navigation

    NASA Astrophysics Data System (ADS)

    Kolesnik, Marina; Paar, Gerhard; Bauer, Arnold; Ulm, Michael

    1998-07-01

    A vision based navigation system is a basic tool to provide autonomous operations of unmanned vehicles. For offroad navigation that means that the vehicle equipped with a stereo vision system and perhaps a laser ranging device shall be able to maintain a high level of autonomy under various illumination conditions and with little a priori information about the underlying scene. The task becomes particularly important for unmanned planetary exploration with the help of autonomous rovers. For example in the LEDA Moon exploration project currently under focus by the European Space Agency (ESA), during the autonomous mode the vehicle (rover) should perform the following operations: on-board absolute localization, elevation model (DEM) generation, obstacle detection and relative localization, global path planning and execution. Focus of this article is a computational solution for fully autonomous path planning and path execution. An operational DEM generation method based on stereoscopy is introduced. Self-localization on the DEM and robust natural feature tracking are used as basic navigation steps, supported by inertial sensor systems. The following operations are performed on the basis of stereo image sequences: 3D scene reconstruction, risk map generation, local path planning, camera position update during the motion on the basis of landmarks tracking, obstacle avoidance. Experimental verification is done with the help of a laboratory terrain mockup and a high precision camera mounting device. It is shown that standalone tracking using automatically identified landmarks is robust enough to give navigation data for further stereoscopic reconstruction of the surrounding terrain. Iterative tracking and reconstruction leads to a complete description of the vehicle path and its surrounding with an accuracy high enough to meet the specifications for autonomous outdoor navigation.

  3. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  4. Encode the "STOP" command by photo-stimulation for precise control of rat-robot.

    PubMed

    Chen, Sicong; Qu, Yi; Guo, Songchao; Shi, Zhaoyue; Xu, Kedi; Zheng, Xiaoxiang

    2013-01-01

    Studies on behavior control are important for bio-robots designation. For auto or manual navigation of the bio-robots, the accuracy of the command execution is especially critical. In this paper, we reported a precise "STOP" command for the rat-robots by optical stimulation of the central nervous system (CNS). We labeled dorsolateral periaqueductal gray (dlPAG) neurons with light sensitive channelrhodopsin-2 (ChR2) and directly probed the optical fiber to reactivate these neurons. The rats showed freezing behavior only upon the optical stimulation with an appropriate range of laser intensity and stimulation frequency. Neuron spikes and local field potential (LFP) were simultaneously recorded with optical stimulation by optrodes on free moving rat-robots. Together, our findings demonstrated the utility of deep brain optical stimulation for the stopping behavior of rat-robot control and indicated a potential application of optogenetics for precise control of bio-robots in further work.

  5. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  6. Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-06-01

    Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal

  7. Nickel solution prepared for precision electroforming

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Lightweight, precision optical reflectors are made by electroforming nickel onto masters. Steps for the plating bath preparation, process control testing, and bath composition adjustments are prescribed to avoid internal stresses and maintain dimensional accuracy of the electrodeposited metal.

  8. Shifting the Inertial Navigation Paradigm with MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Brady, Tye; Bishop, Robert H.

    2010-01-01

    Why don t you use MEMS? is one of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the specific error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary applications to Constellation vehicles will be explored.

  9. Shifting the Intertial Navigation Paradigm with the MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy P., II; Bishop, Robert H.; Brady, Tye

    2010-01-01

    "Why don't you use MEMS?" is of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors in several key metrics. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the scaled error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry trajectory will be explored.

  10. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation.

    PubMed

    Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong

    2015-01-01

    In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN). In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available. PMID:26184212

  11. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    PubMed Central

    Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong

    2015-01-01

    In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN). In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available. PMID:26184212

  12. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-01-01

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes. PMID:26057035

  13. CPM Signals for Satellite Navigation in the S and C Bands

    PubMed Central

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-01-01

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands’ demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes. PMID:26057035

  14. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  15. Design and simulation of a descent controller for strategic four-dimensional aircraft navigation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lax, F. M.

    1975-01-01

    A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.

  16. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  17. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis.

    PubMed

    Meng, Xiao-Tong; Guan, Xiao-Fei; Zhang, Hai-Long; He, Shi-Sheng

    2016-07-01

    Although application of intraoperative computer navigation technique had been integrated into placement of pedicle screws (PSs) in thoracic fusion for years, its security and practicability remain controversial. The aim of this study is to evaluate the accuracy, the operative time consumption, the amount of intraoperative blood loss, time of pedicle insertion and the incidence of complications of thoracic pedicle screw placement in patients with thoracic diseases such as scoliosis and kyphosis. Pubmed, Web of Knowledge, and Google scholar were searched to identify comparative studies of thoracic pedicle screw placement between intraoperative computer navigation and fluoroscopy-guided navigation. Outcomes of malposition rate, operative time consumption, insertion time, intraoperative blood loss, and the incidence of complications are evaluated. Fourteen articles including 1723 patients and 9019 PSs were identified matching inclusion criteria. The malposition rate was lower (RR: 0.33, 95 % CI: 0.28-0.38, P < 0.01) in computer navigation group than that in fluoroscopy-guided navigation group; the operative time was significantly longer [weighted mean difference (WMD) = 23.66, 95 % CI: 14.74-32.57, P < 0.01] in computer navigation group than that in fluoroscopy-guided navigation group. The time of insertion was shorter (WMD = -1.88, 95 % CI: -2.25- -1.52, P < 0.01) in computer navigation group than that in fluoroscopy-guided navigation group. The incidence of complications was lower (RR = 0. 23, 95 % CI: 0.12-0.46, P < 0.01) in computer navigation group than that in the other group. The intraoperative blood loss was fewer (WMD = -167.49, 95 % CI: -266.39- -68.58, P < 0.01) in computer navigation group than that in the other. In conclusion, the meta-analysis of thoracic pedicle screw placement studies clearly demonstrated lower malposition rate, less intraoperative blood loss, and fewer complications when using computer

