Science.gov

Sample records for accuracy precision navigation

  1. Voyager navigation strategy and accuracy

    NASA Technical Reports Server (NTRS)

    Jones, J. B.; Mcdanell, J. P.; Bantell, M. H., Jr.; Chadwick, C.; Jacobson, R. A.; Miller, L. J.; Synnott, S. P.; Van Allen, R. E.

    1977-01-01

    The paper presents the results of the prelaunch navigation studies conducted for the Mariner spacecraft launched toward encounters with the giant planets. The navigation system and the strategy for using this system are described. The requirements on the navigation system demanded by the goals of the project are mentioned, and the predicted navigational capability relative to each of the requirements is discussed. Baseline navigation results for three possible trajectories are analyzed.

  2. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  3. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement. PMID:27044032

  4. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  5. Precise laser gyroscope for autonomous inertial navigation

    SciTech Connect

    Kuznetsov, A G; Molchanov, A V; Izmailov, E A; Chirkin, M V

    2015-01-31

    Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)

  6. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  7. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  8. Accuracy and precision of an IGRT solution.

    PubMed

    Webster, Gareth J; Rowbottom, Carl G; Mackay, Ranald I

    2009-01-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within +/- 3% in dose over the range of sample points. For some points in high-dose gradients

  9. Precision standoff guidance antenna accuracy evaluation

    NASA Astrophysics Data System (ADS)

    Irons, F. H.; Landesberg, M. M.

    1981-02-01

    This report presents a summary of work done to determine the inherent angular accuracy achievable with the guidance and control precision standoff guidance antenna. The antenna is a critical element in the anti-jam single station guidance program since its characteristics can limit the intrinsic location guidance accuracy. It was important to determine the extent to which high ratio beamsplitting results could be achieved repeatedly and what issues were involved with calibrating the antenna. The antenna accuracy has been found to be on the order of 0.006 deg. through the use of a straightforward lookup table concept. This corresponds to a cross range error of 21 m at a range of 200 km. This figure includes both pointing errors and off-axis estimation errors. It was found that the antenna off-boresight calibration is adequately represented by a straight line for each position plus a lookup table for pointing errors relative to broadside. In the event recalibration is required, it was found that only 1% of the model would need to be corrected.

  10. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  11. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  12. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  13. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  14. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay

    1993-01-01

    As the baseline navigation system for the Earth Observing System (EOS)-AM1 spacecraft, the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is required to provide precise position and velocity information for imaging instrument calibration and routine operations. This paper presents the results of real-time navigation performance evaluations with respect to TONS-based orbit and frequency determination to satisfy this requirement. Both covariance and simulation analysis of EOS-AM1 navigation accuracy and analysis using operational data from Landsat-4 are presented. Local (half orbit) and global (multiple orbits) tracking are considered using a way-forward link services. Improvements in navigation accuracies by using enhanced gravity models beyond the Goddard Earth Model (GEM)-T3 are also discussed. Key objectives of the analysis are to evaluate nominal performance and potential sensitivities and to address algorithm improvements such as TDRS ephemeris biasing, ionosphere model, and gravity process noise models slated for implementation. Results indicate that TONS can be configured to meet the proposed instrument navigation requirements of 20 meters, 3-sigma.

  15. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS)

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay

    As the baseline navigation system for the Earth Observing System (EOS)-AM1 spacecraft, the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is required to provide precise position and velocity information for imaging instrument calibration and routine operations. This paper presents the results of real-time navigation performance evaluations with respect to TONS-based orbit and frequency determination to satisfy this requirement. Both covariance and simulation analysis of EOS-AM1 navigation accuracy and analysis using operational data from Landsat-4 are presented. Local (half orbit) and global (multiple orbits) tracking are considered using a way-forward link services. Improvements in navigation accuracies by using enhanced gravity models beyond the Goddard Earth Model (GEM)-T3 are also discussed. Key objectives of the analysis are to evaluate nominal performance and potential sensitivities and to address algorithm improvements such as TDRS ephemeris biasing, ionosphere model, and gravity process noise models slated for implementation. Results indicate that TONS can be configured to meet the proposed instrument navigation requirements of 20 meters, 3-sigma.

  16. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  17. Assessing the Accuracy of the Precise Point Positioning Technique

    NASA Astrophysics Data System (ADS)

    Bisnath, S. B.; Collins, P.; Seepersad, G.

    2012-12-01

    The Precise Point Positioning (PPP) GPS data processing technique has developed over the past 15 years to become a standard method for growing categories of positioning and navigation applications. The technique relies on single receiver point positioning combined with the use of precise satellite orbit and clock information and high-fidelity error modelling. The research presented here uniquely addresses the current accuracy of the technique, explains the limits of performance, and defines paths to improvements. For geodetic purposes, performance refers to daily static position accuracy. PPP processing of over 80 IGS stations over one week results in few millimetre positioning rms error in the north and east components and few centimetres in the vertical (all one sigma values). Larger error statistics for real-time and kinematic processing are also given. GPS PPP with ambiguity resolution processing is also carried out, producing slight improvements over the float solution results. These results are categorised into quality classes in order to analyse the root error causes of the resultant accuracies: "best", "worst", multipath, site displacement effects, satellite availability and geometry, etc. Also of interest in PPP performance is solution convergence period. Static, conventional solutions are slow to converge, with approximately 35 minutes required for 95% of solutions to reach the 20 cm or better horizontal accuracy. Ambiguity resolution can significantly reduce this period without biasing solutions. The definition of a PPP error budget is a complex task even with the resulting numerical assessment, as unlike the epoch-by-epoch processing in the Standard Position Service, PPP processing involving filtering. An attempt is made here to 1) define the magnitude of each error source in terms of range, 2) transform ranging error to position error via Dilution Of Precision (DOP), and 3) scale the DOP through the filtering process. The result is a deeper

  18. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  19. Accuracy considerations in navigated cup placement for total hip arthroplasty.

    PubMed

    Langlotz, U; Grützner, P A; Bernsmann, K; Kowal, J H; Tannast, M; Caversaccio, M; Nolte, L-P

    2007-10-01

    Computer assisted orthopaedic surgery (CAOS) technology has recently been introduced to overcome problems resulting from acetabular component malpositioning in total hip arthroplasty. Available navigation modules can conceptually be categorized as computer tomography (CT) based, fluoroscopy based, or image-free. The current study presents a comprehensive accuracy analysis on the computer assisted placement accuracy of acetabular cups. It combines analyses using mathematical approaches, in vitro testing environments, and an in vivo clinical trial. A hybrid navigation approach combining image-free with fluoroscopic technology was chosen as the best compromise to CT-based systems. It introduces pointer-based digitization for easily assessable points and bi-planar fluoroscopy for deep-seated landmarks. From the in vitro data maximum deviations were found to be 3.6 degrees for inclination and 3.8 degrees for anteversion relative to a pre-defined test position. The maximum difference between intraoperatively calculated cup inclination and anteversion with the postoperatively measured position was 4 degrees and 5 degrees, respectively. These data coincide with worst cases scenario predictions applying a statistical simulation model. The proper use of navigation technology can reduce variability of cup placement well within the surgical safe zone. Surgeons have to concentrate on a variety of error sources during the procedure, which may explain the reported strong learning curves for CAOS technologies. PMID:18019461

  20. Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation

    NASA Technical Reports Server (NTRS)

    Pollmeier, V. M.; Thurman, S. W.

    1992-01-01

    The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.

  1. Preliminary assessment of the basic navigation and precise positioning performance of BDS

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Hu, Zhigang; Li, Min; Guo, Jing; Shi, Chuang; Liu, Jingnan

    2014-05-01

    Following the general guideline of starting with regional services and then expanding to global services, the BeiDou Navigation Satellite System(BDS) is steadily accelerating the construction. By the end of 2012, the BDS already consists of fourteen networking satellites, including five GEO satellites, five IGSO satellites, and four MEO satellites, and owns full operational capability for China and its surrounding areas. Both basic navigation and precise positioning performance of current BDS (with 5GEO+5IGSO+4MEO satellites) during January to December of 2013 are evaluated in this presentation. In China and its surrounding area, the positioning accuracy using BDS opening service is about 10 meters in both horizontal and vertical direction. Users can get high precise service using BDS only, and both BDS and GPS users can be benefitted from combination of the two systems.

  2. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  3. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  4. Tightly Coupled Integration of Ionosphere-Constrained Precise Point Positioning and Inertial Navigation Systems

    PubMed Central

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  5. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems.

    PubMed

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  6. Precision and Accuracy Studies with Kajaani Fiber Length Analyzers

    NASA Astrophysics Data System (ADS)

    Copur, Yalcin; Makkonen, Hannu

    The aim of this study was to test the measurement precision and accuracy of the Kajaani FS-100 giving attention to possible machine error in the measurements. Fiber length of pine pulps produced using polysulfide, kraft, biokraft and soda methods were determined using both FS-100 and FiberLab automated fiber length analyzers. The measured length values were compared for both methods. The measurement precision and accuracy was tested by replicated measurements using rayon stable fibers. Measurements performed on pulp samples showed typical length distributions for both analyzers. Results obtained from Kajaani FS-100 and FiberLab showed a significant correlation. The shorter length measurement with FiberLab was found to be mainly due to the instrument calibration. The measurement repeatability tested for Kajaani FS-100 indicated that the measurements are precise.

  7. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-02-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  8. Concepts for AutomatedPrecise Low Earth Orbiter Navigation With the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Lichten, S. M.; Thornton, C. L.; Young, L. E.; Yunck, T. P.

    1998-01-01

    The Global Positioning System (GPS) is widely used for satellite positioning and navigation and for numerous geolocation activities. Real-time, onboard positioning accuracies for low Earth orbiters (LEOs) currently vary from 50 to 100 m for stand-alone conventional GPS tracking to somewhat better than 10 m with sophisticated onboard data filtering. Wide-area differential techniques, such as those supported by the Wide Area Augmentation System (WAAS) under development by the U.S. Federal Aviation Administration, offer real-time, kinematic positioning accuracies ranging from a few meters to better than a meter over well-defined local regions. This article describes a concept for extending the wide-area differential GPS techniques to achieve global, real-time positioning of LEOs at submeter accuracies. GPS design and operation policy issues that currently limit real-time, onboard precision positioning are discussed. The article then examines a number of proposed system design enhancements under consideration by the U.S. Department of Defense for the next-generation GPS, termed GPS III. These potential enhancements, if implemented, would enable global real-time, stand-alone position accuracies of a few decimeters for kinematic users and better than 10 cm for LEOs. Such capabilities could dramatically impact NASA missions by greatly lowering ground operations costs, as well as navigation and orbit determination costs in general.

  9. Flight Evaluation of GPS Precise Point Positioning Software for Helicopter Navigation

    NASA Astrophysics Data System (ADS)

    Shimizu, Yutaka; Murata, Masaaki

    In 2007 development and assessment of a precise point positioning (PPP) software for land vehicular navigation have been reported. This paper presents one phase of the continued study at NDA for further extension of the software to helicopter navigation. For 3D users, the height-dependent tropospheric delay is a critical factor, and so the sophisticated correction models and parameter estimation strategies have to be investigated to mitigate the delay effect. Since the precise positioning results become available only after the filter convergence and the filter generally converges rather slowly, speeding up the convergence has to be taken into special attention. In this paper we propose some new ideas to cope with this problem, and report the test using GPS helicopter flight data in post-processing. With proposed techniques including the variable Q and pseudo-observation concept, we show that point positioning accuracy at about decimeter level both horizontally and vertically can be achieved with improved convergence within about half an hour. We also show that the use of the high-rate (30-second) satellite clocks rather than the 5-minute clocks further improves positioning accuracy at sub-decimeter level in each 3D coordinate.

  10. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao

    2016-09-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h‑1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h‑1. Flight simulations and road tests show its outstanding performance over the traditional NGM.

  11. An Effective Approach to Improving Low-Cost GPS Positioning Accuracy in Real-Time Navigation

    PubMed Central

    Islam, Md. Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4–10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  12. An effective approach to improving low-cost GPS positioning accuracy in real-time navigation.

    PubMed

    Islam, Md Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4-10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  13. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  14. The Plus or Minus Game - Teaching Estimation, Precision, and Accuracy

    NASA Astrophysics Data System (ADS)

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-03-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in TPT (Larry Weinstein's "Fermi Questions.") For several years the authors (a college physics professor, a retired algebra teacher, and a fifth-grade teacher) have been playing a game, primarily at home to challenge each other for fun, but also in the classroom as an educational tool. We call the game "The Plus or Minus Game." The game combines estimation with the principle of precision and uncertainty in a competitive and fun way.

  15. Precision and accuracy in the reproduction of simple tone sequences.

    PubMed

    Vos, P G; Ellermann, H H

    1989-02-01

    In four experiments we investigated the precision and accuracy with which amateur musicians are able to reproduce sequences of tones varied only temporally, so as to have tone and rest durations constant over sequences, and the tempo varied over the musically meaningful range of 5-0.5 tones per second. Experiments 1 and 2 supported the hypothesis of attentional bias toward having the attack moments, rather than the departure moments, precisely times. Experiment 3 corroborated the hypothesis that inaccurate timing of short interattack intervals is manifested in a lengthening of rests, rather than tones, as a result of larger motor activity during the reproduction of rests. Experiment 4 gave some support to the hypothesis that the shortening of long interattack intervals is due to mnemonic constraints affecting the rests rather than the tones. Both theoretical and practical consequences of the various findings, particularly with respect to timing in musical performance, are discussed. PMID:2522528

  16. Fluorescence Axial Localization with Nanometer Accuracy and Precision

    SciTech Connect

    Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

    2012-06-15

    We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

  17. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  18. Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking

    NASA Astrophysics Data System (ADS)

    Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.

    2015-03-01

    Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.

  19. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  20. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  1. Accuracy, Precision, and Resolution in Strain Measurements on Diffraction Instruments

    NASA Astrophysics Data System (ADS)

    Polvino, Sean M.

    Diffraction stress analysis is a commonly used technique to evaluate the properties and performance of different classes of materials from engineering materials, such as steels and alloys, to electronic materials like Silicon chips. Often to better understand the performance of these materials at operating conditions they are also commonly subjected to elevated temperatures and different loading conditions. The validity of any measurement under these conditions is only as good as the control of the conditions and the accuracy and precision of the instrument being used to measure the properties. What is the accuracy and precision of a typical diffraction system and what is the best way to evaluate these quantities? Is there a way to remove systematic and random errors in the data that are due to problems with the control system used? With the advent of device engineering employing internal stress as a method for increasing performance the measurement of stress from microelectronic structures has become of enhanced importance. X-ray diffraction provides an ideal method for measuring these small areas without the need for modifying the sample and possibly changing the strain state. Micro and nano diffraction experiments on Silicon-on-Insulator samples revealed changes to the material under investigation and raised significant concerns about the usefulness of these techniques. This damage process and the application of micro and nano diffraction is discussed.

  2. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  3. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  4. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2010-09-01

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  5. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    SciTech Connect

    Olivi, Alessandro, M.D.

    2010-08-28

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  6. T1-mapping in the heart: accuracy and precision

    PubMed Central

    2014-01-01

    The longitudinal relaxation time constant (T1) of the myocardium is altered in various disease states due to increased water content or other changes to the local molecular environment. Changes in both native T1 and T1 following administration of gadolinium (Gd) based contrast agents are considered important biomarkers and multiple methods have been suggested for quantifying myocardial T1 in vivo. Characterization of the native T1 of myocardial tissue may be used to detect and assess various cardiomyopathies while measurement of T1 with extracellular Gd based contrast agents provides additional information about the extracellular volume (ECV) fraction. The latter is particularly valuable for more diffuse diseases that are more challenging to detect using conventional late gadolinium enhancement (LGE). Both T1 and ECV measures have been shown to have important prognostic significance. T1-mapping has the potential to detect and quantify diffuse fibrosis at an early stage provided that the measurements have adequate reproducibility. Inversion recovery methods such as MOLLI have excellent precision and are highly reproducible when using tightly controlled protocols. The MOLLI method is widely available and is relatively mature. The accuracy of inversion recovery techniques is affected significantly by magnetization transfer (MT). Despite this, the estimate of apparent T1 using inversion recovery is a sensitive measure, which has been demonstrated to be a useful tool in characterizing tissue and discriminating disease. Saturation recovery methods have the potential to provide a more accurate measurement of T1 that is less sensitive to MT as well as other factors. Saturation recovery techniques are, however, noisier and somewhat more artifact prone and have not demonstrated the same level of reproducibility at this point in time. This review article focuses on the technical aspects of key T1-mapping methods and imaging protocols and describes their limitations including

  7. PRECISION AND ACCURACY ASSESSMENTS FOR STATE AND LOCAL AIR MONITORING NETWORKS--1988

    EPA Science Inventory

    Precision and accuracy data obtained from state and local agencies (SLAMS) during 1988 are analyzed. ooled site variances and average biases which are relevant quantities to both precision and accuracy determinations are statistically compared within and between states to assess ...

  8. [Navigation in implantology: Accuracy assessment regarding the literature].

    PubMed

    Barrak, Ibrahim Ádám; Varga, Endre; Piffko, József

    2016-06-01

    Our objective was to assess the literature regarding the accuracy of the different static guided systems. After applying electronic literature search we found 661 articles. After reviewing 139 articles, the authors chose 52 articles for full-text evaluation. 24 studies involved accuracy measurements. Fourteen of our selected references were clinical and ten of them were in vitro (modell or cadaver). Variance-analysis (Tukey's post-hoc test; p < 0.05) was conducted to summarize the selected publications. Regarding 2819 results the average mean error at the entry point was 0.98 mm. At the level of the apex the average deviation was 1.29 mm while the mean of the angular deviation was 3,96 degrees. Significant difference could be observed between the two methods of implant placement (partially and fully guided sequence) in terms of deviation at the entry point, apex and angular deviation. Different levels of quality and quantity of evidence were available for assessing the accuracy of the different computer-assisted implant placement. The rapidly evolving field of digital dentistry and the new developments will further improve the accuracy of guided implant placement. In the interest of being able to draw dependable conclusions and for the further evaluation of the parameters used for accuracy measurements, randomized, controlled single or multi-centered clinical trials are necessary. PMID:27544966

  9. Measure of the accuracy of navigational sensors for autonomous path tracking

    NASA Astrophysics Data System (ADS)

    Motazed, Ben

    1994-02-01

    Outdoor mobile robot path tracking for an extended period of time and distance is a formidable task. The difficulty lies in the ability of robot navigation systems to reliably and accurately report on the position and orientation of the vehicle. This paper addresses the accurate navigation of mobile robots in the context of non-line of sight autonomous convoying. Dead-reckoning, GPS and vision based autonomous road following navigational schemes are integrated through a Kalman filter formulation to derive mobile robot position and orientation. The accuracy of these navigational schemes and their sufficiency to achieve autonomous path tracking for long duration are examined.

  10. A High Accuracy Hybrid Navigation System for Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kumagai, Hideo; Numajima, Toru; Sugimoto, Sueo

    The development of small, light weight, low power navigation system for guidance of both tethered and autonomous Unmanned Underwater Vehicle (UUV) is required in applications such as deep salvage, oil and gas well head and pipe line laying and maintenance, etc. All have stringent position requirements in order to define target locations followings the initial find, minimize search time for return missions, as well as support of autopilot functions. In these applications mainly an accurate Sonar Doppler Velocity Log (DVL) was used for Inertial Navigation System (INS) error corrections. But the settlement of DVL is not affordable to various UUV so that not convenient to low cost and small UUV. In this paper we propose a new algorithm for combining the low cost but highly accurate INS with Water Screw Speed (WSS) of the UUV efficiently. In order to evaluate our algorithm we produced the data acquisition system and after several experimental run, we simulated this algorithm searching the error correlation time and noise variance of these estimations.

  11. GPS navigation experiment using high precision GPS timing receivers

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Oaks, O. J.; Lister, M. J.; Wardrip, S. C.; Leschiutta, S.; Galliano, P. G.; Cordara, D.; Pettiti, V.; Detoma, E.; Dachel, P.

    1985-01-01

    Global Positioning System (GPS) Time Transfer receivers were developed by the Naval Research Laboratory (NRL) to provide synchronization for the NASA Global Laser Tracking Network (GLTN). The capabilities of the receiver are being expanded mainly through software modification to: Demonstrate the position location capabilities of a single channel receiver unsign the GPS C/A code; and Demonstrate the time/navigation capability of the receiver onboard a moving platform, by sequential tracking of GPS satellites.

  12. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  13. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  14. Navigation accuracies for GPS demonstration on Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Williams, B. G.; Mccoll, K. C.; Guinn, J. R.

    1990-01-01

    When Topex/Poseidon, is launched in June 1992, the joint United States/French oceanographic satellite mission will carry a developmental Global Positioning System (GPS) receiver on board to support the planned GPS demonstration experiment. The navigation operations aspect of the demonstration will develop software and operational procedures for the GPS Data Processing Facility (GDPF) at NASA's Jet Propulsion Laboratory. This paper presents simulations and covariance analysis of operational scenarios in support of the GDPF. Multi-orbit filter techniques using GPS carrier phase and P-code pseudo-range are studied both to tune the filter parameters and to determine feasible arc lengths for use in operations. In addition, a baseline operational scenario is presented with performance results given in terms of end-to-end processing times and computational loading based on a prototype version of the operational software.

  15. Accuracy and efficacy of osteotomy in total knee arthroplasty with patient-specific navigational template

    PubMed Central

    Gan, Yudong; Ding, Jing; Xu, Yongqing; Hou, Chunlin

    2015-01-01

    This study develops and validates a novel patient-specific navigational template for total knee arthroplasty (TKA). A total of 70 patients who underwent TKA were randomized and divided into conventional method group and navigational template group. In the navigational template group, the patient-specific navigational templates were designed and used intraoperatively to assist 35 patients with knee arthroplasty. Information on operation time and blood loss was recorded. After surgery, the positions of the prosthesis were evaluated using CT scan and X-rays. Analysis showed significant differences in errors between the two techniques. In addition, mean operation time and mean blood loss were statistically and significantly lower in the navigational template group than in the conventional group. Overall, the navigational template method showed a high degree of accuracy and efficacy. PMID:26550129

  16. Accuracy and precision of alternative estimators of ectoparasiticide efficacy.

    PubMed

    Schall, Robert; Burger, Divan A; Luus, Herman G

    2016-06-15

    While there is consensus that the efficacy of parasiticides is properly assessed using the Abbott formula, there is as yet no general consensus on the use of arithmetic versus geometric mean numbers of surviving parasites in the formula. The purpose of this paper is to investigate the accuracy and precision of various efficacy estimators based on the Abbott formula which alternatively use arithmetic mean, geometric mean and median numbers of surviving parasites; we also consider a maximum likelihood estimator. Our study shows that the best estimators using geometric means are competitive, with respect to root mean squared error, with the conventional Abbott estimator using arithmetic means, as they have lower average and lower median root mean square error over the parameter scenarios which we investigated. However, our study confirms that Abbott estimators using geometric means are potentially biased upwards, and this upward bias is substantial in particular when the test product has substandard efficacy (90% and below). For this reason, we recommend that the Abbott estimator be calculated using arithmetic means. PMID:27198777

  17. Accuracy of lesion boundary tracking in navigated breast tumor excision

    NASA Astrophysics Data System (ADS)

    Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor

    2016-03-01

    PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.

  18. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  19. Accuracy Evaluation of Stereo Vision Aided Inertial Navigation for Indoor Environments

    NASA Astrophysics Data System (ADS)

    Griessbach, D. G.; Baumbach, D. B.; Boerner, A. B.; Zuev, S. Z.

    2013-11-01

    Accurate knowledge of position and orientation is a prerequisite for many applications regarding unmanned navigation, mapping, or environmental modelling. GPS-aided inertial navigation is the preferred solution for outdoor applications. Nevertheless a similar solution for navigation tasks in difficult environments with erroneous or no GPS-data is needed. Therefore a stereo vision aided inertial navigation system is presented which is capable of providing real-time local navigation for indoor applications. A method is described to reconstruct the ego motion of a stereo camera system aided by inertial data. This, in turn, is used to constrain the inertial sensor drift. The optical information is derived from natural landmarks, extracted and tracked over consequent stereo image pairs. Using inertial data for feature tracking effectively reduces computational costs and at the same time increases the reliability due to constrained search areas. Mismatched features, e.g. at repetitive structures typical for indoor environments are avoided. An Integrated Positioning System (IPS) was deployed and tested on an indoor navigation task. IPS was evaluated for accuracy, robustness, and repeatability in a common office environment. In combination with a dense disparity map, derived from the navigation cameras, a high density point cloud is generated to show the capability of the navigation algorithm.

  20. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  1. Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing

    NASA Technical Reports Server (NTRS)

    Sands, Obed S.; Connolly, Joseph W.; Welch, Bryan W.; Carpenter, James R.; Ely, Todd A.; Berry, Kevin

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e., GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  2. A state dynamics method for integrated GPS/INS navigation and its application to aircraft precision approach

    NASA Astrophysics Data System (ADS)

    Chan, Fang-Cheng

    In recent years, GPS navigation systems have found widespread use in many diverse applications. The achievements of GPS navigation systems in positioning and navigation services have been nothing short of extraordinary. With the use of carrier phase measurements and Differential GPS (DGPS), centimeter-level performance is achievable today. Therefore, the principal issues for modern navigation are not related to accuracy per se, but robustness. Unfortunately in this regard, all radionavigation systems are subject to Radio Frequency Interference (RFI). In response, this research is focused on the development of interference-robust navigation systems for aviation applications. A new dual-frequency Carrier-phase DGPS (CDGPS) architecture has been developed in this research and its performance was evaluated relative to the requirements for a unique shipboard landing application. RFI vulnerability was addressed for this application by directly incorporating a single frequency architecture as a back-up in the event of hostile jamming on one frequency. For critical civil aviation applications without access to dual frequency GPS signals, a novel method for tightly-coupling GPS and Inertial Navigation Sensors (INS) was developed to address the signal vulnerability issue. The new hybrid navigation system, based on the direct fusion of GPS and INS using state dynamics, is a mathematically rigorous approach, yet it is more direct and simpler to implement than existing GPS/INS integration schemes. The hybrid navigation system was validated with flight data, and predicted system performance was evaluated using a covariance analysis method. Necessary conditions on INS sensor and gravity model quality were derived to ensure that the hybrid system performance is compliant with navigation requirements for aircraft precision approach and landing. In addition, a new fault detection algorithm, based on integrated Kalman filter innovations, was developed and evaluated against other

  3. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  4. Numerical planetary and lunar ephemerides - Present status, precision and accuracies

    NASA Technical Reports Server (NTRS)

    Standish, E. Myles, Jr.

    1986-01-01

    Features of the emphemeris creation process are described with attention given to the equations of motion, the numerical integration, and the least-squares fitting process. Observational data are presented and ephemeride accuracies are estimated. It is believed that radio measurements, VLBI, occultations, and the Space Telescope and Hipparcos will improve ephemerides in the near future. Limitations to accuracy are considered as well as relativity features. The export procedure, by which an outside user may obtain and use the JPL ephemerides, is discussed.

  5. High-precision image aided inertial navigation with known features: observability analysis and performance evaluation.

    PubMed

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  6. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  7. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Earth-Based Assets

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. These regions are known to have poor Earth visibility, but unknown is the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in these areas. This report presents a dilution-of-precision (DoP)-based analysis of the performance of a network of Earth-based assets. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum provider elevation angle, nadir and zenith beam widths, and a total single failure in one of the Earth-based assets. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometrical DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  8. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. Since these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this report, a dilution-of-precision (DoP)-based analysis of the performance of a network of Moon orbiting satellites is provided. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum surface user elevation angle and a total single satellite failure in the lunar network. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometric DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  9. Precise Real-Time Low-Earth-Orbiter Navigation With the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Bertiger, W.; Haines, B.; Kuang, D.; Lough, M.; Lichten, S.; Muellerschoen, R. J.; Vigue-Rodi, Y.; Wu, S.

    1999-01-01

    Technology currently is available to support real-time onboard knowledge of the position of a low Earth orbiter at the 5- to 15-m level using the civilian broadcast Global Positioning System (GPS) signal with sophisticated models and filtering techniques onboard the spacecraft. Without these techniques, the standard positioning service yields 50 to 100 m with the current level of selective availability (SA). Proposed augmentations and/or enhancements to the GPS system will make rms accuracies of from 10 centimeters to a few decimeters available to the real-time onboard user. Presently, near-real-time processing of GPS tracking data can routinely provide low-Earth-orbit determination accuracy at the level of 5 cm. Such processing systems can, in fact, be fully automated; recent results from the Jet Propulsion Laboratory (JPL), where ongoing daily processing of low Earth GPS tracking data has been undertaken for several years, are presented in this article, showing orbit determination accuracies at the sub-10-cm level. At the present time, such solutions can be produced with about a 10-h delay after real time, but recent improvements in JPL's processing system soon will enable turnaround at the 1-h level or better for such precise orbit determination. We anticipate that orbit determination at the 1-cm-accuracy level will be demonstrated, with some refinements to the current system, in the not too distant future. Continuing enhancements in the automation of data retrieval and precise orbit processing will result in continuing decreases in latency for ground-based generation of precise orbit products for Earth orbiters. Such ephemerides can be propagated slightly ahead to provide real-time knowledge. However, there are advantages to an onboard, real-time orbit-determination capability. These include unique mission requirements (military, strategic, and scientific), as well as the potential to dramatically lower navigation operations costs through the enabling of a

  10. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  11. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.

  12. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  13. The precision and accuracy of a portable heart rate monitor.

    PubMed

    Seaward, B L; Sleamaker, R H; McAuliffe, T; Clapp, J F

    1990-01-01

    A device that would comfortably and accurately measure exercise heart rate during field performance could be valuable for athletes, fitness participants, and investigators in the field of exercise physiology. Such a device, a portable telemeterized microprocessor, was compared with direct EKG measurements in a laboratory setting under several conditions to assess its accuracy. Twenty-four subjects were studied at rest and during light-, moderate-, high-, and maximal-intensity endurance activities (walking, running, aerobic dancing, and Nordic Track simulated cross-country skiing. Differences between values obtained by the two measuring devices were not statistically significant, with correlation coefficient (r) values ranging from 0.998 to 0.999. The two methods proved equally reliable for measuring heart rate in a host of varied aerobic activities at varying intensities. PMID:2306564

  14. Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing

    NASA Technical Reports Server (NTRS)

    Sands, Obed S.; Connolly, Joseph W.; Welch, Bryan W.; Carpenter, James R.; Ely, Todd A.; Berry, Kevin

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e. GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver. A significant innovation described in this paper is the "Generalized" Dilution of Precision. In the same sense that the various versions of DoP can be represented as a functional of the observability grammian, Generalized DoP is defined as a functional of the sum of observability grammians associated with a batch of radiometric measurements. Generalized DoP extends the DoP concept to cases in which radiometric range and range-rate measurements are integrated over time to develop an estimate of user position (referred to here as a 'dynamic' solution.) Generalized DoP allows for the inclusion of cases in which the receiver location is underdetermined when

  15. Milling precision and fitting accuracy of Cerec Scan milled restorations.

    PubMed

    Arnetzl, G; Pongratz, D

    2005-10-01

    The milling accuracy of the Cerec Scan system was examined under standard practice conditions. For this purpose, one and the same 3D design similar to an inlay was milled 30 times from Vita Mark II ceramic blocks. Cylindrical diamond burs with 1.2 or 1.6 mm diameter were used. Each individual milled body was measured exactly to 0.1 microm at five defined sections with a coordinate measuring instrument from the Zeiss company. In the statistical evaluation, both the different diamond bur diameters and the extent of material removal from the ceramic blank were taken into consideration; sections with large substance removal and sections with low substance removal were defined. The standard deviation for the 1.6-mm burs was clearly greater than that for the 1.2-mm burs for the section with large substance removal. This difference was significant according to the Levene test for variance equality. In sections with low substance removal, no difference between the use of the 1.6-mm or 1.2-mm bur was shown. The measuring results ranged between 0.053 and 0.14 mm. The spacing of the distances with large substance removal were larger than those with low substance removal. The T-test for paired random samples showed that the distance with large substance removal when using the 1.6-mm bur was significantly larger than the distance with low substance removal. The difference was not significant for the small burs. It was shown several times statistically that the use of the cylindrical diamond bur with 1.6-mm diameter led to greater inaccuracies than the use of the 1.2-mm cylindrical diamond bur, especially at sites with large material removal. PMID:16689028

  16. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance

  17. Method for estimating dynamic EM tracking accuracy of surgical navigation tools

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; Beauregard, Lee; Anderson, Peter

    2006-03-01

    Optical tracking systems have been used for several years in image guided medical procedures. Vendors often state static accuracies of a single retro-reflective sphere or LED. Expensive coordinate measurement machines (CMM) are used to validate the positional accuracy over the specified working volume. Users are interested in the dynamic accuracy of their tools. The configuration of individual sensors into a unique tool, the calibration of the tool tip, and the motion of the tool contribute additional errors. Electromagnetic (EM) tracking systems are considered an enabling technology for many image guided procedures because they are not limited by line-of-sight restrictions, take minimum space in the operating room, and the sensors can be very small. It is often difficult to quantify the accuracy of EM trackers because they can be affected by field distortion from certain metal objects. Many high-accuracy measurement devices can affect the EM measurements being validated. EM Tracker accuracy tends to vary over the working volume and orientation of the sensors. We present several simple methods for estimating the dynamic accuracy of EM tracked tools. We discuss the characteristics of the EM Tracker used in the GE Healthcare family of surgical navigation systems. Results for other tracking systems are included.

  18. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  19. Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1998-01-01

    Expands upon the concepts of precision and accuracy at a level suitable for general chemistry. Serves as a bridge to the more extensive treatments in analytical chemistry textbooks and the advanced literature on error analysis. Contains 22 references. (DDR)

  20. Expansion and dissemination of a standardized accuracy and precision assessment technique

    NASA Astrophysics Data System (ADS)

    Kwartowitz, David M.; Riti, Rachel E.; Holmes, David R., III

    2011-03-01

    The advent and development of new imaging techniques and image-guidance have had a major impact on surgical practice. These techniques attempt to allow the clinician to not only visualize what is currently visible, but also what is beneath the surface, or function. These systems are often based on tracking systems coupled with registration and visualization technologies. The accuracy and precision of the tracking systems, thus is critical in the overall accuracy and precision of the image-guidance system. In this work the accuracy and precision of an Aurora tracking system is assessed, using the technique specified in " novel technique for analysis of accuracy of magnetic tracking systems used in image guided surgery." This analysis yielded a demonstration that accuracy is dependent on distance from the tracker's field generator, and had an RMS value of 1.48 mm. The error has the similar characteristics and values as the previous work, thus validating this method for tracker analysis.

  1. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  2. S193 radiometer brightness temperature precision/accuracy for SL2 and SL3

    NASA Technical Reports Server (NTRS)

    Pounds, D. J.; Krishen, K.

    1975-01-01

    The precision and accuracy with which the S193 radiometer measured the brightness temperature of ground scenes is investigated. Estimates were derived from data collected during Skylab missions. Homogeneous ground sites were selected and S193 radiometer brightness temperature data analyzed. The precision was expressed as the standard deviation of the radiometer acquired brightness temperature. Precision was determined to be 2.40 K or better depending on mode and target temperature.

  3. Precision targeting of liver lesions with a needle-based soft tissue navigation system.

    PubMed

    Maier-Hein, L; Pianka, F; Seitel, A; Müller, S A; Tekbas, A; Seitel, M; Wolf, I; Schmied, B M; Meinzer, H P

    2007-01-01

    In this study, we assessed the targeting precision of a previously reported needle-based soft tissue navigation system. For this purpose, we implanted 10 2-ml agar nodules into three pig livers as tumor models, and two of the authors used the navigation system to target the center of gravity of each nodule. In order to obtain a realistic setting, we mounted the livers onto a respiratory liver motion simulator that models the human body. For each targeting procedure, we simulated the liver biopsy workflow, consisting of four steps: preparation, trajectory planning, registration, and navigation. The lesions were successfully hit in all 20 trials. The final distance between the applicator tip and the center of gravity of the lesion was determined from control computed tomography (CT) scans and was 3.5 +/- 1.1 mm on average. Robust targeting precision of this order of magnitude would significantly improve the clinical treatment standard for various CT-guided minimally invasive interventions in the liver. PMID:18044551

  4. Fundamental components of the parameters of the Earth's rotation in forming high-precision satellite navigation

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Mikhaylov, M. V.; Lar'kov, I. I.; Rozhkov, S. N.; Krylov, S. S.; Perepelkin, V. V.; Pochukaev, V. N.

    2015-03-01

    The fundamental components of the Earth's rotation parameters play an important role in solving the problems of navigation and control of spacecraft motion. Mathematical models of the Earth's pole motion and dUT1 mismatch of the UT1 and UTC time scales adequate to the observation and measurement data of the International Earth Rotation and Reference Systems Service are considered. It is shown that the proposed models provide sufficient autonomy to form parameters of the Earth's rotation onboard the spacecraft. It is necessary to account for these parameters in real time onboard the spacecraft to solve problems of navigational support. The graphs of the daily forecast errors of the GLONASS navigation satellite orbits that are caused by the pole displacement, are presented. A comparative analysis of the graphs shows that disturbances of navigation satellite orbits are comparable with the gravitational influence of the Moon and the Sun and disturbances caused by the anomalous part of the Earth's gravitational field. It is found that a significant increase in forecast accuracy for satellite ephemerides is achieved taking into account of the Earth's rotational and vibrational motion in equations of spacecraft motion.

  5. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  6. Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Luhmann, T.

    2012-07-01

    The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.

  7. Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab

    NASA Technical Reports Server (NTRS)

    Strachan, Russell L.; Evans, James M.

    1991-01-01

    The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.

  8. Screw Placement Accuracy and Outcomes Following O-Arm-Navigated Atlantoaxial Fusion: A Feasibility Study.

    PubMed

    Smith, Jacob D; Jack, Megan M; Harn, Nicholas R; Bertsch, Judson R; Arnold, Paul M

    2016-06-01

    Study Design Case series of seven patients. Objective C2 stabilization can be challenging due to the complex anatomy of the upper cervical vertebrae. We describe seven cases of C1-C2 fusion using intraoperative navigation to aid in the screw placement at the atlantoaxial (C1-C2) junction. Methods Between 2011 and 2014, seven patients underwent posterior atlantoaxial fusion using intraoperative frameless stereotactic O-arm Surgical Imaging and StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, Minnesota, United States). Outcome measures included screw accuracy, neurologic status, radiation dosing, and surgical complications. Results Four patients had fusion at C1-C2 only, and in the remaining three, fixation extended down to C3 due to anatomical considerations for screw placement recognized on intraoperative imaging. Out of 30 screws placed, all demonstrated minimal divergence from desired placement in either C1 lateral mass, C2 pedicle, or C3 lateral mass. No neurovascular compromise was seen following the use of intraoperative guided screw placement. The average radiation dosing due to intraoperative imaging was 39.0 mGy. All patients were followed for a minimum of 12 months. All patients went on to solid fusion. Conclusion C1-C2 fusion using computed tomography-guided navigation is a safe and effective way to treat atlantoaxial instability. Intraoperative neuronavigation allows for high accuracy of screw placement, limits complications by sparing injury to the critical structures in the upper cervical spine, and can help surgeons make intraoperative decisions regarding complex pathology. PMID:27190736

  9. Screw Placement Accuracy and Outcomes Following O-Arm-Navigated Atlantoaxial Fusion: A Feasibility Study

    PubMed Central

    Smith, Jacob D.; Jack, Megan M.; Harn, Nicholas R.; Bertsch, Judson R.; Arnold, Paul M.

    2015-01-01

    Study Design Case series of seven patients. Objective C2 stabilization can be challenging due to the complex anatomy of the upper cervical vertebrae. We describe seven cases of C1–C2 fusion using intraoperative navigation to aid in the screw placement at the atlantoaxial (C1–C2) junction. Methods Between 2011 and 2014, seven patients underwent posterior atlantoaxial fusion using intraoperative frameless stereotactic O-arm Surgical Imaging and StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, Minnesota, United States). Outcome measures included screw accuracy, neurologic status, radiation dosing, and surgical complications. Results Four patients had fusion at C1–C2 only, and in the remaining three, fixation extended down to C3 due to anatomical considerations for screw placement recognized on intraoperative imaging. Out of 30 screws placed, all demonstrated minimal divergence from desired placement in either C1 lateral mass, C2 pedicle, or C3 lateral mass. No neurovascular compromise was seen following the use of intraoperative guided screw placement. The average radiation dosing due to intraoperative imaging was 39.0 mGy. All patients were followed for a minimum of 12 months. All patients went on to solid fusion. Conclusion C1–C2 fusion using computed tomography-guided navigation is a safe and effective way to treat atlantoaxial instability. Intraoperative neuronavigation allows for high accuracy of screw placement, limits complications by sparing injury to the critical structures in the upper cervical spine, and can help surgeons make intraoperative decisions regarding complex pathology. PMID:27190736

  10. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery.

    PubMed

    Huang, Huajun; Hsieh, Ming-Fa; Zhang, Guodong; Ouyang, Hanbin; Zeng, Canjun; Yan, Bin; Xu, Jing; Yang, Yang; Wu, Zhanglin; Huang, Wenhua

    2015-03-01

    This study was aimed to improve the surgical accuracy of plating and screwing for complicated tibial plateau fracture assisted by 3D implants library and 3D-printed navigational template. Clinical cases were performed whereby complicated tibial plateau fractures were imaged using computed tomography and reconstructed into 3D fracture prototypes. The preoperative planning of anatomic matching plate with appropriate screw trajectories was performed with the help of the library of 3D models of implants. According to the optimal planning, patient-specific navigational templates produced by 3D printer were used to accurately guide the real surgical implantation. The fixation outcomes in term of the deviations of screw placement between preoperative and postoperative screw trajectories were measured and compared, including the screw lengths, entry point locations and screw directions. With virtual preoperative planning, we have achieved optimal and accurate fixation outcomes in the real clinical surgeries. The deviations of screw length was 1.57 ± 5.77 mm, P > 0.05. The displacements of the entry points in the x-, y-, and z-axis were 0.23 ± 0.62, 0.83 ± 1.91, and 0.46 ± 0.67 mm, respectively, P > 0.05. The deviations of projection angle in the coronal (x-y) and transverse (x-z) planes were 6.34 ± 3.42° and 4.68 ± 3.94°, respectively, P > 0.05. There was no significant difference in the deviations of screw length, entry point and projection angle between the ideal and real screw trajectories. The ideal and accurate preoperative planning of plating and screwing can be achieved in the real surgery assisted by the 3D models library of implants and the patient-specific navigational template. This technology improves the accuracy and efficiency of personalized internal fixation surgery and we have proved this in our clinical applications. PMID:25663390

  11. [Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].

    PubMed

    Krimmel, M; Kluba, S; Dietz, K; Reinert, S

    2005-03-01

    The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations. PMID:15832575

  12. The effect of different Global Navigation Satellite System methods on positioning accuracy in elite alpine skiing.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-01-01

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications. PMID:25285461

  13. The Effect of Different Global Navigation Satellite System Methods on Positioning Accuracy in Elite Alpine Skiing

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-01-01

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications. PMID:25285461

  14. Evaluation of optoelectronic Plethysmography accuracy and precision in recording displacements during quiet breathing simulation.

    PubMed

    Massaroni, C; Schena, E; Saccomandi, P; Morrone, M; Sterzi, S; Silvestri, S

    2015-08-01

    Opto-electronic Plethysmography (OEP) is a motion analysis system used to measure chest wall kinematics and to indirectly evaluate respiratory volumes during breathing. Its working principle is based on the computation of marker displacements placed on the chest wall. This work aims at evaluating the accuracy and precision of OEP in measuring displacement in the range of human chest wall displacement during quiet breathing. OEP performances were investigated by the use of a fully programmable chest wall simulator (CWS). CWS was programmed to move 10 times its eight shafts in the range of physiological displacement (i.e., between 1 mm and 8 mm) at three different frequencies (i.e., 0.17 Hz, 0.25 Hz, 0.33 Hz). Experiments were performed with the aim to: (i) evaluate OEP accuracy and precision error in recording displacement in the overall calibrated volume and in three sub-volumes, (ii) evaluate the OEP volume measurement accuracy due to the measurement accuracy of linear displacements. OEP showed an accuracy better than 0.08 mm in all trials, considering the whole 2m(3) calibrated volume. The mean measurement discrepancy was 0.017 mm. The precision error, expressed as the ratio between measurement uncertainty and the recorded displacement by OEP, was always lower than 0.55%. Volume overestimation due to OEP linear measurement accuracy was always <; 12 mL (<; 3.2% of total volume), considering all settings. PMID:26736504

  15. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  16. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  17. The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy

    ERIC Educational Resources Information Center

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-01-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…

  18. PRECISION AND ACCURACY ASSESSMENTS FOR STATE AND LOCAL AIR MONITORING NETWORKS, 1984

    EPA Science Inventory

    Precision and accuracy data obtained from state and local agencies during 1984 are summarized and compared to data reported earlier for the period 1981-1983. A continual improvement in the completeness of the data is evident. Improvement is also evident in the size of the precisi...

  19. PRECISION AND ACCURACY ASSESSMENTS FOR STATE AND LOCAL AIR MONITORING NETWORKS, 1983

    EPA Science Inventory

    Precision and accuracy data obtained from State and local agencies during 1983 are summarized and evaluated. Some comparisons are made with the results previously reported for 1981 and 1982 to determine the indication of any trends. Some trends indicated improvement in the comple...

  20. PRECISION AND ACCURACY ASSESSMENTS FOR STATE AND LOCAL AIR MONITORING NETWORKS, 1985

    EPA Science Inventory

    Precision and accuracy data obtained from State and local agencies during 1985 are summarized and evaluated. Some comparisons are made with the results reported for prior years to determine any trends. Some trends indicated continued improvement in the completeness of reporting o...

  1. ASSESSMENT OF THE PRECISION AND ACCURACY OF SAM AND MFC MICROCOSMS EXPOSED TO TOXICANTS

    EPA Science Inventory

    The results of 30 mixed flank culture (MFC) and four standardized aquatic microcosm (SAM) microcosm experiments were used to describe the precision and accuracy of these two protocols. oefficients of variation (CV) for chemicals measurements (DO,pH) were generally less than 7%, f...

  2. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    SciTech Connect

    Ballesteros-Zebadua, P.; Larrga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Juarez, J.; Prieto, I.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  3. Evaluation of the Accuracy and Precision of a Next Generation Computer-Assisted Surgical System

    PubMed Central

    Dai, Yifei; Liebelt, Ralph A.; Gao, Bo; Gulbransen, Scott W.; Silver, Xeve S.

    2015-01-01

    Background Computer-assisted orthopaedic surgery (CAOS) improves accuracy and reduces outliers in total knee arthroplasty (TKA). However, during the evaluation of CAOS systems, the error generated by the guidance system (hardware and software) has been generally overlooked. Limited information is available on the accuracy and precision of specific CAOS systems with regard to intraoperative final resection measurements. The purpose of this study was to assess the accuracy and precision of a next generation CAOS system and investigate the impact of extra-articular deformity on the system-level errors generated during intraoperative resection measurement. Methods TKA surgeries were performed on twenty-eight artificial knee inserts with various types of extra-articular deformity (12 neutral, 12 varus, and 4 valgus). Surgical resection parameters (resection depths and alignment angles) were compared between postoperative three-dimensional (3D) scan-based measurements and intraoperative CAOS measurements. Using the 3D scan-based measurements as control, the accuracy (mean error) and precision (associated standard deviation) of the CAOS system were assessed. The impact of extra-articular deformity on the CAOS system measurement errors was also investigated. Results The pooled mean unsigned errors generated by the CAOS system were equal or less than 0.61 mm and 0.64° for resection depths and alignment angles, respectively. No clinically meaningful biases were found in the measurements of resection depths (< 0.5 mm) and alignment angles (< 0.5°). Extra-articular deformity did not show significant effect on the measurement errors generated by the CAOS system investigated. Conclusions This study presented a set of methodology and workflow to assess the system-level accuracy and precision of CAOS systems. The data demonstrated that the CAOS system investigated can offer accurate and precise intraoperative measurements of TKA resection parameters, regardless of the presence

  4. Accuracy analysis of direct georeferenced UAV images utilising low-cost navigation sensors

    NASA Astrophysics Data System (ADS)

    Briese, Christian; Wieser, Martin; Verhoeven, Geert; Glira, Philipp; Doneus, Michael; Pfeifer, Norbert

    2014-05-01

    Unmanned aerial vehicles (UAVs), also known as unmanned airborne systems (UAS) or remotely piloted airborne systems (RPAS), are an established platform for close range airborne photogrammetry. Compared to manned platforms, the acquisition of local remote sensing data by UAVs is a convenient and very flexible option. For the application in photogrammetry UAVs are typically equipped with an autopilot and a lightweight digital camera. The autopilot includes several navigation sensors, which might allow an automated waypoint flight and offer a systematic data acquisition of the object resp. scene of interest. Assuming a sufficient overlap between the captured images, the position (3 coordinates: x, y, z) and the orientation (3 angles: roll, pitch, yaw) of the images can be estimated within a bundle block adjustment. Subsequently, coordinates of observed points that appear in at least two images, can be determined by measuring their image coordinates or a dense surface model can be generated from all acquired images by automated image matching. For the bundle block adjustment approximate values of the position and the orientation of the images are needed. To gather this information, several methods exist. We introduce in this contribution one of them: the direct georeferencing of images by using the navigation sensors (mainly GNSS and INS) of a low-cost on-board autopilot. Beside automated flights, the autopilot offers the possibility to record the position and the orientation of the platform during the flight. These values don't correspond directly to those of the images. To compute the position and the orientation of the images two requirements must be fulfilled. First the misalignment angles and the positional differences between the camera and the autopilot must be determined (mounting calibration). Second the synchronization between the camera and the autopilot has to be established. Due to the limited accuracy of the navigation sensors, a small number of ground

  5. Accuracy, precision and economics: The cost of cutting-edge chemical analyses

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; Hannigan, R.; Jones, C.; Chen, Z.

    2002-12-01

    Otolith (fish ear bone) chemistry has proven to be an exceptional tool for the identification of essential fish habitats in marine and freshwater environments. These measurements, which explore the variations in trace element content of otoliths relative to Calcium (eg., Ba/Ca, Mg/Ca etc.), provide data to resolve the differences in habitat water chemistry on the watershed to catchment scale. The vast majority of these analyses are performed by laser ablation ICP-MS using a high-resolution instrument. However, few laboratories are equipped with this configuration and many researchers measure the trace element chemistry of otoliths by whole digestion ICP-MS using lower resolution quadrupole instruments. This study examines the differences in accuracy and precision between three elemental analysis methods using whole otolith digestion on a low resolution ICP-MS (ELAN 9000). The first, and most commonly used, technique is external calibration with internal standardization. This technique is the most cost-effective but also is one with limitations in terms of method detection. The second, standard addition is more costly in terms of time and use of standard materials but offers gains in precision and accuracy. The third, isotope dilution, is the least cost effective but the most accurate of elemental analysis techniques. Based on the results of this study, which seeks to identify the technique which is the easiest to implement yet has the precision and accuracy necessary to resolve spatial variations in habitats, we conclude that external calibration with internal standardization can be sufficient to revolve spatial and temporal variations in marine and estuarine environments (+/- 6-8% accuracy). Standard addition increases the accuracy of measurements to 2-5% and is ideal for freshwater studies. While there is a gain in accuracy and precision with isotope dilution, the spatial and temporal resolution is no greater with this technique than the other.

  6. Parameter Analysis of Lunar Surface Navigation Utilizing Dilution-of-Precision Methodology With Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    With the NASA Vision for Space Exploration focusing on the return of astronauts to the Moon and eventually to Mars, architectures for new navigation concepts must be derived and analyzed. One such concept, developed by the Space Communications Architecture Working Group (SCAWG), is to place a constellation of satellites around the Moon. Previously completed analyses examined the performance of multiple satellite constellations and recommended a constellation oriented as a Walker polar 6/2/1 with a semimajor axis (SMA) of 9250 km. One requirement of the constellations that were examined was that they have continuous access to any location on the lunar surface. In this report, the polar 6/2/1 and polar 8/2/1, with equal SMAs, are examined in greater detail. The dilution-of-precision (DoP) methodology is utilized to examine the effects of longitude surface points, latitude surface points, elevation requirements, and modified failure modes for these two constellations with regard to system availability. Longitude study results show that points along a meridian closely approximate the results of a global set of data points. Latitude study results show that previous assumptions with regard to latitude spacing are adequate to simulate global system availability. Elevation study results show that global system availability curves follow a reverse sigmoid function. Modified failure mode study results show that the benefits of reorienting a failure mode constellation depend on the type of navigation system and the length of the integration period being used.

  7. Accuracy in Dental Medicine, A New Way to Measure Trueness and Precision

    PubMed Central

    Ender, Andreas; Mehl, Albert

    2014-01-01

    Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes. PMID:24836007

  8. Sensor modeling for precision ship-relative navigation in degraded visual environment conditions

    NASA Astrophysics Data System (ADS)

    Singh, Sanjiv; Sherwin, Gary; Hoffman, Regis; Grocholsky, Benjamin; Grabe, Volker; Nalbone, Samuel; Chamberlain, Lyle; Spiker, Spencer; Bergerman, Marcel; Wilkinson, Colin; Findlay, David

    2015-05-01

    The Navy and Marine Corps will increasingly need to operate unmanned air vehicles from ships at sea. Fused multi-sensor systems are desirable to ensure these operations are highly reliable under the most demanding at-sea conditions, particularly in degraded visual environments. The US Navy Sea-Based Automated Launch & Recovery System (SALRS) program aims at enabling automated/semi-automated launch and recovery of sea-based, manned and unmanned, fixed- and rotary-wing naval aircraft, and to utilize automated or pilot-augmented flight mechanics for carefree shipboard operations. This paper describes the goals and current results of SALRS Phase 1, which aims at understanding the capabilities and limitations of various sensor types through sensor characterization, modeling, and simulation, and assessing how the sensor models can be used for aircraft navigation to provide sufficient accuracy, integrity, continuity, and availability across all anticipated maritime conditions.

  9. Precise near-earth navigation with GPS: A survey of techniques

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S. C.; Wu, J.

    1987-01-01

    The tracking accuracy of the low earth orbiters (below about 3000 km altitude) can be brought below 10 cm with a variety of differential techniques that exploit the Global Positioning System (GPS). All of these techniques require a precisely known global network of GPS ground receivers and a receiver aboard the user satellite, and all simultaneously estimate the user and GPS satellite orbits. Three basic approaches are the geometric, dynamic, and nondynamic strategies. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the nondynamic strategy show considerable promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a novel gravity-adjustment method to exploit data from repeat ground tracks. These techniques will offer sub-decimeter accuracy for dynamically unpredictable satellites down to the lowesst possible altitudes.

  10. Verifying the Accuracy of Geostationary Weather Satellite Image Navigation and Registration

    NASA Astrophysics Data System (ADS)

    Carr, J. L.; Herndon, D.; Reehl, S.

    2012-12-01

    The next generation GOES-R geostationary weather satellites will provide imagery products with improved spatial and temporal resolutions and with more spectral bands than previous systems. Image Navigation and Registration (INR), which enables users to accurately pinpoint severe weather and stabilizes movie loops, will also improve. As INR performance improves, so must the technology for measuring INR performance. We describe our Product Monitoring (PM) system being deployed with the GOES-R ground system. It automatically measures INR performance using landmarks that are positioned with respect to a digital map created from the Shuttle Radar Topographic Mission (SRTM). Performance testing with Meteosat Second Generation (MSG) proxy data is part of the verification of the PM system, which is the main focus of this paper. A legacy system ironically called the Replacement Product Monitor (RPM) is in operational use on the GOES-NOP program. It is generally assumed that this system is capable of measuring the absolute position of landmark features relative to their mapped locations with an accuracy of about 0.5 pixels. This is plausible given that observed INR navigation error is about 1 pixel at the finest GOES-NOP resolution. However, a few landmark sites are observed to have biases possibly related to mapping error in the legacy digital map (not SRTM). Because the GOES-R system has finer spatial resolution than the GOES-NOP system and more stringent INR requirements, errors at the GOES-NOP pixel level are quite important. Our verification work with the GOES-R PM seeks to systematically characterize the measurement errors in a controlled test environment to demonstrate its suitability for a GOES-R mission with finer spatial resolution and more stringent INR requirements in comparison with GOES-NOP.

  11. Sensitivity Analysis for Characterizing the Accuracy and Precision of JEM/SMILES Mesospheric O3

    NASA Astrophysics Data System (ADS)

    Esmaeili Mahani, M.; Baron, P.; Kasai, Y.; Murata, I.; Kasaba, Y.

    2011-12-01

    The main purpose of this study is to evaluate the Superconducting sub-Millimeter Limb Emission Sounder (SMILES) measurements of mesospheric ozone, O3. As the first step, the error due to the impact of Mesospheric Temperature Inversions (MTIs) on ozone retrieval has been determined. The impacts of other parameters such as pressure variability, solar events, and etc. on mesospheric O3 will also be investigated. Ozone, is known to be important due to the stratospheric O3 layer protection of life on Earth by absorbing harmful UV radiations. However, O3 chemistry can be studied purely in the mesosphere without distraction of heterogeneous situation and dynamical variations due to the short lifetime of O3 in this region. Mesospheric ozone is produced by the photo-dissociation of O2 and the subsequent reaction of O with O2. Diurnal and semi-diurnal variations of mesospheric ozone are associated with variations in solar activity. The amplitude of the diurnal variation increases from a few percent at an altitude of 50 km, to about 80 percent at 70 km. Although despite the apparent simplicity of this situation, significant disagreements exist between the predictions from the existing models and observations, which need to be resolved. SMILES is a highly sensitive radiometer with a few to several tens percent of precision from upper troposphere to the mesosphere. SMILES was developed by the Japanese Aerospace eXploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT) located at the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES has successfully measured the vertical distributions and the diurnal variations of various atmospheric species in the latitude range of 38S to 65N from October 2009 to April 2010. A sensitivity analysis is being conducted to investigate the expected precision and accuracy of the mesospheric O3 profiles (from 50 to 90 km height) due to the impact of Mesospheric Temperature

  12. A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Moore, Ashley

    2005-01-01

    The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.

  13. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering. PMID:21125324

  14. Measuring the accuracy and precision of quantitative coronary angiography using a digitally simulated test phantom

    NASA Astrophysics Data System (ADS)

    Morioka, Craig A.; Whiting, James S.; LeFree, Michelle T.

    1998-06-01

    Quantitative coronary angiography (QCA) diameter measurements have been used as an endpoint measurement in clinical studies involving therapies to reduce coronary atherosclerosis. The accuracy and precision of the QCA measure can affect the sample size and study conclusions of a clinical study. Measurements using x-ray test phantoms can underestimate the precision and accuracy of the actual arteries in clinical digital angiograms because they do not contain complex patient structures. Determining the clinical performance of QCA algorithms under clinical conditions is difficult because: (1) no gold standard test object exists in clinical images, (2) phantom images do not have any structured background noise. We purpose the use of computer simulated arteries as a replacement for traditional angiographic test phantoms to evaluate QCA algorithm performance.

  15. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  16. Comparison between predicted and actual accuracies for an Ultra-Precision CNC measuring machine

    SciTech Connect

    Thompson, D.C.; Fix, B.L.

    1995-05-30

    At the 1989 CIRP annual meeting, we reported on the design of a specialized, ultra-precision CNC measuring machine, and on the error budget that was developed to guide the design process. In our paper we proposed a combinatorial rule for merging estimated and/or calculated values for all known sources of error, to yield a single overall predicted accuracy for the machine. In this paper we compare our original predictions with measured performance of the completed instrument.

  17. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  18. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  19. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  20. Precision and accuracy of 3D lower extremity residua measurement systems

    NASA Astrophysics Data System (ADS)

    Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.; Hildebolt, Charles F.; Pilgram, Thomas K.

    1996-04-01

    Accurate and reproducible geometric measurement of lower extremity residua is required for custom prosthetic socket design. We compared spiral x-ray computed tomography (SXCT) and 3D optical surface scanning (OSS) with caliper measurements and evaluated the precision and accuracy of each system. Spiral volumetric CT scanned surface and subsurface information was used to make external and internal measurements, and finite element models (FEMs). SXCT and OSS were used to measure lower limb residuum geometry of 13 below knee (BK) adult amputees. Six markers were placed on each subject's BK residuum and corresponding plaster casts and distance measurements were taken to determine precision and accuracy for each system. Solid models were created from spiral CT scan data sets with the prosthesis in situ under different loads using p-version finite element analysis (FEA). Tissue properties of the residuum were estimated iteratively and compared with values taken from the biomechanics literature. The OSS and SXCT measurements were precise within 1% in vivo and 0.5% on plaster casts, and accuracy was within 3.5% in vivo and 1% on plaster casts compared with caliper measures. Three-dimensional optical surface and SXCT imaging systems are feasible for capturing the comprehensive 3D surface geometry of BK residua, and provide distance measurements statistically equivalent to calipers. In addition, SXCT can readily distinguish internal soft tissue and bony structure of the residuum. FEM can be applied to determine tissue material properties interactively using inverse methods.

  1. Increasing the precision and accuracy of top-loading balances:  application of experimental design.

    PubMed

    Bzik, T J; Henderson, P B; Hobbs, J P

    1998-01-01

    The traditional method of estimating the weight of multiple objects is to obtain the weight of each object individually. We demonstrate that the precision and accuracy of these estimates can be improved by using a weighing scheme in which multiple objects are simultaneously on the balance. The resulting system of linear equations is solved to yield the weight estimates for the objects. Precision and accuracy improvements can be made by using a weighing scheme without requiring any more weighings than the number of objects when a total of at least six objects are to be weighed. It is also necessary that multiple objects can be weighed with about the same precision as that obtained with a single object, and the scale bias remains relatively constant over the set of weighings. Simulated and empirical examples are given for a system of eight objects in which up to five objects can be weighed simultaneously. A modified Plackett-Burman weighing scheme yields a 25% improvement in precision over the traditional method and implicitly removes the scale bias from seven of the eight objects. Applications of this novel use of experimental design techniques are shown to have potential commercial importance for quality control methods that rely on the mass change rate of an object. PMID:21644600

  2. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  3. Initial results of precise orbit and clock determination for COMPASS navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Li, Min; Qu, Lizhong; Hu, Zhigang; Shi, Chuang; Liu, Jingnan

    2013-05-01

    The development of the COMPASS satellite system is introduced, and the regional tracking network and data availability are described. The precise orbit determination strategy of COMPASS satellites is presented. Data of June 2012 are processed. The obtained orbits are evaluated by analysis of post-fit residuals, orbit overlap comparison and SLR (satellite laser ranging) validation. The RMS (root mean square) values of post-fit residuals for one month's data are smaller than 2.0 cm for ionosphere-free phase measurements and 2.6 m for ionosphere-free code observations. The 48-h orbit overlap comparison shows that the RMS values of differences in the radial component are much smaller than 10 cm and those of the cross-track component are smaller than 20 cm. The SLR validation shows that the overall RMS of observed minus computed residuals is 68.5 cm for G01 and 10.8 cm for I03. The static and kinematic PPP solutions are produced to further evaluate the accuracy of COMPASS orbit and clock products. The static daily COMPASS PPP solutions achieve an accuracy of better than 1 cm in horizontal and 3 cm in vertical. The accuracy of the COMPASS kinematic PPP solutions is within 1-2 cm in the horizontal and 4-7 cm in the vertical. In addition, we find that the COMPASS kinematic solutions are generally better than the GPS ones for the selected location. Furthermore, the COMPASS/GPS combinations significantly improve the accuracy of GPS only PPP solutions. The RMS values are basically smaller than 1 cm in the horizontal components and 3-4 cm in the vertical component.

  4. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.

    PubMed

    Layec, Gwenael; Gifford, Jayson R; Trinity, Joel D; Hart, Corey R; Garten, Ryan S; Park, Song Y; Le Fur, Yann; Jeong, Eun-Kee; Richardson, Russell S

    2016-08-01

    Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision. PMID:27302751

  5. Accuracy and precision of ice stream bed topography derived from ground-based radar surveys

    NASA Astrophysics Data System (ADS)

    King, Edward

    2016-04-01

    There is some confusion within the glaciological community as to the accuracy of the basal topography derived from radar measurements. A number of texts and papers state that basal topography cannot be determined to better than one quarter of the wavelength of the radar system. On the other hand King et al (Nature Geoscience, 2009) claimed that features of the bed topography beneath Rutford Ice Stream, Antarctica can be distinguished to +/- 3m using a 3 MHz radar system (which has a quarter wavelength of 14m in ice). These statements of accuracy are mutually exclusive. I will show in this presentation that the measurement of ice thickness is a radar range determination to a single strongly-reflective target. This measurement has much higher accuracy than the resolution of two targets of similar reflection strength, which is governed by the quarter-wave criterion. The rise time of the source signal and the sensitivity and digitisation interval of the recording system are the controlling criteria on radar range accuracy. A dataset from Pine Island Glacier, West Antarctica will be used to illustrate these points, as well as the repeatability or precision of radar range measurements, and the influence of gridding parameters and positioning accuracy on the final DEM product.

  6. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  7. Wound Area Measurement with Digital Planimetry: Improved Accuracy and Precision with Calibration Based on 2 Rulers

    PubMed Central

    Foltynski, Piotr

    2015-01-01

    Introduction In the treatment of chronic wounds the wound surface area change over time is useful parameter in assessment of the applied therapy plan. The more precise the method of wound area measurement the earlier may be identified and changed inappropriate treatment plan. Digital planimetry may be used in wound area measurement and therapy assessment when it is properly used, but the common problem is the camera lens orientation during the taking of a picture. The camera lens axis should be perpendicular to the wound plane, and if it is not, the measured area differ from the true area. Results Current study shows that the use of 2 rulers placed in parallel below and above the wound for the calibration increases on average 3.8 times the precision of area measurement in comparison to the measurement with one ruler used for calibration. The proposed procedure of calibration increases also 4 times accuracy of area measurement. It was also showed that wound area range and camera type do not influence the precision of area measurement with digital planimetry based on two ruler calibration, however the measurements based on smartphone camera were significantly less accurate than these based on D-SLR or compact cameras. Area measurement on flat surface was more precise with the digital planimetry with 2 rulers than performed with the Visitrak device, the Silhouette Mobile device or the AreaMe software-based method. Conclusion The calibration in digital planimetry with using 2 rulers remarkably increases precision and accuracy of measurement and therefore should be recommended instead of calibration based on single ruler. PMID:26252747

  8. Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

    PubMed Central

    Jeon, Jin-Hun; Kim, Hae-Young; Kim, Ji-Hwan

    2014-01-01

    PURPOSE This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 µm, 11.2 µm, and 21.8 µm, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall. PMID:25551007

  9. The tradeoff between accuracy and precision in latent variable models of mediation processes

    PubMed Central

    Ledgerwood, Alison; Shrout, Patrick E.