  18. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis.

    PubMed

    Meng, Xiao-Tong; Guan, Xiao-Fei; Zhang, Hai-Long; He, Shi-Sheng

    2016-07-01

    Although application of intraoperative computer navigation technique had been integrated into placement of pedicle screws (PSs) in thoracic fusion for years, its security and practicability remain controversial. The aim of this study is to evaluate the accuracy, the operative time consumption, the amount of intraoperative blood loss, time of pedicle insertion and the incidence of complications of thoracic pedicle screw placement in patients with thoracic diseases such as scoliosis and kyphosis. Pubmed, Web of Knowledge, and Google scholar were searched to identify comparative studies of thoracic pedicle screw placement between intraoperative computer navigation and fluoroscopy-guided navigation. Outcomes of malposition rate, operative time consumption, insertion time, intraoperative blood loss, and the incidence of complications are evaluated. Fourteen articles including 1723 patients and 9019 PSs were identified matching inclusion criteria. The malposition rate was lower (RR: 0.33, 95 % CI: 0.28-0.38, P < 0.01) in computer navigation group than that in fluoroscopy-guided navigation group; the operative time was significantly longer [weighted mean difference (WMD) = 23.66, 95 % CI: 14.74-32.57, P < 0.01] in computer navigation group than that in fluoroscopy-guided navigation group. The time of insertion was shorter (WMD = -1.88, 95 % CI: -2.25- -1.52, P < 0.01) in computer navigation group than that in fluoroscopy-guided navigation group. The incidence of complications was lower (RR = 0. 23, 95 % CI: 0.12-0.46, P < 0.01) in computer navigation group than that in the other group. The intraoperative blood loss was fewer (WMD = -167.49, 95 % CI: -266.39- -68.58, P < 0.01) in computer navigation group than that in the other. In conclusion, the meta-analysis of thoracic pedicle screw placement studies clearly demonstrated lower malposition rate, less intraoperative blood loss, and fewer complications when using computer

  19. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    NASA Astrophysics Data System (ADS)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  20. Precise GPS orbits for geodesy

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    1994-05-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  1. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  2. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display.

    PubMed

    Zinser, Max J; Mischkowski, Robert A; Dreiseidler, Timo; Thamm, Oliver C; Rothamel, Daniel; Zöller, Joachim E

    2013-12-01

    There may well be a shift towards 3-dimensional orthognathic surgery when virtual surgical planning can be applied clinically. We present a computer-assisted protocol that uses surgical navigation supplemented by an interactive image-guided visualisation display (IGVD) to transfer virtual maxillary planning precisely. The aim of this study was to analyse its accuracy and versatility in vivo. The protocol consists of maxillofacial imaging, diagnosis, planning of virtual treatment, and intraoperative surgical transfer using an IGV display. The advantage of the interactive IGV display is that the virtually planned maxilla and its real position can be completely superimposed during operation through a video graphics array (VGA) camera, thereby augmenting the surgeon's 3-dimensional perception. Sixteen adult class III patients were treated with by bimaxillary osteotomy. Seven hard tissue variables were chosen to compare (ΔT1-T0) the virtual maxillary planning (T0) with the postoperative result (T1) using 3-dimensional cephalometry. Clinically acceptable precision for the surgical planning transfer of the maxilla (<0.35 mm) was seen in the anteroposterior and mediolateral angles, and in relation to the skull base (<0.35°), and marginal precision was seen in the orthogonal dimension (<0.64 mm). An interactive IGV display complemented surgical navigation, augmented virtual and real-time reality, and provided a precise technique of waferless stereotactic maxillary positioning, which may offer an alternative approach to the use of arbitrary splints and 2-dimensional orthognathic planning.