    2016-01-01

    Social psychologists place high importance on understanding mechanisms, and frequently employ mediation analyses to shed light on the process underlying an effect. Such analyses can be conducted using observed variables (e.g., a typical regression approach) or latent variables (e.g., a SEM approach), and choosing between these methods can be a more complex and consequential decision than researchers often realize. The present paper adds to the literature on mediation by examining the relative tradeoff between accuracy and precision in latent versus observed variable modeling. Whereas past work has shown that latent variable models tend to produce more accurate estimates, we demonstrate that observed variable models tend to produce more precise estimates, and examine this relative tradeoff both theoretically and empirically in a typical three-variable mediation model across varying levels of effect size and reliability. We discuss implications for social psychologists seeking to uncover mediating variables, and recommend practical approaches for maximizing both accuracy and precision in mediation analyses. PMID:21806305

  10. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  11. Accuracy and precision of stream reach water surface slopes estimated in the field and from maps

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.; Krueger, K.L.

    1999-01-01

    The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.

  12. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    PubMed Central

    Asadian, Simin; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2016-01-01

    Introduction An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001). Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%). Paired t-test demonstrated an acceptable precision with forehead (P=0.132), left (P=0.18) and right (P=0.318) tympanic membranes, oral (P=1.00), and axillary (P=1.00) methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left) for assessing a patient’s body temperature in the intensive care units because of high accuracy and acceptable precision. PMID:27621673

  13. Assessing accuracy and precision for field and laboratory data: a perspective in ecosystem restoration

    USGS Publications Warehouse

    Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly

    2016-01-01

    Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.

  14. A control system of mobile navigation robot for precise spraying based ultrasonic detecting and ARM embedded technologies

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Li, Cuiling; Wang, Xiu; Yue, Xinpeng; Peng, Yankun

    2011-06-01

    This paper described a control system of mobile navigation robot for precision spraying in greenhouse environment, which were composed of main control module, motor driving module, ultrasonic detecting module and wirless remote control module. The hard circuits of control system were built. The main control module used ARM7TDMI-S-based LPC2210 micro-processing controller. The motor driving module consisted of voltage amplifier circuit based SN74LS245N and DM74LS244N chips, RC filter circuit, and HM-YZ-30 DC brush motor driver. The ultrasonic detecting module consisted of four standard ultrasonic ranging modules which were arranged on the four sides around the mobile navigation robot, and used GM8125 chip to expand serial communication interfaces. An obstacle-avoiding strategy and its algorithm were proposed and the control programs of mobile navigation robot were programmed. The mobile navigation robot for spraying can realize the actions such as starting and stopping, forward and backward moving, accelerate and decelerate motion, and right and left turn. Finally, the functional experiments of the mobile navigation robot were conducted in the laboratory environment. The results showed that the ultrasonic detecting distance of the robot was 50.5mm-1832.0mm and detecting blind zone was less than 50mm, the ultrasonic detecting angle of individual ultrasonic detecting module of robot was similar to U-shaped and its vaule was about 45.66°, and the moving path of navigation robot was approximately linear.

  15. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  16. An analysis of approach navigation accuracy and guidance requirements for the grand tour mission to the outer planets

    NASA Technical Reports Server (NTRS)

    Jones, D. W.

    1971-01-01

    The navigation and guidance process for the Jupiter, Saturn and Uranus planetary encounter phases of the 1977 Grand Tour interior mission was simulated. Reference approach navigation accuracies were defined and the relative information content of the various observation types were evaluated. Reference encounter guidance requirements were defined, sensitivities to assumed simulation model parameters were determined and the adequacy of the linear estimation theory was assessed. A linear sequential estimator was used to provide an estimate of the augmented state vector, consisting of the six state variables of position and velocity plus the three components of a planet position bias. The guidance process was simulated using a nonspherical model of the execution errors. Computation algorithms which simulate the navigation and guidance process were derived from theory and implemented into two research-oriented computer programs, written in FORTRAN.

  17. Impact of fiducial arrangement and registration sequence on target accuracy using a phantom frameless stereotactic navigation model.

    PubMed

    Smith, Timothy R; Mithal, Divakar S; Stadler, James A; Asgarian, Camelia; Muro, Kenji; Rosenow, Joshua M

    2014-11-01

    Modern frameless stereotactic techniques utilize scalp fiducial markers for registration. Anecdotal reports from surgeons indicate a variety of methods for improving accuracy using different fiducial arrangements and registration sequences. The few published studies on registration accuracy do not provide a simple and systematic method for determining target accuracy. Nine different arrangements of ten fiducial markers were attached to a model. Ten separate markers were designated as targets for evaluation of registration accuracy. We systematically registered each of the arrangements over multiple trials, in one of four sequences, and then measured the targets. The target coordinates were compared against the established target values, and a root-mean-square deviation (RMSD) was derived. A systematic multivariate analysis determined the effects of different variables on the RMSD. We found no correlation between the "Registration Accuracy" provided by Medtronic (Medtronic Navigation, Louisville, CO, USA) and our RMSD representing targeting accuracy (R=0.008). RMSD did vary for different fiducial arrangements. We found no significant difference between the various sequences of fiducial arrangement. Thus, regardless of fiducial arrangement, registration sequence has no impact on accuracy. Fiducial arrangements distributed optimally across the skull, however, allowed for significantly improved accuracy. Further studies are required to determine which different arrangements of fiducials are relevant for specific procedures. PMID:24957630

  18. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  19. Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Ivanov, Tonislav I.

    2011-01-01

    To increase safety and land near pre-deployed resources, future NASA missions to the moon will require precision landing. A LIDAR-based terrain relative navigation (TRN) approach can achieve precision landing under any lighting conditions. This paper presents results from processing flash lidar and laser altimeter field test data that show LIDAR TRN can obtain position estimates less than 90m while automatically detecting and eliminating incorrect measurements using internal metrics on terrain relief and data correlation. Sensitivity studies show that the algorithm has no degradation in matching performance with initial position uncertainties up to 1.6 km

  20. Improvement in precision, accuracy, and efficiency in sstandardizing the characterization of granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Benyahia, Sofiane; Mei, Joseph; Guenther, Chris; Koepke, M. E.

    2013-01-01

    Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future desig

  1. Hepatic perfusion in a tumor model using DCE-CT: an accuracy and precision study

    NASA Astrophysics Data System (ADS)

    Stewart, Errol E.; Chen, Xiaogang; Hadway, Jennifer; Lee, Ting-Yim

    2008-08-01

    In the current study we investigate the accuracy and precision of hepatic perfusion measurements based on the Johnson and Wilson model with the adiabatic approximation. VX2 carcinoma cells were implanted into the livers of New Zealand white rabbits. Simultaneous dynamic contrast-enhanced computed tomography (DCE-CT) and radiolabeled microsphere studies were performed under steady-state normo-, hyper- and hypo-capnia. The hepatic arterial blood flows (HABF) obtained using both techniques were compared with ANOVA. The precision was assessed by the coefficient of variation (CV). Under normo-capnia the microsphere HABF were 51.9 ± 4.2, 40.7 ± 4.9 and 99.7 ± 6.0 ml min-1 (100 g)-1 while DCE-CT HABF were 50.0 ± 5.7, 37.1 ± 4.5 and 99.8 ± 6.8 ml min-1 (100 g)-1 in normal tissue, tumor core and rim, respectively. There were no significant differences between HABF measurements obtained with both techniques (P > 0.05). Furthermore, a strong correlation was observed between HABF values from both techniques: slope of 0.92 ± 0.05, intercept of 4.62 ± 2.69 ml min-1 (100 g)-1 and R2 = 0.81 ± 0.05 (P < 0.05). The Bland-Altman plot comparing DCE-CT and microsphere HABF measurements gives a mean difference of -0.13 ml min-1 (100 g)-1, which is not significantly different from zero. DCE-CT HABF is precise, with CV of 5.7, 24.9 and 1.4% in the normal tissue, tumor core and rim, respectively. Non-invasive measurement of HABF with DCE-CT is accurate and precise. DCE-CT can be an important extension of CT to assess hepatic function besides morphology in liver diseases.

  2. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity1

    PubMed Central

    He, Bin; Frey, Eric C.

    2010-01-01

    Purpose: Quantitative estimation of in vivo organ uptake is an essential part of treatment planning for targeted radionuclide therapy. This usually involves the use of planar or SPECT scans with acquisition times chosen based more on image quality considerations rather than the minimum needed for precise quantification. In previous simulation studies at clinical count levels (185 MBq 111In), the authors observed larger variations in accuracy of organ activity estimates resulting from anatomical and uptake differences than statistical noise. This suggests that it is possible to reduce the acquisition time without substantially increasing the variation in accuracy. Methods: To test this hypothesis, the authors compared the accuracy and variation in accuracy of organ activity estimates obtained from planar and SPECT scans at various count levels. A simulated phantom population with realistic variations in anatomy and biodistribution was used to model variability in a patient population. Planar and SPECT projections were simulated using previously validated Monte Carlo simulation tools. The authors simulated the projections at count levels approximately corresponding to 1.5–30 min of total acquisition time. The projections were processed using previously described quantitative SPECT (QSPECT) and planar (QPlanar) methods. The QSPECT method was based on the OS-EM algorithm with compensations for attenuation, scatter, and collimator-detector response. The QPlanar method is based on the ML-EM algorithm using the same model-based compensation for all the image degrading effects as the QSPECT method. The volumes of interests (VOIs) were defined based on the true organ configuration in the phantoms. The errors in organ activity estimates from different count levels and processing methods were compared in terms of mean and standard deviation over the simulated phantom population. Results: There was little degradation in quantitative reliability when the acquisition time was

  3. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  4. Estimated results analysis and application of the precise point positioning based high-accuracy ionosphere delay

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.

  5. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence of a significant quantity of 238U in the samples.

  6. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGESBeta

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence ofmore » a significant quantity of 238U in the samples.« less

  7. Accuracy and precision of estimating age of gray wolves by tooth wear

    USGS Publications Warehouse

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  8. Accuracy and precision of gait events derived from motion capture in horses during walk and trot.

    PubMed

    Boye, Jenny Katrine; Thomsen, Maj Halling; Pfau, Thilo; Olsen, Emil

    2014-03-21

    This study aimed to create an evidence base for detection of stance-phase timings from motion capture in horses. The objective was to compare the accuracy (bias) and precision (SD) for five published algorithms for the detection of hoof-on and hoof-off using force plates as the reference standard. Six horses were walked and trotted over eight force plates surrounded by a synchronised 12-camera infrared motion capture system. The five algorithms (A-E) were based on: (A) horizontal velocity of the hoof; (B) Fetlock angle and horizontal hoof velocity; (C) horizontal displacement of the hoof relative to the centre of mass; (D) horizontal velocity of the hoof relative to the Centre of Mass and; (E) vertical acceleration of the hoof. A total of 240 stance phases in walk and 240 stance phases in trot were included in the assessment. Method D provided the most accurate and precise results in walk for stance phase duration with a bias of 4.1% for front limbs and 4.8% for hind limbs. For trot we derived a combination of method A for hoof-on and method E for hoof-off resulting in a bias of -6.2% of stance in the front limbs and method B for the hind limbs with a bias of 3.8% of stance phase duration. We conclude that motion capture yields accurate and precise detection of gait events for horses walking and trotting over ground and the results emphasise a need for different algorithms for front limbs versus hind limbs in trot. PMID:24529754

  9. Gaining Precision and Accuracy on Microprobe Trace Element Analysis with the Multipoint Background Method

    NASA Astrophysics Data System (ADS)

    Allaz, J. M.; Williams, M. L.; Jercinovic, M. J.; Donovan, J. J.

    2014-12-01

    Electron microprobe trace element analysis is a significant challenge, but can provide critical data when high spatial resolution is required. Due to the low peak intensity, the accuracy and precision of such analyses relies critically on background measurements, and on the accuracy of any pertinent peak interference corrections. A linear regression between two points selected at appropriate off-peak positions is a classical approach for background characterization in microprobe analysis. However, this approach disallows an accurate assessment of background curvature (usually exponential). Moreover, if present, background interferences can dramatically affect the results if underestimated or ignored. The acquisition of a quantitative WDS scan over the spectral region of interest is still a valuable option to determine the background intensity and curvature from a fitted regression of background portions of the scan, but this technique retains an element of subjectivity as the analyst has to select areas in the scan, which appear to represent background. We present here a new method, "Multi-Point Background" (MPB), that allows acquiring up to 24 off-peak background measurements from wavelength positions around the peaks. This method aims to improve the accuracy, precision, and objectivity of trace element analysis. The overall efficiency is amended because no systematic WDS scan needs to be acquired in order to check for the presence of possible background interferences. Moreover, the method is less subjective because "true" backgrounds are selected by the statistical exclusion of erroneous background measurements, reducing the need for analyst intervention. This idea originated from efforts to refine EPMA monazite U-Th-Pb dating, where it was recognised that background errors (peak interference or background curvature) could result in errors of several tens of million years on the calculated age. Results obtained on a CAMECA SX-100 "UltraChron" using monazite

  10. Assessment of accuracy of acetabular cup orientation in CT-free navigated total hip arthroplasty.

    PubMed

    Fukunishi, Shigeo; Fukui, Tomokazu; Imamura, Fumiaki; Nishio, Shoji

    2008-10-01

    We have used the Orthopilot (Aesculap AG, Tuttlingen, Germany) computed tomography (CT)-free navigation system to ensure accurate and reproducible acetabular cup orientation. In this system, cup orientation is assessed with respect to bony configuration as determined by palpation of the anatomical landmarks (the bilateral anterosuperior iliac spines and the upper margin of the pubic symphysis). In this study, intraoperative cup orientation as presented by the OrthoPilot navigation system was compared with the value obtained through postoperative radiological assessment using CT Digital Imaging and Communications in Medicine (DICOM) data and Medical Image Processing, Analysis, and Visualization (MIPAV; National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland). Intra- and postoperative results obtained from 27 consecutive navigated total hip arthroplasties (THAs) were analyzed. For cup positioning, the desired inclination and anteversion angles were set within the "safe zone" proposed by Lewinnek. In the intraoperative evaluation, the mean inclination angle as determined by the navigation system was 43.5 degrees +/- 2.17 degrees (range, 39.9 degrees to 46.6 degrees ) after the final implantation. In contrast, the mean inclination angle determined by postoperative calculation using MIPAV was 44.9 +/- 3.3 degrees (range, 38.1 degrees to 55.0 degrees ). A discrepancy of >5 degrees was observed in only 1 hip. For the anteversion, the mean intra- and postoperative values were 11.1 degrees +/- 5.6 degrees (range, 0 degrees to 17.8 degrees ) and 13.5 degrees +/- 5.9 degrees (range, 5.1 degrees to 21.6 degrees ), respectively. Again, a discrepancy of >5 degrees was observed in 1 case. Mean differences between the intra- and postoperative values were 1.9 degrees +/- 1.9 degrees and 2.6 degrees +/- 1.6 degrees for inclination and anteversion, respectively. A good agreement between the intraoperative values presented by the navigation system

  11. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  12. Using GLONASS for precise determination of navigation parameters under interference from various sources*

    NASA Astrophysics Data System (ADS)

    Tyapkin, V. N.; Fateev, Yu L.; Dmitriev, D. D.; Kartsan, I. N.; Zelenkov, P. V.; Goncharov, A. E.; Nasyrov, I. R.

    2016-04-01

    This article discusses the main approaches to the designs of systems for determining location and spatial attitude based on satellite navigation equipment. The article describes possible solutions for constructing an angular attitude measurement system capable of spatial interference selection on the basis of a single antenna system.

  13. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  14. Accuracy of sun localization in the second step of sky-polarimetric Viking navigation for north determination: a planetarium experiment.

    PubMed

    Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Blahó, Miklós; Barta, András; Nehéz, Dóra; Bernáth, Balázs; Horváth, Gábor

    2014-07-01

    It is a widely discussed hypothesis that Viking seafarers might have been able to locate the position of the occluded sun by means of dichroic or birefringent crystals, the mysterious sunstones, with which they could analyze skylight polarization. Although the atmospheric optical prerequisites and certain aspects of the efficiency of this sky-polarimetric Viking navigation have been investigated, the accuracy of the main steps of this method has not been quantitatively examined. To fill in this gap, we present here the results of a planetarium experiment in which we measured the azimuth and elevation errors of localization of the invisible sun. In the planetarium sun localization was performed in two selected celestial points on the basis of the alignments of two small sections of two celestial great circles passing through the sun. In the second step of sky-polarimetric Viking navigation the navigator needed to determine the intersection of two such celestial circles. We found that the position of the sun (solar elevation θ(S), solar azimuth φ(S)) was estimated with an average error of +0.6°≤Δθ≤+8.8° and -3.9°≤Δφ≤+2.0°. We also calculated the compass direction error when the estimated sun position is used for orienting with a Viking sun-compass. The northern direction (ω(North)) was determined with an error of -3.34°≤Δω(North)≤+6.29°. The inaccuracy of the second step of this navigation method was high (Δω(North)=-16.3°) when the solar elevation was 5°≤θ(S)≤25°, and the two selected celestial points were far from the sun (at angular distances 95°≤γ(1), γ(2)≤115°) and each other (125°≤δ≤145°). Considering only this second step, the sky-polarimetric navigation could be more accurate in the mid-summer period (June and July), when in the daytime the sun is high above the horizon for long periods. In the spring (and autumn) equinoctial period, alternative methods (using a twilight board, for example) might be more

  15. Precision, accuracy, and application of diver-towed underwater GPS receivers.

    PubMed

    Schories, Dirk; Niedzwiedz, Gerd

    2012-04-01

    Diver-towed global positioning systems (GPS) handhelds have been used for a few years in underwater monitoring studies. We modeled the accuracy of this method using the software KABKURR originally developed by the University of Rostock for fishing and marine engineering. Additionally, three field experiments were conducted to estimate the precision of the method and apply it in the field: (1) an experiment of underwater transects from 5 to 35 m in the Southern Chile fjord region, (2) a transect from 5 to 30 m under extreme climatic conditions in the Antarctic, and (3) an underwater tracking experiment at Lake Ranco, Southern Chile. The coiled cable length in relation to water depth is the main error source besides the signal quality of the GPS under calm weather conditions. The forces used in the model resulted in a displacement of 2.3 m in a depth of 5 m, 3.2 m at a 10-m depth, 4.6 m in a 20-m depth, 5.5 m at a 30-m depth, and 6.8 m in a 40-m depth, when only an additional 0.5 m cable extension was used compared to the water depth. The GPS buoy requires good buoyancy in order to keep its position at the water surface when the diver is trying to minimize any additional cable extension error. The diver has to apply a tensile force for shortening the cable length at the lower cable end. Repeated diving along transect lines from 5 to 35 m resulted only in small deviations independent of water depth indicating the precision of the method for monitoring studies. Routing of given reference points with a Garmin 76CSx handheld placed in an underwater housing resulted in mean deviances less than 6 m at a water depth of 10 m. Thus, we can confirm that diver-towed GPS handhelds give promising results when used for underwater research in shallow water and open a wide field of applicability, but no submeter accuracy is possible due to the different error sources. PMID:21614620

  16. Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Ivanov, Tonislav I.

    2010-01-01

    Capability for precise lunar landing is the goal for future NASA missions. A LIDAR-based terrain relative navigation (TRN) approach lets us achieve this goal and also land under any illumination conditions. Results from field test data showed that the LIDAR TRN algorithm obtained position estimates with mean error of about 20 meters and standard deviations of about 10 meters. Moreover, the algorithm was capable of providing 99 percent correct estimates by assessing the local terrain relief in the data. Also, the algorithm was able to handle initial position uncertainty of up to 1.6 kilometers without performance degradation.

  17. A Kalman filter algorithm for terminal-area navigation with sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Kanning, G.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, nd acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation occuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system. Previously announced in STAR as N83-29193

  18. Accuracy of navigation-assisted acetabular component positioning studied by computed tomography measurements: methods and results.

    PubMed

    Ybinger, Thomas; Kumpan, W; Hoffart, H E; Muschalik, B; Bullmann, W; Zweymüller, K

    2007-09-01

    The postoperative position of the acetabular component is key for the outcome of total hip arthroplasty. Various aids have been developed to support the surgeon during implant placement. In a prospective study involving 4 centers, the computer-recorded cup alignment of 37 hip systems at the end of navigation-assisted surgery was compared with the cup angles measured on postoperative computerized tomograms. This comparison showed an average difference of 3.5 degrees (SD, 4.4 degrees ) for inclination and 6.5 degrees (SD, 7.3 degrees ) for anteversion angles. The differences in inclination correlated with the thickness of the soft tissue overlying the anterior superior iliac spine (r = 0.44; P = .007), whereas the differences in anteversion showed a correlation with the thickness of the soft tissue overlying the pubic tubercles (r = 0.52; P = .001). In centers experienced in the use of navigational tools, deviations were smaller than in units with little experience in their use. PMID:17826270

  19. Welcome detailed data, but with a grain of salt: accuracy, precision, uncertainty in flood inundation modeling

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Di Baldassarre, Giuliano; Todini, Ezio

    2013-04-01

    New survey techniques are providing a huge amount of high-detailed and accurate data which can be extremely valuable for flood inundation modeling. Such data availability raises the issue of how to exploit their information content to provide reliable flood risk mapping and predictions. We think that these data should form the basis of hydraulic modelling anytime they are available. However, high expectations regarding these datasets should be tempered as some important issues should be considered. These include: the large number of uncertainty sources in model structure and available data; the difficult evaluation of model results, due to the scarcity of observed data; the computational efficiency; the false confidence that can be given by high-resolution results, as accuracy of results is not necessarily increased by higher precision. We briefly discuss these issues and existing approaches which can be used to manage high detailed data. In our opinion, methods based on sub-grid and roughness upscaling treatments would be in many instances an appropriate solution to maintain consistence with the uncertainty related to model structure and data available for model building and evaluation.

  20. Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm

    SciTech Connect

    Carson, R.E.; Yan, Y.; Chodkowski, B.; Yap, T.K.; Daube-Witherspoon, M.E. )

    1994-09-01

    The imaging characteristics of maximum likelihood (ML) reconstruction using the EM algorithm for emission tomography have been extensively evaluated. There has been less study of the precision and accuracy of ML estimates of regional radioactivity concentration. The authors developed a realistic brain slice simulation by segmenting a normal subject's MRI scan into gray matter, white matter, and CSF and produced PET sinogram data with a model that included detector resolution and efficiencies, attenuation, scatter, and randoms. Noisy realizations at different count levels were created, and ML and filtered backprojection (FBP) reconstructions were performed. The bias and variability of ROI values were determined. In addition, the effects of ML pixel size, image smoothing and region size reduction were assessed. ML estimates at 1,000 iterations (0.6 sec per iteration on a parallel computer) for 1-cm[sup 2] gray matter ROIs showed negative biases of 6% [+-] 2% which can be reduced to 0% [+-] 3% by removing the outer 1-mm rim of each ROI. FBP applied to the full-size ROIs had 15% [+-] 4% negative bias with 50% less noise than ML. Shrinking the FBP regions provided partial bias compensation with noise increases to levels similar to ML. Smoothing of ML images produced biases comparable to FBP with slightly less noise. Because of its heavy computational requirements, the ML algorithm will be most useful for applications in which achieving minimum bias is important.

  1. Modeling precision and accuracy of a LWIR microgrid array imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Boger, James K.; Tyo, J. Scott; Ratliff, Bradley M.; Fetrow, Matthew P.; Black, Wiley T.; Kumar, Rakesh

    2005-08-01

    Long-wave infrared (LWIR) imaging is a prominent and useful technique for remote sensing applications. Moreover, polarization imaging has been shown to provide additional information about the imaged scene. However, polarization estimation requires that multiple measurements be made of each observed scene point under optically different conditions. This challenging measurement strategy makes the polarization estimates prone to error. The sources of this error differ depending upon the type of measurement scheme used. In this paper, we examine one particular measurement scheme, namely, a simultaneous multiple-measurement imaging polarimeter (SIP) using a microgrid polarizer array. The imager is composed of a microgrid polarizer masking a LWIR HgCdTe focal plane array (operating at 8.3-9.3 μm), and is able to make simultaneous modulated scene measurements. In this paper we present an analytical model that is used to predict the performance of the system in order to help interpret real results. This model is radiometrically accurate and accounts for the temperature of the camera system optics, spatial nonuniformity and drift, optical resolution and other sources of noise. This model is then used in simulation to validate it against laboratory measurements. The precision and accuracy of the SIP instrument is then studied.

  2. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective.

    PubMed

    Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2015-10-01

    A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized. PMID:25868451

  3. Evaluation of Precise Point Positioning accuracy under large total electron content variations in equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bilbao, I.; Moreno Monge, B.; Rodríguez-Caderot, G.; Herraiz, M.; Radicella, S. M.

    2015-01-01

    The ionosphere is one of the largest contributors to errors in GNSS positioning. Although in Precise Point Positioning (PPP) the ionospheric delay is corrected to a first order through the 'iono-free combination', significant errors may still be observed when large electron density gradients are present. To confirm this phenomenon, the temporal behavior of intense fluctuations of total electron content (TEC) and PPP altitude accuracy at equatorial latitudes are analyzed during four years of different solar activity. For this purpose, equatorial plasma irregularities are identified with periods of high rate of change of TEC (ROT). The largest ROT values are observed from 19:00 to 01:00 LT, especially around magnetic equinoxes, although some differences exist between the stations depending on their location. Highest ROT values are observed in the American and African regions. In general, large ROT events are accompanied by frequent satellite signal losses and an increase in the PPP altitude error during years 2001, 2004 and 2011. A significant increase in the PPP altitude error RMS is observed in epochs of high ROT with respect to epochs of low ROT in years 2001, 2004 and 2011, reaching up to 0.26 m in the 19:00-01:00 LT period.

  4. David Weston--Ocean science of invariant principles, total accuracy, and appropriate precision

    NASA Astrophysics Data System (ADS)

    Roebuck, Ian

    2002-11-01

    David Weston's entire professional career was as a member of the Royal Navy Scientific Service, working in the field of ocean acoustics and its applications to maritime operations. The breadth of his interests has often been remarked upon, but because of the sensitive nature of his work at the time, it was indeed much more diverse than his published papers showed. This presentation, from the successors to the laboratories he illuminated for many years, is an attempt to fill in at least some of the gaps. The presentation also focuses on the underlying scientific philosophy of David's work, rooted in the British tradition of applicable mathematics and physics. A deep appreciation of the role of invariants and dimensional methods, and awareness of the sensitivity of any models to changes to the input assumptions, was at the heart of his approach. The needs of the Navy kept him rigorous in requiring accuracy, and clear about the distinction between it and precision. Examples of these principles are included, still as relevant today as they were when he insisted on applying them 30 years ago.

  5. Sub-nm accuracy metrology for ultra-precise reflective X-ray optics

    NASA Astrophysics Data System (ADS)

    Siewert, F.; Buchheim, J.; Zeschke, T.; Brenner, G.; Kapitzki, S.; Tiedtke, K.

    2011-04-01

    The transport and monochromatization of synchrotron light from a high brilliant laser-like source to the experimental station without significant loss of brilliance and coherence is a challenging task in X-ray optics and requires optical elements of utmost accuracy. These are wave-front preserving plane mirrors with lengths of up to 1 m characterized by residual slope errors in the range of 0.05 μrad (rms) and values of 0.1 nm (rms) for micro-roughness. In the case of focusing optical elements like elliptical cylinders the required residual slope error is in the range of 0.25 μrad rms and better. In addition the alignment of optical elements is a critical and beamline performance limiting topic. Thus the characterization of ultra-precise reflective optical elements for FEL-beamline application in the free and mounted states is of significant importance. We will discuss recent results in the field of metrology achieved at the BESSY-II Optics Laboratory (BOL) of the Helmholtz Zentrum Berlin (HZB) by use of the Nanometer Optical Component Measuring Machine (NOM). Different types of mirror have been inspected by line-scan and slope mapping in the free and mounted states. Based on these results the mirror clamping of a combined mirror/grating set-up for the BL-beamlines at FLASH was improved.

  6. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    SciTech Connect

    Cleveland, Mathew A. Brunner, Thomas A.; Gentile, Nicholas A.; Keasler, Jeffrey A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositions will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.

  7. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  8. Precision of image-based registration for intraoperative navigation in the presence of metal artifacts: Application to corrective osteotomy surgery.

    PubMed

    Dobbe, J G G; Curnier, F; Rondeau, X; Streekstra, G J

    2015-06-01

    Navigation for corrective osteotomy surgery requires patient-to-image registration. When registration is based on intraoperative 3-D cone-beam CT (CBCT) imaging, metal landmarks may be used that deteriorate image quality. This study investigates whether metal artifacts influence the precision of image-to-patient registration, either with or without intermediate user intervention during the registration procedure, in an application for corrective osteotomy of the distal radius. A series of 3-D CBCT scans is made of a cadaver arm with and without metal landmarks. Metal artifact reduction (MAR) based on inpainting techniques is used to improve 3-D CBCT images hampered by metal artifacts. This provides three sets of images (with metal, with MAR, and without metal), which enable investigating the differences in precision of intraoperative registration. Gray-level based point-to-image registration showed a better correlation coefficient if intraoperative images with MAR are used, indicating a better image similarity. The precision of registration without intermediate user intervention during the registration procedure, expressed as the residual angulation and displacement error after repetitive registration was very low and showed no improvement when MAR was used. By adding intermediate user intervention to the registration procedure however, precision was very high but was not affected by the presence of metal artifacts in the specific application. PMID:25906944

  9. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  10. Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment

    NASA Technical Reports Server (NTRS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-01-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  11. Doppler lidar sensor for precision navigation in GPS-deprived environment

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  12. Cooperative navigation and localization for multiple UUVs

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chuan; Xu, De-Min; Liu, Ming-Yong; Yan, Wei-Sheng

    2009-09-01

    The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.

  13. Measurement Precision and Accuracy of the Centre Location of AN Ellipse by Weighted Centroid Method

    NASA Astrophysics Data System (ADS)

    Matsuoka, R.

    2015-03-01

    Circular targets are often utilized in photogrammetry, and a circle on a plane is projected as an ellipse onto an oblique image. This paper reports an analysis conducted in order to investigate the measurement precision and accuracy of the centre location of an ellipse on a digital image by an intensity-weighted centroid method. An ellipse with a semi-major axis a, a semi-minor axis b, and a rotation angle θ of the major axis is investigated. In the study an equivalent radius r = (a2cos2θ + b2sin2θ)1/2 is adopted as a measure of the dimension of an ellipse. First an analytical expression representing a measurement error (ϵx, ϵy,) is obtained. Then variances Vx of ϵx are obtained at 1/256 pixel intervals from 0.5 to 100 pixels in r by numerical integration, because a formula representing Vx is unable to be obtained analytically when r > 0.5. The results of the numerical integration indicate that Vxwould oscillate in a 0.5 pixel cycle in r and Vx excluding the oscillation component would be inversely proportional to the cube of r. Finally an effective approximate formula of Vx from 0.5 to 100 pixels in r is obtained by least squares adjustment. The obtained formula is a fractional expression of which numerator is a fifth-degree polynomial of {r-0.5×int(2r)} expressing the oscillation component and denominator is the cube of r. Here int(x) is the function to return the integer part of the value x. Coefficients of the fifth-degree polynomial of the numerator can be expressed by a quadratic polynomial of {0.5×int(2r)+0.25}.

  14. Accuracy, precision and response time of consumer bimetal and digital thermometers for cooked ground beef patties and chicken breasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three models each of consumer instant-read bimetal and digital thermometers were tested for accuracy, precision and response time compared to a calibrated thermocouple in cooked 80 percent and 90 percent lean ground beef patties and boneless and bone-in split chicken breasts. At the recommended inse...

  15. Star magnitude and manual navigation sighting accuracy using the Apollo T2 sextant.

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Mayhew, L. B., Jr.

    1971-01-01

    This laboratory study investigated the effect of four star magnitudes (0, +1, +2, +3) upon the angular sighting accuracy attainable between a star and a lunar limb using a space-rated sextant with an 8-power telescope. Four males were tested. The results indicated that over a series of daily sightings sighting accuracy increases as star magnitude decreases; i.e., the angle between the actual lunar limb and the perceived lunar limb decreases as the intensity of the star increases. The significant subject and day main effects that were found indicate that each individual must be calibrated against himself and that extreme care must be taken to center the various images correctly within the sextant's field of view each time the instrument is set up. These findings are discussed in relation to further refinement of a graphic model of the distribution of energy on the retina. A discussion is also presented on the differences between sextant sighting research conducted in the laboratory and in the real, high-altitude or space environment.

  16. Navigating pleiotropy in precision medicine: pharmacogenes from trauma to behavioral health.

    PubMed

    Oberg, Vicki; Differding, Jerome; Fisher, Morgan; Hines, Lindsay; Wilke, Russell A

    2016-04-01

    A strong emerging principle in the field of precision medicine is that variation in any one pharmacogene may impact clinical outcome for more than one drug. Variants tested in the acute care setting often have downstream implications for other drugs impacting chronic disease management. A flexible framework is needed as clinicians and scientists move toward deploying automated decision support for gene-based drug dosing in electronic medical records. PMID:27023676

  17. On achieving sufficient dual station range accuracy for deep space navigation at zero declination

    NASA Technical Reports Server (NTRS)

    Siegel, H. L.; Christensen, C. S.; Green, D. W.; Winn, F. B.

    1977-01-01

    Since the Voyager Mission will encounter Saturn at a time when the planet will be nearly in the earth's equatorial plane, earth-based orbit determination will be more difficult than usual because of the so-called zero-declination singularity associated with conventional radiometric observations. Simulation studies show that in order to meet the required delivery accuracy at Saturn, a relative range measurement between the Goldstone and Canberra Deep Space Stations must be accurate to 4.5 times the square root of two meters. Topics discussed include the nature of error sources, the methodology and technology required for calibration, the verification process concerning the nearly simultaneous range capability, a description of the ranging system, and tracking strategy.

  18. Using statistics and software to maximize precision and accuracy in U-Pb geochronological measurements

    NASA Astrophysics Data System (ADS)

    McLean, N.; Bowring, J. F.; Bowring, S. A.

    2009-12-01

    Uncertainty in U-Pb geochronology results from a wide variety of factors, including isotope ratio determinations, common Pb corrections, initial daughter product disequilibria, instrumental mass fractionation, isotopic tracer calibration, and U decay constants and isotopic composition. The relative contribution of each depends on the proportion of radiogenic to common Pb, the measurement technique, and the quality of systematic error determinations. Random and systematic uncertainty contributions may be propagated into individual analyses or for an entire population, and must be propagated correctly to accurately interpret data. Tripoli and U-Pb_Redux comprise a new data reduction and error propagation software package that combines robust cycle measurement statistics with rigorous multivariate data analysis and presents the results graphically and interactively. Maximizing the precision and accuracy of a measurement begins with correct appraisal and codification of the systematic and random errors for each analysis. For instance, a large dataset of total procedural Pb blank analyses defines a multivariate normal distribution, describing the mean of and variation in isotopic composition (IC) that must be subtracted from each analysis. Uncertainty in the size and IC of each Pb blank is related to the (random) uncertainty in ratio measurements and the (systematic) uncertainty involved in tracer subtraction. Other sample and measurement parameters can be quantified in the same way, represented as statistical distributions that describe their uncertainty or variation, and are input into U-Pb_Redux as such before the raw sample isotope ratios are measured. During sample measurement, U-Pb_Redux and Tripoli can relay cycle data in real time, calculating a date and uncertainty for each new cycle or block. The results are presented in U-Pb_Redux as an interactive user interface with multiple visualization tools. One- and two-dimensional plots of each calculated date and

  19. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  20. Evaluation of Loran-C enroute navigation and non-precision approaches within the State of Vermont

    NASA Technical Reports Server (NTRS)

    Mackenzie, F. D.; Lytle, C. D.

    1980-01-01

    Results obtained in completing 257 nonprecision approaches and 44 data flights are discussed. The flights were initiated in the summer months and extended through four seasons and practically all weather conditions typical of the northeastern U.S. A preliminary assessment of the available data indicates that Loran-C signals are suitable as a means of navigation during enroute, terminal, and nonprecision approach operations and that the performance exceeds the minimum accuracy criteria specified by the applicable FAA advisory circular. Enroute operations are found to remain within + or - 0.75 nm of the desired track, compared with the requirement of + or - 2.5 nm. Terminal operations remained within + or - 0.65 nm of the desired track, compared with the FAA circular's requirement of + or - 1.5 nm; the nonprecision final approach operations were within the limit of + or - 0.6 nm for all operations.

  1. Navigation accuracy for an intracardiac procedure using ultrasound enhanced virtual reality

    NASA Astrophysics Data System (ADS)

    Wiles, Andrew D.; Guiraudon, Gerard M.; Moore, John; Wedlake, Christopher; Linte, Cristian A.; Bainbridge, Daniel; Jones, Douglas L.; Peters, Terry M.

    2007-03-01

    Minimally invasive techniques for use inside the beating heart, such as mitral valve replacement and septal defect repair, are the focus of this work. Traditional techniques for these procedures require an open chest approach and a cardiopulmonary bypass machine. New techniques using port access and a combined surgical guidance tool that includes an overlaid two-dimensional ultrasound image in a virtual reality environment are being developed. To test this technique, a cardiac phantom was developed to simulate the anatomy. The phantom consists of an acrylic box filled with a 7% glycerol solution with ultrasound properties similar to human tissue. Plate inserts mounted in the box simulate the physical anatomy. An accuracy assessment was completed to evaluate the performance of the system. Using the cardiac phantom, a 2mm diameter glass toroid was attached to a vertical plate as the target location. An elastic material was placed between the target and plate to simulate the target lying on a soft tissue structure. The target was measured using an independent measurement system and was represented as a sphere in the virtual reality system. The goal was to test the ability of a user to probe the target using three guidance methods: (i) 2D ultrasound only, (ii) virtual reality only and (iii) ultrasound enhanced virtual reality. Three users attempted the task three times each for each method. An independent measurement system was used to validate the measurement. The ultrasound imaging alone was poor in locating the target (5.42 mm RMS) while the other methods proved to be significantly better (1.02 mm RMS and 1.47 mm RMS respectively). The ultrasound enhancement is expected to be more useful in a dynamic environment where the system registration may be disturbed.

  2. Computer navigation in orthopedic trauma: safer surgeries with less irradiation and more precision.

    PubMed

    Akins, Ralitsa; Abdelgawad, Amr A; Kanlic, Enes M

    2012-01-01

    Exposure of patients and practitioners to ionizing radiation for diagnostic and therapeutic purposes has become the norm rather than the exception. This article discusses the findings from a literature review of intraoperative risks from ionizing radiation to patients and surgeons and the validity of substituting the conventional intraoperative fluoroscopy with computer-assisted orthopedic surgery (CAOS) in orthopedic trauma surgery. Diversity of study designs and measurements exists in reporting intraoperative ionizing radiation, making direct study comparisons difficult. CAOS can effectively reduce the amount of radiation exposure. There are definite advantages and disadvantages for using CAOS in the field of orthopedic trauma. Implementation of CAOS may hold the answer to better patient and surgeon intraoperative radiation safety with decreased operative time and increased procedure precision. The increased safety for patients and surgeons is a critical consideration in recommending CAOS in trauma surgery. PMID:23327842

  3. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    PubMed

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (<4.1°). High accuracy and precision of model-based RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. PMID:26553748

  4. Dichotomy in perceptual learning of interval timing: calibration of mean accuracy and precision differ in specificity and time course.

    PubMed

    Sohn, Hansem; Lee, Sang-Hun

    2013-01-01

    Our brain is inexorably confronted with a dynamic environment in which it has to fine-tune spatiotemporal representations of incoming sensory stimuli and commit to a decision accordingly. Among those representations needing constant calibration is interval timing, which plays a pivotal role in various cognitive and motor tasks. To investigate how perceived time interval is adjusted by experience, we conducted a human psychophysical experiment using an implicit interval-timing task in which observers responded to an invisible bar drifting at a constant speed. We tracked daily changes in distributions of response times for a range of physical time intervals over multiple days of training with two major types of timing performance, mean accuracy and precision. We found a decoupled dynamics of mean accuracy and precision in terms of their time course and specificity of perceptual learning. Mean accuracy showed feedback-driven instantaneous calibration evidenced by a partial transfer around the time interval trained with feedback, while timing precision exhibited a long-term slow improvement with no evident specificity. We found that a Bayesian observer model, in which a subjective time interval is determined jointly by a prior and likelihood function for timing, captures the dissociative temporal dynamics of the two types of timing measures simultaneously. Finally, the model suggested that the width of the prior, not the likelihoods, gradually shrinks over sessions, substantiating the important role of prior knowledge in perceptual learning of interval timing. PMID:23076112

  5. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Elmore, Andrew J.; Mustard, John F.; Manning, Sara J.; Elome, Andrew J.

    2000-01-01

    Because in situ techniques for determining vegetation abundance in semiarid regions are labor intensive, they usually are not feasible for regional analyses. Remotely sensed data provide the large spatial scale necessary, but their precision and accuracy in determining vegetation abundance and its change through time have not been quantitatively determined. In this paper, the precision and accuracy of two techniques, Spectral Mixture Analysis (SMA) and Normalized Difference Vegetation Index (NDVI) applied to Landsat TM data, are assessed quantitatively using high-precision in situ data. In Owens Valley, California we have 6 years of continuous field data (1991-1996) for 33 sites acquired concurrently with six cloudless Landsat TM images. The multitemporal remotely sensed data were coregistered to within 1 pixel, radiometrically intercalibrated using temporally invariante surface features and geolocated to within 30 m. These procedures facilitated the accurate location of field-monitoring sites within the remotely sensed data. Formal uncertainties in the registration, radiometric alignment, and modeling were determined. Results show that SMA absolute percent live cover (%LC) estimates are accurate to within ?4.0%LC and estimates of change in live cover have a precision of +/-3.8%LC. Furthermore, even when applied to areas of low vegetation cover, the SMA approach correctly determined the sense of clump, (i.e., positive or negative) in 87% of the samples. SMA results are superior to NDVI, which, although correlated with live cover, is not a quantitative measure and showed the correct sense of change in only 67%, of the samples.

  6. Accuracy and precisions of water quality parameters retrieved from particle swarm optimisation in a sub-tropical lake

    NASA Astrophysics Data System (ADS)

    Campbell, Glenn; Phinn, Stuart R.

    2009-09-01

    Optical remote sensing has been used to map and monitor water quality parameters such as the concentrations of hydrosols (chlorophyll and other pigments, total suspended material, and coloured dissolved organic matter). In the inversion / optimisation approach a forward model is used to simulate the water reflectance spectra from a set of parameters and the set that gives the closest match is selected as the solution. The accuracy of the hydrosol retrieval is dependent on an efficient search of the solution space and the reliability of the similarity measure. In this paper the Particle Swarm Optimisation (PSO) was used to search the solution space and seven similarity measures were trialled. The accuracy and precision of this method depends on the inherent noise in the spectral bands of the sensor being employed, as well as the radiometric corrections applied to images to calculate the subsurface reflectance. Using the Hydrolight® radiative transfer model and typical hydrosol concentrations from Lake Wivenhoe, Australia, MERIS reflectance spectra were simulated. The accuracy and precision of hydrosol concentrations derived from each similarity measure were evaluated after errors associated with the air-water interface correction, atmospheric correction and the IOP measurement were modelled and applied to the simulated reflectance spectra. The use of band specific empirically estimated values for the anisotropy value in the forward model improved the accuracy of hydrosol retrieval. The results of this study will be used to improve an algorithm for the remote sensing of water quality for freshwater impoundments.

  7. Nano-accuracy measurements and the surface profiler by use of Monolithic Hollow Penta-Prism for precision mirror testing

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Wayne, Lewis; Idir, Mourad

    2014-09-01

    We developed a Monolithic Hollow Penta-Prism Long Trace Profiler-NOM (MHPP-LTP-NOM) to attain nano-accuracy in testing plane- and near-plane-mirrors. A new developed Monolithic Hollow Penta-Prism (MHPP) combined with the advantages of PPLTP and autocollimator ELCOMAT of the Nano-Optic-Measuring Machine (NOM) is used to enhance the accuracy and stability of our measurements. Our precise system-alignment method by using a newly developed CCD position-monitor system (PMS) assured significant thermal stability and, along with our optimized noise-reduction analytic method, ensured nano-accuracy measurements. Herein we report our tests results; all errors are about 60 nrad rms or less in tests of plane- and near-plane- mirrors.

  8. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  9. Performance characterization of precision micro robot using a machine vision system over the Internet for guaranteed positioning accuracy

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Chiou, Richard; Rauniar, Shreepud; Sosa, Horacio

    2005-11-01

    There is a missing link between a virtual development environment (e.g., a CAD/CAM driven offline robotic programming) and production requirements of the actual robotic workcell. Simulated robot path planning and generation of pick-and-place coordinate points will not exactly coincide with the robot performance due to lack of consideration in variations in individual robot repeatability and thermal expansion of robot linkages. This is especially important when robots are controlled and programmed remotely (e.g., through Internet or Ethernet) since remote users have no physical contact with robotic systems. Using the current technology in Internet-based manufacturing that is limited to a web camera for live image transfer has been a significant challenge for the robot task performance. Consequently, the calibration and accuracy quantification of robot critical to precision assembly have to be performed on-site and the verification of robot positioning accuracy cannot be ascertained remotely. In worst case, the remote users have to assume the robot performance envelope provided by the manufacturers, which may causes a potentially serious hazard for system crash and damage to the parts and robot arms. Currently, there is no reliable methodology for remotely calibrating the robot performance. The objective of this research is, therefore, to advance the current state-of-the-art in Internet-based control and monitoring technology, with a specific aim in the accuracy calibration of micro precision robotic system for the development of a novel methodology utilizing Ethernet-based smart image sensors and other advanced precision sensory control network.

  10. ACCURACY AND PRECISION OF A METHOD TO STUDY KINEMATICS OF THE TEMPOROMANDIBULAR JOINT: COMBINATION OF MOTION DATA AND CT IMAGING

    PubMed Central

    Baltali, Evre; Zhao, Kristin D.; Koff, Matthew F.; Keller, Eugene E.; An, Kai-Nan

    2008-01-01

    The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5 mm for 3D curvilinear path calculations, 0.05 mm for 3D linear distance calculations, and 0.2° for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable. PMID:18617178

  11. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    PubMed

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting. PMID:27478832

  12. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study

    PubMed Central

    Olivecrona, Henrik; Maguire, Gerald Q.; Noz, Marilyn E.; Zeleznik, Michael P.

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting. PMID:27478832

  13. The accuracy and precision of DXA for assessing body composition in team sport athletes.

    PubMed

    Bilsborough, Johann Christopher; Greenway, Kate; Opar, David; Livingstone, Steuart; Cordy, Justin; Coutts, Aaron James

    2014-01-01

    This study determined the precision of pencil and fan beam dual-energy X-ray absorptiometry (DXA) devices for assessing body composition in professional Australian Football players. Thirty-six professional Australian Football players, in two groups (fan DXA, N = 22; pencil DXA, N = 25), underwent two consecutive DXA scans. A whole body phantom with known values for fat mass, bone mineral content and fat-free soft tissue mass was also used to validate each DXA device. Additionally, the criterion phantom was scanned 20 times by each DXA to assess reliability. Test-retest reliability of DXA anthropometric measures were derived from repeated fan and pencil DXA scans. Fat-free soft tissue mass and bone mineral content from both DXA units showed strong correlations with, and trivial differences to, the criterion phantom values. Fat mass from both DXA showed moderate correlations with criterion measures (pencil: r = 0.64; fan: r = 0.67) and moderate differences with the criterion value. The limits of agreement were similar for both fan beam DXA and pencil beam DXA (fan: fat-free soft tissue mass = -1650 ± 179 g, fat mass = -357 ± 316 g, bone mineral content = 289 ± 122 g; pencil: fat-free soft tissue mass = -1701 ± 257 g, fat mass = -359 ± 326 g, bone mineral content = 177 ± 117 g). DXA also showed excellent precision for bone mineral content (coefficient of variation (%CV) fan = 0.6%; pencil = 1.5%) and fat-free soft tissue mass (%CV fan = 0.3%; pencil = 0.5%) and acceptable reliability for fat measures (%CV fan: fat mass = 2.5%, percent body fat = 2.5%; pencil: fat mass = 5.9%, percent body fat = 5.7%). Both DXA provide precise measures of fat-free soft tissue mass and bone mineral content in lean Australian Football players. DXA-derived fat-free soft tissue mass and bone mineral content are suitable for assessing body composition in lean team sport athletes. PMID:24914773

  14. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  15. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  16. The Precision and Accuracy of AIRS Level 1B Radiances for Climate Studies

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Gaiser, Steve; Pagano, Tom; Aumann, Hartmut

    2004-01-01

    We investigate uncertainties in the Atmospheric Infrared Sounder (AIRS) radiances based on in-flight and preflight calibration algorithms and observations. The global coverage and spectra1 resolution ((lamda)/(Delta)(lamda) 1200) of AIRS enable it to produce a data set that can be used as a climate data record over the lifetime of the instrument. Therefore, we examine the effects of the uncertainties in the calibration and the detector stability on future climate studies. The uncertainties of the parameters that go into the AIRS radiometric calibration are propagated to estimate the accuracy of the radiances and any climate data record created from AIRS measurements. The calculated radiance uncertainties are consistent with observations. Algorithm enhancements may be able to reduce the radiance uncertainties by as much as 7%. We find that the orbital variation of the gain contributes a brightness temperature bias of < 0.01 K.

  17. Quantification and visualization of carotid segmentation accuracy and precision using a 2D standardized carotid map

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Ukwatta, Eranga; Shavakh, Shadi; Fenster, Aaron

    2013-06-01

    This paper describes a framework for vascular image segmentation evaluation. Since the size of vessel wall and plaque burden is defined by the lumen and wall boundaries in vascular segmentation, these two boundaries should be considered as a pair in statistical evaluation of a segmentation algorithm. This work proposed statistical metrics to evaluate the difference of local vessel wall thickness (VWT) produced by manual and algorithm-based semi-automatic segmentation methods (ΔT) with the local segmentation standard deviation of the wall and lumen boundaries considered. ΔT was further approximately decomposed into the local wall and lumen boundary differences (ΔW and ΔL respectively) in order to provide information regarding which of the wall and lumen segmentation errors contribute more to the VWT difference. In this study, the lumen and wall boundaries in 3D carotid ultrasound images acquired for 21 subjects were each segmented five times manually and by a level-set segmentation algorithm. The (absolute) difference measures (i.e., ΔT, ΔW, ΔL and their absolute values) and the pooled local standard deviation of manually and algorithmically segmented wall and lumen boundaries were computed for each subject and represented in a 2D standardized map. The local accuracy and variability of the segmentation algorithm at each point can be quantified by the average of these metrics for the whole group of subjects and visualized on the 2D standardized map. Based on the results shown on the 2D standardized map, a variety of strategies, such as adding anchor points and adjusting weights of different forces in the algorithm, can be introduced to improve the accuracy and variability of the algorithm.

  18. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  19. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  20. Towards the next decades of precision and accuracy in a 87Sr optical lattice clock

    NASA Astrophysics Data System (ADS)

    Martin, Michael; Lin, Yige; Swallows, Matthew; Bishof, Michael; Blatt, Sebastian; Benko, Craig; Chen, Licheng; Hirokawa, Takako; Rey, Ana Maria; Ye, Jun

    2011-05-01

    Optical lattice clocks based on ensembles of neutral atoms have the potential to operate at the highest levels of stability due to the parallel interrogation of many atoms. However, the control of systematic shifts in these systems is correspondingly difficult due to potential collisional atomic interactions. By tightly confining samples of ultracold fermionic 87Sr atoms in a two-dimensional optical lattice, as opposed to the conventional one-dimensional geometry, we increase the collisional interaction energy to be the largest relevant energy scale, thus entering the strongly interacting regime of clock operation. We show both theoretically and experimentally that this increase in interaction energy results in a paradoxical decrease in the collisional shift, reducing this key systematic to the 10-17 level. We also present work towards next- generation ultrastable lasers to attain quantum-limited clock operation, potentially enhancing clock precision by an order of magnitude. This work was supported by a grant from the ARO with funding from the DARPA OLE program, NIST, NSF, and AFOSR.

  1. Tedlar bag sampling technique for vertical profiling of carbon dioxide through the atmospheric boundary layer with high precision and accuracy.

    PubMed

    Schulz, Kristen; Jensen, Michael L; Balsley, Ben B; Davis, Kenneth; Birks, John W

    2004-07-01

    Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2. PMID:15296321

  2. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review).

    PubMed

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  3. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.

    PubMed

    Choe, Kyoung Whan; Blake, Randolph; Lee, Sang-Hun

    2016-01-01

    Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task. PMID:25578924

  4. Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models

    NASA Astrophysics Data System (ADS)

    Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin

    2016-04-01

    This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.

  5. A simple device for high-precision head image registration: Preliminary performance and accuracy tests

    SciTech Connect

    Pallotta, Stefania

    2007-05-15

    The purpose of this paper is to present a new device for multimodal head study registration and to examine its performance in preliminary tests. The device consists of a system of eight markers fixed to mobile carbon pipes and bars which can be easily mounted on the patient's head using the ear canals and the nasal bridge. Four graduated scales fixed to the rigid support allow examiners to find the same device position on the patient's head during different acquisitions. The markers can be filled with appropriate substances for visualisation in computed tomography (CT), magnetic resonance, single photon emission computer tomography (SPECT) and positron emission tomography images. The device's rigidity and its position reproducibility were measured in 15 repeated CT acquisitions of the Alderson Rando anthropomorphic phantom and in two SPECT studies of a patient. The proposed system displays good rigidity and reproducibility characteristics. A relocation accuracy of less than 1,5 mm was found in more than 90% of the results. The registration parameters obtained using such a device were compared to those obtained using fiducial markers fixed on phantom and patient heads, resulting in differences of less than 1 deg. and 1 mm for rotation and translation parameters, respectively. Residual differences between fiducial marker coordinates in reference and in registered studies were less than 1 mm in more than 90% of the results, proving that the device performed as accurately as noninvasive stereotactic devices. Finally, an example of multimodal employment of the proposed device is reported.

  6. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  7. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  8. A Method of Determining Accuracy and Precision for Dosimeter Systems Using Accreditation Data

    SciTech Connect

    Rick Cummings and John Flood

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively.

  9. A method of determining accuracy and precision for dosimeter systems using accreditation data.

    PubMed

    Cummings, Frederick; Flood, John R

    2010-12-01

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic® Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively. PMID:21068596

  10. Video image analysis in the Australian meat industry - precision and accuracy of predicting lean meat yield in lamb carcasses.

    PubMed

    Hopkins, D L; Safari, E; Thompson, J M; Smith, C R

    2004-06-01

    A wide selection of lamb types of mixed sex (ewes and wethers) were slaughtered at a commercial abattoir and during this process images of 360 carcasses were obtained online using the VIAScan® system developed by Meat and Livestock Australia. Soft tissue depth at the GR site (thickness of tissue over the 12th rib 110 mm from the midline) was measured by an abattoir employee using the AUS-MEAT sheep probe (PGR). Another measure of this thickness was taken in the chiller using a GR knife (NGR). Each carcass was subsequently broken down to a range of trimmed boneless retail cuts and the lean meat yield determined. The current industry model for predicting meat yield uses hot carcass weight (HCW) and tissue depth at the GR site. A low level of accuracy and precision was found when HCW and PGR were used to predict lean meat yield (R(2)=0.19, r.s.d.=2.80%), which could be improved markedly when PGR was replaced by NGR (R(2)=0.41, r.s.d.=2.39%). If the GR measures were replaced by 8 VIAScan® measures then greater prediction accuracy could be achieved (R(2)=0.52, r.s.d.=2.17%). A similar result was achieved when the model was based on principal components (PCs) computed from the 8 VIAScan® measures (R(2)=0.52, r.s.d.=2.17%). The use of PCs also improved the stability of the model compared to a regression model based on HCW and NGR. The transportability of the models was tested by randomly dividing the data set and comparing coefficients and the level of accuracy and precision. Those models based on PCs were superior to those based on regression. It is demonstrated that with the appropriate modeling the VIAScan® system offers a workable method for predicting lean meat yield automatically. PMID:22061323

  11. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  12. In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models.

    PubMed

    Lyutvinskiy, Yaroslav; Yang, Hongqian; Rutishauser, Dorothea; Zubarev, Roman A

    2013-08-01

    In the analysis of proteome changes arising during the early stages of a biological process (e.g. disease or drug treatment) or from the indirect influence of an important factor, the biological variations of interest are often small (∼10%). The corresponding requirements for the precision of proteomics analysis are high, and this often poses a challenge, especially when employing label-free quantification. One of the main contributors to the inaccuracy of label-free proteomics experiments is the variability of the instrumental response during LC-MS/MS runs. Such variability might include fluctuations in the electrospray current, transmission efficiency from the air-vacuum interface to the detector, and detection sensitivity. We have developed an in silico post-processing method of reducing these variations, and have thus significantly improved the precision of label-free proteomics analysis. For abundant blood plasma proteins, a coefficient of variation of approximately 1% was achieved, which allowed for sex differentiation in pooled samples and ≈90% accurate differentiation of individual samples by means of a single LC-MS/MS analysis. This method improves the precision of measurements and increases the accuracy of predictive models based on the measurements. The post-acquisition nature of the correction technique and its generality promise its widespread application in LC-MS/MS-based methods such as proteomics and metabolomics. PMID:23589346

  13. Accuracy and Precision of Equine Gait Event Detection during Walking with Limb and Trunk Mounted Inertial Sensors

    PubMed Central

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of −7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with −0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of −4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely. PMID:22969392

  14. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    PubMed

    Wells, Emma; Wolfe, Marlene K; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4-19% error), then test strips (5.2-48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration. Given the

  15. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions

    PubMed Central

    Wells, Emma; Wolfe, Marlene K.; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4–19% error), then test strips (5.2–48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5–11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14–37 for test strips and $33–609 for titration

  16. Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling

    NASA Astrophysics Data System (ADS)

    Dottori, F.; Di Baldassarre, G.; Todini, E.

    2013-09-01

    New survey techniques provide a large amount of high-resolution data, which can be extremely precious for flood inundation modeling. Such data availability raises the issue as to how to exploit their information content to effectively improve flood risk mapping and predictions. In this paper, we will discuss a number of important issues which should be taken into account in works related to flood modeling. These include the large number of uncertainty sources in model structure and available data; the difficult evaluation of model results, due to the scarcity of observed data; computational efficiency; false confidence that can be given by high-resolution outputs, as accuracy is not necessarily increased by higher precision. Finally, we briefly review and discuss a number of existing approaches, such as subgrid parameterization and roughness upscaling methods, which can be used to incorporate high detailed data into flood inundation models, balancing efficiency and reliability.

  17. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  18. Assessment of accuracy and precision of 3D reconstruction of unicompartmental knee arthroplasty in upright position using biplanar radiography.

    PubMed

    Tsai, Tsung-Yuan; Dimitriou, Dimitris; Hosseini, Ali; Liow, Ming Han Lincoln; Torriani, Martin; Li, Guoan; Kwon, Young-Min

    2016-07-01

    This study aimed to evaluate the precision and accuracy of 3D reconstruction of UKA component position, contact location and lower limb alignment in standing position using biplanar radiograph. Two human specimens with 4 medial UKAs were implanted with beads for radiostereometric analysis (RSA). The specimens were frozen in standing position and CT-scanned to obtain relative positions between the beads, bones and UKA components. The specimens were then imaged using biplanar radiograph (EOS). The positions of the femur, tibia, UKA components and UKA contact locations were obtained using RSA- and EOS-based techniques. Intraclass correlation coefficient (ICC) was calculated for inter-observer reliability of the EOS technique. The average (standard deviation) of the differences between two techniques in translations and rotations were less than 0.18 (0.29) mm and 0.39° (0.66°) for UKA components. The root-mean-square-errors (RMSE) of contact location along the anterior/posterior and medial/lateral directions were 0.84mm and 0.30mm. The RMSEs of the knee rotations were less than 1.70°. The ICCs for the EOS-based segmental orientations between two raters were larger than 0.98. The results suggest the EOS-based 3D reconstruction technique can precisely determine component position, contact location and lower limb alignment for UKA patients in weight-bearing standing position. PMID:27117422

  19. THE PRECISION AND ACCURACY OF EARLY EPOCH OF REIONIZATION FOREGROUND MODELS: COMPARING MWA AND PAPER 32-ANTENNA SOURCE CATALOGS

    SciTech Connect

    Jacobs, Daniel C.; Bowman, Judd; Aguirre, James E.

    2013-05-20

    As observations of the Epoch of Reionization (EoR) in redshifted 21 cm emission begin, we assess the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Wide-field Array (MWA). The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision, while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. The two instruments are very similar in resolution, sensitivity, sky coverage, and spectral range and have produced catalogs from nearly contemporaneous data. We use a Bayesian Markov Chain Monte Carlo fitting method to estimate that the two instruments are on the same flux scale to within 20% and find that the images are mostly in good agreement. We then investigate the source of the errors by comparing two overlapping MWA facets where we find that the differences are primarily related to an inaccurate model of the primary beam but also correlated errors in bright sources due to CLEAN. We conclude with suggestions for mitigating and better characterizing these effects.

  20. Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision.

    PubMed

    Nordgård, Oddmund; Kvaløy, Jan Terje; Farmen, Ragne Kristin; Heikkilä, Reino

    2006-09-15

    Real-time reverse transcription polymerase chain reaction (RT-PCR) has gained wide popularity as a sensitive and reliable technique for mRNA quantification. The development of new mathematical models for such quantifications has generally paid little attention to the aspect of error propagation. In this study we evaluate, both theoretically and experimentally, several recent models for relative real-time RT-PCR quantification of mRNA with respect to random error accumulation. We present error propagation expressions for the most common quantification models and discuss the influence of the various components on the total random error. Normalization against a calibrator sample to improve comparability between different runs is shown to increase the overall random error in our system. On the other hand, normalization against multiple reference genes, introduced to improve accuracy, does not increase error propagation compared to normalization against a single reference gene. Finally, we present evidence that sample-specific amplification efficiencies determined from individual amplification curves primarily increase the random error of real-time RT-PCR quantifications and should be avoided. Our data emphasize that the gain of accuracy associated with new quantification models should be validated against the corresponding loss of precision. PMID:16899212

  1. Cross Cutting Relative Navigation Technologies for Improved Landing Accuracy and Vehicle-to-Vehicle Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Masciarelli, J.; Rohrschneider, R. R.

    2012-06-01

    This presentation addresses recent development and test progress, as well as future technology advancement plans for precision landing and Autonomous Rendezvous, Proximity Operations and Docking (ARPOD).

  2. Fundamental earth orientation parameters in determining the accuracy of the long-term ephemeris-time corrections in satellite navigation

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Perepelkin, V. V.; Chazov, V. V.; Shemyakov, A. O.

    2015-12-01

    A few-parameter numerical-analytical model for the rotational-oscillatory motions of the Earth is used on long time intervals in the processing of the highly accurate measurements of the topocentric distances to the Etalon-1 and Etalon-2 artificial Earth satellites. A proposed model can be used in satellite navigation algorithms.

  3. Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Kanning, G.; Cicolani, L. S.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.

  4. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  5. An analysis of GDOP in global positioning system navigation

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1980-01-01

    The accuracy of user navigation fix based on the NAVSTAR global positioning system is described. The trace of this matrix serves as a convenient navigation performance index and the square root of the trace is called geometric dilution of precision (GDOP). Certain theoretical results concerning the general properties of the navigation performance are derived. An efficient algorithm for the computation of GDOP is given. Applications of the results are illustrated by numerical examples.

  6. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing.

    PubMed

    Hombach, Michael; Maurer, Florian P; Pfiffner, Tamara; Böttger, Erik C; Furrer, Reinhard

    2015-12-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 10(8) CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of

  7. Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels.

    PubMed

    Langham, Michael C; Magland, Jeremy F; Epstein, Charles L; Floyd, Thomas F; Wehrli, Felix W

    2009-08-01

    An accurate noninvasive method to measure the hemoglobin oxygen saturation (%HbO(2)) of deep-lying vessels without catheterization would have many clinical applications. Quantitative MRI may be the only imaging modality that can address this difficult and important problem. MR susceptometry-based oximetry for measuring blood oxygen saturation in large vessels models the vessel as a long paramagnetic cylinder immersed in an external field. The intravascular magnetic susceptibility relative to surrounding muscle tissue is a function of oxygenated hemoglobin (HbO(2)) and can be quantified with a field-mapping pulse sequence. In this work, the method's accuracy and precision was investigated theoretically on the basis of an analytical expression for the arbitrarily oriented cylinder, as well as experimentally in phantoms and in vivo in the femoral artery and vein at 3T field strength. Errors resulting from vessel tilt, noncircularity of vessel cross-section, and induced magnetic field gradients were evaluated and methods for correction were designed and implemented. Hemoglobin saturation was measured at successive vessel segments, differing in geometry, such as eccentricity and vessel tilt, but constant blood oxygen saturation levels, as a means to evaluate measurement consistency. The average standard error and coefficient of variation of measurements in phantoms were <2% with tilt correction alone, in agreement with theory, suggesting that high accuracy and reproducibility can be achieved while ignoring noncircularity for tilt angles up to about 30 degrees . In vivo, repeated measurements of %HbO(2) in the femoral vessels yielded a coefficient of variation of less than 5%. In conclusion, the data suggest that %HbO(2) can be measured reproducibly in vivo in large vessels of the peripheral circulation on the basis of the paramagnetic cylinder approximation of the incremental field. PMID:19526517

  8. Determination of the precision and accuracy of morphological measurements using the Kinect™ sensor: comparison with standard stereophotogrammetry.