  3. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  4. GeoCARB image navigation and registration performance

    NASA Astrophysics Data System (ADS)

    van Bezooijen, Roel W. H.; Kumer, John B.; Clark, Charles S.; Weigl, Harald J.; Liu, Ketao

    2013-10-01

    The geoCARB sensor uses a 4-channel slit-scan infrared imaging spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument, which is to be hosted on a geostationary communication satellite, is designed to provide continual monitoring of greenhouse gas over continental scales, several times per day, with a spatial resolution of a few kilometers. The paper discusses the image navigation and registration (INR) of the geoCARB optical footprints on to the earth's surface. The instrument acquires data in a step and stare mode with 4.08 s stare time and 0.34s step time on 1016 footprints spaced by 2.7 km at nadir in the NS direction along the slit, which is stepped in 3 km EW increments. Knowledge of the instrument line of sight is obtained through use of a dual-head star tracker system (STS), high-precision optical encoders for the scan mirrors, a GPS receiver, and a highly stable common optical bench to which the instrument components, the scan mirror assembly, and the heads of the STS are kinematically mounted. While attitude disturbances due to jitter and solar array flex affect spatial resolution, we show that the effect on INR is negligible. GeoCARB performs a star sighting every 30 minutes to compensate for its diurnal alignment variation relative to the STS, enabling a 1 sigma INR accuracy of 0.38 and 0.51 km at nadir in the NS and EW directions, respectively. Coastline identification may be used to improve accuracy by 6%, while an additional 20% improvement is achievable through identification of systematic errors via extensive post-processing. The paper quantifies all error sources and describes how each of them affects overall INR accuracy.

  5. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  6. Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank

    2005-01-01

    Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.

  7. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  8. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  9. Tomography & Geochemistry: Precision, Repeatability, Accuracy and Joint Interpretations

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Panza, G. F.; Artemieva, I. M.; Bastow, I. D.; Cammarano, F.; Doglioni, C.; Evans, J. R.; Hamilton, W. B.; Julian, B. R.; Lustrino, M.; Thybo, H.; Yanovskaya, T. B.

    2015-12-01

    Seismic tomography can reveal the spatial seismic structure of the mantle, but has little ability to constrain composition, phase or temperature. In contrast, petrology and geochemistry can give insights into mantle composition, but have severely limited spatial control on magma sources. For these reasons, results from these three disciplines are often interpreted jointly. Nevertheless, the limitations of each method are often underestimated, and underlying assumptions de-emphasized. Examples of the limitations of seismic tomography include its ability to image in detail the three-dimensional structure of the mantle or to determine with certainty the strengths of anomalies. Despite this, published seismic anomaly strengths are often unjustifiably translated directly into physical parameters. Tomography yields seismological parameters such as wave speed and attenuation, not geological or thermal parameters. Much of the mantle is poorly sampled by seismic waves, and resolution- and error-assessment methods do not express the true uncertainties. These and other problems have become highlighted in recent years as a result of multiple tomography experiments performed by different research groups, in areas of particular interest e.g., Yellowstone. The repeatability of the results is often poorer than the calculated resolutions. The ability of geochemistry and petrology to identify magma sources and locations is typically overestimated. These methods have little ability to determine source depths. Models that assign geochemical signatures to specific layers in the mantle, including the transition zone, the lower mantle, and the core-mantle boundary, are based on speculative models that cannot be verified and for which viable, less-astonishing alternatives are available. Our knowledge is poor of the size, distribution and location of protoliths, and of metasomatism of magma sources, the nature of the partial-melting and melt-extraction process, the mixing of disparate melts, and the re-assimilation of crust and mantle lithosphere by rising melt. Interpretations of seismic tomography, petrologic and geochemical observations, and all three together, are ambiguous, and this needs to be emphasized more in presenting interpretations so that the viability of the models can be assessed more reliably.

  10. Precision and accuracy of visual foliar injury assessments

    SciTech Connect

    Gumpertz, M.L.; Tingey, D.T.; Hogsett, W.E.

    1982-07-01

    The study compared three measures of foliar injury: (i) mean percent leaf area injured of all leaves on the plant, (ii) mean percent leaf area injured of the three most injured leaves, and (iii) the proportion of injured leaves to total number of leaves. For the first measure, the variation caused by reader biases and day-to-day variations were compared with the innate plant-to-plant variation. Bean (Phaseolus vulgaris 'Pinto'), pea (Pisum sativum 'Little Marvel'), radish (Rhaphanus sativus 'Cherry Belle'), and spinach (Spinacia oleracea 'Northland') plants were exposed to either 3 ..mu..L L/sup -1/ SO/sub 2/ or 0.3 ..mu..L L/sup -1/ ozone for 2 h. Three leaf readers visually assessed the percent injury on every leaf of each plant while a fourth reader used a transparent grid to make an unbiased assessment for each plant. The mean leaf area injured of the three most injured leaves was highly correlated with all leaves on the plant only if the three most injured leaves were <100% injured. The proportion of leaves injured was not highly correlated with percent leaf area injured of all leaves on the plant for any species in this study. The largest source of variation in visual assessments was plant-to-plant variation, which ranged from 44 to 97% of the total variance, followed by variation among readers (0-32% of the variance). Except for radish exposed to ozone, the day-to-day variation accounted for <18% of the total. Reader bias in assessment of ozone injury was significant but could be adjusted for each reader by a simple linear regression (R/sup 2/ = 0.89-0.91) of the visual assessments against the grid assessments.