    PubMed

    Bonnechère, B; Jansen, B; Salvia, P; Bouzahouene, H; Sholukha, V; Cornelis, J; Rooze, M; Van Sint Jan, S

    2014-01-01

    The recent availability of the Kinect™ sensor, a low-cost Markerless Motion Capture (MMC) system, could give new and interesting insights into ergonomics (e.g. the creation of a morphological database). Extensive validation of this system is still missing. The aim of the study was to determine if the Kinect™ sensor can be used as an easy, cheap and fast tool to conduct morphology estimation. A total of 48 subjects were analysed using MMC. Results were compared with measurements obtained from a high-resolution stereophotogrammetric system, a marker-based system (MBS). Differences between MMC and MBS were found; however, these differences were systematically correlated and enabled regression equations to be obtained to correct MMC results. After correction, final results were in agreement with MBS data (p = 0.99). Results show that measurements were reproducible and precise after applying regression equations. Kinect™ sensors-based systems therefore seem to be suitable for use as fast and reliable tools to estimate morphology. Practitioner Summary: The Kinect™ sensor could eventually be used for fast morphology estimation as a body scanner. This paper presents an extensive validation of this device for anthropometric measurements in comparison to manual measurements and stereophotogrammetric devices. The accuracy is dependent on the segment studied but the reproducibility is excellent. PMID:24646374

  9. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Rettinger, M.; Jones, N.

    2011-05-01

    We present a strategy (MIR-GBM v1.0) for the retrieval of column-averaged dry-air mole fractions of methane (XCH4) with a precision <0.3 % (1-σ diurnal variation, 7-min integration) and a seasonal bias <0.14 % from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations). This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON) with time series dating back 15 yr or so before TCCON operations began. MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release) and 3 spectral micro windows (2613.70-2615.40 cm-1, 2835.50-2835.80 cm-1, 2921.00-2921.60 cm-1). A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the ratio of root-mean-square spectral residuals and information content (<0.15 %). Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP) interpolated to the time of measurement. MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008). Dominant errors of the non-optimum retrieval strategies are HDO/H2O-CH4 interference errors (seasonal bias up to ≈4 %). Therefore interference errors have been quantified at 3 test sites covering clear-sky integrated water vapor levels representative for all NDACC sites (Wollongong maximum = 44.9 mm, Garmisch mean = 14.9 mm

  10. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Rettinger, M.; Jones, N.

    2011-09-01

    We present a strategy (MIR-GBM v1.0) for the retrieval of column-averaged dry-air mole fractions of methane (XCH4) with a precision <0.3% (1-σ diurnal variation, 7-min integration) and a seasonal bias <0.14% from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations). This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON) with time series dating back 15 years or so before TCCON operations began. MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release) and 3 spectral micro windows (2613.70-2615.40 cm-1, 2835.50-2835.80 cm-1, 2921.00-2921.60 cm-1). A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the goodness of fit (χ2 < 1) as well as for the ratio of root-mean-square spectral noise and information content (<0.15%). Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP) interpolated to the time of measurement. MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008). Dominant errors of the non-optimum retrieval strategies are systematic HDO/H2O-CH4 interference errors leading to a seasonal bias up to ≈5%. Therefore interference errors have been quantified at 3 test sites covering clear-sky integrated water vapor levels representative for all NDACC

  11. Airborne Laser CO2 Column Measurements: Evaluation of Precision and Accuracy Under a Wide Range of Surface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S. A.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.

    2011-12-01

    This paper discusses the latest flight test results of a multi-frequency intensity-modulated (IM) continuous-wave (CW) laser absorption spectrometer (LAS) that operates near 1.57 μm for remote CO2 column measurements. This IM-LAS system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of the ASCENDS system, called the Multi-frequency Fiber Laser Lidar (MFLL), has been flight tested in eleven airborne campaigns since May 2005. This paper compares the most recent results obtained during the 2010 and 2011 UC-12 and DC-8 flight tests, where MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. The major change to the MFLL system in 2011 was the implementation of several different IM modes, which could be quickly changed in flight, to directly compare the precision and accuracy of MFLL CO2 measurements in each mode. The different IM modes that were evaluated included "fixed" IM frequencies near 50, 200, and 500 kHz; frequencies changed in short time steps (Stepped); continuously swept frequencies (Swept); and a pseudo noise (PN) code. The Stepped, Swept, and PN modes were generated to evaluate the ability of these IM modes to desensitize MFLL CO2 column measurements to intervening optically thin aerosols/clouds. MFLL was flown on the NASA Langley UC-12 aircraft in May 2011 to evaluate the newly implemented IM modes and their impact on CO2 measurement precision and accuracy, and to determine which IM mode provided the greatest thin cloud rejection (TCR) for the CO2 column measurements. Within the current hardware limitations of the MFLL system, the "fixed" 50 kHz results produced similar SNR values to those found previously. The SNR decreased as expected

  12. Investigations on the Accuracy of the Navigation Data of Unmanned Aerial Vehicles Using the Example of the System Mikrokopter

    NASA Astrophysics Data System (ADS)

    Bäumker, M.; Przybilla, H.-J.

    2011-09-01

    Bochum University of Applied Sciences (HS BO) is currently involved in an UAV project, whose fundamental developments are the result of an internet community. The MikroKopter system, being built by the laboratory, is a manually and autonomous flying platform. With regard to the implementation of an autonomous flight the MikroKopter is equipped with appropriate sensors for the flight control. The interaction of these components allows horizontal and vertical stabilized positioning of the system, as well as the return to the launch site. Using these positioning data a stabilization and orientation of the camera occurs, followed by a manual or automatically triggering of the camera to the predetermined positions. All flight data is completely recorded and can be evaluated at a later date. Investigations to the quality of navigation data are presented. Based on different flights at the Bochum test field, combined with the use of alternative navigation sensors, an evaluation of the standard components of the MikroKopter system occurs. Another focus is given by efforts to optimize the control, stabilization and orientation of the camera.

  13. Evaluation of precision and accuracy of the Borgwaldt RM20S(®) smoking machine designed for in vitro exposure.

    PubMed

    Kaur, Navneet; Lacasse, Martine; Roy, Jean-Philippe; Cabral, Jean-Louis; Adamson, Jason; Errington, Graham; Waldron, Karen C; Gaça, Marianna; Morin, André

    2010-12-01

    The Borgwaldt RM20S(®) smoking machine enables the generation, dilution, and transfer of fresh cigarette smoke to cell exposure chambers, for in vitro analyses. We present a study confirming the precision (repeatability r, reproducibility R) and accuracy of smoke dose generated by the Borgwaldt RM20S(®) system and delivery to exposure chambers. Due to the aerosol nature of cigarette smoke, the repeatability of the dilution of the vapor phase in air was assessed by quantifying two reference standard gases: methane (CH(4), r between 29.0 and 37.0 and RSD between 2.2% and 4.5%) and carbon monoxide (CO, r between 166.8 and 235.8 and RSD between 0.7% and 3.7%). The accuracy of dilution (percent error) for CH(4) and CO was between 6.4% and 19.5% and between 5.8% and 6.4%, respectively, over a 10-1000-fold dilution range. To corroborate our findings, a small inter-laboratory study was carried out for CH(4) measurements. The combined dilution repeatability had an r between 21.3 and 46.4, R between 52.9 and 88.4, RSD between 6.3% and 17.3%, and error between 4.3% and 13.1%. Based on the particulate component of cigarette smoke (3R4F), the repeatability (RSD = 12%) of the undiluted smoke generated by the Borgwaldt RM20S(®) was assessed by quantifying solanesol using high-performance liquid chromatography with ultraviolet detection (HPLC/UV). Finally, the repeatability (r between 0.98 and 4.53 and RSD between 8.8% and 12%) of the dilution of generated smoke particulate phase was assessed by quantifying solanesol following various dilutions of cigarette smoke. The findings in this study suggest the Borgwaldt RM20S(®) smoking machine is a reliable tool to generate and deliver repeatable and reproducible doses of whole smoke to in vitro cultures. PMID:21126153

  14. Effect of modulation frequency bandwidth on measurement accuracy and precision for digital diffuse optical spectroscopy (dDOS)

    NASA Astrophysics Data System (ADS)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-03-01

    Near-infrared (NIR) frequency-domain Diffuse Optical Spectroscopy (DOS) is an emerging technology with a growing number of potential clinical applications. In an effort to reduce DOS system complexity and improve portability, we recently demonstrated a direct digital sampling method that utilizes digital signal generation and detection as a replacement for more traditional analog methods. In our technique, a fast analog-to-digital converter (ADC) samples the detected time-domain radio frequency (RF) waveforms at each modulation frequency in a broad-bandwidth sweep (50- 300MHz). While we have shown this method provides comparable results to other DOS technologies, the process is data intensive as digital samples must be stored and processed for each modulation frequency and wavelength. We explore here the effect of reducing the modulation frequency bandwidth on the accuracy and precision of extracted optical properties. To accomplish this, the performance of the digital DOS (dDOS) system was compared to a gold standard network analyzer based DOS system. With a starting frequency of 50MHz, the input signal of the dDOS system was swept to 100, 150, 250, or 300MHz in 4MHz increments and results were compared to full 50-300MHz networkanalyzer DOS measurements. The average errors in extracted μa and μs' with dDOS were lowest for the full 50-300MHz sweep (less than 3%) and were within 3.8% for frequency bandwidths as narrow as 50-150MHz. The errors increased to as much as 9.0% when a bandwidth of 50-100MHz was tested. These results demonstrate the possibility for reduced data collection with dDOS without critical compensation of optical property extraction.

  15. Accuracy, precision and response time of consumer fork, remote digital probe and disposable indicator thermometers for cooked ground beef patties and chicken breasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine different commercially available instant-read consumer thermometers (forks, remotes, digital probe and disposable color change indicators) were tested for accuracy and precision compared to a calibrated thermocouple in 80 percent and 90 percent lean ground beef patties, and boneless and bone-in...

  16. An Examination of the Precision and Technical Accuracy of the First Wave of Group-Randomized Trials Funded by the Institute of Education Sciences

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Raudenbush, Stephen W.

    2009-01-01

    This article examines the power analyses for the first wave of group-randomized trials funded by the Institute of Education Sciences. Specifically, it assesses the precision and technical accuracy of the studies. The authors identified the appropriate experimental design and estimated the minimum detectable standardized effect size (MDES) for each…

  17. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  18. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System

    PubMed Central

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    Objectives MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Methods Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators – attending (AR) and resident radiologists (RR) as well as medical students (MS) – performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Results Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). Conclusions The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between

  19. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    SciTech Connect

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-11-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures.

  20. PTTI applications to deep space navigation

    NASA Technical Reports Server (NTRS)

    Curkendall, D. W.

    1979-01-01

    Radio metric deep space navigation relies nearly exclusively upon coherent, two way, Doppler and ranging for all precise applications. These data types and the navigational accuracies they can produce are reviewed. The deployment of hydrogen maser frequency standards and the development of Very Long Baseline Interferometry (VLBI) systems within the Deep Space Network are used in the development of non-coherent, one way data forms that promise much greater inherent navigational accuracy. The underlying structure between each data class and clock performance is charted. VLBI observations of the natural radio sources are the planned instrument for the synchronization task. This method and a navigational scheme using differential measurements between the spacecraft and nearby quasars are described.

  1. Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Wang, G. Q.

    2013-03-01

    Continuous Global Positioning System (GPS) monitoring is essential for establishing the rate and pattern of superficial movements of landslides. This study demonstrates a technique which uses a stand-alone GPS station to conduct millimeter-accuracy landslide monitoring. The Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution employed by the GIPSY/OASIS software package (V6.1.2) was applied in this study. Two-years of continuous GPS data collected at a creeping landslide were used to evaluate the accuracy of the PPP-SRPA solutions. The criterion for accuracy was the root-mean-square (RMS) of residuals of the PPP-SRPA solutions with respect to "true" landslide displacements over the two-year period. RMS is often regarded as repeatability or precision in GPS literature. However, when contrasted with a known "true" position or displacement it could be termed RMS accuracy or simply accuracy. This study indicated that the PPP-SRPA resolution can provide an accuracy of 2 to 3 mm horizontally and 8 mm vertically for 24-hour sessions with few outliers (< 1%) in the Puerto Rico region. Horizontal accuracy below 5 mm can be stably achieved with 4-hour or longer sessions if avoiding the collection of data during extreme weather conditions. Vertical accuracy below 10 mm can be achieved with 8-hour or longer sessions. This study indicates that the PPP-SRPA resolution is competitive with the conventional carrier-phase double-difference network resolution for static (longer than 4 hours) landslide monitoring while maintaining many advantages. It is evident that the PPP-SRPA method would become an attractive alternative to the conventional carrier-phase double-difference method for landslide monitoring, notably in remote areas or developing countries.

  2. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solutions by inductively coupled plasma-multiple collector-mass spectrometry

    SciTech Connect

    Bowen, I.; Walder, A.J.; Hodgson, T.; Parrish, R.R. |

    1998-12-31

    A novel method for the high accuracy and high precision measurement of uranium isotopic composition by Inductively Coupled Plasma-Multiple Collector-Mass Spectrometry is discussed. Uranium isotopic samples are spiked with either thorium or lead for use as internal calibration reference materials. This method eliminates the necessity to periodically measure uranium standards to correct for changing mass bias when samples are measured over long time periods. This technique has generated among the highest levels of analytical precision on both the major and minor isotopes of uranium. Sample throughput has also been demonstrated to exceed Thermal Ionization Mass Spectrometry by a factor of four to five.

  3. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  4. The precision and accuracy of iterative and non-iterative methods of photopeak integration in activation analysis, with particular reference to the analysis of multiplets

    USGS Publications Warehouse

    Baedecker, P.A.

    1977-01-01

    The relative precisions obtainable using two digital methods, and three iterative least squares fitting procedures of photopeak integration have been compared empirically using 12 replicate counts of a test sample with 14 photopeaks of varying intensity. The accuracy by which the various iterative fitting methods could analyse synthetic doublets has also been evaluated, and compared with a simple non-iterative approach. ?? 1977 Akade??miai Kiado??.

  5. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  6. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  7. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network

    NASA Astrophysics Data System (ADS)

    Mukul, Manas; Srivastava, Vinee; Mukul, Malay

    2015-08-01

    The Shuttle Radar Topography Mission (SRTM) carried out in February 2000 has provided near global topographic data that has been widely used in many fields of earth sciences. The mission goal of an absolute vertical accuracy within 16 m (with 90% confidence)/RMSE ˜10 m was achieved based on ground validation of SRTM data through various studies using global positioning system (GPS). We present a new and independent assessment of the vertical accuracy of both the X- and C-band SRTM datasets using data from the International GNSS Service (IGS) network of high-precision static GPS stations. These stations exist worldwide, have better spatial distribution than previous studies, have a vertical accuracy of 6 mm and constitute the most accurate ground control points (GCPs) possible on earth; these stations are used as fiducial stations to define the International Terrestrial Reference Frame (ITRF). Globally, for outlier-filtered data (135 X-band stations and 290 C-band stations), the error or difference between IGS and SRTM heights exhibits a non-normal distribution with a mean and standard error of 8.2 ± 0.7 and 6.9 ± 0.5 m for X- and C-band data, respectively. Continent-wise, Africa, Australia and North America comply with the SRTM mission absolute vertical accuracy of 16 m (with 90% confidence)/RMSE ˜10 m. However, Asia, Europe and South America have vertical errors higher than the SRTM mission goal. At stations where both the X- and C-band SRTM data were present, the root mean square error (RMSE) of both the X- and C-bands was identical at 11.5 m, indicating similar quality of both the X- and C-band SRTM data.

  8. Accuracy study of a new assistance system under the application of Navigated Control® for manual milling on a head phantom.

    PubMed

    Shi, Jiaxi; Stenzel, Roland; Wenger, Thomas; Lueth, Tim C

    2010-01-01

    In this article, a technical study of a new assistance system to support surgeons in milling on the temporal bone is presented. In particular, the overall accuracy of a new assistance system was investigated experimentally under conditions close to surgical practice. For the experiment, the assistance system has been used with its associated navigation system for ear-nose-throat (ENT) surgery. A specially constructed head phantom allowed the implementation of reproducible experiments. Thereby, N = 10 specimens were milled by three test persons without medical knowledge and the distance between points on the milled surface and the security zone around the planned nerve for each specimen were calculated. The result was as follows: None of the 10 milled specimens overlapped more than 2mm with the security zone, the average distances to the planned surface of the security zone for each specimen were between 0.01mm and 2.23mm, and the corresponding standard deviations varied from 0.41mm to 1.17mm. But it also shows some variation in averages and standard deviations and it was often too little material removed. This deviation is probably caused by the patient registration and the tool calibration. PMID:21097019

  9. Sensitivity of planetary cruise navigation to earth orientation calibration errors

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Folkner, W. M.

    1995-01-01

    A detailed analysis was conducted to determine the sensitivity of spacecraft navigation errors to the accuracy and timeliness of Earth orientation calibrations. Analyses based on simulated X-band (8.4-GHz) Doppler and ranging measurements acquired during the interplanetary cruise segment of the Mars Pathfinder heliocentric trajectory were completed for the nominal trajectory design and for an alternative trajectory with a longer transit time. Several error models were developed to characterize the effect of Earth orientation on navigational accuracy based on current and anticipated Deep Space Network calibration strategies. The navigational sensitivity of Mars Pathfinder to calibration errors in Earth orientation was computed for each candidate calibration strategy with the Earth orientation parameters included as estimated parameters in the navigation solution. In these cases, the calibration errors contributed 23 to 58% of the total navigation error budget, depending on the calibration strategy being assessed. Navigation sensitivity calculations were also performed for cases in which Earth orientation calibration errors were not adjusted in the navigation solution. In these cases, Earth orientation calibration errors contributed from 26 to as much as 227% of the total navigation error budget. The final analysis suggests that, not only is the method used to calibrate Earth orientation vitally important for precision navigation of Mars Pathfinder, but perhaps equally important is the method for inclusion of the calibration errors in the navigation solutions.

  10. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    SciTech Connect

    Kaminski, Radoslaw; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-06-24

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3-4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample.

  11. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    PubMed Central

    Kamiński, Radosław; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-01-01

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3–4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample. PMID:20567080

  12. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  13. Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome

    PubMed Central

    2011-01-01

    Introduction End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes. Methods Thirty-four patients with ARDS were prospectively included in five university-hospital intensive care units. ΔEELV and ΔPEEP volumes were compared between 6 and 15 cm H2O of PEEP. Results After exclusion of three patients, variability of the nitrogen technique was less than 4%, and the largest difference between measurements was 81 ± 64 ml. ΔEELV and ΔPEEP-volume were only weakly correlated (r2 = 0.47); 95% confidence interval limits, -414 to 608 ml). In four patients with the highest PEEP (≥ 16 cm H2O), ΔEELV was lower than the minimal predicted increase in lung volume, suggesting flawed measurements, possibly due to leaks. Excluding those from the analysis markedly strengthened the correlation between ΔEELV and ΔPEEP volume (r2 = 0.80). Conclusions In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy. PMID:22166727

  14. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  15. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  16. Technical note: precision and accuracy of in vitro digestion of neutral detergent fiber and predicted net energy of lactation content of fibrous feeds.

    PubMed

    Spanghero, M; Berzaghi, P; Fortina, R; Masoero, F; Rapetti, L; Zanfi, C; Tassone, S; Gallo, A; Colombini, S; Ferlito, J C

    2010-10-01

    The objective of this study was to test the precision and agreement with in situ data (accuracy) of neutral detergent fiber degradability (NDFD) obtained with the rotating jar in vitro system (Daisy(II) incubator, Ankom Technology, Fairport, NY). Moreover, the precision of the chemical assays requested by the National Research Council (2001) for feed energy calculations and the estimated net energy of lactation contents were evaluated. Precision was measured as standard deviation (SD) of reproducibility (S(R)) and repeatability (S(r)) (between- and within-laboratory variability, respectively), which were expressed as coefficients of variation (SD/mean × 100, S(R) and S(r), respectively). Ten fibrous feed samples (alfalfa dehydrated, alfalfa hay, corn cob, corn silage, distillers grains, meadow hay, ryegrass hay, soy hulls, wheat bran, and wheat straw) were analyzed by 5 laboratories. Analyses of dry matter (DM), ash, crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) had satisfactory S(r), from 0.4 to 2.9%, and S(R), from 0.7 to 6.2%, with the exception of ether extract (EE) and CP bound to NDF or ADF. Extending the fermentation time from 30 to 48 h increased the NDFD values (from 42 to 54% on average across all tested feeds) and improved the NDFD precision, in terms of both S(r) (12 and 7% for 30 and 48 h, respectively) and S(R) (17 and 10% for 30 and 48 h, respectively). The net energy for lactation (NE(L)) predicted from 48-h incubation NDFD data approximated well the tabulated National Research Council (2001) values for several feeds, and the improvement in NDFD precision given by longer incubations (48 vs. 30 h) also improved precision of the NE(L) estimates from 11 to 8%. Data obtained from the rotating jar in vitro technique compared well with in situ data. In conclusion, the adoption of a 48-h period of incubation improves repeatability and reproducibility of NDFD and accuracy and reproducibility of the associated calculated

  17. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems. PMID:25096977

  18. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Schmidlin, F. J.; Oltmans, S. J.; Smit, H. G. J.

    2004-01-01

    Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 ozone profiles over eleven southern hemisphere tropical and subtropical stations. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used to measure ozone. The data are archived at: &ttp://croc.gsfc.nasa.gov/shadoz>. In analysis of ozonesonde imprecision within the SHADOZ dataset, Thompson et al. [JGR, 108,8238,20031 we pointed out that variations in ozonesonde technique (sensor solution strength, instrument manufacturer, data processing) could lead to station-to-station biases within the SHADOZ dataset. Imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. First, SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release). As for TOMS version 7, satellite total ozone is usually higher than the integrated column amount from the sounding. Discrepancies between the sonde and satellite datasets decline two percentage points on average, compared to version 7 TOMS offsets. Second, the SHADOZ station data are compared to results of chamber simulations (JOSE-2000, Juelich Ozonesonde Intercomparison Experiment) in which the various SHADOZ techniques were evaluated. The range of JOSE column deviations from a standard instrument (-10%) in the chamber resembles that of the SHADOZ station data. It appears that some systematic variations in the SHADOZ ozone record are accounted for by differences in solution strength, data processing and instrument type (manufacturer).

  19. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES

    PubMed Central

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. PMID:26994093

  20. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES.

    PubMed

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-06-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. PMID:26994093

  1. SU-E-J-147: Monte Carlo Study of the Precision and Accuracy of Proton CT Reconstructed Relative Stopping Power Maps

    SciTech Connect

    Dedes, G; Asano, Y; Parodi, K; Arbor, N; Dauvergne, D; Testa, E; Letang, J; Rit, S

    2015-06-15

    Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)

  2. Factors influence accuracy and precision in the determination of the elemental composition of defense waste glass by ICP-emission spectrometry

    SciTech Connect

    Goode, S.R.

    1995-12-31

    The influence of instrumental factors on the accuracy and precision of the determination of the composition of glass and glass feedstock is presented. In addition, the effects of different methods of sampling, dissolution methods, and standardization procedures and their effect on the quality of the chemical analysis will also be presented. The target glass simulates the material that will be prepared by the vitrification of highly radioactive liquid defense waste. The glass and feedstock streams must be well characterized to ensure a durable glass; current models estimate a 100,000 year lifetime. The elemental composition will be determined by ICP-emission spectrometry with radiation exposure issues requiring a multielement analysis for all constituents, on a single analytical sample, using compromise conditions.

  3. Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers.

    PubMed

    Wassenaar, Leonard I; Coplen, Tyler B; Aggarwal, Pradeep K

    2014-01-21

    The measurement of δ(2)H and δ(18)O in water samples by laser absorption spectroscopy (LAS) are adopted increasingly in hydrologic and environmental studies. Although LAS instrumentation is easy to use, its incorporation into laboratory operations is not as easy, owing to extensive offline data manipulation required for outlier detection, derivation and application of algorithms to correct for between-sample memory, correcting for linear and nonlinear instrumental drift, VSMOW-SLAP scale normalization, and in maintaining long-term QA/QC audits. Here we propose a series of standardized water-isotope LAS performance tests and routine sample analysis templates, recommended procedural guidelines, and new data processing software (LIMS for Lasers) that altogether enables new and current LAS users to achieve and sustain long-term δ(2)H and δ(18)O accuracy and precision for these important isotopic assays. PMID:24328223

  4. Computer-assisted knee surgical navigation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhou, D. G.; Xiong, Chun-Yang; Huang, W. P.; Fang, J.

    2002-05-01

    Total knee replacement requires high measurement accuracy and fixation precision in surgical operation. Misplacement larger than 5 degrees in the force line alignment will lead to re- operation or long term deficits. Based on conventional operation facilities, it was not easy to ensure the necessary precision during het surgery. With the help of CT images, 3D images of patient's knee can be reconstructed. With IR localizer, computer- assisted knee surgical navigation can be realized by tracking that is useful for accurate alignment in surgery and in visualized training program.

  5. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry

    PubMed Central

    Waldron, Susan; Marian Scott, E; Vihermaa, Leena E; Newton, Jason

    2014-01-01

    RATIONALE We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ13CV-PDB value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with the estimation of an unknown measurement. This is rarely undertaken, but it is needed to understand the significance of field data and to interpret quality assurance exercises. METHODS Immediate acidification of field samples during collection in evacuated, pre-acidified vials removed the need for toxic chemicals to inhibit continued bacterial activity that might compromise isotopic and concentration measurements. Aqueous standards mimicked the sample matrix and avoided headspace fractionation corrections. Samples were analysed using continuous-flow isotope-ratio mass spectrometry, but for low DIC concentration the mass spectrometer response could be non-linear. This had to be corrected for. RESULTS Mass spectrometer non-linearity exists. Rather than estimating precision as the repeat analysis of an internal standard, we have adopted inverse linear calibrations to quantify the precision and 95% confidence intervals (CI) of the δ13CDIC values. The response for [DIC] estimation was always linear. For 0.05–0.5 mM DIC internal standards, however, changes in mass spectrometer linearity resulted in estimations of the precision in the δ13CVPDB value of an unknown ranging from ± 0.44‰ to ± 1.33‰ (mean values) and a mean 95% CI half-width of ±1.1–3.1‰. CONCLUSIONS Mass spectrometer non-linearity should be considered in estimating uncertainty in measurement. Similarly, statistically robust estimates of precision and accuracy should also be adopted. Such estimations do not inhibit research advances: our consideration of small-scale spatial variability at two points on a

  6. A Study of the Accuracy and Precision Among XRF, ICP-MS, and PIXE on Trace Element Analyses of Small Water Samples

    NASA Astrophysics Data System (ADS)

    Naik, Sahil; Patnaik, Ritish; Kummari, Venkata; Phinney, Lucas; Dhoubhadel, Mangal; Jesseph, Aaron; Hoffmann, William; Verbeck, Guido; Rout, Bibhudutta

    2010-10-01

    The study aimed to compare the viability, precision, and accuracy among three popular instruments - X-ray Fluorescence (XRF), Inductively Coupled Plasma Mass Spectrometer (ICP-MS), and Particle-Induced X-ray Emission (PIXE) - used to analyze the trace elemental composition of small water samples. Ten-milliliter water samples from public tap water sources in seven different localities in India (Bangalore, Kochi, Bhubaneswar, Cuttack, Puri, Hospet, and Pipili) were prepared through filtration and dilution for proper analysis. The project speculates that the ICP-MS will give the most accurate and precise trace elemental analysis, followed by PIXE and XRF. XRF will be seen as a portable and affordable instrument that can analyze samples on-site while ICP-MS is extremely accurate, and expensive option for off-site analyses. PIXE will be deemed to be too expensive and cumbersome for on-site analysis; however, laboratories with a PIXE accelerator can use the instrument to get accurate analyses.

  7. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  8. Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems

    NASA Astrophysics Data System (ADS)

    Dautermann, Thomas

    2014-05-01

    Advancement in augmented satellite navigation enables a new class of instrument approach procedures for aircraft. These approaches are based on regional augmentation systems which broadcast corrections via a geostationary satellite. The enhanced GNSS navigation solution using the corrections from the satellite provides the necessary accuracy and integrity to perform approaches with vertical and lateral angular guidance to a given runway threshold. This enables cost effective and simple procedure generation with low descent minima even for small airports. Moreover, it supports high precision en-route navigation and future high precision flight guidance applications.

  9. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  10. Dual-energy X-ray absorptiometry for measuring total bone mineral content in the rat: study of accuracy and precision.

    PubMed

    Casez, J P; Muehlbauer, R C; Lippuner, K; Kelly, T; Fleisch, H; Jaeger, P

    1994-07-01

    Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7950505

  11. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods

    PubMed Central

    Dillon, Christopher R.; Payne, Allison; Christensen, Douglas A.; Roemer, Robert B.

    2016-01-01

    Purpose The use of correct tissue thermal diffusivity values is necessary for making accurate thermal modeling predictions during magnetic resonance-guided focused ultrasound (MRgFUS) treatment planning. This study evaluates the accuracy and precision of two non-invasive thermal diffusivity estimation methods, a Gaussian Temperature method published by Cheng and Plewes in 2002 and a Gaussian specific absorption rate (SAR) method published by Dillon et al in 2012. Materials and Methods Both methods utilize MRgFUS temperature data obtained during cooling following a short (<25s) heating pulse. The Gaussian SAR method can also use temperatures obtained during heating. Experiments were performed at low heating levels (ΔT~10°C) in ex vivo pork muscle and in vivo rabbit back muscle. The non-invasive MRgFUS thermal diffusivity estimates were compared with measurements from two standard invasive methods. Results Both non-invasive methods accurately estimate thermal diffusivity when using MR-temperature cooling data (overall ex vivo error<6%, in vivo<12%). Including heating data in the Gaussian SAR method further reduces errors (ex vivo error<2%, in vivo<3%). The significantly lower standard deviation values (p<0.03) of the Gaussian SAR method indicate that it has better precision than the Gaussian Temperature method. Conclusions With repeated sonications, either MR-based method could provide accurate thermal diffusivity values for MRgFUS therapies. Fitting to more data simultaneously likely makes the Gaussian SAR method less susceptible to noise, and using heating data helps it converge more consistently to the FUS fitting parameters and thermal diffusivity. These effects lead to the improved precision of the Gaussian SAR method. PMID:25198092

  12. Pedestrian navigation algorithm based on MIMU with building heading/magnetometer

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-bin; Pan, Xian-fei; Chen, Chang-hao; Hu, Xiao-ping

    2016-01-01

    In order to improve the accuracy of the low-cost MIMU Inertial navigation system in the application of pedestrian navigation.And to reduce the effect of the heading error because of the low accuracy of the component of MIMU. A novel algorithm was put forward, which fusing the building heading constraint information and the magnetic heading information to achieve more advantages. We analysed the application condition and the modified effect of building heading and magnetic heading. Then experiments were conducted in indoor environment. The results show that the algorithm proposed has a better effect to restrict the heading drift problem and to achieve a higher navigation precision.

  13. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  14. The Impact of 3D Volume-of-Interest Definition on Accuracy and Precision of Activity Estimation in Quantitative SPECT and Planar Processing Methods

    PubMed Central

    He, Bin; Frey, Eric C.

    2010-01-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise, and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT), and planar (QPlanar) processing. Another important effect impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimations. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in the same transaxial plane in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g., in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from −1 to 1 voxels in increments of 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ

  15. Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: a case study from a highly variable cockroach, Perisphaeria sp.

    PubMed

    Gray, Emilie M; Chown, Steven L

    2008-01-01

    We compared the precision, bias and accuracy of two techniques that were recently proposed to estimate the contributions of cuticular and respiratory water loss to total water loss in insects. We performed measurements of VCO2 and VH2O in normoxia, hyperoxia and anoxia using flow through respirometry on single individuals of the highly variable cockroach Perisphaeria sp. to compare estimates of cuticular and respiratory water loss (CWL and RWL) obtained by the VH2O-VCO2 y-intercept method with those obtained by the hyperoxic switch method. Precision was determined by assessing the repeatability of values obtained whereas bias was assessed by comparing the methods' results to each other and to values for other species found in the literature. We found that CWL was highly repeatable by both methods (R0.88) and resulted in similar values to measures of CWL determined during the closed-phase of discontinuous gas exchange (DGE). Repeatability of RWL was much lower (R=0.40) and significant only in the case of the hyperoxic method. RWL derived from the hyperoxic method is higher (by 0.044 micromol min(-1)) than that obtained from the method traditionally used for measuring water loss during the closed-phase of DGE, suggesting that in the past RWL may have been underestimated. The very low cuticular permeability of this species (3.88 microg cm(-2) h(-1) Torr(-1)) is reasonable given the seasonally hot and dry habitat where it lives. We also tested the hygric hypothesis proposed to account for the evolution of discontinuous gas exchange cycles and found no effect of respiratory pattern on RWL, although the ratio of mean VH2O to VCO2 was higher for continuous patterns compared with discontinuous ones. PMID:17949739

  16. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  17. High-Precision Surface Inspection: Uncertainty Evaluation within an Accuracy Range of 15μm with Triangulation-based Laser Line Scanners

    NASA Astrophysics Data System (ADS)

    Dupuis, Jan; Kuhlmann, Heiner

    2014-06-01

    Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

  18. Quantitative error analysis for computer assisted navigation: a feasibility study

    PubMed Central

    Güler, Ö.; Perwög, M.; Kral, F.; Schwarm, F.; Bárdosi, Z. R.; Göbel, G.; Freysinger, W.

    2013-01-01

    Purpose The benefit of computer-assisted navigation depends on the registration process, at which patient features are correlated to some preoperative imagery. The operator-induced uncertainty in localizing patient features – the User Localization Error (ULE) - is unknown and most likely dominating the application accuracy. This initial feasibility study aims at providing first data for ULE with a research navigation system. Methods Active optical navigation was done in CT-images of a plastic skull, an anatomic specimen (both with implanted fiducials) and a volunteer with anatomical landmarks exclusively. Each object was registered ten times with 3, 5, 7, and 9 registration points. Measurements were taken at 10 (anatomic specimen and volunteer) and 11 targets (plastic skull). The active NDI Polaris system was used under ideal working conditions (tracking accuracy 0.23 mm root mean square, RMS; probe tip calibration was 0.18 mm RMS. Variances of tracking along the principal directions were measured as 0.18 mm2, 0.32 mm2, and 0.42 mm2. ULE was calculated from predicted application accuracy with isotropic and anisotropic models and from experimental variances, respectively. Results The ULE was determined from the variances as 0.45 mm (plastic skull), 0.60 mm (anatomic specimen), and 4.96 mm (volunteer). The predicted application accuracy did not yield consistent values for the ULE. Conclusions Quantitative data of application accuracy could be tested against prediction models with iso- and anisotropic noise models and revealed some discrepancies. This could potentially be due to the facts that navigation and one prediction model wrongly assume isotropic noise (tracking is anisotropic), while the anisotropic noise prediction model assumes an anisotropic registration strategy (registration is isotropic in typical navigation systems). The ULE data are presumably the first quantitative values for the precision of localizing anatomical landmarks and implanted fiducials

  19. Autonomous Real-time Relative Navigation for Formation Flying Satellites

    NASA Astrophysics Data System (ADS)

    Shim, Shnhwa; Park, Sang-Young; Choi, Kyu-Hong

    2009-03-01

    Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double-differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm (1σ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

  20. An autonomous navigation scheme based on geomagnetic and starlight for small satellites

    NASA Astrophysics Data System (ADS)

    Xinlong, Wang; Bin, Wang; Hengnian, Li

    2012-12-01

    According to the characteristics of celestial navigation system (CNS) and geomagnetic navigation system (GNS), a fully autonomous geomagnetic/celestial integrated navigation scheme (GNS/CNS) is proposed for small satellites. By using a large-view-field star sensor to obtain the starlight vectors of multi-stars, CNS can make up the shortcoming of navigation accuracy of GNS. The system model of GNS/CNS is deduced and established in detail, and UKF (unscented Kalman filter) algorithm is used to estimate and obtain high precision navigation parameters. Simulation results show that superior position, velocity and attitude accuracy of small satellites can be obtained by GNS/CNS, and the filter has stronger filtering adaptability and stability, which demonstrate the feasibility and effectiveness of this scheme.

  1. Evaluating the velocity accuracy of an integrated GPS/INS system: Flight test results. [Global positioning system/inertial navigation systems (GPS/INS)

    SciTech Connect

    Owen, T.E.; Wardlaw, R.

    1991-01-01

    Verifying the velocity accuracy of a GPS receiver or an integrated GPS/INS system in a dynamic environment is a difficult proposition when many of the commonly used reference systems have velocity uncertainities of the same order of magnitude or greater than the GPS system. The results of flight tests aboard an aircraft in which multiple reference systems simultaneously collected data to evaluate the accuracy of an integrated GPS/INS system are reported. Emphasis is placed on obtaining high accuracy estimates of the velocity error of the integrated system in order to verify that velocity accuracy is maintained during both linear and circular trajectories. Three different reference systems operating in parallel during flight tests are used to independently determine the position and velocity of an aircraft in flight. They are a transponder/interrogator ranging system, a laser tracker, and GPS carrier phase processing. Results obtained from these reference systems are compared against each other and against an integrated real time differential based GPS/INS system to arrive at a set of conclusions about the accuracy of the integrated system.

  2. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    PubMed Central

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-01-01

    Purpose: To determine the precision and accuracy of CTDI100 measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI100. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4% ± 0.6%, range = 0.6%–2.7% for OSL and 0.08% ± 0.06%, range = 0.02%–0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI100 values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI100 relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI100 with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI100 values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile. PMID:23127052

  3. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  4. Accuracy and precision of porosity estimates based on velocity inversion of surface ground-penetrating radar data: A controlled experiment at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Bradford, J.; Clement, W.

    2006-12-01

    Although rarely acquired, ground penetrating radar (GPR) data acquired in continuous multi-offset geometries can substantially improve our understanding of the subsurface compared to conventional single offset surveys. This improvement arises because multi-offset data enable full use of the information that the GPR signal can carry. The added information allows us to maximize the material property information extracted from a GPR survey. Of the array of potential multi-offset GPR measurements, traveltime vs offset information enables laterally and vertically continuous electromagnetic (EM) velocity measurements. In turn, the EM velocities provide estimates of water content via petrophysical relationships such as the CRIM or Topp's equations. In fully saturated media the water content is a direct measure of bulk porosity. The Boise Hydrogeophysical Research Site (BHRS) is a experimental wellfield located in a shallow alluvial aquifer near Boise, Idaho. In July, 2006 we conducted a controlled 3D multi-offset GPR experiment at the BHRS designed to test the accuracy of state-of-the-art velocity analysis methodologies. We acquired continuous multi-offset GPR data over an approximately 20 x 30 m 3D area. The GPR system was a Sensors and Software pulseEkko Pro multichannel system with 100 MHz antennas and was configured with 4 receivers and a single transmitter. Data were acquired in off-end geometry for a total of 16 offsets with a 1 m offset interval and 1 m near offset. The data were acquired on a 1 m x 1m grid in four passes, each consisting of a 3 m range of equally spaced offsets. The survey encompassed 13 wells finished to the ~20 m depth of the unconfined aquifer. We established velocity control by acquiring vertical radar profiles (VRPs) in all 13 wells. Preliminary velocity measurements using an established method of reflection tomography were within about 1 percent of local 1D velocity distributions determined from the VRPs. Vertical velocity precision from the

  5. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  6. Development and validation of an automated and marker-free CT-based spatial analysis method (CTSA) for assessment of femoral hip implant migration In vitro accuracy and precision comparable to that of radiostereometric analysis (RSA).

    PubMed

    Scheerlinck, Thierry; Polfliet, Mathias; Deklerck, Rudi; Van Gompel, Gert; Buls, Nico; Vandemeulebroucke, Jef

    2016-04-01

    Background and purpose - We developed a marker-free automated CT-based spatial analysis (CTSA) method to detect stem-bone migration in consecutive CT datasets and assessed the accuracy and precision in vitro. Our aim was to demonstrate that in vitro accuracy and precision of CTSA is comparable to that of radiostereometric analysis (RSA). Material and methods - Stem and bone were segmented in 2 CT datasets and both were registered pairwise. The resulting rigid transformations were compared and transferred to an anatomically sound coordinate system, taking the stem as reference. This resulted in 3 translation parameters and 3 rotation parameters describing the relative amount of stem-bone displacement, and it allowed calculation of the point of maximal stem migration. Accuracy was evaluated in 39 comparisons by imposing known stem migration on a stem-bone model. Precision was estimated in 20 comparisons based on a zero-migration model, and in 5 patients without stem loosening. Results - Limits of the 95% tolerance intervals (TIs) for accuracy did not exceed 0.28 mm for translations and 0.20° for rotations (largest standard deviation of the signed error (SDSE): 0.081 mm and 0.057°). In vitro, limits of the 95% TI for precision in a clinically relevant setting (8 comparisons) were below 0.09 mm and 0.14° (largest SDSE: 0.012 mm and 0.020°). In patients, the precision was lower, but acceptable, and dependent on CT scan resolution. Interpretation - CTSA allows detection of stem-bone migration with an accuracy and precision comparable to that of RSA. It could be valuable for evaluation of subtle stem loosening in clinical practice. PMID:26634843

  7. Development and validation of an automated and marker-free CT-based spatial analysis method (CTSA) for assessment of femoral hip implant migration In vitro accuracy and precision comparable to that of radiostereometric analysis (RSA)

    PubMed Central

    Scheerlinck, Thierry; Polfliet, Mathias; Deklerck, Rudi; Van Gompel, Gert; Buls, Nico; Vandemeulebroucke, Jef

    2016-01-01

    Background and purpose — We developed a marker-free automated CT-based spatial analysis (CTSA) method to detect stem-bone migration in consecutive CT datasets and assessed the accuracy and precision in vitro. Our aim was to demonstrate that in vitro accuracy and precision of CTSA is comparable to that of radiostereometric analysis (RSA). Material and methods — Stem and bone were segmented in 2 CT datasets and both were registered pairwise. The resulting rigid transformations were compared and transferred to an anatomically sound coordinate system, taking the stem as reference. This resulted in 3 translation parameters and 3 rotation parameters describing the relative amount of stem-bone displacement, and it allowed calculation of the point of maximal stem migration. Accuracy was evaluated in 39 comparisons by imposing known stem migration on a stem-bone model. Precision was estimated in 20 comparisons based on a zero-migration model, and in 5 patients without stem loosening. Results — Limits of the 95% tolerance intervals (TIs) for accuracy did not exceed 0.28 mm for translations and 0.20° for rotations (largest standard deviation of the signed error (SDSE): 0.081 mm and 0.057°). In vitro, limits of the 95% TI for precision in a clinically relevant setting (8 comparisons) were below 0.09 mm and 0.14° (largest SDSE: 0.012 mm and 0.020°). In patients, the precision was lower, but acceptable, and dependent on CT scan resolution. Interpretation — CTSA allows detection of stem-bone migration with an accuracy and precision comparable to that of RSA. It could be valuable for evaluation of subtle stem loosening in clinical practice. PMID:26634843

  8. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-01-01

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position. PMID:25046019

  9. Navigation strategy with the spacecraft communications blackout for Mars entry

    NASA Astrophysics Data System (ADS)

    Wang, Xichen; Xia, Yuanqing

    2015-02-01

    Future Mars missions require precision entry navigation capability, especially in the presence of communications blackout. On the mission of Mars Science Laboratory (MSL), there was a 70-s communications blackout period during atmospheric entry phase. In allusion to the spacecraft communications blackout encountered, this paper predicts an upper-bound for any possible blackout period firstly, improves the default integrated navigation measurements based on IMU and surface radiometric beacons, and proposes innovative attitude observation model based on IMU and range observation model based on orbiters finally. To verify the accuracy and effectiveness of the proposed observation models in the presence of communications blackout, unscented Kalman filter is utilized to demonstrate the navigation performance. The results show that navigation errors based on improved observation models proposed in this paper degrade an order of magnitude compared with the default observation models even if the communications blackout takes place, which satisfies the requirements of future Mars landing missions.

  10. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  11. Analysis of the accuracy and precision of the McMaster method in detection of the eggs of Toxocara and Trichuris species (Nematoda) in dog faeces.

    PubMed

    Kochanowski, Maciej; Dabrowska, Joanna; Karamon, Jacek; Cencek, Tomasz; Osiński, Zbigniew

    2013-07-01

    The aim of this study was to determine the accuracy and precision of McMaster method with Raynaud's modification in the detection of the eggs of the nematodes Toxocara canis (Werner, 1782) and Trichuris ovis (Abildgaard, 1795) in faeces of dogs. Four variants of McMaster method were used for counting: in one grid, two grids, the whole McMaster chamber and flotation in the tube. One hundred sixty samples were prepared from dog faeces (20 repetitions for each egg quantity) containing 15, 25, 50, 100, 150, 200, 250 and 300 eggs of T. canis and T. ovis in 1 g of faeces. To compare the influence of kind of faeces on the results, samples of dog faeces were enriched at the same levels with the eggs of another nematode, Ascaris suum Goeze, 1782. In addition, 160 samples of pig faeces were prepared and enriched only with A. suum eggs in the same way. The highest limit of detection (the lowest level of eggs that were detected in at least 50% of repetitions) in all McMaster chamber variants were obtained for T. canis eggs (25-250 eggs/g faeces). In the variant with flotation in the tube, the highest limit of detection was obtained for T. ovis eggs (100 eggs/g). The best results of the limit of detection, sensitivity and the lowest coefficients of variation were obtained with the use of the whole McMaster chamber variant. There was no significant impact of properties of faeces on the obtained results. Multiplication factors for the whole chamber were calculated on the basis of the transformed equation of the regression line, illustrating the relationship between the number of detected eggs and that of the eggs added to the'sample. Multiplication factors calculated for T. canis and T. ovis eggs were higher than those expected using McMaster method with Raynaud modification. PMID:23951934

  12. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  13. Investigation into the propagation of Omega very low frequency signals and techniques for improvement of navigation accuracy including differential and composite omega

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of Very Low Frequency propagation in the atmosphere in the 10-14 kHz range leads to a discussion of some of the more significant causes of phase perturbation. The method of generating sky-wave corrections to predict the Omega phase is discussed. Composite Omega is considered as a means of lane identification and of reducing Omega navigation error. A simple technique for generating trapezoidal model (T-model) phase prediction is presented and compared with the Navy predictions and actual phase measurements. The T-model prediction analysis illustrates the ability to account for the major phase shift created by the diurnal effects on the lower ionosphere. An analysis of the Navy sky-wave correction table is used to provide information about spatial and temporal correlation of phase correction relative to the differential mode of operation.

  14. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  15. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  16. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  17. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  18. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  19. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  20. Precision analysis of passive BD aided pseudolites positioning system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2007-11-01

    In recent years BD (BeiDou positioning system), an active satellite navigation system, has been widely applied in geodetic survey, precise engineering survey and GNC (guide, navigation and control system) of weapons because of its reliability and availability. However, it has several problems on the accuracy, anti-interference and active-positioning. A passive BD aided pseudolites positioning system is introduced in details in this paper. The configuration and the operating principle of system are presented. In analyzing the precision of location, one of the crucial aspects to be studied is how to determine the arrangement of the pseudolites to get the good GDOP, which is discussed in the different arrangements of the pseudolites in this paper. The simulation results show that the VDOP (vertical dilution of precision) of BD is improved due to introducing the pseudolites. The experiments indicate the validity of the methods and the improvement of the positioning precision in the BD aided pseudolite system.

  1. The effects of temporal-precision and time-minimization constraints on the spatial and temporal accuracy of aimed hand movements.

    PubMed

    Carlton, L G

    1994-03-01

    Discrete aimed hand movements, made by subjects given temporal-accuracy and time-minimization task instructions, were compared. Movements in the temporal-accuracy task were made to a point target with a goal movement time of 400 ms. A circular target then was manufactured that incorporated the measured spatial errors from the temporal-accuracy task, and subjects attempted to contact the target with a minimum movement time and without missing the circular target (time-minimization task instructions). This procedure resulted in equal movement amplitude and approximately equal spatial accuracy for the two task instructions. Movements under the time-minimization instructions were completed rapidly (M = 307 ms) without target misses, and tended to be made up of two submovements. In contrast, movements under temporal-accuracy instructions were made more slowly (M = 397 ms), matching the goal movement time, and were typically characterized by a single submovement. These data support the hypothesis that movement times, at a fixed movement amplitude versus target width ratio, decrease as the number of submovements increases, and that movements produced under temporal-accuracy and time-minimization have different control characteristics. These control differences are related to the linear and logarithmic speed-accuracy relations observed for temporal-accuracy and time-minimization tasks, respectively. PMID:15757833

  2. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  3. Inertial sensors for smartphones navigation.

    PubMed

    Dabove, P; Ghinamo, G; Lingua, A M

    2015-01-01

    The advent of smartphones and tablets, means that we can constantly get information on our current geographical location. These devices include not only GPS/GNSS chipsets but also mass-market inertial platforms that can be used to plan activities, share locations on social networks, and also to perform positioning in indoor and outdoor scenarios. This paper shows the performance of smartphones and their inertial sensors in terms of gaining information about the user's current geographical locatio n considering an indoor navigation scenario. Tests were carried out to determine the accuracy and precision obtainable with internal and external sensors. In terms of the attitude and drift estimation with an updating interval equal to 1 s, 2D accuracies of about 15 cm were obtained with the images. Residual benefits were also obtained, however, for large intervals, e.g. 2 and 5 s, where the accuracies decreased to 50 cm and 2.2 m, respectively. PMID:26753121

  4. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  5. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  6. Introductory Course on Satellite Navigation

    ERIC Educational Resources Information Center

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  7. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  8. Comparison of different 3D navigation systems by a clinical "user".

    PubMed

    Cartellieri, M; Kremser, J; Vorbeck, F

    2001-01-01

    Three-dimensional navigation systems are routinely used in endoscopic skull base surgery, neurosurgery, maxillo-facial and endoscopic sinus surgery. Their precision can, however, change in the course of one experiment. We have compared five different 3D navigation systems and discuss here possible reasons for the limits of system precision. A plexiglass cube on which test points were marked served as a test-model. Two well-trained system users measured the distances between the test points in each of the five systems. The results were compared with reference data provided by the NUMEREX device at the Technical University of Vienna. The accuracy data shown by all these 3D navigation systems ranged from 0.0 mm to 6.67 mm. The accuracy data of a system calculated in advance did not always correspond with the system precision on the screen. The system precision in the center of the cube was higher than on its surface, which made us conclude that the angle between the tracker system and the pointing device touching the test point may be critical for system precision. Applying an automatic registration step did not result in greater system precision. Slice thickness and the angle of the pointing device seem to be responsible for system precision. PMID:11271433

  9. A rotating inertial navigation system with the rotating axis error compensation consisting of fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Zha, Feng; Hu, Bai-qing; Qin, Fang-jun; Luo, Yin-bo

    2012-03-01

    An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial RINS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.

  10. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  11. An improved robust hand-eye calibration for endoscopy navigation system

    NASA Astrophysics Data System (ADS)

    He, Wei; Kang, Kumsok; Li, Yanfang; Shi, Weili; Miao, Yu; He, Fei; Yan, Fei; Yang, Huamin; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2016-03-01

    Endoscopy is widely used in clinical application, and surgical navigation system is an extremely important way to enhance the safety of endoscopy. The key to improve the accuracy of the navigation system is to solve the positional relationship between camera and tracking marker precisely. The problem can be solved by the hand-eye calibration method based on dual quaternions. However, because of the tracking error and the limited motion of the endoscope, the sample motions may contain some incomplete motion samples. Those motions will cause the algorithm unstable and inaccurate. An advanced selection rule for sample motions is proposed in this paper to improve the stability and accuracy of the methods based on dual quaternion. By setting the motion filter to filter out the incomplete motion samples, finally, high precision and robust result is achieved. The experimental results show that the accuracy and stability of camera registration have been effectively improved by selecting sample motion data automatically.

  12. Application of Phase Smoothing Pseudo Range PPP/INS Tightly Coupled Technique in Improving the Results of Low Precision MEMS

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2015-12-01

    In land surveying and engineering surveying, we need to obtain high precision navigation results. However, due to the inertial device costs less than a introduction, commonly used low precision inertial navigation equipment with tightly coupled GPS / INS integrated to get high precision navigation results. Many studies have improved the accuracy of error by using the UKF and CKF filtering algorithm, but it is still using the traditional pseudo code directly, the improvement effect is not obvious, and the disturbance is large. In this study, the PPP /INSmodel is improved by using the carrier phase smoothing pseudo range algorithm. Experimental results show that based on phase smoothing pseudo range PPP/INS tight coupled method, the position precision and the velocity precision for of the measured data of higher accuracy of MEMS and GPS receiver can get to a decimeter level and centimeter level. This coupling method has higher accuracy, stronger anti disturbance and Have a better convergence than the traditional C/A code. Based on different phase smoothing epoch number combination the accuracy and smoothing effect is also different, the larger smooth epoch number is, the better treatment effect it has and The higher precision it has. For high precision measurement, the equipment cost is saved. It has a practical significance meaning in the measurement of outdoor ground.

  13. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring – a retrospective review of 627 screws in 150 patients

    PubMed Central

    McMillen, Jason

    2014-01-01

    Objective This study retrospectively assessed the accuracy of placement of lumbar pedicle screws placed by a single surgeon using a minimally-invasive, intra-operative CT-based computer navigated technique in combination with continuous electromyography (EMG) monitoring. The rates of incorrectly positioned screws were reviewed in the context of the surgeon's experience and learning curve. Methods Data was retrospectively reviewed from all consecutive minimally invasive lumbar fusions performed by the primary author over a period of over 4 years from April 2008 until October 2012. All cases that had utilized computer-assisted intra-operative CT-based image guidance and continuous EMG monitoring to guide percutaneous pedicle screw placement were analysed for the rates of malposition of the pedicle screws. Pedicle screw malposition was defined as having occurred if the screw trajectory was adjusted intraoperatively due to positive EMG responses, or due to breach of the pedicle cortex by more than 2mm on intraoperative CT imaging performed at the end of the instrumentation procedure. Further analysis of the data was undertaken to determine if the rates of malposition changed with the surgeon's experience with the technique. Results Six hundred and twenty-seven pedicle screws were placed in one hundred and fifty patients. The overall rate of intraoperative malposition and subsequent adjustment of pedicle screw placement was 3.8% (24 of 627 screws). Screw malposition was detected by intraoperative CT imaging. Warning of potential screw misplacement was provided by use of the EMG monitoring. With increased experience with the technique, rates of intraoperative pedicle screw malposition were found to decrease from 5.1% of screws in the first fifty patients, to 2.0% in the last 50 patients. Only one screw was suboptimally placed at the end of surgery, which did not result in a neurological deficit. Conclusion The use of CT-based computer-assisted navigation in combination

  14. Mariner 9 navigation

    NASA Technical Reports Server (NTRS)

    Neil, W. J.; Jordan, J. F.; Zielenbach, J. W.; Wong, S. K.; Mitchell, R. T.; Webb, W. A.; Koskela, P. E.

    1973-01-01

    A final, comprehensive description of the navigation of Mariner 9-the first U.S. spacecraft to orbit another planet is provided. The Mariner 9 navigation function included not only precision flight path control but also pointing of the spacecraft's scientific instruments mounted on a two degree of freedom scan platform. To the extent appropriate, each section describes the perflight analyses on which the operational strategies and performance predictions were based. Inflight results are then discussed and compared with the preflight predictions. Postflight analyses, which were primarily concerned with developing a thorough understanding of unexpected in-flight results, are also presented.

  15. Accuracy analysis of the 2014-2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network

    NASA Astrophysics Data System (ADS)

    Mukul, Manas; Srivastava, Vinee; Mukul, Malay

    2016-07-01

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth Sciences without an estimation of their accuracy and reliability even though large outliers exist in them. The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has been recently released (2014-2015) outside North America. We present the first global assessment of the vertical accuracy of C-30 data using Ground Control Points (GCPs) from the International GNSS Service (IGS) Network of high-precision static fiducial stations that define the International Terrestrial Reference Frame (ITRF). Large outliers (height error ranging from -1285 to 2306 m) were present in the C-30 dataset and 14% of the data were removed to reduce the root mean square error (RMSE) of the dataset from ˜187 to 10.3 m which is close to the SRTM goal of an absolute vertical accuracy of RMSE ˜10 m. Globally, for outlier-filtered data from 287 GCPs, the error or difference between IGS and SRTM heights exhibited a non-normal distribution with a mean and standard error of 6.5 ± 0.5 m. Continent-wise, only Australia, North and South America complied with the SRTM goal. At stations where all the X- and C-Band SRTM data were present, the RMSE of the outlier-filtered C-30 data was 11.7 m. However, the RMSE of outlier-included dataset where C- and X-Band data were present was ˜233 m. The results suggest that the SRTM data must only be used after regional accuracy analysis and removal of outliers. If used raw, they may produce results that are statistically insignificant with RMSE in 100s of meters.

  16. Odometry and insect navigation.

    PubMed

    Wolf, Harald

    2011-05-15

    Animals have needed to find their way about almost since a free-living life style evolved. Particularly, if an animal has a home--shelter or nesting site--true navigation becomes necessary to shuttle between this home and areas of other activities, such as feeding. As old as navigation is in the animal kingdom, as diverse are its mechanisms and implementations, depending on an organism's ecology and its endowment with sensors and actuators. The use of landmarks for piloting or the use of trail pheromones for route following have been examined in great detail and in a variety of animal species. The same is true for senses of direction--the compasses for navigation--and the construction of vectors for navigation from compass and distance cues. The measurement of distance itself--odometry--has received much less attention. The present review addresses some recent progress in the understanding of odometers in invertebrates, after outlining general principles of navigation to put odometry in its proper context. Finally, a number of refinements that increase navigation accuracy and safety are addressed. PMID:21525309

  17. Navigation Upgrades to the National Deep Submergence Facility Vehicles D.S.V. Alvin, Jason 2, and the DSL-120A

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Kinsey, J. C.; Yoerger, D. R.; Taylor, C. L.; Bowen, A. D.; Walden, B. B.; Fornari, D. J.

    2003-12-01

    We report on recently completed enhancements to the navigation systems employed on the 4500m submersible Alvin and the 6500m ROV Jason 2 and DSL-120A sonar system of the UNOLS National Deep Submergence Facility (NDSF) of the Woods Hole Oceanographic Institution (WHOI). Over the last two years we have significantly improved the accuracy and update rate of the six degree-of-freedom vehicle position and velocity navigation data available for these vehicles, thus improving the quantitative accuracy of acoustic surveys, optical surveys, and sampling operations. The navigation upgrades have also enabled improvements in the closed-loop dynamic positioning accuracy of the Jason 2 ROV, thus improving the vehicle tracking precision during survey and sampling operations. We have sought to employ more a uniform suite of navigation instruments, navigation data processing software systems, and data logging format standards for NDSF vehicles to improve the utility and ease-of-use of data by science users. Improved navigation instruments deployed on each of these vehicles in 2001 and 2002 include the following: (a) A 1200 KHz Bottom Lock Doppler Sonar (RDInstruments Inc.) providing three dimensional vehicle velocity information with respect to the ocean floor and the water column at an update rate of up to 10 Hz, providing a single-ping beam-velocity error standard deviation of 0.3% for a nominal advance velocity of 1 meter/sec. (b) A north-seeking fiber-optic gyroscope (IXSEA Inc.) providing true-north heading, pitch, and roll with a rated accuracy of 0.1 degree. Improved navigation data processing software systems deployed on these vehicles in 2001 and 2002 includes Dvlnav, an interactive navigation program developed at JHU for precision navigation of underwater vehicles and submersibles. DVLNAV employs a variety of sensors including bottom lock Doppler sonar, long baseline (LBL) acoustic navigation, gyro compasses, magnetic compasses, depth sensors, altimeters, and (when

  18. Lunar roving vehicle navigation system performance review

    NASA Technical Reports Server (NTRS)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  19. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  20. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  1. Precise Point Positioning Based on BDS and GPS Observations

    NASA Astrophysics Data System (ADS)

    Gao, ZhouZheng; Zhang, Hongping; Shen, Wenbin

    2014-05-01

    BeiDou Navigation Satellite System (BDS) has obtained the ability applying initial navigation and precise point services for the Asian-Pacific regions at the end of 2012 with the constellation of 5 Geostationary Earth Orbit (GEO), 5 Inclined Geosynchronous Orbit (IGSO) and 4 Medium Earth Orbit (MEO). Till 2020, it will consist with 5 GEO, 3 IGSO and 27 MEO, and apply global navigation service similar to GPS and GLONASS. As we known, GPS precise point positioning (PPP) is a powerful tool for crustal deformation monitoring, GPS meteorology, orbit determination of low earth orbit satellites, high accuracy kinematic positioning et al. However, it accuracy and convergence time are influenced by the quality of pseudo-range observations and the observing geometry between user and Global navigation satellites system (GNSS) satellites. Usually, it takes more than 30 minutes even hours to obtain centimeter level position accuracy for PPP while using GPS dual-frequency observations only. In recent years, many researches have been done to solve this problem. One of the approaches is smooth pseudo-range by carrier-phase observations to improve pseudo-range accuracy. By which can improve PPP initial position accuracy and shorten PPP convergence time. Another sachems is to change position dilution of precision (PDOP) with multi-GNSS observations. Now, BDS has the ability to service whole Asian-Pacific regions, which make it possible to use GPS and BDS for precise positioning. In addition, according to researches on GNSS PDOP distribution, BDS can improve PDOP obviously. Therefore, it necessary to do some researches on PPP performance using both GPS observations and BDS observations, especially in Asian-Pacific regions currently. In this paper, we focus on the influences of BDS to GPS PPP mainly in three terms including BDS PPP accuracy, PDOP improvement and convergence time of PPP based on GPS and BDS observations. Here, the GPS and BDS two-constellation data are collected from

  2. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  3. Precision Fabrication of a Large-Area Sinusoidal Surface Using a Fast-Tool-Servo Technique ─Improvement of Local Fabrication Accuracy

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Tano, Makoto; Araki, Takeshi; Kiyono, Satoshi

    This paper describes a diamond turning fabrication system for a sinusoidal grid surface. The wavelength and amplitude of the sinusoidal wave in each direction are 100µm and 100nm, respectively. The fabrication system, which is based on a fast-tool-servo (FTS), has the ability to generate the angle grid surface over an area of φ 150mm. This paper focuses on the improvement of the local fabrication accuracy. The areas considered are each approximately 1 × 1mm, and can be imaged by an interference microscope. Specific fabrication errors of the manufacturing process, caused by the round nose geometry of the diamond cutting tool and the data digitization, are successfully identified by Discrete Fourier Transform of the microscope images. Compensation processes are carried out to reduce the errors. As a result, the fabrication errors in local areas of the angle grid surface are reduced by 1/10.

  4. Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Stammer, Detlef

    1994-01-01

    TOPEX/POSEIDON sea surface height measurements are examined for quantitative consistency with known elements of the oceanic general circulation and its variability. Project-provided corrections were accepted but are at tested as part of the overall results. The ocean was treated as static over each 10-day repeat cycle and maps constructed of the absolute sea surface topography from simple averages in 2 deg x 2 deg bins. A hybrid geoid model formed from a combination of the recent Joint Gravity Model-2 and the project-provided Ohio State University geoid was used to estimate the absolute topography in each 10-day period. Results are examined in terms of the annual average, seasonal average, seasonal variations, and variations near the repeat period. Conclusion are as follows: the orbit error is now difficult to observe, having been reduced to a level at or below the level of other error sources; the geoid dominates the error budget of the estimates of the absolute topography; the estimated seasonal cycle is consistent with prior estimates; shorter-period variability is dominated on the largest scales by an oscillation near 50 days in spherical harmonics Y(sup m)(sub 1)(theta, lambda) with an amplitude near 10 cm, close to the simplest alias of the M(sub 2) tide. This spectral peak and others visible in the periodograms support the hypothesis that the largest remaining time-dependent errors lie in the tidal models. Though discrepancies attribute to the geoid are within the formal uncertainties of the good estimates, removal of them is urgent for circulation studies. Current gross accuracy of the TOPEX/POSEIDON mission is in the range of 5-10 cm, distributed overbroad band of frequencies and wavenumbers. In finite bands, accuracies approach the 1-cm level, and expected improvements arising from extended mission duration should reduce these numbers by nearly an order of magnitude.

  5. Design and performances of laser retro-reflector arrays for Beidou navigation satellites and SLR observations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Ping; Zhang, Hai-Feng; Chen, Wan-Zhen; Li, Pu; Meng, Wen-Dong; Wang, Yuan-Ming; Wang, Jie; Hu, Wei; Yang, Fu-Min

    2014-09-01

    Beidou is the regional satellite navigation system in China, consisting of three kinds of orbiting satellites, MEO, GEO and IGSO, with the orbital altitudes of 21500-36000 km. For improving the accuracy of satellites orbit determination, calibrating microwave measuring techniques and providing better navigation service, all Beidou satellites are equipped with laser retro-reflector arrays (LRAs) to implement high precision laser ranging. The paper presents the design of LRAs for Beidou navigation satellites and the method of inclined installation of LRAs for GEO satellites to increase the effective reflective areas for the regional ground stations. By using the SLR system, the observations for Beidou satellites demonstrated a precision of centimeters. The performances of these LRAs on Beidou satellites are very excellent.

  6. Leaf Vein Length per Unit Area Is Not Intrinsically Dependent on Image Magnification: Avoiding Measurement Artifacts for Accuracy and Precision1[W][OPEN

    PubMed Central

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-01-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems. PMID:25096977

  7. Precision positioning of earth orbiting remote sensing systems

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Yunck, T. P.; Wu, S. C.

    1987-01-01

    Decimeter tracking accuracy is sought for a number of precise earth sensing satellites to be flown in the 1990's. This accuracy can be achieved with techniques which use the Global Positioning System (GPS) in a differential mode. A precisely located global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite states. Three basic navigation approaches include classical dynamic, wholly nondynamic, and reduced dynamic or hybrid formulations. The first two are simply special cases of the third, which promises to deliver subdecimeter accuracy for dynamically unpredictable vehicles down to the lowest orbit altitudes. The potential of these techniques for tracking and gravity field recovery will be demonstrated on NASA's Topex satellite beginning in 1991. Applications to the Shuttle, Space Station, and dedicated remote sensing platforms are being pursued.