  11. Precision and accuracy of decay constants and age standards

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2011-12-01

    40 years of round-robin experiments with age standards teach us that systematic errors must be present in at least N-1 labs if participants provide N mutually incompatible data. In EarthTime, the U-Pb community has produced and distributed synthetic solutions with full metrological traceability. Collector linearity is routinely calibrated under variable conditions (e.g. [1]). Instrumental mass fractionation is measured in-run with double spikes (e.g. 233U-236U). Parent-daughter ratios are metrologically traceable, so the full uncertainty budget of a U-Pb age should coincide with interlaboratory uncertainty. TIMS round-robin experiments indeed show a decrease of N towards the ideal value of 1. Comparing 235U-207Pb with 238U-206Pb ages (e.g. [2]) has resulted in a credible re-evaluation of the 235U decay constant, with lower uncertainty than gamma counting. U-Pb microbeam techniques reveal the link petrology-microtextures-microchemistry-isotope record but do not achieve the low uncertainty of TIMS. In the K-Ar community, N is large; interlaboratory bias is > 10 times self-assessed uncertainty. Systematic errors may have analytical and petrological reasons. Metrological traceability is not yet implemented (substantial advance may come from work in progress, e.g. [7]). One of the worst problems is collector stability and linearity. Using electron multipliers (EM) instead of Faraday buckets (FB) reduces both dynamic range and collector linearity. Mass spectrometer backgrounds are never zero; the extent as well as the predictability of their variability must be propagated into the uncertainty evaluation. The high isotope ratio of the atmospheric Ar requires a large dynamic range over which linearity must be demonstrated under all analytical conditions to correctly estimate mass fractionation. The only assessment of EM linearity in Ar analyses [3] points out many fundamental problems; the onus of proof is on every laboratory claiming low uncertainties. Finally, sample size reduction is often associated to reducing clean-up time to increase sample/blank ratio; this may be self-defeating, as "dry blanks" [4] do not represent either the isotopic composition or the amount of Ar released by the sample chamber when exposed to unpurified sample gas. Single grains enhance background and purification problems relative to large sample sizes measured on FB. Petrologically, many natural "standards" are not ideal (e.g. MMhb1 [5], B4M [6]), as their original distributors never conceived petrology as the decisive control on isotope retention. Comparing ever smaller aliquots of unequilibrated minerals causes ever larger age variations. Metrologically traceable synthetic isotope mixtures still lie in the future. Petrological non-ideality of natural standards does not allow a metrological uncertainty budget. Collector behavior, on the contrary, does. Its quantification will, by definition, make true intralaboratory uncertainty greater or equal to interlaboratory bias. [1] Chen J, Wasserburg GJ, 1981. Analyt Chem 53, 2060-2067 [2] Mattinson JM, 2010. Chem Geol 275, 186-198 [3] Turrin B et al, 2010. G-cubed, 11, Q0AA09 [4] Baur H, 1975. PhD thesis, ETH Zürich, No. 6596 [5] Villa IM et al, 1996. Contrib Mineral Petrol 126, 67-80 [6] Villa IM, Heri AR, 2010. AGU abstract V31A-2296 [7] Morgan LE et al, in press. G-cubed, 2011GC003719

  12. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  13. Global positioning system measurements for crustal deformation: precision and accuracy.

    PubMed

    Prescott, W H; Davis, J L; Svarc, J L

    1989-06-16

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million. PMID:17820661

  14. Mixed-Precision Spectral Deferred Correction: Preprint

    SciTech Connect

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  15. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  16. The Neural Basis of Long-Distance Navigation in Birds.

    PubMed

    Mouritsen, Henrik; Heyers, Dominik; Güntürkün, Onur

    2016-01-01

    Migratory birds can navigate over tens of thousands of kilometers with an accuracy unobtainable for human navigators. To do so, they use their brains. In this review, we address how birds sense navigation- and orientation-relevant cues and where in their brains each individual cue is processed. When little is currently known, we make educated predictions as to which brain regions could be involved. We ask where and how multisensory navigational information is integrated and suggest that the hippocampus could interact with structures that represent maps and compass information to compute and constantly control navigational goals and directions. We also suggest that the caudolateral nidopallium could be involved in weighing conflicting pieces of information against each other, making decisions, and helping the animal respond to unexpected situations. Considering the gaps in current knowledge, some of our suggestions may be wrong. However, our main aim is to stimulate further research in this fascinating field.

  17. Damping strapdown inertial navigation system based on a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong

    2016-11-01

    A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.

  18. Next Generation GPS Ground Control Segment (OCX) Navigation Design

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Bar-Sever, Yoaz; Harvey, Nate; Miller, Kevin; Romans, Larry; Weiss, Jan; Doyle, Larry; Solorzano, Tara; Petzinger, John; Stell, Al

    2010-01-01

    In February 2010, a Raytheon-led team was selected by The Air Force to develop, implement, and operate the next generation GPS ground control segment (OCX). To meet and exceed the demanding OCX navigation performance requirements, the Raytheon team partnered with ITT (Navigation lead) and JPL to adapt major elements of JPL's navigation technology, proven in the operations of the Global Differential GPS (GDGPS) System. Key design goals for the navigation subsystem include accurate ephemeris and clock accuracy (user range error), ease of model upgrades, and a smooth and safe transition from the legacy system to OCX.We will describe key elements of the innovative architecture of the OCX navigation subsystem,and demonstrate the anticipated performance of the system through high fidelity simulations withactual GPS measurements.

  19. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  20. Real-Time seismic waveforms monitoring with BeiDou Navigation Satellite System (BDS) observations for the 2015 Mw 7.8 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Geng, T.

    2015-12-01

    Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).

  1. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhou, ShanShi; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhu, LingFeng; Chang, ZhiQiao; Tang, ChengPan; Gong, XiuQiang; Li, Ran; Yu, Yang

    2016-10-01

    A two-way satellite time and frequency transfer (TWSTFT) device equipped in the BeiDou navigation satellite system (BDS) can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination (MPOD) method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service (IGS) analysis centers (ACs) show that the reference time difference between BeiDou time (BDT) and golbal positoning system (GPS) time (GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10-12, which is similar to the GPS IIR.

  2. Aerocapture navigation at Neptune

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.

    2003-01-01

    A proposed Neptune orbiter Aerocapture mission will use solar electric propulsion to send an orbiter to Neptune. Navigation feasibility of direct-entry aerocapture for orbit insertion at Neptune is shown. The navigation strategy baselines optical imaging and (delta)VLBI measurement in order to satisfy the flight system's atmosphere entry flight path angle, which is targeted to enter Neptune with an entry flight path angle of -11.6 . Error bars on the entry flight path angle of plus/minus0.55 (3(sigma)) are proposed. This requirement can be satisfied with a data cutoff 3.2 days prior to arrival. There is some margin in the arrival template to tighten (i.e. reduce) the entry corridor either by scheduling a data cutoff closer to Neptune or alternatively, reducing uncertainties by increasing the fidelity of the optical navigation camera.

  3. Relative Navigation Algorithms for Phase 1 of the MMS Formation

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, Russell; Gramling, Cheryl

    2003-01-01

    This paper evaluates several navigation approaches for the first phase of the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of four satellites in highly eccentric Earth orbits of approximately 1.2 by 12 Earth radii at an inclination of 10 degrees. The inter-satellite separation is approximately 10 kilometers near apogees. Navigation approaches were studied using ground station m g e =d two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, crosslink range measurements among the members flying in formation, and various combinations of these measurement types. An absolute position accuracy of 10 kilometers or better can be achieved with most of the approaches studied and a relative position accuracy of 100 meters or better can be achieved at apogee in some cases. Among the various approaches studied, the approaches that use a combination of GPS and crosslink measurements were found to be more reliable in terms of absolute and relative navigation accuracies and operational flexibility.

  4. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation.

    PubMed

    Kim, Terrence T; Johnson, J Patrick; Pashman, Robert; Drazin, Doniel

    2016-01-01

    We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152

  5. Mars Reconnaissance Orbiter Navigation During the Primary Science Phase

    NASA Technical Reports Server (NTRS)

    Highsmith, Dolan; You, Tung-Han; Demcak, Stuart; Graat, Eric; Higa, Earl; Long, Stacia; Bhat, Ram; Mottinger, Neil; Halsell, Allen; Peralta, Fernando

    2008-01-01

    The Mars Reconnaissance Orbiter began science operations in November 2006, with a suite of seven instruments and investigations, some of which required navigation accuracies much better than previous Mars missions. This paper describes the driving performance requirements levied on Navigation and how well those requirements have been met thus far. Trending analyses that have a direct impact on the Navigation performance, such as atmospheric bias determination, are covered in detail, as well as dynamic models, estimation strategy, tracking data reduction techniques, and residual noise.

  6. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    PubMed Central

    Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel

    2016-01-01

    We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152

  7. Methods of Optical Navigation

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.

    2011-01-01

    Optical navigation is the use of onboard imaging to aid in the determination of the spacecraft trajectory and of the targets' ephemerides. Opnav techniques provide a direct measurement of the direction from a spacecraft to target bodies. Opnav data thus complement both radiometric tracking data (for instance, Doppler and range) and the groundbased astrometry which is used to determine the a priori ephemeris of the targets. We present the geometry and camera models which form the mathematical basis for optical navigation and some of the image processing techniques by which one can extract the optical observables--that is, the sample and line coordinates of images--from pictures.

  8. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  9. Safety Cases for Global Navigation Satellite Systems' Safety of Life(SOL) Applications

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Yepez, Amaya Atencia

    2010-09-01

    Global Navigation Satellite Systems(GNSS) have recently been enhanced to provide additional guarantees for the accuracy, integrity, reliability and coverage of their services. These infrastructures are intended to be robust against jamming. They support real-time self-diagnostic error detection and provide end-users with detailed information about precision and integrity. In consequence, they are gradually being introduced into safety-related applications. This paper argues that greater attention needs to be paid to the ways in which these navigation infrastructures are being integrated into the safety cases that support Safety of Life(SoL) applications. In particular, we contrast the significant investments that have been made in analysing the safety of GNSS aviation applications, such as en-route operations and non-precision approaches, with the relative lack of progress in other industries. There is also a need for greater consistency between the safety arguments that support similar GNSS applications. This helps to ensure that safety managers and regulators consider a similar set of hazards when seeking to integrate these new navigation infrastructures into SoL systems. While international aviation organisations have taken important steps to establish communication mechanisms within their industry, the same cannot be said for other industries. The ad hoc nature of the safety arguments supporting many recent proposals creates a danger that technological innovation will outstrip our commitment to mitigate or avoid future hazards. Unless these issues are addressed then accidents involving the first wave of SoL applications will further jeopardise the development of GNSS infrastructures.

  10. Precision frequency sources. [development and characteristics of oscillators for precise time measurement

    NASA Technical Reports Server (NTRS)

    Mccoubrey, A. O.; Kern, R. H.

    1962-01-01

    The development of precision oscillators for time and frequency standards is discussed. The applications of the oscillators to radio communication, research projects, navigation systems, and calibration sources are reported. The status of a cesium beam stabilized oscillator is examined. Photographs of the components are provided. The performance of quartz and rubidium oscillators is compared with the performance of cesium resonators.

  11. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  12. Navigation for everyday life

    SciTech Connect

    Fu, D.D.; Hammond, K.J.; Swain, M.J.

    1996-12-31

    Past work in navigation has worked toward the goal of producing an accurate map of the environment. While no one can deny the usefulness of such a map, the ideal of producing a complete map becomes unrealistic when an agent is faced with performing real tasks. And yet an agent accomplishing recurring tasks should navigate more efficiently as time goes by. We present a system which integrates navigation, planning, and vision. In this view, navigation supports the needs of a larger system as opposed to being a task in its own right. Whereas previous approaches assume an unknown and unstructured environment, we assume a structured environment whose organization is known, but whose specifics are unknown. The system is endowed with a wide range of visual capabilities as well as search plans for informed exploration of a simulated store constructed from real visual data. We demonstrate the agent finding items while mapping the world. In repeatedly retrieving items, the agent`s performance improves as the learned map becomes more useful.

  13. Navigating between the Dimensions

    ERIC Educational Resources Information Center

    Fleron, Julian F.; Ecke, Volker

    2011-01-01

    Generations have been inspired by Edwin A. Abbott's profound tour of the dimensions in his novella "Flatland: A Romance of Many Dimensions" (1884). This well-known satire is the story of a flat land inhabited by geometric shapes trying to navigate the subtleties of their geometric, social, and political positions. In this article, the authors…

  14. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  15. Galileo asteroid encounter navigation

    NASA Technical Reports Server (NTRS)

    Murrow, D. W.; Chodas, P. W.; Kallemeyn, P. H.

    1990-01-01

    The Galileo spacecraft will be targeted to encounter one or more asteroids during its cruise to Jupiter. Accurate navigation will maximize science return from these asteroid flyby opportunities. Navigation errors for these encounters are dominated by uncertainties in the asteroid ephemeris, which is obtained from fits to ground-based observations. As the spacecraft approaches, on-board optical navigation dramatically improves knowledge of the spacecraft-relative asteroid position normal to the line of sight, while correlations in the asteroid ephemeris provide moderate improvement along the approach direction. The remaining uncertainty in encounter time can be further reduced only by improving the ground-based asteroid ephemeris. Uncertainties perpendicular to the line of sight can be reduced by improving the timing of optical navigation images and their placement with respect to the star background. At the closest approach to the asteroid Gaspra, the one-sigma errors in knowledge of the spacecraft position are less than 10 km in position and 25 seconds in encounter time.

  16. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  17. Imaging, Navigation, and Robotics in Spine Surgery.

    PubMed

    Johnson, Norbert

    2016-04-01

    Spinal technology involves imaging, navigation, and robotics-collectively known as "image-guided therapy." Imaging coupled with navigation enhances visualization of irregular anatomy, enabling less invasive procedures. With robotics surgeons can perform quicker and safer hand movements with increased accuracy. In the 1890s, X-rays were invented by Roentgen. The first piece of X-ray equipment, the Cryptoscope, would take an image for 15 minutes, with the surgeon placing his hand in front of the beam to guide calibration; radiation exposure for both surgeon and patient was extreme. In the 1950s, fluoroscopy (C-arm) was invented. In the 1970s, computer-assisted tomography (CAT), known as CAT scan, became available; magnetic resonance imaging had its beginnings in the 1980s, and in 1985, the first robotic surgery was performed to obtain a neurosurgical biopsy specimen. The concept of navigation was introduced in the 1990s, and today's niche products for navigation came onto the market in the 2000s. PMID:27015071

  18. Imaging, Navigation, and Robotics in Spine Surgery.

    PubMed

    Johnson, Norbert

    2016-04-01

    Spinal technology involves imaging, navigation, and robotics-collectively known as "image-guided therapy." Imaging coupled with navigation enhances visualization of irregular anatomy, enabling less invasive procedures. With robotics surgeons can perform quicker and safer hand movements with increased accuracy. In the 1890s, X-rays were invented by Roentgen. The first piece of X-ray equipment, the Cryptoscope, would take an image for 15 minutes, with the surgeon placing his hand in front of the beam to guide calibration; radiation exposure for both surgeon and patient was extreme. In the 1950s, fluoroscopy (C-arm) was invented. In the 1970s, computer-assisted tomography (CAT), known as CAT scan, became available; magnetic resonance imaging had its beginnings in the 1980s, and in 1985, the first robotic surgery was performed to obtain a neurosurgical biopsy specimen. The concept of navigation was introduced in the 1990s, and today's niche products for navigation came onto the market in the 2000s.

  19. Autonomous system for cross-country navigation

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony; Brumitt, Barry L.; Coulter, R. C.; Kelly, Alonzo

    1993-05-01

    Autonomous cross-country navigation is essential for outdoor robots moving about in unstructured environments. Most existing systems use range sensors to determine the shape of the terrain, plan a trajectory that avoids obstacles, and then drive the trajectory. Performance has been limited by the range and accuracy of sensors, insufficient vehicle-terrain interaction models, and the availability of high-speed computers. As these elements improve, higher- speed navigation on rougher terrain becomes possible. We have developed a software system for autonomous navigation that provides for greater capability. The perception system supports a large braking distance by fusing multiple range images to build a map of the terrain in front of the vehicle. The system identifies range shadows and interpolates undersamples regions to account for rough terrain effects. The motion planner reduces computational complexity by investigating a minimum number of trajectories. Speeds along the trajectory are set to provide for dynamic stability. The entire system was tested in simulation, and a subset of the capability was demonstrated on a real vehicle. Results to date include a continuous 5.1 kilometer run across moderate terrain with obstacles. This paper begins with the applications, prior work, limitations, and current paradigms for autonomous cross-country navigation, and then describes our contribution to the area.

  20. Accuracy analysis on C/A code and P(Y) code pseudo-range of GPS dual frequency receiver and application in point positioning

    NASA Astrophysics Data System (ADS)

    Peng, Xiuying; Fan, Shijie; Guo, Jiming

    2008-10-01

    When the Anti-Spoofing (A-S) is active, the civilian users have some difficulties in using the P(Y) code for precise navigation and positioning. Z-tracking technique is one of the effective methods to acquire the P(Y) code. In this paper, the accuracy of pseudoranges from C/A code and P(Y) code for dual frequency GPS receiver is discussed. The principle of measuring the encrypted P(Y) code is described firstly, then a large data set from IGS tracking stations is utilized for analysis and verification with the help of a precise point positioning software developed by authors. Especially, P(Y) code pseudoranges of civilian GPS receivers allow eliminating/reducing the effect of ionospheric delay and improve the precision of positioning. The point positioning experiments for this are made in the end.

  1. Accuracy of treatment planning based on stereolithography in computer assisted surgery.

    PubMed

    Schicho, Kurt; Figl, Michael; Seemann, Rudolf; Ewers, Rolf; Lambrecht, J Thomas; Wagner, Arne; Watzinger, Franz; Baumann, Arnulf; Kainberger, Franz; Fruehwald, Julia; Klug, Clemens

    2006-09-01

    Three-dimensional stereolithographic models (SL models), made of solid acrylic resin derived from computed-tomography (CT) data, are an established tool for preoperative treatment planning in numerous fields of medicine. An innovative approach, combining stereolithography with computer-assisted point-to-point navigation, can support the precise surgical realization of a plan that has been defined on an SL model preoperatively. The essential prerequisites for the application of such an approach are: (1) The accuracy of the SL models (including accuracy of the CT scan and correspondence of the model with the patient's anatomy) and (2) the registration method used for the transfer of the plan from the SL model to the patient (i.e., whether the applied registration markers can be added to the SL model corresponding to the markers at the patient with an accuracy that keeps the "cumulative error" at the end of the chain of errors, in the order of the accuracy of contemporary navigation systems). In this study, we focus on these two topics: By applying image-matching techniques, we fuse the original CT data of the patient with the corresponding CT data of the scanned SL model, and measure the deviations of defined parameter (e.g., distances between anatomical points). To evaluate the registration method used for the planning transfer, we apply a point-merge algorithm, using four marker points that should be located at exactly corresponding positions at the patient and at connective bars that are added to the surface of the SL model. Again, deviations at defined anatomical structures are measured and analyzed statistically. Our results prove sufficient correspondence of the two data sets and accuracy of the registration method for routine clinical application. The evaluation of the SL model accuracy revealed an arithmetic mean of the relative deviations from 0.8% to 5.4%, with an overall mean deviation of 2.2%. Mean deviations of the investigated anatomical structures

  2. Accuracy of treatment planning based on stereolithography in computer assisted surgery

    SciTech Connect

    Schicho, Kurt; Figl, Michael; Seemann, Rudolf; Ewers, Rolf; Lambrecht, J. Thomas; Wagner, Arne; Watzinger, Franz; Baumann, Arnulf; Kainberger, Franz; Fruehwald, Julia; Klug, Clemens

    2006-09-15

    Three-dimensional stereolithographic models (SL models), made of solid acrylic resin derived from computed-tomography (CT) data, are an established tool for preoperative treatment planning in numerous fields of medicine. An innovative approach, combining stereolithography with computer-assisted point-to-point navigation, can support the precise surgical realization of a plan that has been defined on an SL model preoperatively. The essential prerequisites for the application of such an approach are: (1) The accuracy of the SL models (including accuracy of the CT scan and correspondence of the model with the patient's anatomy) and (2) the registration method used for the transfer of the plan from the SL model to the patient (i.e., whether the applied registration markers can be added to the SL model corresponding to the markers at the patient with an accuracy that keeps the ''cumulative error'' at the end of the chain of errors, in the order of the accuracy of contemporary navigation systems). In this study, we focus on these two topics: By applying image-matching techniques, we fuse the original CT data of the patient with the corresponding CT data of the scanned SL model, and measure the deviations of defined parameter (e.g., distances between anatomical points). To evaluate the registration method used for the planning transfer, we apply a point-merge algorithm, using four marker points that should be located at exactly corresponding positions at the patient and at connective bars that are added to the surface of the SL model. Again, deviations at defined anatomical structures are measured and analyzed statistically. Our results prove sufficient correspondence of the two data sets and accuracy of the registration method for routine clinical application. The evaluation of the SL model accuracy revealed an arithmetic mean of the relative deviations from 0.8% to 5.4%, with an overall mean deviation of 2.2%. Mean deviations of the investigated anatomical structures

  3. GALILEO Precise Orbit and Clock Determinaiton using GPS and GALILEO Combined Processing Strategy

    NASA Astrophysics Data System (ADS)

    Cui, Hongzheng; Tang, Geshi; Song, Baiyan; Liu, Huicui; Han, Chao; Ge, Maorong

    2014-05-01

    The GALILEO system-still in its development phase-will be Europe's GNSS, and the in-orbit validation (IOV) phase has begun with launch of two IOV satellites, IOV-1 (E11) and IOV-2 (E12). High precise data processing is the precondition for upgrading navigation precision, monitoring and assessment of GNSS Open services, and expanding the application region for satellite navigation system. BACC is doing the work about operation and maintenance the iGMAS (international GNSS Monitoring and Assessment Service) Analysis Center (BAC), and producing the precision products to the users with equivalent accuracy to well-known institutes, such as IGS and CODE including precise satellite orbit and clock, tracking station coordinate and receiver clock, Zenith Total Delay (ZTD), Earth Orientation Parameter (EOP) parameters, global and statistical integrity and Ionospheric map, and this study just focuses on the combined orbit and clock. For GALILEO in the initial deployment phase, in order to take advantage of GPS observation and mature models to do joint orbit determination in a unified time and space frame to improve the orbit of other systems, and use the GPS orbit and clock from joint solution as the external check, we adopt combined orbit determination of GPS and GALILEO fixing firstly the coordinate of station, receiver clock and tropospheric parameters using GPS precise ephemeris and clock, and seting inter-system bias (ISB) between GPS and GALILEO as a parameter to be estimated. The observation data from a network of multi-GNSS capable receivers from the MGEX tracking network and a regional multi-GNSS network operated by China from day 321 to 334 in 2013, and the satellite force models and GFZ standard observation modeling except Yaw-control model are used in three day solution. For impact analysis, we compare the GPS orbit and clock to IGS final orbit and clock products to evaluate the accuracy, and the accuracy of GALILEO orbit and clock and can be validated by checking

  4. Fusion of navigational data in River Information Services

    NASA Astrophysics Data System (ADS)

    Kazimierski, W.

    2009-04-01

    River Information Services (RIS) is the complex system of solutions and services for inland shipping. It has been the scope of works carried out in most of European countries for last several years. There were also a few major pan-European projects like INDRIS or COMPRIS launched for these purposes. The main idea of RIS is to harmonize the activities of various companies, authorities and other users of inland waterways in Europe. In the last time growing activity in this area in Poland can be also noticed. The leading example can be the works carried out in Chair of Geoinformatics in Maritime University of Szczecin regarding RIS for the needs of Odra River. The Directive 2005/44/EC of European Parliament and Europe Council, followed by European Commission regulations, give precise guidelines on implementing RIS in Europe, stating the services that should be provided. Among them Traffic Information and Traffic Management services can be found. As per guidelines they should be based on tracking and tracing of ships in the inland waters. The results of tracking and tracing are Tactical Traffic Image and Strategic Traffic Image. The guidelines stated that, tracking and tracing system in RIS shall consist of various type sensors. The most important of them is thought to be Automatic Information System (AIS), and particularly its river version - Inland AIS. It is based on determining the position of ships by satellite positioning systems (mainly DGPS) and transmitting it to other users on radio VHF frequences. This guarantees usually high accuracy of data related to movement of ships (assuming proper functioning of system and ship's sensors), and gives the possibility of transmitting additional information about ship, like dimensions, port of destination, cargo, etc. However the other sensors that can be used for tracking shall not be forgotten. The most important of them are radar (traditionally used for tracking purposes in Vessel Traffic Systems) and video camera

  5. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  6. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  7. Designing Navigation Support in Hypertext Systems Based on Navigation Patterns

    ERIC Educational Resources Information Center

    Puntambekar, Sadhana; Stylianou, Agni

    2005-01-01

    In this paper, we present two studies designed to help students navigate effectively and learn from a hypertext system, CoMPASS. Our first study ("N" = 74) involved an analysis of students' navigation patterns to group them into clusters, using a "k"-means clustering technique. Based on this analysis, navigation patterns were grouped into four…

  8. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-