  8. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  9. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset 1998-2000 in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Schmidlin, F. J.; Oltmans, S. J.; McPeters, R. D.; Smit, H. G. J.

    2003-01-01

    A network of 12 southern hemisphere tropical and subtropical stations in the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 profiles of stratospheric and tropospheric ozone since 1998. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used with standard radiosondes for pressure, temperature and relative humidity measurements. The archived data are available at:http: //croc.gsfc.nasa.gov/shadoz. In Thompson et al., accuracies and imprecisions in the SHADOZ 1998- 2000 dataset were examined using ground-based instruments and the TOMS total ozone measurement (version 7) as references. Small variations in ozonesonde technique introduced possible biases from station-to-station. SHADOZ total ozone column amounts are now compared to version 8 TOMS; discrepancies between the two datasets are reduced 2\\% on average. An evaluation of ozone variations among the stations is made using the results of a series of chamber simulations of ozone launches (JOSIE-2000, Juelich Ozonesonde Intercomparison Experiment) in which a standard reference ozone instrument was employed with the various sonde techniques used in SHADOZ. A number of variations in SHADOZ ozone data are explained when differences in solution strength, data processing and instrument type (manufacturer) are taken into account.

  10. Precision visual guidance for agricultural applicator aircraft

    NASA Astrophysics Data System (ADS)

    Hartt, Joseph R.; Bletzacker, Frank R.; Forgette, T. J.; Vetter, Alan A.

    1992-07-01

    The in-cockpit swath centerline identifier (SCI) for aerial applicators uses differentially corrected global positioning system (GPS) signals to determine precise ground track of an aircraft and provide guidance to the pilot for flying patterns for aerial application of materials such as pesticides, herbicides, and fertilizers. Cross track distance from the swath centerline is provided by a heads up light bar display while detailed navigation, position, and status information is provided on an alphanumeric display on a panel mounted console. This system provides straight line guidance when executing a swath and turn-in guidance when proceeding from one swath to the next. It provides a record of the swaths which were sprayed and logs all of the associated navigation and operational data, including time. In addition, it provides navigation information from base to the fields, between fields, and return. The SCI eliminates the need for flaggers while providing improved accuracy of application. Reduced exposure to liability and improved quality control results as the position, altitude, time, and spray status are logged for post flight analysis. The SCI has been used in commercial agricultural applications. Demonstrations of the SCI showed better precision than anticipated.

  11. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  12. Multi-GNSS real-time precise orbit/clock/UPD products and precise positioning service at GFZ

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Liu, Yang; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2016-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeters are still achievable in the horizontal components even with 40° elevation cutoff.

  13. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  14. Fully autonomous navigation for the NASA cargo transfer vehicle

    NASA Technical Reports Server (NTRS)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  15. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Stein, Holly J.; Morgan, John W.; Markey, Richard J.; Watanabe, Yasushi

    2014-04-01

    deposit geochronology. The timing and duration of mineralization from Re-Os dating of ore minerals is more precise than estimates from previously reported 40Ar/39Ar and K-Ar ages on alteration minerals. The Re-Os results suggest that the mineralization is temporally distinct from pre-mineral rhyolite porphyry (42.63 ± 0.28 Ma) and is immediately prior to or overlapping with post-mineral latite dike emplacement (41.16 ± 0.48 Ma). Based on the Re-Os and other geochronologic data, the Middle Eocene intrusive activity in the El Salvador district is divided into three pulses: (1) 44-42.5 Ma for weakly mineralized porphyry intrusions, (2) 41.8-41.2 Ma for intensely mineralized porphyry intrusions, and (3) ∼41 Ma for small latite dike intrusions without major porphyry stocks. The orientation of igneous dikes and porphyry stocks changed from NNE-SSW during the first pulse to WNW-ESE for the second and third pulses. This implies that the WNW-ESE striking stress changed from σ3 (minimum principal compressive stress) during the first pulse to σHmax (maximum principal compressional stress in a horizontal plane) during the second and third pulses. Therefore, the focus of intense porphyry Cu-Mo mineralization occurred during a transient geodynamic reconfiguration just before extinction of major intrusive activity in the region.

  16. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    NASA Astrophysics Data System (ADS)

    Oh, Hyungjik; Park, Han-Earl; Lee, Kwangwon; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  17. Celestial Navigation

    ERIC Educational Resources Information Center

    Rosenkrantz, Kurt

    2005-01-01

    In the unit described in this article, students discover the main principles of navigation, build tools to observe celestial bodies, and apply their new skills to finding their position on Earth. Along the way students see how science, mathematics, technology, and history are intertwined.

  18. Navigation in virtual environments

    NASA Astrophysics Data System (ADS)

    Arthur, Erik; Hancock, Peter A.; Telke, Susan

    1996-06-01

    Virtual environments show great promise in the area of training. ALthough such synthetic environments project homeomorphic physical representations of real- world layouts, it is not known how individuals develop models to match such environments. To evaluate this process, the present experiment examined the accuracy of triadic representations of objects having learned them previously under different conditions. The layout consisted of four different colored spheres arranged on a flat plane. These objects could be viewed in either a free navigation virtual environment condition (NAV) or a single body position virtual environment condition. The first condition allowed active exploration of the environment while the latter condition allowed the participant only a passive opportunity to observe form a single viewpoint. These viewing conditions were a between-subject variable with ten participants randomly assigned to each condition. Performance was assessed by the response latency to judge the accuracy of a layout of three objects over different rotations. Results showed linear increases in response latency as the rotation angle increased from the initial perspective in SBP condition. The NAV condition did not show a similar effect of rotation angle. These results suggest that the spatial knowledge acquisition from virtual environments through navigation is similar to actual navigation.

  19. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  20. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  1. Navigation of the EPOXI Spacecraft to Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Abrahamson, Matt; Chesley, Steven; Chung, Min-Kun; Halsell, Allen; Haw, Robert; Helfrich, Cliff; Jefferson, David; Kennedy, Brian; McElrath, Tim; Owen, William; Rush, Brian; Smith, Jonathon; Wang, Tseng-Chan; Yen, Chen-Wan

    2011-01-01

    On November 4, 2010, the EPOXI spacecraft flew by the comet Hartley 2, marking the fourth time that a NASA spacecraft successfully captured high resolution images of a cometary nucleus. EPOXI is the extended mission of the Deep Impact mission, which delivered an impactor on comet Tempel-1 on July 4, 2005. EPOXI officially started in September 2007 and eventually took over 3 years of flight time and had 3 Earth gravity assists to achieve the proper encounter conditions. In the process, the mission was redesigned to accommodate a new comet as the target and changes in the trajectory to achieve better imaging conditions at encounter. Challenges in navigation of the spacecraft included precision targeting of several Earth flybys and the comet encounter, uncertainties in determining the ephemeris of the comet relative to the spacecraft, and the high accuracy trajectory knowledge needed to image the comet during the encounter. This paper presents an overview of the navigation process used for the mission.

  2. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    PubMed

    Zhao, Huijie; Xu, Wujian

    2016-01-01

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation. PMID:27527171

  3. Viking navigation

    NASA Technical Reports Server (NTRS)

    Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.

    1979-01-01

    A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.

  4. New mechanization equations for aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Bjorkman, W. S.; Conrad, B.

    1973-01-01

    Inertial navigation equations are developed which use area navigation (RNAV) waypoints and runway references as coodinate centers. The formulation is designed for aided inertial navigation systems and gives a high numerical accuracy through all phases of flight. A new formulation of the error equations for inertial navigation systems is also presented. This new formulation reduces numerical calculations in the use of Kalman filters for aided inertial navigation systems.

  5. A New Centimeter-Level Real-Time Global Navigation and Positioning Capability with GPS

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz

    2001-01-01

    NASA/JPL has developed a new, precise, global, GPS-based capability for real-time terrestrial and space platform navigation. It has been demonstrated on Earth's surface and is 10 times more accurate than other real-time GPS-based systems. The new system poses certain advantages for Earth science remote sensing, including: the onboard generation of science data products in real-time, sensor control and reduction of data transmission bandwidth, improved environmental forecasting, autonomous and intelligent platform control, operations cost savings, and technology transfer and commercial partnership opportunities. The system's measurement capabilities and applications, demonstrated orbit accuracies, and precision LEO and spacecraft positioning and timing are highlighted.

  6. INL Autonomous Navigation System

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  7. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  8. Precise Point Positioning in the Airborne Mode

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed

    2011-01-01

    The Global Positioning System (GPS) is widely used for positioning in the airborne mode such as in navigation as a supplementary system and for geo-referencing of cameras in mapping and surveillance by aircrafts and Unmanned Aerial Vehicles (UAV). The Precise Point Positioning (PPP) approach is an attractive positioning approach based on processing of un-differenced observations from a single GPS receiver. It employs precise satellite orbits and satellite clock corrections. These data can be obtained via the internet from several sources, e.g. the International GNSS Service (IGS). The data can also broadcast from satellites, such as via the LEX signal of the new Japanese satellite system QZSS. The PPP can achieve positioning precision and accuracy at the sub-decimetre level. In this paper, the functional and stochastic mathematical modelling used in PPP is discussed. Results of applying the PPP method in an airborne test using a small fixed-wing aircraft are presented. To evaluate the performance of the PPP approach, a reference trajectory was established by differential positioning of the same GPS observations with data from a ground reference station. The coordinate results from the two approaches, PPP and differential positioning, were compared and statistically evaluated. For the test at hand, positioning accuracy at the cm-to-decimetre was achieved for latitude and longitude coordinates and doubles that value for height estimation.

  9. Orion Cislunar Guidance and Navigation

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Crain, Timothy; Clark, Fred C.

    2007-01-01

    The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. Design of guidance and navigation algorithms to perform maneuvers in support of these functions is dependent on the support provided by navigation infrastructure, the performance of the onboard GN&C system, and the choice of trajectory maneuver methodology for outbound and return mission phases. This paper documents the preliminary integrated analyses performed by members of the Orion Orbit GN&C System team investigating the navigation update accuracy of a modern equivalent to the Apollo era ground tracking network and the expected onboard dispersion and navigation errors during a lunar mission using a linear covariance error analysis technique.

  10. Autonomous navigation using lunar beacons

    NASA Technical Reports Server (NTRS)

    Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.

    1983-01-01

    The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.

  11. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  12. Study on UKF based federal integrated navigation for high dynamic aviation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie

    2011-08-01

    High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is

  13. Study of precise positioning at L-band using communications satellites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The L-band positioning experiment is reported which encompassed experiment design, experimentation, and data reduction and analysis. In the experiment the ATS-5 synchronous satellite L-band transponder was used in conjunction with the modified ALPHA 2 navigation receivers to demonstrate the technical capability of precision position fixing for oceanographic purposes. The feasibility of using relative ranging techniques implemented by two identical receiving systems, properly calibrated, to determine a line of position accurately on the surface of the earth was shown. The program demonstrated the level of resolution, repeatibility, precision, and accuracy of existing modest-cost effective navigation equipment. The experiment configuration and data reduction techniques were developed in parallel with the hardware modification tasks. Test results verify the ability of a satellite-based system to satisfy the requirements of precision position fixing.

  14. Recent advances in surgical planning & navigation for tumor biopsy and resection.

    PubMed

    Wang, Defeng; Ma, Diya; Wong, Matthew Lun; Wáng, Yì Xiáng J

    2015-10-01

    This paper highlights recent advancements in imaging technologies for surgical planning and navigation in tumor biopsy and resection which need high-precision in detection and characterization of lesion margin in preoperative planning and intraoperative navigation. Multimodality image-guided surgery platforms brought great benefits in surgical planning and operation accuracy via registration of various data sets with information on morphology [X-ray, magnetic resonance (MR), computed tomography (CT)], function connectivity [functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), rest-status fMRI], or molecular activity [positron emission tomography (PET)]. These image-guided platforms provide a correspondence between the pre-operative surgical planning and intra-operative procedure. We envisage that the combination of advanced multimodal imaging, three-dimensional (3D) printing, and cloud computing will play increasingly important roles in planning and navigation of surgery for tumor biopsy and resection in the coming years. PMID:26682133

  15. Recent advances in surgical planning & navigation for tumor biopsy and resection

    PubMed Central

    Ma, Diya; Wong, Matthew Lun; Wáng, Yì Xiáng J.

    2015-01-01

    This paper highlights recent advancements in imaging technologies for surgical planning and navigation in tumor biopsy and resection which need high-precision in detection and characterization of lesion margin in preoperative planning and intraoperative navigation. Multimodality image-guided surgery platforms brought great benefits in surgical planning and operation accuracy via registration of various data sets with information on morphology [X-ray, magnetic resonance (MR), computed tomography (CT)], function connectivity [functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), rest-status fMRI], or molecular activity [positron emission tomography (PET)]. These image-guided platforms provide a correspondence between the pre-operative surgical planning and intra-operative procedure. We envisage that the combination of advanced multimodal imaging, three-dimensional (3D) printing, and cloud computing will play increasingly important roles in planning and navigation of surgery for tumor biopsy and resection in the coming years. PMID:26682133

  16. Relative accuracy evaluation.

    PubMed

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  17. Relative Accuracy Evaluation

    PubMed Central

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  18. Compact Atomic Magnetometer for Global Navigation (NAV-CAM)

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael

    2014-05-01

    Northrop Grumman Navigation Systems Division is developing an atom-based magnetometer technology that has the potential for providing a global position reference independent of GPS. The NAV-CAM sensor is a direct outgrowth of the Nuclear Magnetic Resonance Gyro under development by the same technical team. It will be the only known magnetic field sensor capable of providing all 3 axes of magnetic vector direction and magnitude simultaneously with a whole-field scalar measurement, all within a single multi-axis sensing element measuring 4mm cube or smaller, essentially eliminating many of the problems encountered when using physically separate sensors or sensing elements. According to information presented by Ariyur et al. at the 2010 American Control Conference [1], the anticipated accuracy of 10 pico-Tesla (pT) and precision of <0.5 pT of the NAV-CAM sensor will enable magnetic determination of position with 20 meter accuracy and 1 meter resolution.

  19. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  20. Navigated minimally invasive unicompartmental knee arthroplasty.

    PubMed

    Jenny, Jean-Yves; Müller, Peter E; Weyer, R; John, Michael; Weber, Patrick; Ciobanu, Eugène; Schmitz, Andreas; Bacher, Thomas; Neumann, Wolfram; Jansson, Volkmar

    2006-10-01

    Unicompartmental knee arthroplasty (UKA) is an alternative procedure to high tibial osteotomy. This study assessed the procedure using computer navigation to improve implantation accuracy and presents early radiological results of a group of patients implanted with the univation UKA (B. Braun Aesculap, Tuttlingen, Germany) with navigation instrumentation and a minimally invasive approach. The authors concluded that navigated implantation of a UKA using a nonimage-based system improved radiologic accuracy implantation without significant inconvenience and minimal change in the conventional operating technique. PMID:17407935

  1. Space Shuttle Orbiter entry through landing navigation

    NASA Technical Reports Server (NTRS)

    Ewell, J. J., Jr.

    1982-01-01

    The Space Shuttle Orbiter navigation system must be capable of determining its position and velocity throughout a variety of operational regimes. The design and operation of the entry through landing navigation system is described as it operates during a nominal end of mission from the orbital coasting phase throughout atmospheric flight and landing. Design and operation of the Kalman filter is described. Stabilization of the altitude channel prior to acquisition of external measurement data is described. Utilization of the Tactical Air Navigation (TACAN), barometric altimeter, and Microwave Scan Beam Landing System external measurement data is described. A comparison is made between predicted performance and the navigation accuracy observed during flight.

  2. Research on aided navigation based on terrain elevation matching and simulation

    NASA Astrophysics Data System (ADS)

    He, Yanping; Liu, Xinxue; Cai, Yanping; Zhu, Yu

    2016-01-01

    The matching function of terrain-aided navigation is not only related to the algorithm, also associated with the terrain characteristics of matching area. Aiming at terrain matching area selection and matching algorithm of the terrain height matching system, the method of terrain information entropy is put forward on the basis of statistical characteristics of the terrain roughness, signal-to-noise ratio, and then COR algorithm, MAD algorithm, MSD algorithm is adopted for real-time map and reference map matching, finally shows the simulation comparison of three kinds of matching algorithm. Result of simulation shows that among the index of matching accuracy and speed of three kinds of algorithm, COR algorithm possess fastest calculation speed and lowest precision, matching accuracy of MSD is slightly higher than MAD algorithm and calculation speed of MSD is placed in the middle, and the simulation results provide selection basis for terrain-aided inertial navigation.

  3. Surgical navigation in oral implantology.

    PubMed

    Miller, Robert J; Bier, Jurgen

    2006-03-01

    The ability to generate 3-dimensional volumetric images of the maxillofacial area has allowed surgeons to evaluate anatomy before surgery and plan for the placement of implants in ideal positions. However, the ability to transfer that information to surgical reality has been the most challenging part of implant dentistry. With the advent of computer-assisted surgery, the surgeon may now navigate through the entire implant procedure with extremely high accuracy. A new portable laptop navigated system for oral implantology is discussed as an adjunct for complex implant cases. PMID:16569960

  4. Indoor inertial navigation application for smartphones with Android

    NASA Astrophysics Data System (ADS)

    Kamiński, Ł.; Tarapata, G.

    2015-09-01

    Inertial navigation is widely used by the military, in logistics and sailing. In mobile devices, inertial sensors are mostly used as a support for GPS and Wi-Fi-based navigation systems. Inertial-based navigation might prove useful on mobile devices running Android OS. At present, in spite of the accelerometer sensor's precision having been greatly improved, as well as the devices' computing power continuously rising, inertial navigation's precision still suffers. For smartphones, the key solution seems to be the usage of sensor fusion and signal smart filtering, both discussed in this paper. The paper also describes implementation of inertial navigation in Android devices, their analysis as well as test results.

  5. Analysis of Ares 1 Ascent Navigation Options

    NASA Technical Reports Server (NTRS)

    Norris, Lee; Tao, Yee-Chee; Hall, Robert; Chuang, Jason; Whorton, Mark

    2008-01-01

    The paper documents a collaborative analysis of ascent Navigation options for the Ares 1 launch vehicle by the NASA Marshall Space Flight Center (MSFC) and the C. S. Draper Laboratory. The objective of the work was the development of a Navigation concept and supporting requirements which meet the Ares 1 accuracy specification in a manner which is straightforward, reliable, and cost effective. Six primary Navigation architectures were considered. In each case analysis was performed to determine under what conditions the required accuracy at second stage cutoff could be achieved. Those architectures which met the accuracy requirements were then assessed in terms of cost, complexity, and reliability to determine a baseline Navigation approach and the primary supporting requirements.

  6. Vision assisted aircraft lateral navigation

    NASA Astrophysics Data System (ADS)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  7. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  8. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  9. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    SciTech Connect

    Zhang, D; Wang, W; Jiang, B; Fu, D

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  10. Modelling group navigation: transitive social structures improve navigational performance

    PubMed Central

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-01-01

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements. PMID:26063820

  11. Modelling group navigation: transitive social structures improve navigational performance.

    PubMed

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-07-01

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements. PMID:26063820

  12. Navigation systems. [for interplanetary flight

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1985-01-01

    The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.

  13. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  14. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  15. Application of AFINCH as a Tool for Evaluating the Effects of Streamflow-Gaging-Network Size and Composition on the Accuracy and Precision of Streamflow Estimates at Ungaged Locations in the Southeast Lake Michigan Hydrologic Subregion

    USGS Publications Warehouse

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations. Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971-2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages). Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the size

  16. NAVIGATION IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    da Mota e Albuquerque, Roberto Freire

    2015-01-01

    Navigation was the most significant advance in instrumentation for total knee arthroplasty over the last decade. It provides surgeons with a precision tool for carrying out surgery, with the possibility of intraoperative simulation and objective control over various anatomical and surgical parameters and references. Since the first systems, which were basically used to control the alignment of bone cutting referenced to the mechanical axis of the lower limb, many other surgical steps have been incorporated, such as component rotation, ligament balancing and arranging the symmetry of flexion and extension spaces, among others. Its efficacy as a precision tool with an effective capacity for promoting better alignment of the lower-limb axis has been widely proven in the literature, but the real value of optimized alignment and the impact of navigation on clinical results and the longevity of arthroplasty have yet to be established. PMID:27026979

  17. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  18. Automated satellite image navigation

    NASA Astrophysics Data System (ADS)

    Bassett, Robert M.

    1992-12-01

    The automated satellite image navigation method (Auto-Avian) developed and tested by Spaulding (1990) at the Naval Postgraduate School is investigated. The Auto-Avian method replaced the manual procedure of selecting Ground Control Points (GCP's) with an autocorrelation process that utilizes the World Vector Shoreline (WVS) provided by the Defense Mapping Agency (DMA) as a string of GCP's to rectify satellite images. The automatic cross-correlation of binary reference (WVS) and search (image) windows eliminated the subjective error associated with the manual selection of GCP's and produced accuracies comparable to the manual method. The scope of Spaulding's (1990) research was expanded. The worldwide application of the Auto-Avian method was demonstrated in three world regions (eastern North Pacific Ocean, eastern North Atlantic Ocean, and Persian Gulf). Using five case studies, the performance of the Auto-Avian method on 'less than optimum' images (i.e., islands, coastlines affected by lateral distortion and/or cloud cover) was investigated.

  19. Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.

  20. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    NASA Astrophysics Data System (ADS)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  1. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Lian, Xiaofeng; Navarro-Ramirez, Rodrigo; Berlin, Connor; Jada, Ajit; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. "Total navigation" (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  2. Optical 3D laser measurement system for navigation of autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  3. Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery

    SciTech Connect

    Ghilezan, Michel; Yan Di . E-mail: dyan@beaumont.edu; Liang Jian; Jaffray, David; Wong, John; Martinez, Alvaro

    2004-12-01

    Purpose: To quantify the theoretical benefit, in terms of improvement in precision and accuracy of treatment delivery and in dose increase, of using online image-guided intensity-modulated radiotherapy (IG-IMRT) performed with onboard cone-beam computed tomography (CT), in an ideal setting of no intrafraction motion/deformation, in the treatment of prostate cancer. Methods and materials: Twenty-two prostate cancer patients treated with conventional radiotherapy underwent multiple serial CT scans (median 18 scans per patient) during their treatment. We assumed that these data sets were equivalent to image sets obtainable by an onboard cone-beam CT. Each patient treatment was simulated with conventional IMRT and online IG-IMRT separately. The conventional IMRT plan was generated on the basis of pretreatment CT, with a clinical target volume to planning target volume (CTV-to-PTV) margin of 1 cm, and the online IG-IMRT plan was created before each treatment fraction on the basis of the CT scan of the day, without CTV-to-PTV margin. The inverse planning process was similar for both conventional IMRT and online IG-IMRT. Treatment dose for each organ of interest was quantified, including patient daily setup error and internal organ motion/deformation. We used generalized equivalent uniform dose (EUD) to compare the two approaches. The generalized EUD (percentage) of each organ of interest was scaled relative to the prescription dose at treatment isocenter for evaluation and comparison. On the basis of bladder wall and rectal wall EUD, a dose-escalation coefficient was calculated, representing the potential increment of the treatment dose achievable with online IG-IMRT as compared with conventional IMRT. Results: With respect to radiosensitive tumor, the average EUD for the target (prostate plus seminal vesicles) was 96.8% for conventional IMRT and 98.9% for online IG-IMRT, with standard deviations (SDs) of 5.6% and 0.7%, respectively (p < 0.0001). The average EUDs of

  4. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  5. Initial Results of an Acetabular Center Axis Registration Technique in Navigated Hip Arthroplasty with Deformed Acetabular Rims

    PubMed Central

    Wada, Hiroshi; Mishima, Hajime; Yoshizawa, Tomohiro; Sugaya, Hisashi; Nishino, Tomofumi; Yamazaki, Masashi

    2016-01-01

    Background In cementless total hip arthroplasty, imageless computer-assisted navigation is usually used to register the anterior pelvic plane (APP). The accuracy of this method is influenced by the subcutaneous tissues overlying the registration landmarks. On the other hand, the acetabular center axis (ACA) is determined from the acetabular rim. Precise registration of the ACA is possible because of direct palpation using a pointer. Imageless navigation using the ACA usually targets patients with normal acetabular morphology. The aim of this study was to investigate the accuracy of imageless navigation using the ACA instead of the APP in patients with normal or deformed acetabular rims. Methods The intraoperative cup position was compared with that obtained from the postoperative computed tomography (CT) images in 18 cases. Results The inclination angle derived from the navigation system was 3.4 ± 5.3 degrees smaller and the anteversion angle was 1.4 ± 3.1 degrees larger than those derived from the CT images. Conclusion The inclination cup angle of the navigation system was significantly inferior to the true value, particularly in cases with large anterior osteophytes. PMID:27073586

  6. GPS and Glonass Combined Static Precise Point Positioning (ppp)

    NASA Astrophysics Data System (ADS)

    Pandey, D.; Dwivedi, R.; Dikshit, O.; Singh, A. K.

    2016-06-01

    With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment gLAB 2.2.7 as well as magicGNSS software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.

  7. A STOL terminal area navigation system

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Warner, D. N., Jr.

    1974-01-01

    The mechanization and performance of a STOL terminal area navigation system are described. The purpose of the navigation system is to allow flying with precision 4D-guidance along complex flight paths in the terminal area, and to develop requirements for STOL operations in the 1980s. The navigation aids include an experimental microwave landing system, MODILS. The systems description begins with the navigation aids. It is shown how the data are transformed and combined with other data to obtain position and velocity estimates. Also presented are some of the design changes and other features that were introduced as a result of flight testing. The various ways of displaying navigation-derived data are given. Finally, simulator and flight test results are discussed.

  8. Seamless Navigation Using Various Sensors: AN Overview of the Seamless Navigation Campaign

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Yamada, Y.; Namie, H.; Ebinuma, T.; Kubo, N.; Kawaguchi, T.; Yoshida, M.; Yasuda, A.

    2012-07-01

    Seamless positioning techniques in indoor and outdoor environments are necessary for obtaining sensor locations. However, no definitive indoor-outdoor navigation system simultaneously provides high accuracy, high availability and low installation cost. Furthermore, crowded indoor-outdoor navigation systems consisting of multiple techniques will destructively interfere with each other, but an exclusive navigation environment will have difficulty providing stable location services for users. This anticipated issue needs to be investigated with experimental data and simulation results. However, experiments that are deliberately overcrowded with disparate location systems are rare. Therefore, the initial focus in our research was the construction of a test environment for indoor-outdoor seamless navigation experiments. Based on "Standards and Recommended Practices" (SARPs), we focused on accuracy, availability, continuity and integrity to verify the effects of seamless navigation under a combination of as many disparate systems and sensors as possible. We then conducted data acquisition and data analysis in seamless navigation through four integrated experiments. Based on the results of our experiments, we summarize some observations about seamless navigation using multiple navigation systems, and offer examples of the representative issues in our research. We also suggest some directions in indoor-outdoor navigation environment construction for seamless positioning using disparate systems and sensors.

  9. Computer navigation vs conventional mechanical jig technique in hip resurfacing arthroplasty: a meta-analysis based on 7 studies.

    PubMed

    Liu, Hao; Li, Lin; Gao, Wei; Wang, Meilin; Ni, Chunhui

    2013-01-01

    The studies on the accuracy of femoral component in hip resurfacing arthroplasty with the help of computer-assisted navigation were not consistent. This study aims to assess at the functional outcomes after computer navigation in hip resurfacing arthroplasty by systematically reviewing and meta-analyzing the data, which were searched up to December 2011 in PubMed, MEDLINE, EMBASE, MetaMed, EBSCO HOST, and the Web site of Google scholar. Totally, 197 articles about hip resurfacing arthroplasty were collected; finally, 7 articles met the inclusion criteria and were included in this meta-analysis (520 patients with 555 hip resurfacing arthroplasty). The odds ratio for the number of outliers was 0.155 (95% confidence interval, 0.048-0.498; P < .003). In conclusion, this meta-analysis suggests that the computer-assisted navigation system makes the femoral component positioning in hip resurfacing arthroplasty easier and more precise. PMID:22771091

  10. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  11. Integration of Omega and satellite navigation systems

    NASA Astrophysics Data System (ADS)

    Schlachta, Henry B.

    An extensive series of laboratory tests and flight trials has established that the hybrid Omega/VLF/GPS system effectively applies GPS to the enhancement of Omega with a cost-effective operator installation. The accuracy enhancement thus achieved also increases the reliability of navigation and furnishes aviation fuel savings superior to those of Omega, as a result of reduced flight-path wavering. The prospective GPS/GLONASS navigation system currently undergoing definition will be the first certifiable as a sole means on navigation; the Omega/VLF/GPS hybrid can serve as a transitional system.

  12. Navigational Use of Cassini Delta V Telemetry

    NASA Technical Reports Server (NTRS)

    Roth, Duane C.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Goodson, Troy; Ionasescu, Rodica; Jones, Jeremy B.; Parcher, Daniel W.; Pelletier, Frederic J.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    Telemetry data are used to improve navigation of the Saturn orbiting Cassini spacecraft. Thrust induced delta V's are computed on-board the spacecraft, recorded in telemetry, and downlinked to Earth. This paper discusses how and why the Cassini Navigation team utilizes spacecraft delta V telemetry. Operational changes making this information attractive to the Navigation Team will be briefly discussed, as will spacecraft hardware and software algorithms responsible for the on-board computation. An analysis of past delta V telemetry, providing calibrations and accuracies that can be applied to the estimation of future delta V activity, is described.

  13. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections.

    PubMed

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  14. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  15. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  16. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  17. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    SciTech Connect

    Amstutz, Christoph A.; Bechrakis, Nikolaos E.; Foerster, Michael H.; Heufelder, Jens; Kowal, Jens H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial position of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.

  18. Stardust Navigation Covariance Analysis

    NASA Astrophysics Data System (ADS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  19. High accuracy ground target location using loitering munitions platforms

    NASA Astrophysics Data System (ADS)

    Wang, Zhifei; Wang, Hua; Han, Jing

    2011-08-01

    Precise ground target localization is an interesting problem and relevant not only for military but also for civilian applications, and this is expected to be an emerging field with many potential applications. Ground Target Location Using Loitering Munitions (LM) requires estimation of aircraft position and attitude to a high degree of accuracy, and data derived by processing sensor images might be useful for supplementing other navigation sensor information and increasing the reliability and accuracy of navigation estimates during this flight phase. This paper presents a method for high accuracy ground target localization using Loitering Munitions (LM) equipped with a video camera sensor. The proposed method is based on a satellite or aerial image matching technique. In order to acquire the target position of ground intelligently and rapidly and to improve the localization accuracy estimating the target position jointly with the systematic LM and camera attitude measurement errors, several techniques have been proposed. Firstly, ground target geo-location based on tray tracing was used for comparison against our approach. By proposed methods the calculation from pixel to world coordinates can be done. Then Hough transform was used to image alignment and a median filter was applied for removing small details which are visible from the sensed image but not visible from the reference image. Finally, A novel edge detection method and an image matching algorithm based on bifurcation extraction were proposed. This method did not require accurate knowledge of the aircraft position and attitude and high performance sensors, therefore it is especially suitable for LM which did not have capability to carry accurate sensors due to their limited play weight and power resources. The results of simulation experiments and theory analyzing demonstrate that high accuracy ground target localization is reached with low performance sensors, and achieve timely. The method is used in

  20. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  1. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  2. Precision Nova operations

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert B.; Miller, John L.; Saunders, Rodney L.; Thompson, Calvin E.; Weiland, Timothy L.; Laumann, Curt W.

    1995-12-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations include routine precision power balance to within 10% rms in the 'foot' and 5% rms in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 micrometer rms. We have also added a 'fail-safe chirp' system to avoid stimulated Brillouin scattering (SBS) in optical components during high energy shots.

  3. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  4. Investigation of practical and theoretical accuracy of wireless indoor-positioning system UBISENSE

    NASA Astrophysics Data System (ADS)

    Wozniak, Marek; Odziemczyk, Waldemar; Nagorski, Kamil

    2013-04-01

    The development of Real Time Locating Systems has become an important add-on to many existing location aware systems. While Global Navigation Satelite System has solved most of the outdoor problems, it fails to repeat this success indoors. Wireless indoor positioning systems have become very popular in recent years. One of them is UBISENSE system. This system requires to carry an identity tag that is detected by sensors, which typically use triangulation to determine location. This paper presents the results of the investigation of accuracy of tag position using precise geodetic measurements and geometric analysis. Experimental measurements were carried out on the field polygon using precise tacheometer TCRP 1201+ and complete equipment of Ubisense. Results of experimental measurements were analyzed and presented graphically using Surfer 8. The paper presents the results of the investigation the teoretical and practical positioning accuracy according to the various working conditions.

  5. One high-accuracy camera calibration algorithm based on computer vision images

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    Camera calibration is the first step of computer vision and one of the most active research fields nowadays. In order to improve the measurement precision, the internal parameters of the camera should be accurately calibrated. So one high-accuracy camera calibration algorithm is proposed based on the images of planar targets or tridimensional targets. By using the algorithm, the internal parameters of the camera are calibrated based on the existing planar target at the vision-based navigation experiment. The experimental results show that the accuracy of the proposed algorithm is obviously improved compared with the conventional linear algorithm, Tsai general algorithm, and Zhang Zhengyou calibration algorithm. The algorithm proposed by the article can satisfy the need of computer vision and provide reference for precise measurement of the relative position and attitude.

  6. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its

  7. Microcomputers and astronomical navigation.

    NASA Astrophysics Data System (ADS)

    Robin-Jouan, Y.

    1996-04-01

    Experienced navigators remember ancient astronomical navigation and its limitations. Using microcomputers in small packages and selecting up-to-date efficient methods will overcome many of these limitations. Both features lead to focus on observations, and encourage an increase in their numbers. With no intention of competing with satellite navigation, sextant navigation in the open sea can then be accessed again by anybody. It can be considered for demonstrative use or as a complement to the GPS.

  8. Navigating the Internet.

    PubMed Central

    Powsner, S M; Roderer, N K

    1994-01-01

    Navigating any complex set of information resources requires tools for both browsing and searching. A number of tools are available today for using Internet resources, and more are being developed. This article reviews existing navigational tools, including two developed at the Yale University School of Medicine, and points out their strengths and weaknesses. A major shortcoming of the present Internet navigation methods is the lack of controlled descriptions of the available resources. As a result, navigating the Internet is very difficult. PMID:7841913

  9. Evolution of patient navigation.

    PubMed

    Shockney, Lillie D

    2010-08-01

    The role of nurses in patient navigation has evolved over more than four decades. Navigators in cancer care can guide patients through the physical, emotional, and financial challenges that come with a diagnosis of cancer and facilitate communication among healthcare providers. Navigation has the potential to improve patient outcomes and system efficiency. Oncology nurses are well suited to help patients with cancer navigate the healthcare system from diagnosis and treatment through survivorship and palliative care. PMID:20682496

  10. Interoperability of satellite-based augmentation systems for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  11. Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Bartel, Celia; Kaharkar, Anish; Shaid, Tesheen

    2012-04-01

    (VBN/GPS/IMU) shows that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/GPS/IMU/ADM) shows promising results since the achieved attitude accuracy is higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there is a need for a frequent re-initialisation of the ADM data module, which is strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed. Finally, the output provided by the VBN and integrated navigation sensor systems is used to design a flight control system using a hybrid Fuzzy Logic and Proportional-Integral-Derivative (PID) controller for the Aerosonde UAV.

  12. GPS vertical axis performance enhancement for helicopter precision landing approach

    NASA Technical Reports Server (NTRS)

    Denaro, Robert P.; Beser, Jacques

    1986-01-01

    Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.

  13. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  14. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  15. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  16. An accuracy measurement method for star trackers based on direct astronomic observation

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  17. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  18. DARPA looks beyond GPS for positioning, navigating, and timing

    SciTech Connect

    Kramer, David

    2014-10-01

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  19. Joint Line Reconstruction in Navigated Total Knee Arthroplasty Revision

    ClinicalTrials.gov

    2012-05-16

    Revision Total Knee Arthroplasty Because of; Loosening; Instability; Impingement; or Other Reasons Accepted as Indications for TKA Exchange.; The Focus is to Determine the Precision of Joint Line Restoration in Navigated vs. Conventional Revision Total Knee Arthroplasty

  20. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  1. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  2. Using wide area differential GPS to improve total system error for precision flight operations

    NASA Astrophysics Data System (ADS)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  3. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  4. Space shuttle entry and landing navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Crawford, B. S.

    1974-01-01

    A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

  5. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  6. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  7. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Lian, Xiaofeng; Berlin, Connor; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. “Total navigation” (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  8. Simulation Of Satellite Trajectories And Navigation

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Bertiger, William I.; Border, James S.; Lichten, Stephen M.; Sunseri, Richard F.; Williams, Bobby G.; Wolff, Peter J.; Wu, Jiun-Tsong

    1989-01-01

    Orbit Analysis and Simulation Software, OASIS, is software system developed for covariance and simulation analyses of problems involving Earth satellites, especially Global Positioning System (GPS). Provides flexible, versatile, and efficient software tool for analysis of accuracy in Earth-satellite navigation and GPS-based geodetic studies.

  9. Automatic Topology Derivation from Ifc Building Model for In-Door Intelligent Navigation

    NASA Astrophysics Data System (ADS)

    Tang, S. J.; Zhu, Q.; Wang, W. W.; Zhang, Y. T.

    2015-05-01

    With the goal to achieve an accuracy navigation within the building environment, it is critical to explore a feasible way for building the connectivity relationships among 3D geographical features called in-building topology network. Traditional topology construction approaches for indoor space always based on 2D maps or pure geometry model, which remained information insufficient problem. Especially, an intelligent navigation for different applications depends mainly on the precise geometry and semantics of the navigation network. The trouble caused by existed topology construction approaches can be smoothed by employing IFC building model which contains detailed semantic and geometric information. In this paper, we present a method which combined a straight media axis transformation algorithm (S-MAT) with IFC building model to reconstruct indoor geometric topology network. This derived topology aimed at facilitating the decision making for different in-building navigation. In this work, we describe a multi-step deviation process including semantic cleaning, walkable features extraction, Multi-Storey 2D Mapping and S-MAT implementation to automatically generate topography information from existing indoor building model data given in IFC.

  10. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation. PMID:19141895

  11. Design and implementation of small navigation system on land vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Shuaiqi

    2013-03-01

    This paper is focused on the problem of frame loss and truncation on multi-channel universal asynchronous receiver transmitter (UART) embedded in Integrated Navigation Systems, and it contains attitude heading reference system (AHRS) and global positioning system (GPS). An advanced design based on FPGA and ARM processor is discussed in this paper, in which FPGA would be used to coordinate with each logic modules, expand UART for GPS and AHRS, resolve navigation information, and save specify data to SD card, which can reduce the delay in data receiving and resolving, while ARM is applied in the area of parameters estimation and navigation algorithms. The experiment results show that this navigation system can use UART to receive, resolve data frames and save data while ARM execute parameter estimation and navigation algorithms in real time. This integrated navigation can effectively avoid the phenomenon of data frame loss or truncation in UART receiving, and can improve the navigation precision.

  12. Clock performance as a critical parameter in navigation satellite systems

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    The high performance of available oscillators has permitted the development of invaluable navigation and geodetic satellite systems. However, still higher performance oscillators would further improve the accuracy or flexibility of the systems.

  13. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  14. Research on Temperature Modeling of Strapdown Inertial Navigation System

    NASA Astrophysics Data System (ADS)

    Huang, XiaoJuan; Zhao, LiJian; Xu, RuXiang; Yang, Heng

    2016-02-01

    Strapdown inertial navigation system with laser gyro has been deployed in space tracking ship and compared with the conventional platform inertial navigation system, it has substantial advantage in performance, accuracy and stabilization. Environmental and internal temperature affects the gyro, accelerator, electrical circuits and mechanical structure significantly but the existing temperature compensation model is not accurate enough especially when there is a big temperature change.

  15. Positioning accuracy assessment for the 4GEO/5IGSO/2MEO constellation of COMPASS

    NASA Astrophysics Data System (ADS)

    Zhou, ShanShi; Cao, YueLing; Zhou, JianHua; Hu, XiaoGong; Tang, ChengPan; Liu, Li; Guo, Rui; He, Feng; Chen, JunPing; Wu, Bin

    2012-12-01

    Determined to become a new member of the well-established GNSS family, COMPASS (or BeiDou-2) is developing its capabilities to provide high accuracy positioning services. Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation. Precise Point Positioning (PPP) for geodetic users and real-time positioning for common navigation users are utilized. To evaluate PPP accuracy, coordinate time series repeatability and discrepancies with GPS' precise positioning are computed. Experiments show that COMPASS PPP repeatability for the east, north and up components of a receiver within mainland China is better than 2 cm, 2 cm and 5 cm, respectively. Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning, indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems. For common positioning users, COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users. Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m (RMS), respectively, which may be improved to about 3 m and 4 m (RMS) with the addition of differential corrections. Less accurate Signal In Space User Ranging Error (SIS URE) and Geometric Dilution of Precision (GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS. Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP, the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE, or both.

  16. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  17. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    PubMed Central

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  18. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints.

    PubMed

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  19. Angle algorithm based on Hough transform for imaging polarization navigation sensor.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2015-03-23

    Polarization navigation is a promising orientation-determination method inspired by insects' foraging behavior that offers the advantages of autonomous and high precision. In this paper, using the solar meridian as an azimuth reference is proposed. The model of the distribution pattern of the polarized skylight projected onto an imaging sensor is analyzed. The sufficient features of the solar meridian are proven. According to these features, an angle algorithm for an imaging polarization navigation sensor based on a machine-vision algorithm is proposed. In consideration of noise in images, the relation between the measured angle and the noise in images is modeled. This model cannot only optimize the threshold tolerance R in the algorithm but also describe the effects of several primary factors that can affect the measuring precision. In the simulation test, the measurement accuracy was better than 0.34°. When the algorithm was tested on the polarization-detection system, the measurement accuracy was better than 0.37°. PMID:25837069

  20. Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Kumar, Prayush; Barkett, Kevin; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela; LIGO Collaboration

    2016-03-01

    Detection of gravitational wave involves extracting extremely weak signal from noisy data and their detection depends crucially on the accuracy of the signal models. The most accurate models of compact binary coalescence are known to come from solving the Einstein's equation numerically without any approximations. However, this is computationally formidable. As a more practical alternative, several analytic or semi analytic approximations are developed to model these waveforms. However, the work of Nitz et al. (2013) demonstrated that there is disagreement between these models. We present a careful follow up study on accuracies of different waveform families for spinning black-hole neutron star binaries, in context of both detection and parameter estimation and find that SEOBNRv2 to be the most faithful model. Post Newtonian models can be used for detection but we find that they could lead to large parameter bias. Supported by National Science Foundation (NSF) Awards No. PHY-1404395 and No. AST-1333142.

  1. Potential use of computer navigation in the treatment of primary benign and malignant tumors in children.

    PubMed

    Saidi, Kevan

    2012-06-01

    The treatment of benign and malignant primary bone tumors has progressed over time from relatively simple practice to complex resection and reconstruction techniques. Recently, computer-assisted orthopaedic surgery (CAOS) has been used to assist surgeons to enhance surgical precision in order to achieve these goals. Initially, software developed for CT-based spinal applications was used to perform simple intraoperative point localization. With advances in technique and software design, oncology surgeons have now performed joint sparing complex multiplanar osteotomies using combined CT and MRI image data with precision and accuracy. The purpose of this paper is to provide a review of the clinical progress to date, the different types of navigation available, methods for error management, and limitations of CAOS in the treatment of pediatric benign and malignant primary bone tumors. PMID:22488037

  2. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-11-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved.

  3. Making Precise Antenna Reflectors For Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1994-01-01

    In improved method of fabrication of precise, lightweight antenna reflectors for millimeter wavelengths, required precise contours of reflecting surfaces obtained by computer numberically controlled machining of surface layers bonded to lightweight, rigid structures. Achievable precision greater than that of older, more-expensive fabrication method involving multiple steps of low- and high-temperature molding, in which some accuracy lost at each step.

  4. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  5. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  6. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  7. Indoor waypoint navigation via magnetic anomalies.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Condon, John P; Sheikh, Suneel I; Hedin, Daniel S

    2011-01-01

    A wide assortment of technologies have been proposed to construct indoor navigation services for the blind and vision impaired. Proximity-based systems and multilateration systems have been successfully demonstrated and employed. Despite the technical success of these technologies, broad adoption has been limited due to their significant infrastructure and maintenance costs. An alternative approach utilizing the indoor magnetic signatures inherent to steel-frame buildings solves the infrastructure cost problem; in effect the existing building is the location system infrastructure. Although magnetic indoor navigation does not require the installation of dedicated hardware, the dedication of resources to produce precise survey maps of magnetic anomalies represents a further barrier to adoption. In the present work an alternative leader-follower form of waypoint-navigation system has been developed that works without surveyed magnetic maps of a site. Instead the wayfarer's magnetometer readings are compared to a pre-recorded magnetic "leader" trace containing magnetic data collected along a route and annotated with waypoint information. The goal of the navigation system is to correlate the follower's magnetometer data with the leader's to trigger audio cues at precise points along the route, thus providing location-based guidance to the user. The system should also provide early indications of off-route conditions. As part of the research effort a smartphone based application was created to record and annotate leader traces with audio and numeric data at waypoints of interest, and algorithms were developed to determine (1) when the follower reaches a waypoint and (2) when the follower goes off-route. A navigation system utilizing this technology would enable a low-cost indoor navigation system capable of replaying audio annotations at precise locations along pre-recorded routes. PMID:22255538

  8. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  9. Precision and accuracy in fluorescent short tandem repeat DNA typing: assessment of benefits imparted by the use of allelic ladders with the AmpF/STR Profiler Plus kit.

    PubMed

    Leclair, Benoît; Frégeau, Chantal J; Bowen, Kathy L; Fourney, Ron M

    2004-03-01

    Base-calling precision of short tandem repeat (STR) allelic bands on dynamic slab-gel electrophoresis systems was evaluated. Data was collected from over 6000 population database allele peaks generated from 468 population database samples amplified with the AmpF/STR Profiler Plus (PP) kit and electrophoresed on ABD 377 DNA sequencers. Precision was measured by way of standard deviations and was shown to be essentially the same, whether using fixed or floating bin genotyping. However, the allelic ladders have proven more sensitive to electrophoretic variations than database samples, which have caused some floating bins of D18S51 to shift on occasion. This observation prompted the investigation of polyacrylamide gel formulations in order to stabilize allelic ladder migration. The results demonstrate that, although alleles comprised in allelic ladders and questioned samples run on the same gel should migrate in an identical manner, this premise needs to be verified for any given electrophoresis platform and gel formulation. We show that the compilation of base-calling data is a very informative and useful tool for assessing the performance stability of dynamic gel electrophoresis systems, stability on which depends genotyping result quality. PMID:15004837

  10. System architecture for intraoperative ultrasound registration in image-based medical navigation.

    PubMed

    Dekomien, Claudia; Roeschies, Benjamin; Winter, Susanne

    2012-08-01

    Medical navigation systems for orthopedic surgery are becoming more and more important with the increasing proportion of older people in the population, and hence the increasing incidence of diseases of the musculoskeletal system. The central problem for such systems is the exact transformation of the preoperatively acquired datasets to the coordinate system of the patient's body, which is crucial for the accuracy of navigation. Our approach, based on the use of intraoperative ultrasound for image registration, is capable of robustly registering bone structures for different applications, e.g., at the spine or the knee. Nevertheless, this new procedure demands additional steps of preparation of preoperative data. To increase the clinical acceptance of this procedure, it is useful to automate most of the data processing steps. In this article, we present the architecture of our system with focus on the automation of the data processing steps. In terms of accuracy, a mean target registration error of 0.68 mm was achieved for automatically segmented and registered phantom data where the reference transformation was obtained by performing point-based registration using artificial structures. As the overall accuracy for subject data cannot be determined non-invasively, automatic segmentation and registration were judged by visual inspection and precision, which showed a promising result of 1.76 mm standard deviation for 100 registration trials based on automatic segmentation of magnetic resonance imaging data of the spine. PMID:22868778

  11. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  12. Progress in the application of VLBI to interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Border, J. S.; Donivan, F. F.; Finley, S. G.; Moultrie, B.; Newhall, X. X.; Skjerve, L. J.; Yunck, T. P.; Bletzacker, F. R.; Smith, C. B.

    1983-01-01

    In comparison with conventional range and Doppler, VLBI data from a spacecraft and an angularly nearby extragalactic radio source have the potential of providing significant improvements in deep space navigation performance. Observations of the Voyager spacecraft at Saturn, the Pioneer orbiter at Venus, and clusters of natural radio sources are being used to validate these new navigation data types. This paper briefly describes a few of the navigation applications of VLBI, and gives estimates of the measurement accuracies that can be achieved. Recent results are presented which show current VLBI system accuracy at or near the expected level.

  13. Navigation Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member's semi-major axis are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or vice versa. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  14. 7.3 Communications and Navigation

    NASA Technical Reports Server (NTRS)

    Manning, Rob

    2005-01-01

    This presentation gives an overview of the networks NASA currently uses to support space communications and navigation, and the requirements for supporting future deep space missions, including manned lunar and Mars missions. The presentation addresses the Space Network, Deep Space Network, and Ground Network, why new support systems are needed, and the potential for catastrophic failure of aging antennas. Space communications and navigation are considered during Aerocapture, Entry, Descent and Landing (AEDL) only in order to precisely position, track and interact with the spacecraft at its destination (moon, Mars and Earth return) arrival. The presentation recommends a combined optical/radio frequency strategy for deep space communications.

  15. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  16. Stereotaxy, navigation and the temporal concatenation.

    PubMed

    Apuzzo, M L; Chen, J C

    1999-01-01

    Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation. PMID:10853057

  17. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  18. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  19. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  20. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  1. An Efficient Real-Time Precise Point Positioning (RT-PPP) Solution for Offshore Surveys in Turkey

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Mohamed; Nurhan Çelik, Rahmi

    2016-07-01

    Recently, the international global navigation satellite systems (GNSS) service (IGS) has launched the real-time service (IGS-RTS). The IGS-RTS has shown promise accuracy in precise point positioning applications. Currently, the precise point positioning technique is used extensively in marine applications. In this study, we evaluate the accuracy of the real-time precise point positioning (RT-PPP) solution using the IGS-RTS for offshore surveys in Turkey. Dual-frequency GPS data is collected onboard a vessel and then processed using the Bernese 5.2 PPP module. The IGS-RTS precise orbit and clock products are used in order to account for the satellite orbit and clock products. To investigate the accuracy of the RT-PPP technique, the positioning accuracy is assessed and compared with the traditional double-difference solution. It is shown that the RT-PPP solution has good agreement with the double-difference solution. Also, the proposed solution efficiently fulfills the international maritime organization (IMO) standards for the offshore surveys.

  2. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  3. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  4. Sensor fusion for improved indoor navigation

    NASA Astrophysics Data System (ADS)

    Emilsson, Erika; Rydell, Joakim

    2012-09-01

    A reliable indoor positioning system providing high accuracy has the potential to increase the safety of first responders and military personnel significantly. To enable navigation in a broad range of environments and obtain more accurate and robust positioning results, we propose a multi-sensor fusion approach. We describe and evaluate a positioning system, based on sensor fusion between a foot-mounted inertial measurement unit (IMU) and a camera-based system for simultaneous localization and mapping (SLAM). The complete system provides accurate navigation in many relevant environments without depending on preinstalled infrastructure. The camera-based system uses both inertial measurements and visual data, thereby enabling navigation also in environments and scenarios where one of the sensors provides unreliable data during a few seconds. When sufficient light is available, the camera-based system generally provides good performance. The foot-mounted system provides accurate positioning when distinct steps can be detected, e.g., during walking and running, even in dark or smoke-filled environments. By combining the two systems, the integrated positioning system can be expected to enable accurate navigation in almost all kinds of environments and scenarios. In this paper we present results from initial tests, which show that the proposed sensor fusion improves the navigation solution considerably in scenarios where either the foot-mounted or camera-based system is unable to navigate on its own.

  5. Assessing the Accuracy and Precision of Inorganic Geochemical Data Produced through Flux Fusion and Acid Digestions: Multiple (60+) Comprehensive Analyses of BHVO-2 and the Development of Improved "Accepted" Values

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Scudder, R.; Dunlea, A. G.; Anderson, C. H.; Murray, R. W.

    2014-12-01

    The use of geological standard reference materials (SRMs) to assess both the accuracy and the reproducibility of geochemical data is a vital consideration in determining the major and trace element abundances of geologic, oceanographic, and environmental samples. Calibration curves commonly are generated that are predicated on accurate analyses of these SRMs. As a means to verify the robustness of these calibration curves, a SRM can also be run as an unknown item (i.e., not included as a data point in the calibration). The experimentally derived composition of the SRM can thus be compared to the certified (or otherwise accepted) value. This comparison gives a direct measure of the accuracy of the method used. Similarly, if the same SRM is analyzed as an unknown over multiple analytical sessions, the external reproducibility of the method can be evaluated. Two common bulk digestion methods used in geochemical analysis are flux fusion and acid digestion. The flux fusion technique is excellent at ensuring complete digestion of a variety of sample types, is quick, and does not involve much use of hazardous acids. However, this technique is hampered by a high amount of total dissolved solids and may be accompanied by an increased analytical blank for certain trace elements. On the other hand, acid digestion (using a cocktail of concentrated nitric, hydrochloric and hydrofluoric acids) provides an exceptionally clean digestion with very low analytical blanks. However, this technique results in a loss of Si from the system and may compromise results for a few other elements (e.g., Ge). Our lab uses flux fusion for the determination of major elements and a few key trace elements by ICP-ES, while acid digestion is used for Ti and trace element analyses by ICP-MS. Here we present major and trace element data for BHVO-2, a frequently used SRM derived from a Hawaiian basalt, gathered over a period of over two years (30+ analyses by each technique). We show that both digestion

  6. Oncology nurse navigator.

    PubMed

    Case, Mary Ann B

    2011-02-01

    The purpose of this integrative review is to explore the presence of the oncology nurse as navigator on measurable patient outcomes. Eighteen primary nursing research studies were found using combinations of the following key words: advocate, cancer, case manager, coach, certification, guide, navigator, nurse, oncology, patient navigator, pivot nurse, and continuity of care. Nurse researchers identified nursing-sensitive patient outcomes related to the time to diagnosis and appropriate treatment, effect on mood states, satisfaction, support, continuity of care, and cost outcomes. Navigator roles are expanding globally, and nurses should continue to embrace opportunities to ensure the safe passage of patients with cancer along the entire trajectory of illness and to evaluate the implications for educational preparation, research, and practice of navigators of all kinds. PMID:21278039

  7. Realtime and High Accuracy VLBI in Chinese Lunar Exploration Project

    NASA Astrophysics Data System (ADS)

    Weimin, Zheng

    The Chinese VLBI (Very Long Baseline Interferometry) Network - CVN consists of five radio telescopes and one data processing center. CVN is a powerful tracking and navigation tool in the Chinese lunar exploration projects. To meet the quick response of the CE lunar probes navigation requirements, station observation data must be sent to the VLBI center and processed in the real time mode. CVN has demonstrated its ability in the CE -1 and CE-2 missions. In December 2013, the CE-3 lander was successfully sent to the lunar surface and the Yutu rover was released. The new VLBI center and Tianma antenna came into use. During the mission, the lander carried the special Differential Oneway Range (DOR) beacon instead of the normal continuous spectrum VLBI signals. To get the high-precision result, CVN used the delta-DOR technique to track the lander with very extreme accuracy. VLBI delay residuals after orbit determination was nearly 0.5ns. The accuracy of landing position is better than 100 meters. The e-VLBI technique made the observable turnover time as short as 20~40 seconds. The same beam VLBI was used to determine the relative position between the lander and rover with meter accuracy. In the subsequent lunar missions, the new deep stations will join CVN and extend the baseline length. After the soft landing and sampling, the lander will be launched from the lunar surface and finish rendezvous and docking with the orbiter. The VLBI synthesis mapping method and the same beam VLBI can get the accurate lander location and support the rendezvous and docking procedure.

  8. Reliable location-based services from radio navigation systems.

    PubMed

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C's high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag--with a sensitivity of about 20 meters--that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  9. Reliable Location-Based Services from Radio Navigation Systems

    PubMed Central

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  10. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  11. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  12. An Evaluation of Skylight Polarization Patterns for Navigation

    PubMed Central

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen

    2015-01-01

    Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation. PMID:25763652

  13. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  14. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  15. Application of surgical navigation in styloidectomy for treating Eagle’s syndrome

    PubMed Central

    Dou, Geng; Zhang, Yu; Zong, Chunlin; Chen, Yuanli; Guo, Yuxuan; Tian, Lei

    2016-01-01

    Purpose The present study aimed to evaluate the feasibility, accuracy, and clinical effect of intraoperative navigation for resection of elongated styloid process (ESP) in Eagle’s syndrome. Patients and methods Twelve patients with Eagle’s syndrome with clinically and radiologically established diagnoses of ESP were included in this study. Preoperatively, all patients accepted three-dimensional computed tomography scan, and their skulls’ digital imaging and communications in medicine data were inputed into the navigation system workstation to make a virtual surgical plan in advance. During surgery, the intraoperative navigation was performed to excise the ESP accurately for both intraoral (without tonsillectomy) and extraoral approaches following the virtual plan. Postoperatively, the amount of bleeding, duration of operation and hospitalization, and the length of resected styloid process (SP) were measured and compared with those cases that had traditional styloidectomy without the help of surgical navigation (SN). A simple visual analog scale questionnaire was also used to assess patients’ satisfaction and the surgery effect after 3 months. Results In total, 17 SPs from 12 patients were precisely resected by intraoral parapharyngeal approach and small cervical approach with the aid of SN. No severe complications occurred in any patients. The length of resected SPs was 21.93±14.26 mm. The average amount of bleeding and duration of operation were 22.50±8.54 mL and 40.35±11.81 minutes, respectively, which were all less than with traditional styloidectomy. The visual analog scale analysis showed that the discomfort in all patients was relieved, while ten patients’ symptoms were improved greatly, and two patients had some improvement. Conclusion The higher accuracy of surgery, lesser amount of bleeding, decreased duration of surgery and hospitalization, absence of complications, and improved subjective symptoms indicated that SN is an effective and

  16. The DGPS based navigation and positioning system of the Helsinki University of Technology Short SC7 Skyvan research aircraft

    SciTech Connect

    Tauriainen, S.; Ahola, P.; Hallikainen, M.

    1996-10-01

    The typical airborne remote sensing measurements conducted by the Helsinki University of Technology laboratory of space technology require very precise navigation over the selected measurement sites. This means that both system performance as far as positioning is concerned and the actual flight track of the aircraft has to be within 10 meters. To meet these requirements, a custom made navigation system was designed and installed in the SHORT SC7 Skyvan research aircraft of the Helsinki University of Technology. The system is based on the Finnish national Differential GPS network providing positioning accuracy within a few meters within Finland. For pilot guidance, a graphical user interface with mission specific software is used to give the pilots an overview of the relative position and orientation to the measurement target. In addition, the system is used to synchronize the scientific instruments and record the actual flight track. 2 refs., 2 figs.

  17. Integrated inertial navigation system/Global Positioning System (INS/GPS) for manned return vehicle autoland application

    NASA Astrophysics Data System (ADS)

    Braden, Kevin; Browning, Clint; Gelderloos, Hendrik; Smith, Fred; Marttila, Chuck

    It is noted that with the development of the International Space Station Freedom, people will permanently live in space and require routine access and an assured crew return capability in case of emergencies in space. The extended duration in space requires a manned return vehicle that is less demanding on the crew and provides an autonomous deorbit, entry, and autoland capability. The authors discuss an autoland capability with an integrated differential GPS/INS that provides the required position and velocity accuracies without the need for tactical aircraft navigation (TACAN) and Microwave Landing System (MLS) navigation aides. Simulation results are used to demonstrate the feasibility of autoland using differential GPS aided with a high-precision altimeter. This concept applies to several manned space applications, such as Assured Crew Return Vehicle (ACRV), Assured Shuttle Availability (ASA), Advanced Manned Launch System (AMLS), and National Aerospace Plane (NASP), and to unmanned return vehicles such as the Propulsion Avionics Module (P/AM).

  18. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  19. A novel navigation method used in a ballistic missile

    NASA Astrophysics Data System (ADS)

    Qian, Hua-ming; Sun, Long; Cai, Jia-nan; Peng, Yu

    2013-10-01

    The traditional strapdown inertial/celestial integrated navigation method used in a ballistic missile cannot accurately estimate the accelerometer bias. It might cause a divergence of navigation errors. To solve this problem, a new navigation method named strapdown inertial/starlight refractive celestial integrated navigation is proposed. To verify the feasibility of the proposed method, a simulated program of a ballistic missile is presented. The simulation results indicated that, when multiple refraction stars are used, the proposed method can accurately estimate the accelerometer bias, and suppress the divergence of navigation errors completely. Specifically, in order to apply this method to a ballistic missile, a novel measurement equation based on stellar refraction was developed. Furthermore a method to calculate the number of refraction stars observed by the stellar sensor was given. Finally, the relationship between the number of refraction stars used and the navigation accuracy is analysed.

  20. Precision guided parachute LDRD final report

    SciTech Connect

    Gilkey, J.C.

    1996-07-01

    This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.

  1. High-precision onboard orbit determination for small satellites - the GPS-based XNSon X-SAT

    NASA Astrophysics Data System (ADS)

    Gill, E.; Montenbruck, O.; Arichandran, K.; Tan, S.H.; Bretschneider

    2004-11-01

    X-SAT is a mini-satellite developed by the Satellite Engineering Centre of the Nanyang Technological University at Singapore. The focus of the technology- driven mission is the high-resolution remote sensing of the Southeast Asian region for environmental monitoring. To achieve the ambitious mission objectives, the GPS-based X-SAT Navigation System (XNS) will provide high-precision onboard orbit determination solutions as well as orbit forecasts. With a targeted real-time position accuracy of about 1-2 m 3D r.m.s., the XNS provides an unprecedented accuracy performance and thus enables the support of any satellite mission which requires precise onboard position knowledge.

  2. Algorithm for navigated ESS.

    PubMed

    Baudoin, T; Grgić, M V; Zadravec, D; Geber, G; Tomljenović, D; Kalogjera, L

    2013-12-01

    ENT navigation has given new opportunities in performing Endoscopic Sinus Surgery (ESS) and improving surgical outcome of the patients` treatment. ESS assisted by a navigation system could be called Navigated Endoscopic Sinus Surgery (NESS). As it is generally accepted that the NESS should be performed only in cases of complex anatomy and pathology, it has not yet been established as a state-of-the-art procedure and thus not used on a daily basis. This paper presents an algorithm for use of a navigation system for basic ESS in the treatment of chronic rhinosinusitis (CRS). The algorithm includes five units that should be highlighted using a navigation system. They are as follows: 1) nasal vestibule unit, 2) OMC unit, 3) anterior ethmoid unit, 4) posterior ethmoid unit, and 5) sphenoid unit. Each unit has a shape of a triangular pyramid and consists of at least four reference points or landmarks. As many landmarks as possible should be marked when determining one of the five units. Navigated orientation in each unit should always precede any surgical intervention. The algorithm should improve the learning curve of trainees and enable surgeons to use the navigation system routinely and systematically. PMID:24260766

  3. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  4. Algorithmic solution for autonomous vision-based off-road navigation

    NASA Astrophysics Data System (ADS)

    Kolesnik, Marina; Paar, Gerhard; Bauer, Arnold; Ulm, Michael

    1998-07-01

    A vision based navigation system is a basic tool to provide autonomous operations of unmanned vehicles. For offroad navigation that means that the vehicle equipped with a stereo vision system and perhaps a laser ranging device shall be able to maintain a high level of autonomy under various illumination conditions and with little a priori information about the underlying scene. The task becomes particularly important for unmanned planetary exploration with the help of autonomous rovers. For example in the LEDA Moon exploration project currently under focus by the European Space Agency (ESA), during the autonomous mode the vehicle (rover) should perform the following operations: on-board absolute localization, elevation model (DEM) generation, obstacle detection and relative localization, global path planning and execution. Focus of this article is a computational solution for fully autonomous path planning and path execution. An operational DEM generation method based on stereoscopy is introduced. Self-localization on the DEM and robust natural feature tracking are used as basic navigation steps, supported by inertial sensor systems. The following operations are performed on the basis of stereo image sequences: 3D scene reconstruction, risk map generation, local path planning, camera position update during the motion on the basis of landmarks tracking, obstacle avoidance. Experimental verification is done with the help of a laboratory terrain mockup and a high precision camera mounting device. It is shown that standalone tracking using automatically identified landmarks is robust enough to give navigation data for further stereoscopic reconstruction of the surrounding terrain. Iterative tracking and reconstruction leads to a complete description of the vehicle path and its surrounding with an accuracy high enough to meet the specifications for autonomous outdoor navigation.

  5. Precise Real-Time Low Earth Orbitor Navigation With GPS

    NASA Technical Reports Server (NTRS)

    Bertiger, W.; Haines, B.; Kuang, D.; Lough, M.; Lichten, S.; Muellerschoen, R. J.; Vigue, Y.; Wu, S.

    1998-01-01

    Technology is currently available to support real-time on-board knowledge of the position of a low earth orbitor at the 5-15 meter level using the civilian broadcast GPS signal with sophisticated models and filtering techniques onboard the spacecraft.

  6. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data, and the Southwest Pacific campaign data analysis.

  7. Precision orbit computations for Starlette

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Williamson, R. G.

    1976-01-01

    The Starlette satellite, launched in February 1975 by the French Centre National d'Etudes Spatiales, was designed to minimize the effects of nongravitational forces and to obtain the highest possible accuracy for laser range measurements. Analyses of the first four months of global laser tracking data confirmed the stability of the orbit and the precision to which the satellite's position is established.

  8. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  9. Shifting the Intertial Navigation Paradigm with the MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy P., II; Bishop, Robert H.; Brady, Tye

    2010-01-01

    "Why don't you use MEMS?" is of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors in several key metrics. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the scaled error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry trajectory will be explored.

  10. Shifting the Inertial Navigation Paradigm with MEMS Technology

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Brady, Tye; Bishop, Robert H.

    2010-01-01

    Why don t you use MEMS? is one of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the specific error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary applications to Constellation vehicles will be explored.

  11. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    PubMed Central

    Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong

    2015-01-01

    In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation<