Science.gov

Sample records for accuracy precision repeatability

  1. Tomography & Geochemistry: Precision, Repeatability, Accuracy and Joint Interpretations

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Panza, G. F.; Artemieva, I. M.; Bastow, I. D.; Cammarano, F.; Doglioni, C.; Evans, J. R.; Hamilton, W. B.; Julian, B. R.; Lustrino, M.; Thybo, H.; Yanovskaya, T. B.

    2015-12-01

    Seismic tomography can reveal the spatial seismic structure of the mantle, but has little ability to constrain composition, phase or temperature. In contrast, petrology and geochemistry can give insights into mantle composition, but have severely limited spatial control on magma sources. For these reasons, results from these three disciplines are often interpreted jointly. Nevertheless, the limitations of each method are often underestimated, and underlying assumptions de-emphasized. Examples of the limitations of seismic tomography include its ability to image in detail the three-dimensional structure of the mantle or to determine with certainty the strengths of anomalies. Despite this, published seismic anomaly strengths are often unjustifiably translated directly into physical parameters. Tomography yields seismological parameters such as wave speed and attenuation, not geological or thermal parameters. Much of the mantle is poorly sampled by seismic waves, and resolution- and error-assessment methods do not express the true uncertainties. These and other problems have become highlighted in recent years as a result of multiple tomography experiments performed by different research groups, in areas of particular interest e.g., Yellowstone. The repeatability of the results is often poorer than the calculated resolutions. The ability of geochemistry and petrology to identify magma sources and locations is typically overestimated. These methods have little ability to determine source depths. Models that assign geochemical signatures to specific layers in the mantle, including the transition zone, the lower mantle, and the core-mantle boundary, are based on speculative models that cannot be verified and for which viable, less-astonishing alternatives are available. Our knowledge is poor of the size, distribution and location of protoliths, and of metasomatism of magma sources, the nature of the partial-melting and melt-extraction process, the mixing of disparate

  2. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  3. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement.

  4. Precision cosmology, Accuracy cosmology and Statistical cosmology

    NASA Astrophysics Data System (ADS)

    Verde, Licia

    2014-05-01

    The avalanche of data over the past 10-20 years has propelled cosmology into the ``precision era''. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available now and coming soon, the only way to meet this challenge is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples.

  5. Ultra-wideband ranging precision and accuracy

    NASA Astrophysics Data System (ADS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-09-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer-Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging.

  6. Precision orbit determination for the GEOSAT exact repeat mission

    NASA Astrophysics Data System (ADS)

    Smith, J. C.; Ries, J. C.; Shum, C. K.; Schutz, B. E.; Tapley, B. D.

    The Navy's Geodetic Satellite (GEOSAT) was launched on March 12, 1985, carrying a single-frequency microwave altimeter which measures the height of the satellite above the ocean surface to a precision of a few centimeters. The GEOSAT Exact Repeat Mission (ERM), which was initiated in November of 1986, placed the spacecraft in an exact 17 day repeat orbit. The Geophysical Data Records (GDR) for the ERM are available to the scientific community. GEOSAT is tracked by the Navy's OPNET and the Defense Mapping Agency's TRANET doppler tracking systems. The GDR orbits are computed using the OPNET tracking data and have an rms radial accuracy of one to two meters. The initial eighty days of the TRANET data during the ERM were made available for the assessment of the TRANET tracking system to perform precision orbit determination for the Topex/Poseidon Mission. This data was used to compute GEOSAT orbits using an improved gravity model which has been developed as part of the Topex gravity model improvement effort. Accuracy of the orbit was evaluated using altimeter crossover data. For a continuous 17 day GEOSAT orbit, the global crossover rms is at the 35 cm level, which suggests a radial orbit accuracy also on the order of 35 cm.

  7. Characterizing geometric accuracy and precision in image guided gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Tenn, Stephen Edward

    Gated radiotherapy combined with intensity modulated or three-dimensional conformal radiotherapy for tumors in the thorax and abdomen can deliver dose distributions which conform closely to tumor shapes allowing increased tumor dose while sparing healthy tissues. These conformal fields require more accurate and precise placement than traditional fields or tumors may receive suboptimal dose thereby reducing tumor control probability. Image guidance based on four-dimensional computed tomography (4DCT) provides a means to improve accuracy and precision in radiotherapy. The ability of 4DCT to accurately reproduce patient geometry and the ability of image guided gating equipment to position tumors and place fields around them must be characterized in order to determine treatment parameters such as tumor margins. Fiducial based methods of characterizing accuracy and precision of equipment for 4DCT planning and image guided gated radiotherapy (IGGRT) are presented with results for specific equipment. Fiducial markers of known geometric orientation are used to characterize 4DCT image reconstruction accuracy. Accuracy is determined under different acquisition protocols, reconstruction phases, and phantom trajectories. Targeting accuracy of fiducial based image guided gating is assessed by measuring in-phantom field positions for different motions, gating levels and target rotations. Synchronization parameters for gating equipment are also determined. Finally, end-to-end testing is performed to assess overall accuracy and precision of the equipment under controlled conditions. 4DCT limits fiducial geometric distance errors to 2 mm for repeatable target trajectories and to 5 mm for a pseudo-random trajectory. Largest offsets were in the longitudinal direction. If correctly calibrated and synchronized, the IGGRT system tested here can target reproducibly moving tumors with accuracy better than 1.2 mm. Gating level can affect accuracy if target motion is asymmetric about the

  8. [History, accuracy and precision of SMBG devices].

    PubMed

    Dufaitre-Patouraux, L; Vague, P; Lassmann-Vague, V

    2003-04-01

    Self-monitoring of blood glucose started only fifty years ago. Until then metabolic control was evaluated by means of qualitative urinary blood measure often of poor reliability. Reagent strips were the first semi quantitative tests to monitor blood glucose, and in the late seventies meters were launched on the market. Initially the use of such devices was intended for medical staff, but thanks to handiness improvement they became more and more adequate to patients and are now a necessary tool for self-blood glucose monitoring. The advanced technologies allow to develop photometric measurements but also more recently electrochemical one. In the nineties, improvements were made mainly in meters' miniaturisation, reduction of reaction time and reading, simplification of blood sampling and capillary blood laying. Although accuracy and precision concern was in the heart of considerations at the beginning of self-blood glucose monitoring, the recommendations of societies of diabetology came up in the late eighties. Now, the French drug agency: AFSSAPS asks for a control of meter before any launching on the market. According to recent publications very few meters meet reliability criteria set up by societies of diabetology in the late nineties. Finally because devices may be handled by numerous persons in hospitals, meters use as possible source of nosocomial infections have been recently questioned and is subject to very strict guidelines published by AFSSAPS.

  9. Precision orbit determination for the Geosat Exact Repeat Mission

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Yuan, D. N.; Ries, J. C.; Smith, J. C.; Schutz, B. E.

    1990-01-01

    Precise ephemerides have been determined for the U.S. Navy Geosat Exact Repeat Mission (ERM) using an improved gravity-field model, PTGF-4A (Shum et al. 1989). The Geosat orbits were computed in a terrestrial reference system which is tied to the reference system defined by satellite laser ranging (SLR) to Lageos through a survey between the Tranet Doppler receiver and the SLR system located at Wettzell, FRG. The remaining Doppler tracking station coordinates were estimated simultaneously with the geopotential in the PTGF-4A solution. In this analysis, three continuous 17-day Geosat orbits, which were computed using the 46-station Tranet data and global altimeter crossover data, have a crossover residual rms of 20 cm, indicating that the Geosat radial orbit error is of the order of 20 cm. The orbits computed based on data collected by a 7-station OPNET tracking network and crossover data have the same level of accuracy.

  10. Precision orbit determination for the Geosat Exact Repeat Mission

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Yuan, D. N.; Ries, J. C.; Smith, J. C.; Schutz, B. E.

    1990-03-01

    Precise ephemerides have been determined for the U.S. Navy Geosat Exact Repeat Mission (ERM) using an improved gravity-field model, PTGF-4A (Shum et al. 1989). The Geosat orbits were computed in a terrestrial reference system which is tied to the reference system defined by satellite laser ranging (SLR) to Lageos through a survey between the Tranet Doppler receiver and the SLR system located at Wettzell, FRG. The remaining Doppler tracking station coordinates were estimated simultaneously with the geopotential in the PTGF-4A solution. In this analysis, three continuous 17-day Geosat orbits, which were computed using the 46-station Tranet data and global altimeter crossover data, have a crossover residual rms of 20 cm, indicating that the Geosat radial orbit error is of the order of 20 cm. The orbits computed based on data collected by a 7-station OPNET tracking network and crossover data have the same level of accuracy.

  11. Precise Electrochemical Drilling of Repeated Deep Holes

    NASA Technical Reports Server (NTRS)

    Kincheloe, J. P.

    1985-01-01

    Tooling enables maintenance of close tolerances. Tooling includes guide that holds electrochemical drilling electrodes in proper relative alinement and guide-positioning fixture clamps directly on reference surfaces of strut. High precision achieved by positioning tooling anew on each strut before drilling: Tolerances of (0.008 mm) maintained in some details.

  12. Establishing precision and accuracy in PDV results

    SciTech Connect

    Briggs, Matthew E.; Howard, Marylesa; Diaz, Abel

    2016-04-19

    We need to know uncertainties and systematic errors because we create and compare against archival weapons data, we constrain the models, and we provide scientific results. Good estimates of precision from the data record are available and should be incorporated into existing results; reanalysis of valuable data is suggested. Estimates of systematic errors are largely absent. The original work by Jensen et al. using gun shots for window corrections, and the integrated velocity comparison with X-rays by Schultz are two examples where any systematic errors appear to be <1% level.

  13. Precision and Accuracy of Topography Measurements on Europa

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Hurford, T. A.; Foley, M. A.; Varland, K.

    2007-03-01

    Reports of the death of the melt-through model for chaotic terrain on Europa have been greatly exaggerated, to paraphrase Mark Twain. They are based on topographic maps of insufficient quantitative accuracy and precision.

  14. A study of laseruler accuracy and precision (1986-1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate Laserruler accuracy and precision. Tests were performed on 0.050 in., 0.100 in., and 0.120 in. gauge block standards. Results showed and accuracy of 3.7 {mu}in. for the 0.12 in. standard, with higher accuracies for the two thinner blocks. The Laserruler precision was 4.83 {mu}in. for the 0.120 in. standard, 3.83 {mu}in. for the 0.100 in. standard, and 4.2 {mu}in. for the 0.050 in. standard.

  15. On precision and accuracy (bias) statements for measurement procedures

    SciTech Connect

    Bruckner, L.A.; Hume, M.W.; Delvin, W.L.

    1988-01-01

    Measurement procedures are often required to contain precision and accuracy of precision and bias statements. This paper contains a glossary that explains various terms that often appear in these statements as well as an example illustrating such statements for a specific set of data. Precision and bias statements are shown to vary according to the conditions under which the data were collected. This paper emphasizes that the error model (an algebraic expression that describes how the various sources of variation affect the measurement) is an important consideration in the formation of precision and bias statements.

  16. Precise estimation of repeating earthquake moment: Example from parkfield, california

    USGS Publications Warehouse

    Rubinstein, J.L.; Ellsworth, W.L.

    2010-01-01

    We offer a new method for estimating the relative size of repeating earthquakes using the singular value decomposition (SVD). This method takes advantage of the highly coherent waveforms of repeating earthquakes and arrives at far more precise and accurate descriptions of earthquake size than standard catalog techniques allow. We demonstrate that uncertainty in relative moment estimates is reduced from ??75% for standard coda-duration techniques employed by the network to an uncertainty of ??6.6% when the SVD method is used. This implies that a single-station estimate of moment using the SVD method has far less uncertainty than the whole-network estimates of moment based on coda duration. The SVD method offers a significant improvement in our ability to describe the size of repeating earthquakes and thus an opportunity to better understand how they accommodate slip as a function of time.

  17. Accuracy and precision of temporal artery thermometers in febrile patients.

    PubMed

    Wolfson, Margaret; Granstrom, Patsy; Pomarico, Bernie; Reimanis, Cathryn

    2013-01-01

    The noninvasive temporal artery thermometer offers a way to measure temperature when oral assessment is contraindicated, uncomfortable, or difficult to obtain. In this study, the accuracy and precision of the temporal artery thermometer exceeded levels recommended by experts for use in acute care clinical practice.

  18. Feasibility, Accuracy, and Repeatability of Suprathreshold Saccadic Vector Optokinetic Perimetry

    PubMed Central

    Murray, Ian C.; Cameron, Lorraine A.; McTrusty, Alice D.; Perperidis, Antonios; Brash, Harry M.; Fleck, Brian W.; Minns, Robert A.

    2016-01-01

    Purpose To evaluate feasibility, accuracy, and repeatability of suprathreshold Saccadic Vector Optokinetic Perimetry (SVOP) by comparison with Humphrey Field Analyzer (HFA) perimetry. Methods The subjects included children with suspected field defects (n = 10, age 5–15 years), adults with field defects (n = 33, age 39–78 years), healthy children (n = 12, age 6–14 years), and healthy adults (n = 30, age 16–61 years). The test protocol comprised repeat suprathreshold SVOP and HFA testing with the C-40 test pattern. Feasibility was assessed by protocol completeness. Sensitivity, specificity, and accuracy of SVOP was established by comparison with reliable HFA tests in two ways: (1) visual field pattern results (normal/abnormal), and (2) individual test point outcomes (seen/unseen). Repeatability of each test type was assessed using Cohen's kappa coefficient. Results Of subjects, 82% completed a full protocol. Poor reliability of HFA testing in child patients limited the robustness of comparisons in this group. Sensitivity, specificity, and accuracy across all groups when analyzing the visual field pattern results was 90.9%, 88.5%, and 89.0%, respectively, and was 69.1%, 96.9%, and 95.0%, respectively, when analyzing the individual test points. Cohen's kappa coefficient for repeatability of SVOP and HFA was excellent (0.87 and 0.88, respectively) when assessing visual field pattern results, and substantial (0.62 and 0.74, respectively) when assessing test point outcomes. Conclusions SVOP was accurate in this group of adults. Further studies are required to assess SVOP in child patient groups. Translational Relevance SVOP technology is still in its infancy but is used in a number of centers. It will undergo iterative improvements and this study provides a benchmark for future iterations. PMID:27617181

  19. Meter Accuracy Seafloor Geodesy using Repeated Multibeam Surveys

    NASA Astrophysics Data System (ADS)

    DeSanto, J. B.; Sandwell, D. T.

    2014-12-01

    Ship-board multibeam surveys are a useful tool in measuring tectonic deformation of the seafloor, having been used to measure the ~50 m of surface slip along the Japan trench during the 2011 Tohoku-Oki earthquake with an uncertainty of 20 m (Fujiwara et al, 2011, Science). In this study, we investigate the improvement in positioning accuracy obtainable when comparing multibeam and sidescan surveys repeated along the same track to within 1/10 of the critical baseline and taken at a slow ship speed of 1 knot. We compare two surveys of the Juan de Fuca Ridge axis fitting these criteria with two coincident surveys of the Cocos Ridge, taken at 11 knots. Both pairs of surveys were collected using a Simrad EM120 sonar system aboard the RV Roger Revelle. We find the multibeam surveys of the Juan de Fuca ridge axis sufficient to measure displacements accurate to better than 2 m, a marked improvement over the 50 m accuracy of the Cocos ridge surveys. Likewise, we can measure displacement accurate to 2 m using the sidescan data from the Juan de Fuca surveys. This accuracy is sufficient to observe meter-level horizontal movements on the deep ocean associated with large earthquakes and landslides.

  20. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  1. Accuracy, precision, and lower detection limits (a deficit reduction approach)

    SciTech Connect

    Bishop, C.T.

    1993-10-12

    The evaluation of the accuracy, precision and lower detection limits of the determination of trace radionuclides in environmental samples can become quite sophisticated and time consuming. This in turn could add significant cost to the analyses being performed. In the present method, a {open_quotes}deficit reduction approach{close_quotes} has been taken to keep costs low, but at the same time provide defensible data. In order to measure the accuracy of a particular method, reference samples are measured over the time period that the actual samples are being analyzed. Using a Lotus spreadsheet, data are compiled and an average accuracy is computed. If pairs of reference samples are analyzed, then precision can also be evaluated from the duplicate data sets. The standard deviation can be calculated if the reference concentrations of the duplicates are all in the same general range. Laboratory blanks are used to estimate the lower detection limits. The lower detection limit is calculated as 4.65 times the standard deviation of a set of blank determinations made over a given period of time. A Lotus spreadsheet is again used to compile data and LDLs over different periods of time can be compared.

  2. The Plus or Minus Game - Teaching Estimation, Precision, and Accuracy

    NASA Astrophysics Data System (ADS)

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-03-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in TPT (Larry Weinstein's "Fermi Questions.") For several years the authors (a college physics professor, a retired algebra teacher, and a fifth-grade teacher) have been playing a game, primarily at home to challenge each other for fun, but also in the classroom as an educational tool. We call the game "The Plus or Minus Game." The game combines estimation with the principle of precision and uncertainty in a competitive and fun way.

  3. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    PubMed

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-04-14

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  4. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    PubMed Central

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  5. Calibration, linearity, precision, and accuracy of a PIXE system

    NASA Astrophysics Data System (ADS)

    Richter, F.-W.; Wätjen, U.

    1984-04-01

    An accuracy and precision of better than 10% each can be achieved with PIXE analysis, with both thin and thick samples. Measures we took to obtain these values for routine analyses in the Marburg PIXE system are discussed. The advantages of an experimental calibration procedure, using thin evaporated standard foils, over the "absolute" method of employing X-ray production cross sections are outlined. The importance of X-ray line intensity ratios, even of weak transitions, for the accurate analysis of interfering elements of low mass content is demonstrated for the Se K α-Pb L ηline overlap. Matrix effects including secondary excitation can be corrected for very well without degrading accuracy under certain conditions.

  6. Fluorescence Axial Localization with Nanometer Accuracy and Precision

    SciTech Connect

    Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

    2012-06-15

    We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

  7. Precise orbit computation for the Geosat Exact Repeat Mission

    NASA Technical Reports Server (NTRS)

    Haines, Bruce J.; Born, George H.; Rosborough, George W.; Marsh, James G.; Williamson, Ronald G.

    1990-01-01

    Results are reported from an extensive investigation of orbit-determination strategies for the Geosat Exact Repeat Mission (ERM). The goal is to establish optimum geodetic parameters and procedures for the computation of the most accurate Geosat orbits possible and to apply these procedures for routine computation during the ERM for the following purposes: (1) to enhance the value of the Geosat oceanographic investigations by providing the user community with improved ephemerides, (2) to develop orbit determination techniques for the upcoming altimetric mission Topex/Poseidon, and (3) to assess the radial orbit accuracy obtainable with recently developed gravity models. To this end, ephemerides for the entire first year of the ERM have been computed using the GEODYN II orbit program on the Cyber 205 supercomputer system at the NASA Goddard.

  8. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    NASA Astrophysics Data System (ADS)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  9. The Precise Location of the Soft Gamma Repeater SGR 1627-41 with Chandra

    NASA Technical Reports Server (NTRS)

    Wachter, S.; Kouveliotou, C.; Patel, S. K.; Tennant, A. F.; Woods, P. M.; Eichler, D.; Lyubarsky, Y.; Bouchet, P.

    2003-01-01

    We report the precise localization of the Soft Gamma Repeater SGR 1627-41 with the Chandra X-ray Observatory. The best position for SGR 1627-41 was determined to be RA=16:35:51.844, DEC=-47:35:23.31 (J2000) with an accuracy of 0.6 arcsec. We present the results of our search for an IR counterpart to SGR 1627-41 and compare our results to the existing detections and limits of other magnetar infrared and optical observations in the literature. We also present new observations of SGR 1806-20 obtained during the recent reactivation of the source. In addition, we have determined a precise location for archival Chandra observations and reanalyzed archival IR data in the search for a counterpart.

  10. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  11. Accuracy and repeatability of Roentgen stereophotogrammetric analysis (RSA) for measuring knee laxity in longitudinal studies.

    PubMed

    Fleming, B C; Peura, G D; Abate, J A; Beynnon, B D

    2001-10-01

    Roentgen stereophotogrammetric analysis (RSA) can be used to assess temporal changes in anterior-posterior (A-P) knee laxity. However, the accuracy and precision of RSA is dependent on many factors and should be independently evaluated for a particular application. The objective of this study was to evaluate the use of RSA for measuring A-P knee laxity. The specific aims were to assess the variation or "noise" inherent to RSA, to determine the reproducibility of RSA for repeated A-P laxity testing, and to assess the accuracy of these measurements. Two experiments were performed. The first experiment utilized three rigid models of the tibiofemoral joint to assess the noise and to compare digitization errors of two independent examiners. No differences were found in the kinematic outputs of the RSA due to examiner, repeated trials, or the model used. In a second experiment, A-P laxity values between the A-P shear load limits of +/-60 N of five cadaver goat knees were measured to assess the error associated with repeated testing. The RSA laxity values were also compared to those obtained from a custom designed linkage system. The mean A-P laxity values with the knee 30 degrees, 60 degrees, and 90 degrees of flexion for the ACL-intact goat knee (+/-95% confidence interval) were 0.8 (+/-0.25), 0.9 (+/-0.29), and 0.4 (+/-0.22) mm, respectively. In the ACL-deficient knee, the A-P laxity values increased by an order of magnitude to 8.8 (+/-1.39), 7.6 (+/-1.32), and 3.1 (+/-1.20)mm, respectively. No significant differences were found between the A-P laxity values measured by RSA and the independent measurement technique. A highly significant linear relationship (r(2)=0.83) was also found between these techniques. This study suggests that the RSA method is an accurate and precise means to measure A-P knee laxity for repeated testing over time.

  12. Precision of repeated, Doppler-derived indirect blood pressure measurements in conscious psittacine birds.

    PubMed

    Johnston, Matthew S; Davidowski, Leslie A; Rao, Sangeeta; Hill, Ashley E

    2011-06-01

    Although the use of indirect methods for measuring blood pressure has become commonplace in dogs and cats, it is uncertain whether these methods can be extended to avian species with any proven accuracy or precision. To evaluate the precision of indirect blood pressure measurement in conscious psittacine birds by the Doppler flow method, 25 psittacine birds, weighing between 230 and 1263 g and representing 17 commonly kept species, were examined. Birds were manually restrained, and indirect blood pressure measurements were obtained by placing a cuff around the limb proximal to a Doppler ultrasonic flow detector held over either the basilic or cranial tibial artery. Three sets of 3 measurements were obtained from each wing and leg site, with cuff size and site based on pilot study data identifying the selection criteria of cuff placement with the least variance among repeated measurements. A mixed-effects linear regression analysis was performed to evaluate the differences among mean blood pressure measurements in the individual bird, obtained from the wing versus leg site as well as from 3 different cuff placements at each site. Results showed variation attributable to the limb was not significant. However, blood pressure measurements varied significantly between cuff placements on the same limb from the same bird and among individual birds. The precision of these indirect blood pressure measurements was poor. From these results, the meaning and value of Doppler-derived indirect blood pressure measurements obtained in psittacine birds remains in question, warranting further research.

  13. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  14. Precise determination of the helical repeat of tobacco mosaic virus

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Stubbs, Gerald

    2007-12-05

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 A. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-} 0.03 A by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  15. Precise Determination of the Helical Repeat of Tobacco Mosaic Virus

    SciTech Connect

    Kendall, A.; McDonald, M.; Stubbs, G.

    2009-06-01

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 {angstrom}. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-}0.03 {angstrom} by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  16. Improvement in precision, accuracy, and efficiency in sstandardizing the characterization of granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Benyahia, Sofiane; Mei, Joseph; Guenther, Chris; Koepke, M. E.

    2013-01-01

    Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future desig

  17. Mineral element analyses of switchgrass biomass: comparison of the accuracy and precision of laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineral concentration of plant biomass can affect its use in thermal conversion to energy. The objective of this study was to compare the precision and accuracy of university and private laboratories that conduct mineral analyses of plant biomass on a fee basis. Accuracy and precision of the laborat...

  18. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  19. Accuracy and Precision of GPS Carrier-Phase Clock Estimates

    DTIC Science & Technology

    2001-01-01

    L‘Geodesy using the Global Positioning System : The eflects of signal scattering o n esti- mates of site positions , ” Journal of Geophysical Research...maia.usno.navy.mil Abstract The accuracy of GPS -based clock estimates is determined by the pseudorange data. For 24-hour arcs of global data sampled...ps) for 1-day integrations. Assuming such positioning results can be realized also as equivalent light-travel times, the po- tential of GPS carrier

  20. Sub-meter Range Precision of Seafloor Deformation Obtainable from Correlation of Repeated Raw Sidescan Sonar Surveys

    NASA Astrophysics Data System (ADS)

    DeSanto, J. B.; Sandwell, D. T.; Chadwell, C. D.

    2015-12-01

    Despite recent advances in the field of seafloor geodesy, our ability to collect data to monitor for marine hazards or increase our understanding of offshore geologic processes remains limited by the exorbitant cost of data collection. We propose to measure horizontal seafloor displacements using raw sidescan data from repeated multibeam surveys. We grid the data in a natural range and azimuth coordinate frame, and estimate displacement from the peak offset of their normalized cross correlation. This method allows us to obtain sub-pixel accuracy in our displacement calculation as it involves averaging the data over a wide area. Our overall objective is to establish the accuracy of this method and determine how it depends on factors such as: ship speed, repeat track separation, seafloor characteristics, sound speed variations, and ping orientation. We analyze sidescan data archived at the NGDC database that vary over these parameters, finding that under optimal conditions we may obtain decimeter to meter level precision in the range direction and meter level precision in the azimuthal direction. The most important parameter is the ping orientation because small (~2-3 degrees) variations can drastically lower the maximum correlation value. Differing ship speed can cause large reductions in the correlation accuracy, although these effects are more pronounced in the azimuthal direction. Surprisingly, variations in sound speed are partially mitigated by data averaging over both sides of the ship. In addition, the characteristics of the seafloor seem to have minimal influence over the displacement accuracy.

  1. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  2. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  3. Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1998-01-01

    Expands upon the concepts of precision and accuracy at a level suitable for general chemistry. Serves as a bridge to the more extensive treatments in analytical chemistry textbooks and the advanced literature on error analysis. Contains 22 references. (DDR)

  4. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  5. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    NASA Astrophysics Data System (ADS)

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-05-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis.

  6. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Verifications for accuracy, repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications §...

  7. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Verifications for accuracy, repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications §...

  8. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Verifications for accuracy, repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications §...

  9. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Verifications for accuracy, repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications §...

  10. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Verifications for accuracy, repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications §...

  11. In vivo estimation of the glenohumeral joint centre by functional methods: accuracy and repeatability assessment.

    PubMed

    Lempereur, Mathieu; Leboeuf, Fabien; Brochard, Sylvain; Rousset, Jean; Burdin, Valérie; Rémy-Néris, Olivier

    2010-01-19

    Several algorithms have been proposed for determining the centre of rotation of ball joints. These algorithms are used rather to locate the hip joint centre. Few studies have focused on the determination of the glenohumeral joint centre. However, no studies have assessed the accuracy and repeatability of functional methods for glenohumeral joint centre. This paper aims at evaluating the accuracy and the repeatability with which the glenohumeral joint rotation centre (GHRC) can be estimated in vivo by functional methods. The reference joint centre is the glenohumeral anatomical centre obtained by medical imaging. Five functional methods were tested: the algorithm of Gamage and Lasenby (2002), bias compensated (Halvorsen, 2003), symmetrical centre of rotation estimation (Ehrig et al., 2006), normalization method (Chang and Pollard, 2007), helical axis (Woltring et al., 1985). The glenohumeral anatomical centre (GHAC) was deduced from the fitting of the humeral head. Four subjects performed three cycles of three different movements (flexion/extension, abduction/adduction and circumduction). For each test, the location of the glenohumeral joint centre was estimated by the five methods. Analyses focused on the 3D location, on the repeatability of location and on the accuracy by computing the Euclidian distance between the estimated GHRC and the GHAC. For all the methods, the error repeatability was inferior to 8.25 mm. This study showed that there are significant differences between the five functional methods. The smallest distance between the estimated joint centre and the centre of the humeral head was obtained with the method of Gamage and Lasenby (2002).

  12. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.

    PubMed

    Wilson, Derek C; Niosi, Christina A; Zhu, Qingan A; Oxland, Thomas R; Wilson, David R

    2006-01-01

    We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.

  13. Accuracy and repeatability of the gait analysis by the WalkinSense system.

    PubMed

    de Castro, Marcelo P; Meucci, Marco; Soares, Denise P; Fonseca, Pedro; Borgonovo-Santos, Márcio; Sousa, Filipa; Machado, Leandro; Vilas-Boas, João Paulo

    2014-01-01

    WalkinSense is a new device designed to monitor walking. The aim of this study was to measure the accuracy and repeatability of the gait analysis performed by the WalkinSense system. Descriptions of values recorded by WalkinSense depicting typical gait in adults are also presented. A bench experiment using the Trublu calibration device was conducted to statically test the WalkinSense. Following this, a dynamic test was carried out overlapping the WalkinSense and the Pedar insoles in 40 healthy participants during walking. Pressure peak, pressure peak time, pressure-time integral, and mean pressure at eight-foot regions were calculated. In the bench experiments, the repeatability (i) among the WalkinSense sensors (within), (ii) between two WalkinSense devices, and (iii) between the WalkinSense and the Trublu devices was excellent. In the dynamic tests, the repeatability of the WalkinSense (i) between stances in the same trial (within-trial) and (ii) between trials was also excellent (ICC > 0.90). When the eight-foot regions were analyzed separately, the within-trial and between-trials repeatability was good-to-excellent in 88% (ICC > 0.80) of the data and fair in 11%. In short, the data suggest that the WalkinSense has good-to-excellent levels of accuracy and repeatability for plantar pressure variables.

  14. Accuracy and repeatability of an optical motion analysis system for measuring small deformations of biological tissues.

    PubMed

    Liu, Helen; Holt, Cathy; Evans, Sam

    2007-01-01

    Optical motion analysis techniques have been widely used in biomechanics for measuring large-scale motions such as gait, but have not yet been significantly explored for measuring smaller movements such as the tooth displacements under load. In principle, very accurate measurements could be possible and this could provide a valuable tool in many engineering applications. The aim of this study was to evaluate accuracy and repeatability of the Qualisys ProReflex-MCU120 system when measuring small displacements, as a step towards measuring tooth displacements to characterise the properties of the periodontal ligament. Accuracy and repeatability of the system was evaluated using a wedge comparator with a resolution of 0.25 microm to provide measured marker displacements in three orthogonal directions. The marker was moved in ten steps in each direction, for each of seven step sizes (0.5, 1, 2, 3, 5, 10, and 20 microm), repeated five times. Spherical and diamond markers were tested. The system accuracy (i.e. percentage of maximum absolute error in range/measurement range), in the 20-200 microm ranges, was +/-1.17%, +/-1.67% and +/-1.31% for the diamond marker in x, y and z directions, while the system accuracy for the spherical marker was +/-1.81%, +/-2.37% and +/-1.39%. The system repeatability (i.e. maximum standard deviation in the measurement range) measured under the different days, light intensity and temperatures for five times, carried out step up and then step down measurements for the same step size, was +/-1.7, +/-2.3 and +/-1.9 microm for the diamond marker, and +/-2.6, +/-3.9 and +/-1.9 microm for the spherical marker in x, y and z directions, respectively. These results demonstrate that the system suffices accuracy for measuring tooth displacements and could potentially be useful in many other applications.

  15. External validation, repeat determination, and precision of risk estimation in misclassified exposure data in epidemiology.

    PubMed Central

    Duffy, S W; Maximovitch, D M; Day, N E

    1992-01-01

    STUDY OBJECTIVE--The aim was to quantify the difference in precision of risk estimates in epidemiology between the situations where misclassification of exposure is corrected for by external validation and where it is corrected for by internal repeat measurement. Precision was measured in terms of the expected width of the 95% confidence interval on the odds ratio. DESIGN--In a hypothetical case-control study, first with 100 cases and 100 controls, then with 100 cases and 1000 controls (the latter to approximate the cohort study situation), expected estimated odds ratios and confidence intervals were calculated based on postulated underlying true odds ratios and misclassification error rates. The sizes of the confidence intervals using the two design strategies were compared, based on the same number of subjects receiving internal repeat measurements as were used in the external validation study. MAIN RESULTS--Confidence intervals obtained using internal repeat measurement were considerably narrower than those using external validation. Both methods yielded approximately correct point estimates. CONCLUSIONS--In terms of precision, it is preferable to correct for misclassification using internal repeat measurement rather than external validation. PMID:1494080

  16. [Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].

    PubMed

    Krimmel, M; Kluba, S; Dietz, K; Reinert, S

    2005-03-01

    The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.

  17. A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes

    NASA Astrophysics Data System (ADS)

    Alvarez, Pablo; Fishbein, Amos E.; Hyland, Michael W.; Kight, Cheyne L.; Lopez, Hairold; Navarro, Tanya; Rosas, Carlos A.; Schachter, Aubrey E.; Summers, Molly A.; Weise, Eric D.; Hoffman, Megan A.; Mires, Robert C.; Johnson, Jolyon M.; Genet, Russell M.; White, Robin

    2009-01-01

    Using a manual Meade 6" Newtonian telescope and a computerized Meade 10" Schmidt-Cassegrain telescope, students from Arroyo Grande High School measured the well-known separation and position angle of the bright visual double star Albireo. The precision and accuracy of the observations from the two telescopes were compared to each other and to published values of Albireo taken as the standard. It was hypothesized that the larger, computerized telescope would be both more precise and more accurate.

  18. Accuracy and Precision of Partial-Volume Correction in Oncological PET/CT Studies.

    PubMed

    Cysouw, Matthijs C F; Kramer, Gerbrand Maria; Hoekstra, Otto S; Frings, Virginie; de Langen, Adrianus Johannes; Smit, Egbert F; van den Eertwegh, Alfons J M; Oprea-Lager, Daniela E; Boellaard, Ronald

    2016-10-01

    Accurate quantification of tracer uptake in small tumors using PET is hampered by the partial-volume effect as well as by the method of volume-of-interest (VOI) delineation. This study aimed to investigate the effect of partial-volume correction (PVC) combined with several VOI methods on the accuracy and precision of quantitative PET.

  19. Improving the accuracy and precision of cognitive testing in mild dementia.

    PubMed

    Wouters, Hans; Appels, Bregje; van der Flier, Wiesje M; van Campen, Jos; Klein, Martin; Zwinderman, Aeilko H; Schmand, Ben; van Gool, Willem A; Scheltens, Philip; Lindeboom, Robert

    2012-03-01

    The CAMCOG, ADAS-cog, and MMSE, designed to grade global cognitive ability in dementia have inadequate precision and accuracy in distinguishing mild dementia from normal ageing. Adding neuropsychological tests to their scale might improve precision and accuracy in mild dementia. We, therefore, pooled neuropsychological test-batteries from two memory clinics (ns = 135 and 186) with CAMCOG data from a population study and 2 memory clinics (n = 829) and ADAS-cog data from 3 randomized controlled trials (n = 713) to estimate a common dimension of global cognitive ability using Rasch analysis. Item difficulties and individuals' global cognitive ability levels were estimated. Difficulties of 57 items (of 64) could be validly estimated. Neuropsychological tests were more difficult than the CAMCOG, ADAS-cog, and MMSE items. Most neuropsychological tests had difficulties in the ability range of normal ageing to mild dementia. Higher than average ability levels were more precisely measured when neuropsychological tests were added to the MMSE than when these were measured with the MMSE alone. Diagnostic accuracy in mild dementia was consistently better after adding neuropsychological tests to the MMSE. We conclude that extending dementia specific instruments with neuropsychological tests improves measurement precision and accuracy of cognitive impairment in mild dementia.

  20. The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy

    ERIC Educational Resources Information Center

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-01-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…

  1. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the precision and accuracy....584 What are the precision and accuracy criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  2. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the precision and accuracy....584 What are the precision and accuracy criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  3. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárrga-Gutierrez, J. M.; García-Garduño, O. A.; Juárez, J.; Prieto, I.; Moreno-Jiménez, S.; Celis, M. A.

    2008-08-01

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  4. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    SciTech Connect

    Ballesteros-Zebadua, P.; Larrga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Juarez, J.; Prieto, I.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  5. Bloch-Siegert B1-Mapping Improves Accuracy and Precision of Longitudinal Relaxation Measurements in the Breast at 3 T.

    PubMed

    Whisenant, Jennifer G; Dortch, Richard D; Grissom, William; Kang, Hakmook; Arlinghaus, Lori R; Yankeelov, Thomas E

    2016-12-01

    Variable flip angle (VFA) sequences are a popular method of calculating T1 values, which are required in a quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). B1 inhomogeneities are substantial in the breast at 3 T, and these errors negatively impact the accuracy of the VFA approach, thus leading to large errors in the DCE-MRI parameters that could limit clinical adoption of the technique. This study evaluated the ability of Bloch-Siegert B1 mapping to improve the accuracy and precision of VFA-derived T1 measurements in the breast. Test-retest MRI sessions were performed on 16 women with no history of breast disease. T1 was calculated using the VFA sequence, and B1 field variations were measured using the Bloch-Siegert methodology. As a gold standard, inversion recovery (IR) measurements of T1 were performed. Fibroglandular tissue and adipose tissue from each breast were segmented using the IR images, and the mean T1 was calculated for each tissue. Accuracy was evaluated by percent error (%err). Reproducibility was assessed via the 95% confidence interval (CI) of the mean difference and repeatability coefficient (r). After B1 correction, %err significantly (P < .001) decreased from 17% to 8.6%, and the 95% CI and r decreased from ±94 to ±38 milliseconds and from 276 to 111 milliseconds, respectively. Similar accuracy and reproducibility results were observed in the adipose tissue of the right breast and in both tissues of the left breast. Our data show that Bloch-Siegert B1 mapping improves accuracy and precision of VFA-derived T1 measurements in the breast.

  6. Evaluation of the Accuracy and Precision of a Next Generation Computer-Assisted Surgical System

    PubMed Central

    Dai, Yifei; Liebelt, Ralph A.; Gao, Bo; Gulbransen, Scott W.; Silver, Xeve S.

    2015-01-01

    Background Computer-assisted orthopaedic surgery (CAOS) improves accuracy and reduces outliers in total knee arthroplasty (TKA). However, during the evaluation of CAOS systems, the error generated by the guidance system (hardware and software) has been generally overlooked. Limited information is available on the accuracy and precision of specific CAOS systems with regard to intraoperative final resection measurements. The purpose of this study was to assess the accuracy and precision of a next generation CAOS system and investigate the impact of extra-articular deformity on the system-level errors generated during intraoperative resection measurement. Methods TKA surgeries were performed on twenty-eight artificial knee inserts with various types of extra-articular deformity (12 neutral, 12 varus, and 4 valgus). Surgical resection parameters (resection depths and alignment angles) were compared between postoperative three-dimensional (3D) scan-based measurements and intraoperative CAOS measurements. Using the 3D scan-based measurements as control, the accuracy (mean error) and precision (associated standard deviation) of the CAOS system were assessed. The impact of extra-articular deformity on the CAOS system measurement errors was also investigated. Results The pooled mean unsigned errors generated by the CAOS system were equal or less than 0.61 mm and 0.64° for resection depths and alignment angles, respectively. No clinically meaningful biases were found in the measurements of resection depths (< 0.5 mm) and alignment angles (< 0.5°). Extra-articular deformity did not show significant effect on the measurement errors generated by the CAOS system investigated. Conclusions This study presented a set of methodology and workflow to assess the system-level accuracy and precision of CAOS systems. The data demonstrated that the CAOS system investigated can offer accurate and precise intraoperative measurements of TKA resection parameters, regardless of the presence

  7. Evaluation of precision and accuracy assessment of different 3-D surface imaging systems for biomedical purposes.

    PubMed

    Eder, Maximilian; Brockmann, Gernot; Zimmermann, Alexander; Papadopoulos, Moschos A; Schwenzer-Zimmerer, Katja; Zeilhofer, Hans Florian; Sader, Robert; Papadopulos, Nikolaos A; Kovacs, Laszlo

    2013-04-01

    Three-dimensional (3-D) surface imaging has gained clinical acceptance, especially in the field of cranio-maxillo-facial and plastic, reconstructive, and aesthetic surgery. Six scanners based on different scanning principles (Minolta Vivid 910®, Polhemus FastSCAN™, GFM PRIMOS®, GFM TopoCAM®, Steinbichler Comet® Vario Zoom 250, 3dMD DSP 400®) were used to measure five sheep skulls of different sizes. In three areas with varying anatomical complexity (areas, 1 = high; 2 = moderate; 3 = low), 56 distances between 20 landmarks are defined on each skull. Manual measurement (MM), coordinate machine measurements (CMM) and computer tomography (CT) measurements were used to define a reference method for further precision and accuracy evaluation of different 3-D scanning systems. MM showed high correlation to CMM and CT measurements (both r = 0.987; p < 0.001) and served as the reference method. TopoCAM®, Comet® and Vivid 910® showed highest measurement precision over all areas of complexity; Vivid 910®, the Comet® and the DSP 400® demonstrated highest accuracy over all areas with Vivid 910® being most accurate in areas 1 and 3, and the DSP 400® most accurate in area 2. In accordance to the measured distance length, most 3-D devices present higher measurement precision and accuracy for large distances and lower degrees of precision and accuracy for short distances. In general, higher degrees of complexity are associated with lower 3-D assessment accuracy, suggesting that for optimal results, different types of scanners should be applied to specific clinical applications and medical problems according to their special construction designs and characteristics.

  8. A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Kwiecień, Janusz

    2016-12-01

    Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.

  9. ACCURACY AND PRECISION OF A METHOD TO STUDY KINEMATICS OF THE TEMPOROMANDIBULAR JOINT: COMBINATION OF MOTION DATA AND CT IMAGING

    PubMed Central

    Baltali, Evre; Zhao, Kristin D.; Koff, Matthew F.; Keller, Eugene E.; An, Kai-Nan

    2008-01-01

    The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5 mm for 3D curvilinear path calculations, 0.05 mm for 3D linear distance calculations, and 0.2° for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable. PMID:18617178

  10. Performance characterization of precision micro robot using a machine vision system over the Internet for guaranteed positioning accuracy

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Chiou, Richard; Rauniar, Shreepud; Sosa, Horacio

    2005-11-01

    There is a missing link between a virtual development environment (e.g., a CAD/CAM driven offline robotic programming) and production requirements of the actual robotic workcell. Simulated robot path planning and generation of pick-and-place coordinate points will not exactly coincide with the robot performance due to lack of consideration in variations in individual robot repeatability and thermal expansion of robot linkages. This is especially important when robots are controlled and programmed remotely (e.g., through Internet or Ethernet) since remote users have no physical contact with robotic systems. Using the current technology in Internet-based manufacturing that is limited to a web camera for live image transfer has been a significant challenge for the robot task performance. Consequently, the calibration and accuracy quantification of robot critical to precision assembly have to be performed on-site and the verification of robot positioning accuracy cannot be ascertained remotely. In worst case, the remote users have to assume the robot performance envelope provided by the manufacturers, which may causes a potentially serious hazard for system crash and damage to the parts and robot arms. Currently, there is no reliable methodology for remotely calibrating the robot performance. The objective of this research is, therefore, to advance the current state-of-the-art in Internet-based control and monitoring technology, with a specific aim in the accuracy calibration of micro precision robotic system for the development of a novel methodology utilizing Ethernet-based smart image sensors and other advanced precision sensory control network.

  11. A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Moore, Ashley

    2005-01-01

    The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.

  12. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  13. Precision, repeatability and representative ability of faecal egg counts in Heterakis gallinarum infected chickens.

    PubMed

    Daş, Gürbüz; Savaş, Türker; Kaufmann, Falko; Idris, Ahmad; Abel, Hansjörg; Gauly, Matthias

    2011-12-29

    This study investigated whether a precise and repeatable quantification of Heterakis gallinarum egg excretion, which considerably reflects the actual worm burdens, can be achieved based on collection of the daily total amount of faeces from chickens. Three-week-old birds (N=64) were infected with 200 embryonated eggs of H. gallinarum, and placed into individual cages 3 wk after infection for 5 wk to collect daily faeces (N=2240). The total daily faeces was mixed and a randomly taken sample per bird was analyzed to estimate the numbers of eggs per gram of faeces (EPG) and total number of eggs excreted within 24h (EPD). A total of 235 daily faecal collections were randomly selected and further examined to determine between and within sample variations of EPG counts as a measure of precision. For this, two random faecal samples were taken from the daily produced faeces by a bird, and the EPG was determined for each of the samples (EPG1 and EPG2). The second faecal sample was analyzed once more to determine a parallel EPG2 count (EPG2a) of the suspended sample. Precision of an EPG count was defined as its relative closeness to the average of two EPG counts using a relative asymmetry index (Index(EPG)). At an age of 11 wk, i.e. 8 wk p.i. the birds were slaughtered and their worm burdens were determined. There were no significant differences between EPG1 and EPG2 (P=0.764) nor between EPG2 and EPG2a (P=0.700), suggesting that the differences between or within the samples were not different from zero. Correlations between EPG counts, as between and within sample coherences, were r=0.85 and r=0.86, respectively. Precision of EPG counts, as measured by Index(EPG), was not influenced by consistency (P=0.870) and total amount of faeces (P=0.088). However, concentration of eggs in faeces (mean EPG) had a significant effect on the precision of the EPG counts (P<0.001). Similar results were also observed for the within sample precision (Index(EPG2)). A segmented regression

  14. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  15. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  16. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  17. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  18. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  19. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies.

    PubMed

    Schall, Mark C; Fethke, Nathan B; Chen, Howard; Oyama, Sakiko; Douphrate, David I

    2016-04-01

    The accuracy and repeatability of an inertial measurement unit (IMU) system for directly measuring trunk angular displacement and upper arm elevation were evaluated over eight hours (i) in comparison to a gold standard, optical motion capture (OMC) system in a laboratory setting, and (ii) during a field-based assessment of dairy parlour work. Sample-to-sample root mean square differences between the IMU and OMC system ranged from 4.1° to 6.6° for the trunk and 7.2°-12.1° for the upper arm depending on the processing method. Estimates of mean angular displacement and angular displacement variation (difference between the 90th and 10th percentiles of angular displacement) were observed to change <4.5° on average in the laboratory and <1.5° on average in the field per eight hours of data collection. Results suggest the IMU system may serve as an acceptable instrument for directly measuring trunk and upper arm postures in field-based occupational exposure assessment studies with long sampling durations. Practitioner Summary: Few studies have evaluated inertial measurement unit (IMU) systems in the field or over long sampling durations. Results of this study indicate that the IMU system evaluated has reasonably good accuracy and repeatability for use in a field setting over a long sampling duration.

  20. Validation of accuracy and repeatability of UltraSurf metrology on common optical shapes

    NASA Astrophysics Data System (ADS)

    DeFisher, Scott; Matthews, Greg; Fess, Edward

    2015-10-01

    Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Accurate metrology during the grinding and polishing stages of asphere manufacturing will reduce time and cost. Measuring these surfaces with common interferometers or profilometers can be difficult due to large surface slopes or unpolished surface texture. OptiPro has developed UltraSurf to qualify the form, figure, and thickness of steep aspheric and freeform optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. There are multiple probe technologies available on UltraSurf, and each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. Validation of the system accuracy, repeatability, and methodology must be performed to trust the measurement data. Form and figure maps of a flat, a sphere, and an asphere using UltraSurf will be presented with comparisons to interferometry. In addition, accuracy, repeatability, and machine qualification will be discussed.

  1. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction.

    PubMed

    Mahr, Christoph; Müller-Caspary, Knut; Grieb, Tim; Schowalter, Marco; Mehrtens, Thorsten; Krause, Florian F; Zillmann, Dennis; Rosenauer, Andreas

    2015-11-01

    Measurement of lattice strain is important to characterize semiconductor nanostructures. As strain has large influence on the electronic band structure, methods for the measurement of strain with high precision, accuracy and spatial resolution in a large field of view are mandatory. In this paper we present a theoretical study of precision and accuracy of measurement of strain by convergent nano-beam electron diffraction. It is found that the accuracy of the evaluation suffers from halos in the diffraction pattern caused by a variation of strain within the area covered by the focussed electron beam. This effect, which is expected to be strong at sharp interfaces between materials with different lattice plane distances, will be discussed for convergent-beam electron diffraction patterns using a conventional probe and for patterns formed by a precessing electron beam. Furthermore, we discuss approaches to optimize the accuracy of strain measured at interfaces. The study is based on the evaluation of diffraction patterns simulated for different realistic structures that have been investigated experimentally in former publications. These simulations account for thermal diffuse scattering using the frozen-lattice approach and the modulation-transfer function of the image-recording system. The influence of Poisson noise is also investigated.

  2. Accelerator mass spectrometry best practices for accuracy and precision in bioanalytical (14)C measurements.

    PubMed

    Vogel, John S; Giacomo, Jason A; Schulze-König, Tim; Keck, Bradly D; Lohstroh, Peter; Dueker, Stephen

    2010-03-01

    Accelerator mass spectrometers have an energy acceleration and charge exchange between mass definition stages to destroy molecular isobars and allow single ion counting of long-lived isotopes such as (14)C (t½=5370 years.). 'Low' voltage accelerations to 200 kV allow laboratory-sized accelerator mass spectrometers instruments for bioanalytical quantitation of (14)C to 2-3% precision and accuracy in isolated biochemical fractions. After demonstrating this accuracy and precision for our new accelerator mass spectrometer, we discuss the critical aspects of maintaining quantitative accuracy from the defined biological fraction to the accelerator mass spectrometry quantitation. These aspects include sufficient sample mass for routine rapid sample preparation, isotope dilution to assure this mass, isolation of the carbon from other sample combustion gasses and use of high-efficiency biochemical separations. This review seeks to address a bioanalytical audience, who should know that high accuracy data of physiochemical processes within living human subjects are available, as long as a (14)C quantitation can be made indicative of the physiochemistry of interest.

  3. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  4. Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements.

    PubMed

    Hurkmans, H L P; Bussmann, J B J; Benda, E; Verhaar, J A N; Stam, H J

    2006-01-01

    Portable insole pressure systems can be used to measure the vertical force during long-term (hours) measurements to determine the patient's amount of weight bearing during daily activities in the hospital and at home. Especially for long-term measurements, the amount and duration of loading pressure insoles can have a large influence on the accuracy, as previous studies found a time-dependent behavior after a relatively short period (minutes) of constant loading. Therefore, this study assessed the accuracy and repeatability of a portable capacitive insole system (Pedar, Novel(GmbH)) to measure vertical force during long-term loading. Static loading experiments were performed during which the Pedar insoles were loaded with 5 and 10 N/cm2 for 7 h. Dynamic loading experiments were performed with one Pedar insole which was cyclically loaded with 300, 500 and 1000 N during two sessions of 1200 load cycles. The static and dynamic experiments were repeated 3 days later. Accuracy, due to offset drift, decreased in time during the start of the static experiments (percent error: -1.9% to 0.3% at hour 0; 26.3% to 34% at hour 7). The percent error for the dynamic experiments ranged from -16% to -19%, from -3% to -7% and from -8% to approximately 0% when the insole was loaded with 300, 500 and 1000 N, respectively. The amount of drift ranged from 12 to 62 N for the 500 and 1000 N loads, respectively. The mean day-to-day percentage difference for the static and dynamic experiments ranged from -2.3% to 0.5%, and from -2.9% to 3.0%, respectively. The results indicate that drift correction is necessary for accurate assessment of vertical force by the Pedar Mobile system to determine the amount of weight bearing during long-term measurements.

  5. Acquired Apraxia of Speech: The Effects of Repeated Practice and Rate/Rhythm Control Treatments on Sound Production Accuracy

    ERIC Educational Resources Information Center

    Wambaugh, Julie L.; Nessler, Christina; Cameron, Rosalea; Mauszycki, Shannon C.

    2012-01-01

    Purpose: This investigation was designed to elucidate the effects of repeated practice treatment on sound production accuracy in individuals with apraxia of speech (AOS) and aphasia. A secondary purpose was to determine if the addition of rate/rhythm control to treatment provided further benefits beyond those achieved with repeated practice.…

  6. Testing the Deployment Repeatability of a Precision Deployable Boom Prototype for the Proposed SWOT Karin Instrument

    NASA Technical Reports Server (NTRS)

    Agnes, Gregory S.; Waldman, Jeff; Hughes, Richard; Peterson, Lee D.

    2015-01-01

    NASA's proposed Surface Water Ocean Topography (SWOT) mission, scheduled to launch in 2020, would provide critical information about Earth's oceans, ocean circulation, fresh water storage, and river discharge. The mission concept calls for a dual-antenna Ka-band radar interferometer instrument, known as KaRIn, that would map the height of water globally along two 50 km wide swaths. The KaRIn antennas, which would be separated by 10 meters on either side of the spacecraft, would need to be precisely deployable in order to meet demanding pointing requirements. Consequently, an effort was undertaken to design build and prototype a precision deployable Mast for the KaRIn instrument. Each mast was 4.5-m long with a required dilitation stability of 2.5 microns over 3 minutes. It required a minimum first mode of 7 Hz. Deployment repeatability was less than +/- 7 arcsec in all three rotation directions. Overall mass could not exceed 41.5 Kg including any actuators and thermal blanketing. This set of requirements meant the boom had to be three times lighter and two orders of magnitude more precise than the existing state of the art for deployable booms.

  7. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  8. Assessing accuracy and precision for field and laboratory data: a perspective in ecosystem restoration

    USGS Publications Warehouse

    Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly

    2016-01-01

    Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.

  9. Results of the 2015 Spitzer Exoplanet Data Challenge: Repeatability and Accuracy of Exoplanet Eclipse Depths

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, Jessica E.; Carey, Sean J.; Stauffer, John R.; Grillmair, Carl J.; Lowrance, Patrick

    2016-06-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. At infrared wavelengths secondary eclipses and phase curves are powerful tools for studying a planet’s atmosphere. Extracting information about atmospheres, however, is extremely challenging due to the small differential signals, which are often at the level of 100 parts per million (ppm) or smaller, and require the removal of significant instrumental systematics. For the IRAC 3.6 and 4.5μm InSb detectors that remain active on post-cryogenic Spitzer, the interplay of residual telescope pointing fluctuations with intrapixel gain variations in the moderately under sampled camera is the largest source of time-correlated noise. Over the past decade, a suite of techniques for removing this noise from IRAC data has been developed independently by various investigators. In summer 2015, the Spitzer Science Center hosted a Data Challenge in which seven exoplanet expert teams, each using a different noise-removal method, were invited to analyze 10 eclipse measurements of the hot Jupiter XO-3 b, as well as a complementary set of 10 simulated measurements. In this contribution we review the results of the Challenge. We describe statistical tools to assess the repeatability, reliability, and validity of data reduction techniques, and to compare and (perhaps) choose between techniques.

  10. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  11. Radiographic total disc replacement angle measurement accuracy using the Oxford Cobbometer: precision and bias

    PubMed Central

    Stafylas, Kosmas; McManus, John; Schizas, Constantin

    2008-01-01

    Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4–L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4° between readings at any individual position, and as high as 6° between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs. PMID:18496719

  12. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)(exp)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)(exp). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)(exp) and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)(exp) in its natural context.

  13. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    PubMed Central

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-01-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl− electrodes, 10 F− electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity. PMID:28303939

  14. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  15. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl‑ electrodes, 10 F‑ electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  16. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision.

    PubMed

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-17

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl(-) electrodes, 10 F(-) electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  17. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  18. Automated tracking of colloidal clusters with sub-pixel accuracy and precision

    NASA Astrophysics Data System (ADS)

    van der Wel, Casper; Kraft, Daniela J.

    2017-02-01

    Quantitative tracking of features from video images is a basic technique employed in many areas of science. Here, we present a method for the tracking of features that partially overlap, in order to be able to track so-called colloidal molecules. Our approach implements two improvements into existing particle tracking algorithms. Firstly, we use the history of previously identified feature locations to successfully find their positions in consecutive frames. Secondly, we present a framework for non-linear least-squares fitting to summed radial model functions and analyze the accuracy (bias) and precision (random error) of the method on artificial data. We find that our tracking algorithm correctly identifies overlapping features with an accuracy below 0.2% of the feature radius and a precision of 0.1 to 0.01 pixels for a typical image of a colloidal cluster. Finally, we use our method to extract the three-dimensional diffusion tensor from the Brownian motion of colloidal dimers. , which features invited work from the best early-career researchers working within the scope of Journal of Physics: Condensed Matter. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Daniela Kraft was selected by the Editorial Board of Journal of Physics: Condensed Matter as an Emerging Leader.

  19. Estimates of laboratory accuracy and precision on Hanford waste tank samples

    SciTech Connect

    Dodd, D.A.

    1995-02-02

    A review was performed on three sets of analyses generated in Battelle, Pacific Northwest Laboratories and three sets generated by Westinghouse Hanford Company, 222-S Analytical Laboratory. Laboratory accuracy and precision was estimated by analyte and is reported in tables. The sources used to generate this estimate is of limited size but does include the physical forms, liquid and solid, which are representative of samples from tanks to be characterized. This estimate was published as an aid to programs developing data quality objectives in which specified limits are established. Data resulting from routine analyses of waste matrices can be expected to be bounded by the precision and accuracy estimates of the tables. These tables do not preclude or discourage direct negotiations between program and laboratory personnel while establishing bounding conditions. Programmatic requirements different than those listed may be reliably met on specific measurements and matrices. It should be recognized, however, that these are specific to waste tank matrices and may not be indicative of performance on samples from other sources.

  20. Repeated Sampling to Determine the Precision of Estimating Nematode Population Densities

    PubMed Central

    Schmitt, D. P.; Barker, K. R.; Noe, J. P.; Koenning, S. R.

    1990-01-01

    The first phase of this study involved repeated samplings of five fields using composite samples of 10, 20, 40, and 80 soil cores, to determine the precision of nematode assays. The second phase focused on randomly selecting two and four 2-ha subunits (data on Meloidogyne spp.) of 24 fields ranging from 6 to 40 ha and computing the precision of estimated means for these numbers ofsubunits versus the general field mean (based on all 2-ha subunits). Average numbers of nematodes from most samples containing Meloidogyne spp., Heterodera glycines, Helicotylenchus dihystera, Scutellonema brachyurum, and (or) Hoplolaimus galeatus were within 50% of the overall means. Coefficient of variation (CV) values were generally lower for 40 cores than for 10, 20, and 80 cores per sample. When data for all nematodes and fields were combined, this value was lowest for 40 and 80 cores. The CV values were higher for Meloidogyne spp. than for H. glycines. Means of two samplings increased the probability of obtaining numbers nearer the mean for that field than numbers from a single composite sample. For the second phase, population estimates of Meloidogyne spp. based on four 2-ha subunits generally were closer to field means than were those for two subunits. Sampling precision with these subunits diminished greatly in large fields with variable soils and (or) mixed cropping histories. Either two or four subunits gave population estimates within 3-20% of the field mean in most instances. The mean man hours required for sampling ca. 2-ha parcels of 4-20-ha fields was 0.54 hours. PMID:19287757

  1. Training to Improve Precision and Accuracy in the Measurement of Fiber Morphology

    PubMed Central

    Jeon, Jun; Wade, Mary Beth; Luong, Derek; Palmer, Xavier-Lewis; Bharti, Kapil; Simon, Carl G.

    2016-01-01

    An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability. PMID:27907145

  2. Freehand liver volumetry by using an electromagnetic pen tablet: accuracy, precision, and rapidity.

    PubMed

    Perandini, Simone; Faccioli, Niccolò; Inama, Marco; Pozzi Mucelli, Roberto

    2011-04-01

    The purpose of this study is to assess the accuracy, precision, and rapidity of liver volumes calculated by using a freehand electromagnetic pen tablet contourtracing method as compared with the volumes calculated by using the standard optical mouse contourtracing method. The imaging data used as input for accuracy and precision testing were computed by software developed in our institution. This computer software can generate models of solid organs and allows both standard mouse-based and electromagnetic pen-driven segmentation (number of data sets, n = 70). The images used as input for rapidity testing was partly computed by modeling software (n = 70) and partly selected from contrast-enhanced computed tomography (CT) examinations (n = 12). Mean volumes and time required to perform the segmentation, along with standard deviation and range values with both techniques, were calculated. Student's t test was used to assess significance regarding mean volumes and time calculated by using both segmentation techniques on phantom and CT data sets. P value was also calculated. The mean volume difference was significantly lower with the use of the freehand electromagnetic pen as compared with the optical mouse (0.2% vs. 1.8%; P < .001). The mean segmentation time per patient was significantly shorter with the use of the freehand electromagnetic pen contourtracing method (354.5 vs. 499.1 s on phantoms; 457.4 vs. 610.0 s on CT images; P < .001). Freehand electromagnetic pen-based volumetric technique represents a technologic advancement over manual mouse-based contourtracing because of the superior statistical accuracy and sensibly shorter time required. Further studies focused on intra- and interobserver variability of the technique need to be performed before its introduction in clinical application.

  3. Keystroke dynamics and timing: accuracy, precision and difference between hands in pianist's performance.

    PubMed

    Minetti, Alberto E; Ardigò, Luca P; McKee, Tom

    2007-01-01

    A commercially available acoustic grand piano, originally provided with keystroke speed sensors, is proposed as a standard instrument to quantitatively assess the technical side of pianist's performance, after the mechanical characteristics of the keyboard have been measured. We found a positional dependence of the relationship between the applied force and the resulting downstroke speed (i.e. treble keys descend fastest) due to the different hammer/hammer shaft mass to be accelerated. When this effect was removed by a custom software, the ability of 14 pianists was analysed in terms of variability in stroke intervals and keystroke speeds. C-major scales played by separate hands at different imposed tempos and at 5 subjectively chosen graded force levels were analysed to get insights into the achieved neuromuscular control. Accuracy and precision of time intervals and descent velocity of keystrokes were obtained by processing the generated MIDI files. The results quantitatively show: the difference between hands, the trade off between force range and tempo, and between time interval precision and tempo, the lower precision of descent speed associated to 'soft' playing, etc. Those results reflect well-established physiological and motor control characteristics of our movement system. Apart from revealing fundamental aspects of pianism, the proposed method could be used as a standard tool also for ergonomic (e.g. the mechanical work and power of playing), didactic and rehabilitation monitoring of pianists.

  4. An evaluation of the accuracy and precision of a stand-alone submersible continuous ruminal pH measurement system.

    PubMed

    Penner, G B; Beauchemin, K A; Mutsvangwa, T

    2006-06-01

    The objectives of this study were 1) to develop and evaluate the accuracy and precision of a new stand-alone submersible continuous ruminal pH measurement system called the Lethbridge Research Centre ruminal pH measurement system (LRCpH; Experiment 1); 2) to establish the accuracy and precision of a well-documented, previously used continuous indwelling ruminal pH system (CIpH) to ensure that the new system (LRCpH) was as accurate and precise as the previous system (CIpH; Experiment 2); and 3) to determine the required frequency for pH electrode standardization by comparing baseline millivolt readings of pH electrodes in pH buffers 4 and 7 after 0, 24, 48, and 72 h of ruminal incubation (Experiment 3). In Experiment 1, 6 pregnant Holstein heifers, 3 lactating, primiparous Holstein cows, and 2 Black Angus heifers were used. All experimental animals were fitted with permanent ruminal cannulas. In Experiment 2, the 3 cannulated, lactating, primiparous Holstein cows were used. In both experiments, ruminal pH was determined continuously using indwelling pH electrodes. Subsequently, mean pH values were then compared with ruminal pH values obtained using spot samples of ruminal fluid (MANpH) obtained at the same time. A correlation coefficient accounting for repeated measures was calculated and results were used to calculate the concordance correlation to examine the relationships between the LRCpH-derived values and MANpH, and the CIpH-derived values and MANpH. In Experiment 3, the 6 pregnant Holstein heifers were used along with 6 new submersible pH electrodes. In Experiments 1 and 2, the comparison of the LRCpH output (1- and 5-min averages) to MANpH had higher correlation coefficients after accounting for repeated measures (0.98 and 0.97 for 1- and 5-min averages, respectively) and concordance correlation coefficients (0.96 and 0.97 for 1- and 5-min averages, respectively) than the comparison of CIpH to MANpH (0.88 and 0.87, correlation coefficient and concordance

  5. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  6. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica

    PubMed Central

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  7. Precision and accuracy testing of FMCW ladar-based length metrology.

    PubMed

    Mateo, Ana Baselga; Barber, Zeb W

    2015-07-01

    The calibration and traceability of high-resolution frequency modulated continuous wave (FMCW) ladar sources is a requirement for their use in length and volume metrology. We report the calibration of FMCW ladar length measurement systems by use of spectroscopy of molecular frequency references HCN (C-band) or CO (L-band) to calibrate the chirp rate of the FMCW sources. Propagating the stated uncertainties from the molecular calibrations provided by NIST and measurement errors provide an estimated uncertainty of a few ppm for the FMCW system. As a test of this calibration, a displacement measurement interferometer with a laser wavelength close to that of our FMCW system was built to make comparisons of the relative precision and accuracy. The comparisons performed show <10  ppm agreement, which was within the combined estimated uncertainties of the FMCW system and interferometer.

  8. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence of a significant quantity of 238U in the samples.

  9. Estimated results analysis and application of the precise point positioning based high-accuracy ionosphere delay

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.

  10. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence ofmore » a significant quantity of 238U in the samples.« less

  11. Accuracy and precision of estimating age of gray wolves by tooth wear

    USGS Publications Warehouse

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  12. A benchmark test of accuracy and precision in estimating dynamical systems characteristics from a time series.

    PubMed

    Rispens, S M; Pijnappels, M; van Dieën, J H; van Schooten, K S; Beek, P J; Daffertshofer, A

    2014-01-22

    Characteristics of dynamical systems are often estimated to describe physiological processes. For instance, Lyapunov exponents have been determined to assess the stability of the cardio-vascular system, respiration, and, more recently, human gait and posture. However, the systematic evaluation of the accuracy and precision of these estimates is problematic because the proper values of the characteristics are typically unknown. We fill this void with a set of standardized time series with well-defined dynamical characteristics that serve as a benchmark. Estimates ought to match these characteristics, at least to good approximation. We outline a procedure to employ this generic benchmark test and illustrate its capacity by examining methods for estimating the maximum Lyapunov exponent. In particular, we discuss algorithms by Wolf and co-workers and by Rosenstein and co-workers and evaluate their performances as a function of signal length and signal-to-noise ratio. In all scenarios, the precision of Rosenstein's algorithm was found to be equal to or greater than Wolf's algorithm. The latter, however, appeared more accurate if reasonably large signal lengths are available and noise levels are sufficiently low. Due to its modularity, the presented benchmark test can be used to evaluate and tune any estimation method to perform optimally for arbitrary experimental data.

  13. Increasing accuracy and precision of digital image correlation through pattern optimization

    NASA Astrophysics Data System (ADS)

    Bomarito, G. F.; Hochhalter, J. D.; Ruggles, T. J.; Cannon, A. H.

    2017-04-01

    The accuracy and precision of digital image correlation (DIC) is based on three primary components: image acquisition, image analysis, and the subject of the image. Focus on the third component, the image subject, has been relatively limited and primarily concerned with comparing pseudo-random surface patterns. In the current work, a strategy is proposed for the creation of optimal DIC patterns. In this strategy, a pattern quality metric is developed as a combination of quality metrics from the literature rather than optimization based on any single one of them. In this way, optimization produces a pattern which balances the benefits of multiple quality metrics. Specifically, sum of square of subset intensity gradients (SSSIG) was found to be the metric most strongly correlated to DIC accuracy and thus is the main component of the newly proposed pattern quality metric. A term related to the secondary auto-correlation peak height is also part of the proposed quality metric which effectively acts as a constraint upon SSSIG ensuring that a regular (e.g., checkerboard-type) pattern is not achieved. The combined pattern quality metric is used to generate a pattern that was on average 11.6% more accurate than a randomly generated pattern in a suite of numerical experiments. Furthermore, physical experiments were performed which confirm that there is indeed improvement of a similar magnitude in DIC measurements for the optimized pattern compared to a random pattern.

  14. Gaining Precision and Accuracy on Microprobe Trace Element Analysis with the Multipoint Background Method

    NASA Astrophysics Data System (ADS)

    Allaz, J. M.; Williams, M. L.; Jercinovic, M. J.; Donovan, J. J.

    2014-12-01

    Electron microprobe trace element analysis is a significant challenge, but can provide critical data when high spatial resolution is required. Due to the low peak intensity, the accuracy and precision of such analyses relies critically on background measurements, and on the accuracy of any pertinent peak interference corrections. A linear regression between two points selected at appropriate off-peak positions is a classical approach for background characterization in microprobe analysis. However, this approach disallows an accurate assessment of background curvature (usually exponential). Moreover, if present, background interferences can dramatically affect the results if underestimated or ignored. The acquisition of a quantitative WDS scan over the spectral region of interest is still a valuable option to determine the background intensity and curvature from a fitted regression of background portions of the scan, but this technique retains an element of subjectivity as the analyst has to select areas in the scan, which appear to represent background. We present here a new method, "Multi-Point Background" (MPB), that allows acquiring up to 24 off-peak background measurements from wavelength positions around the peaks. This method aims to improve the accuracy, precision, and objectivity of trace element analysis. The overall efficiency is amended because no systematic WDS scan needs to be acquired in order to check for the presence of possible background interferences. Moreover, the method is less subjective because "true" backgrounds are selected by the statistical exclusion of erroneous background measurements, reducing the need for analyst intervention. This idea originated from efforts to refine EPMA monazite U-Th-Pb dating, where it was recognised that background errors (peak interference or background curvature) could result in errors of several tens of million years on the calculated age. Results obtained on a CAMECA SX-100 "UltraChron" using monazite

  15. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  16. Composite tube and plate manufacturing repeatability as determined by precision measurements of thermal strain

    NASA Astrophysics Data System (ADS)

    Riddle, Lenn A.; Tucker, James R.; Bluth, A. Marcel

    2013-09-01

    Composite materials often carry the reputation of demonstrating high variability in critical material properties. The JWST telescope metering structure is fabricated of several thousand separate composite piece parts. The stringent dimensional stability requirements on the metering structure require the critical thermal strain response of every composite piece be verified either at the billet or piece part level. JWST is a unique composite space structure in that it has required the manufacturing of several hundred composite billets that cover many lots of prepreg and many years of fabrication. The flight billet thermal expansion acceptance criteria limits the coefficient of thermal expansion (CTE) to a tolerance ranging between +/-0.014 ppm/K to +/-0.04 ppm/K around a prescribed nominal when measured from 293 K down to 40 K. The different tolerance values represent different material forms including flat plates and different tube cross-section dimensions. A precision measurement facility was developed that could measure at the required accuracy and at a pace that supported the composite part fabrication rate. The test method and facility is discussed and the results of a statistical process analysis of the flight composite billets are surveyed.

  17. Cumulative incidence of childhood autism: a total population study of better accuracy and precision.

    PubMed

    Honda, Hideo; Shimizu, Yasuo; Imai, Miho; Nitto, Yukari

    2005-01-01

    Most studies on the frequency of autism have had methodological problems. Most notable of these have been differences in diagnostic criteria between studies, degree of cases overlooked by the initial screening, and type of measurement. This study aimed to replicate the first report on childhood autism to address cumulative incidence as well as prevalence, as defined in the International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10) Diagnostic Criteria for Research. Here, the same methodological accuracy (exactness of a measurement to the true value) as the first study was used, but population size was four times larger to achieve greater precision (reduction of random error). A community-oriented system of early detection and early intervention for developmental disorders was established in the northern part of Yokohama, Japan. The city's routine health checkup for 18-month-old children served as the initial mass screening, and all facilities that provided child care services aimed to detect all cases of childhood autism and refer them to the Yokohama Rehabilitation Center. Cumulative incidence up to age 5 years was calculated for childhood autism among a birth cohort from four successive years (1988 to 1991). Cumulative incidence of childhood autism was 27.2 per 10000. Cumulative incidences by sex were 38.4 per 10000 in males, and 15.5 per 10000 in females. The male:female ratio was 2.5:1. The proportions of children with high-functioning autism who had Binet IQs of 70 and over and those with Binet IQs of 85 and over were 25.3% and 13.7% respectively. Data on cumulative incidence of childhood autism derived from this study are the first to be drawn from an accurate, as well as precise, screening methodology.

  18. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  19. Repeating a Monologue under Increasing Time Pressure: Effects on Fluency, Complexity, and Accuracy

    ERIC Educational Resources Information Center

    Thai, Chau; Boers, Frank

    2016-01-01

    Studies have shown that learners' task performance improves when they have the opportunity to repeat the task. Conditions for task repetition vary, however. In the 4/3/2 activity, learners repeat a monologue under increasing time pressure. The purpose is to foster fluency, but it has been suggested in the literature that it also benefits other…

  20. Analysis of Current Position Determination Accuracy in Natural Resources Canada Precise Point Positioning Service

    NASA Astrophysics Data System (ADS)

    Krzan, Grzegorz; Dawidowicz, Karol; Krzysztof, Świaţek

    2013-09-01

    Precise Point Positioning (PPP) is a technique used to determine highprecision position with a single GNSS receiver. Unlike DGPS or RTK, satellite observations conducted by the PPP technique are not differentiated, therefore they require that parameter models should be used in data processing, such as satellite clock and orbit corrections. Apart from explaining the theory of the PPP technique, this paper describes the available web-based online services used in the post-processing of observation results. The results obtained in the post-processing of satellite observations at three points, with different characteristics of environment conditions, using the CSRS-PPP service, will be presented as the results of the experiment. This study examines the effect of the duration of the measurement session on the results and compares the results obtained by working out observations made by the GPS system and the combined observations from GPS and GLONASS. It also presents the analysis of the position determination accuracy using one and two measurement frequencies

  1. Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm

    SciTech Connect

    Carson, R.E.; Yan, Y.; Chodkowski, B.; Yap, T.K.; Daube-Witherspoon, M.E. )

    1994-09-01

    The imaging characteristics of maximum likelihood (ML) reconstruction using the EM algorithm for emission tomography have been extensively evaluated. There has been less study of the precision and accuracy of ML estimates of regional radioactivity concentration. The authors developed a realistic brain slice simulation by segmenting a normal subject's MRI scan into gray matter, white matter, and CSF and produced PET sinogram data with a model that included detector resolution and efficiencies, attenuation, scatter, and randoms. Noisy realizations at different count levels were created, and ML and filtered backprojection (FBP) reconstructions were performed. The bias and variability of ROI values were determined. In addition, the effects of ML pixel size, image smoothing and region size reduction were assessed. ML estimates at 1,000 iterations (0.6 sec per iteration on a parallel computer) for 1-cm[sup 2] gray matter ROIs showed negative biases of 6% [+-] 2% which can be reduced to 0% [+-] 3% by removing the outer 1-mm rim of each ROI. FBP applied to the full-size ROIs had 15% [+-] 4% negative bias with 50% less noise than ML. Shrinking the FBP regions provided partial bias compensation with noise increases to levels similar to ML. Smoothing of ML images produced biases comparable to FBP with slightly less noise. Because of its heavy computational requirements, the ML algorithm will be most useful for applications in which achieving minimum bias is important.

  2. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  3. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Mcadoo, David C.

    1990-01-01

    Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.

  4. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.

    PubMed

    Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F

    2006-06-01

    Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.

  5. Prediction Accuracy in Multivariate Repeated-Measures Bayesian Forecasting Models with Examples Drawn from Research on Sleep and Circadian Rhythms.

    PubMed

    Kogan, Clark; Kalachev, Leonid; Van Dongen, Hans P A

    2016-01-01

    In study designs with repeated measures for multiple subjects, population models capturing within- and between-subjects variances enable efficient individualized prediction of outcome measures (response variables) by incorporating individuals response data through Bayesian forecasting. When measurement constraints preclude reasonable levels of prediction accuracy, additional (secondary) response variables measured alongside the primary response may help to increase prediction accuracy. We investigate this for the case of substantial between-subjects correlation between primary and secondary response variables, assuming negligible within-subjects correlation. We show how to determine the accuracy of primary response predictions as a function of secondary response observations. Given measurement costs for primary and secondary variables, we determine the number of observations that produces, with minimal cost, a fixed average prediction accuracy for a model of subject means. We illustrate this with estimation of subject-specific sleep parameters using polysomnography and wrist actigraphy. We also consider prediction accuracy in an example time-dependent, linear model and derive equations for the optimal timing of measurements to achieve, on average, the best prediction accuracy. Finally, we examine an example involving a circadian rhythm model and show numerically that secondary variables can improve individualized predictions in this time-dependent nonlinear model as well.

  6. Using statistics and software to maximize precision and accuracy in U-Pb geochronological measurements

    NASA Astrophysics Data System (ADS)

    McLean, N.; Bowring, J. F.; Bowring, S. A.

    2009-12-01

    Uncertainty in U-Pb geochronology results from a wide variety of factors, including isotope ratio determinations, common Pb corrections, initial daughter product disequilibria, instrumental mass fractionation, isotopic tracer calibration, and U decay constants and isotopic composition. The relative contribution of each depends on the proportion of radiogenic to common Pb, the measurement technique, and the quality of systematic error determinations. Random and systematic uncertainty contributions may be propagated into individual analyses or for an entire population, and must be propagated correctly to accurately interpret data. Tripoli and U-Pb_Redux comprise a new data reduction and error propagation software package that combines robust cycle measurement statistics with rigorous multivariate data analysis and presents the results graphically and interactively. Maximizing the precision and accuracy of a measurement begins with correct appraisal and codification of the systematic and random errors for each analysis. For instance, a large dataset of total procedural Pb blank analyses defines a multivariate normal distribution, describing the mean of and variation in isotopic composition (IC) that must be subtracted from each analysis. Uncertainty in the size and IC of each Pb blank is related to the (random) uncertainty in ratio measurements and the (systematic) uncertainty involved in tracer subtraction. Other sample and measurement parameters can be quantified in the same way, represented as statistical distributions that describe their uncertainty or variation, and are input into U-Pb_Redux as such before the raw sample isotope ratios are measured. During sample measurement, U-Pb_Redux and Tripoli can relay cycle data in real time, calculating a date and uncertainty for each new cycle or block. The results are presented in U-Pb_Redux as an interactive user interface with multiple visualization tools. One- and two-dimensional plots of each calculated date and

  7. Compensation of Environment and Motion Error for Accuracy Improvement of Ultra-Precision Lathe

    NASA Astrophysics Data System (ADS)

    Kwac, Lee-Ku; Kim, Jae-Yeol; Kim, Hong-Gun

    The technological manipulation of the piezo-electric actuator could compensate for the errors of the machining precision during the process of machining which lead to an elevation and enhancement in overall precisions. This manipulation is a very convenient method to advance the precision for nations without the solid knowledge of the ultra-precision machining technology. There were 2 divisions of researches conducted to develop the UPCU for precision enhancement of the current lathe and compensation for the environmental errors as shown below; The first research was designed to measure and real-time correct any deviations in variety of areas to achieve a compensation system through more effective optical fiber laser encoder than the encoder resolution which was currently used in the existing lathe. The deviations for a real-time correction were composed of followings; the surrounding air temperature, the thermal deviations of the machining materials, the thermal deviations in spindles, and the overall thermal deviation occurred due to the machine structure. The second research was to develop the UPCU and to improve the machining precision through the ultra-precision positioning and the real-time operative error compensation. The ultimate goal was to improve the machining precision of the existing lathe through completing the 2 research tasks mentioned above.

  8. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  9. Effect of homogenizer performance on accuracy and repeatability of mid-infrared predicted values for major milk components.

    PubMed

    Di Marzo, Larissa; Barbano, David M

    2016-12-01

    Our objective was to determine the effect of mid-infrared (MIR) homogenizer efficiency on accuracy and repeatability of Fourier transform MIR predicted fat, true protein, and anhydrous lactose determination given by traditional filter and partial least squares (PLS) prediction models. Five homogenizers with different homogenization performance based on laser light-scattering particle size analysis were used. Repeatability and accuracy were determined by conducting 17 sequential readings on milk homogenized externally to the instrument (i.e., control) and unhomogenized milk. Milk component predictions on externally homogenized milks were affected by variation in homogenizer performance, but the magnitude of effect were small (i.e., <0.025%) when milks were pumped through both efficient and inefficient homogenizers within a MIR milk analyzer. Variation in the in-line MIR homogenizer performance on unhomogenized milks had a much larger effect on accuracy of component testing than on repeatability. The increase of particle size distribution [d(0.9)] from 1.35 to 3.03μm (i.e., fat globule diameter above which 10% of the volume of fat is contained) due to poor homogenization affected fat tests the most; traditional filter based fat B (carbon hydrogen stretch; -0.165%), traditional filter-based fat A (carbonyl stretch; -0.074%), and fat PLS (-0.078%) at a d(0.9) of 3.03μm. Variation in homogenization efficiency also affected traditional filter-based true protein test (+0.012%), true protein PLS prediction (-0.107%), and traditional filter-based anhydrous lactose test (+0.027%) at a d(0.9) of 3.03μm. Effects of variation in homogenization on anhydrous lactose PLS predictions were small. The accuracy of both traditional filter models and PLS models were influenced by poor homogenization. The value of 1.7µm for a d(0.9) used by the USDA Federal Milk Market laboratories as a criterion to make the decision to replace the homogenizer in a MIR milk analyzer appears to be a

  10. Repeatability precision of the falling number procedure under standard and modified methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The falling number (FN) procedure is used worldwide to assess the integrity of the starch stored within wheat seed. As an indirect measurement of the activity level of alpha-amylase, FN relies on a dedicated viscometer that measures the amount of time needed for a metal stirring rod of precise geome...

  11. Accuracy and precision of total mixed rations fed on commercial dairy farms.

    PubMed

    Sova, A D; LeBlanc, S J; McBride, B W; DeVries, T J

    2014-01-01

    Despite the significant time and effort spent formulating total mixed rations (TMR), it is evident that the ration delivered by the producer and that consumed by the cow may not accurately reflect that originally formulated. The objectives of this study were to (1) determine how TMR fed agrees with or differs from TMR formulation (accuracy), (2) determine daily variability in physical and chemical characteristics of TMR delivered (precision), and (3) investigate the relationship between daily variability in ration characteristics and group-average measures of productivity [dry matter intake (DMI), milk yield, milk components, efficiency, and feed sorting] on commercial dairy farms. Twenty-two commercial freestall herds were visited for 7 consecutive days in both summer and winter months. Fresh and refusal feed samples were collected daily to assess particle size distribution, dry matter, and chemical composition. Milk test data, including yield, fat, and protein were collected from a coinciding Dairy Herd Improvement test. Multivariable mixed-effect regression models were used to analyze associations between productivity measures and daily ration variability, measured as coefficient of variation (CV) over 7d. The average TMR [crude protein=16.5%, net energy for lactation (NEL) = 1.7 Mcal/kg, nonfiber carbohydrates = 41.3%, total digestible nutrients = 73.3%, neutral detergent fiber=31.3%, acid detergent fiber=20.5%, Ca = 0.92%, p=0.42%, Mg = 0.35%, K = 1.45%, Na = 0.41%] delivered exceeded TMR formulation for NEL (+0.05 Mcal/kg), nonfiber carbohydrates (+1.2%), acid detergent fiber (+0.7%), Ca (+0.08%), P (+0.02%), Mg (+0.02%), and K (+0.04%) and underfed crude protein (-0.4%), neutral detergent fiber (-0.6%), and Na (-0.1%). Dietary measures with high day-to-day CV were average feed refusal rate (CV = 74%), percent long particles (CV = 16%), percent medium particles (CV = 7.7%), percent short particles (CV = 6.1%), percent fine particles (CV = 13%), Ca (CV = 7

  12. High-precision repeat-groundtrack orbit design and maintenance for Earth observation missions

    NASA Astrophysics Data System (ADS)

    He, Yanchao; Xu, Ming; Jia, Xianghua; Armellin, Roberto

    2017-02-01

    The focus of this paper is the design and station keeping of repeat-groundtrack orbits for Sun-synchronous satellites. A method to compute the semimajor axis of the orbit is presented together with a station-keeping strategy to compensate for the perturbation due to the atmospheric drag. The results show that the nodal period converges gradually with the increase of the order used in the zonal perturbations up to J_{15} . A differential correction algorithm is performed to obtain the nominal semimajor axis of the reference orbit from the inputs of the desired nodal period, eccentricity, inclination and argument of perigee. To keep the satellite in the proximity of the repeat-groundtrack condition, a practical orbit maintenance strategy is proposed in the presence of errors in the orbital measurements and control, as well as in the estimation of the semimajor axis decay rate. The performance of the maintenance strategy is assessed via the Monte Carlo simulation and the validation in a high fidelity model. Numerical simulations substantiate the validity of proposed mean-elements-based orbit maintenance strategy for repeat-groundtrack orbits.

  13. Long-term accuracy and precision of PIXE and PIGE measurements for thin and thick sample analyses

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Siegele, Rainer; Orlic, Ivo; Stelcer, Ed

    2002-04-01

    This paper describes PIXE/PIGE measurements on thin Micromatter Standard (±5%) foils run over a period of 10 years. The selected foils were typically 50 μg/cm 2 thick and covered the commonly used PIXE X-ray energy range 1.4-20 keV and the light elements F and Na for PIGE studies. For the thousands of thick obsidian and pottery samples analysed over a 6-year period, the Ohio Red Clay standard has been used for both PIXE and PIGE calibration of a range of elements from Li to Rb. For PIXE, the long-term accuracy could be as low as ±1.6% for major elements with precision ranging from ±5% to ±10% depending on the elemental concentration. For PIGE, accuracies were around ±5% with precision ranging from ±5% in thick samples to ±15% in thin samples or for low yield γ-ray production.

  14. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology.

    PubMed

    McAlinden, Colm; Khadka, Jyoti; Pesudovs, Konrad

    2011-07-01

    The ever-expanding choice of ocular metrology and imaging equipment has driven research into the validity of their measurements. Consequently, studies of the agreement between two instruments or clinical tests have proliferated in the ophthalmic literature. It is important that researchers apply the appropriate statistical tests in agreement studies. Correlation coefficients are hazardous and should be avoided. The 'limits of agreement' method originally proposed by Altman and Bland in 1983 is the statistical procedure of choice. Its step-by-step use and practical considerations in relation to optometry and ophthalmology are detailed in addition to sample size considerations and statistical approaches to precision (repeatability or reproducibility) estimates.

  15. Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry.

    PubMed

    Weinberg, Seth M; Naidoo, Sybill; Govier, Daniel P; Martin, Rick A; Kane, Alex A; Marazita, Mary L

    2006-05-01

    A variety of commercially available three-dimensional (3D) surface imaging systems are currently in use by craniofacial specialists. Little is known, however, about how measurement data generated from alternative 3D systems compare, specifically in terms of accuracy and precision. The purpose of this study was to compare anthropometric measurements obtained by way of two different digital 3D photogrammetry systems (Genex and 3dMD) as well as direct anthropometry and to evaluate intraobserver precision across these three methods. On a sample of 18 mannequin heads, 12 linear distances were measured twice by each method. A two-factor repeated measures analysis of variance was used to test simultaneously for mean differences in precision across methods. Additional descriptive statistics (e.g., technical error of measurement [TEM]) were used to quantify measurement error magnitude. Statistically significant (P < 0.05) mean differences were observed across methods for nine anthropometric variables; however, the magnitude of these differences was consistently at the submillimeter level. No significant differences were noted for precision. Moreover, the magnitude of imprecision was determined to be very small, with TEM scores well under 1 mm, and intraclass correlation coefficients ranging from 0.98 to 1. Results indicate that overall mean differences across these three methods were small enough to be of little practical importance. In terms of intraobserver precision, all methods fared equally well. This study is the first attempt to simultaneously compare 3D surface imaging systems directly with one another and with traditional anthropometry. Results suggest that craniofacial surface data obtained by way of alternative 3D photogrammetric systems can be combined or compared statistically.

  16. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Elmore, Andrew J.; Mustard, John F.; Manning, Sara J.; Elome, Andrew J.

    2000-01-01

    Because in situ techniques for determining vegetation abundance in semiarid regions are labor intensive, they usually are not feasible for regional analyses. Remotely sensed data provide the large spatial scale necessary, but their precision and accuracy in determining vegetation abundance and its change through time have not been quantitatively determined. In this paper, the precision and accuracy of two techniques, Spectral Mixture Analysis (SMA) and Normalized Difference Vegetation Index (NDVI) applied to Landsat TM data, are assessed quantitatively using high-precision in situ data. In Owens Valley, California we have 6 years of continuous field data (1991-1996) for 33 sites acquired concurrently with six cloudless Landsat TM images. The multitemporal remotely sensed data were coregistered to within 1 pixel, radiometrically intercalibrated using temporally invariante surface features and geolocated to within 30 m. These procedures facilitated the accurate location of field-monitoring sites within the remotely sensed data. Formal uncertainties in the registration, radiometric alignment, and modeling were determined. Results show that SMA absolute percent live cover (%LC) estimates are accurate to within ?4.0%LC and estimates of change in live cover have a precision of +/-3.8%LC. Furthermore, even when applied to areas of low vegetation cover, the SMA approach correctly determined the sense of clump, (i.e., positive or negative) in 87% of the samples. SMA results are superior to NDVI, which, although correlated with live cover, is not a quantitative measure and showed the correct sense of change in only 67%, of the samples.

  17. Interproton distance determinations by NOE--surprising accuracy and precision in a rigid organic molecule.

    PubMed

    Butts, Craig P; Jones, Catharine R; Towers, Emma C; Flynn, Jennifer L; Appleby, Lara; Barron, Nicholas J

    2011-01-07

    The accuracy inherent in the measurement of interproton distances in small molecules by nuclear Overhauser enhancement (NOE) and rotational Overhauser enhancement (ROE) methods is investigated with the rigid model compound strychnine. The results suggest that interproton distances can be established with a remarkable level of accuracy, within a few percent of their true values, using a straight-forward data analysis method if experiments are conducted under conditions that support the initial rate approximation. Dealing with deviations from these conditions and other practical issues regarding these measurements are discussed.

  18. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    PubMed Central

    Kamiński, Radosław; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-01-01

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3–4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample. PMID:20567080

  19. Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy.

    PubMed

    Thoenes, Sven; Oberfeld, Daniel

    2017-03-29

    Numerous studies have reported that time perception and temporal processing are impaired in schizophrenia. In a meta-analytical review, we differentiate between time perception (judgments of time intervals) and basic temporal processing (e.g., judgments of temporal order) as well as between effects on accuracy (deviation of estimates from the veridical value) and precision (variability of judgments). In a meta-regression approach, we also included the specific tasks and the different time interval ranges as covariates. We considered 68 publications of the past 65years, and meta-analyzed data from 957 patients with schizophrenia and 1060 healthy control participants. Independent of tasks and interval durations, our results demonstrate that time perception and basic temporal processing are less precise (more variable) in patients (Hedges' g>1.00), whereas effects of schizophrenia on accuracy of time perception are rather small and task-dependent. Our review also shows that several aspects, e.g., potential influences of medication, have not yet been investigated in sufficient detail. In conclusion, the results are in accordance with theoretical assumptions and the notion of a more variable internal clock in patients with schizophrenia, but not with a strong effect of schizophrenia on clock speed. The impairment of temporal precision, however, may also be clock-unspecific as part of a general cognitive deficiency in schizophrenia.

  20. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  1. Event Clustering: Accuracy and Precision of Multiple Event Locations with Sparse Networks

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Wallace, T. C.

    2002-12-01

    In the last 15 years passive PASSCAL experiments have been fielded on every continent. Most of these deployments were designed to record teleseismic or large local seismic events to infer crustal and mantle structure. However, the deployments inevitably record small, local seismicity. Unfortunately, the configuration of the experiments are not optimal for location (typically the stations are arranged in linear arrays), and the seismicity is recorded at a very limited number of stations. The standard location procedure (Geiger's method) is severely limited without a detailed crustal model. A number of methods have been developed to improve relative location precision, including Joint Hypocenter Determination (JHD) and Progressive Multiple Event Location (PMEL). In this study we investigate the performance of PMEL for a very sparse network where there appears to be strong event clustering. CHARGE is a passive deployment of broadband seismometers in Chile and Argentina, with a primary focus of investigating the changes in dip along the descending Nazca Plate. The CHARGE stations recorded a large number of small, local events in 2000-2002. For this study events were selected from the northern profile (approximately along 30o S) in Chile. The events look similar, and appear to be clustered southeast of the city of La Serena. We performed three sets of experiments to investigate precision: (1) iterative Master Event Corrections to measure the scale length of clusters, (2) PMEL locations, and (3) PMEL locations using a cross-correlation to determine accurate relative phase timing. The analysis shows that for the PMEL experiment clusters must occupy an area of 600 km2 for the results to be consistent. We will present a method to estimate the precision errors based on bootstrapping. Charge Team: S. Beck, G. Zandt, M. Anderson, H. Folsom, R. Fromm, T. Shearer, L. Wagner, and P. Alvarado (all University of Arizona), J. Campos, E. Kausel, and J. Paredes (all University of

  2. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  3. [Studies on the accuracy and precision of total serum cholesterol in regional interlaboratory trials (author's transl)].

    PubMed

    Hohenwallner, W; Sommer, R; Wimmer, E

    1976-01-02

    The between-run precision of the Liebermann-Burchard reaction modified by Watson was, in our laboratory, 2-3%, the within-run coefficient of variation was 1-2%. The between-run precision of the enzymatic test was 3-4%, the within-run coefficient of variation was 3%. The regression analysis of 92 serum specimens from patients was y = -17.31 + 1.04 chi, the coefficient of regression was r = 0.996. Interlaboratory trials of serum cholesterol were studied in the normal and pathological range. Lyophilized samples of serum prepared commercially and from fresh specimens from patients were analysed by the method of Liebermann-Burchard as well as by the enzymatic procedure. Acceptable results estimated by Liebermann-Burchard were obtained in the different laboratories after using a common standard of cholesterol. The coefficient of variation of the enzymatic test in the interlaboratory trial was higher in comparison to the Liebermann-Burchard reaction. Methodological difficulties of the Liebermann-Burchard reaction are discussed and compared with the specific, enzymatic assay.

  4. Precision and Accuracy in the Determination of Sulfur Oxides, Fluoride, and Spherical Aluminosilicate Fly Ash Particles in Project MOHAVE.

    PubMed

    Eatough, Norman L; Eatough, Michele; Joseph, Jyothi M; Caka, Fern M; Lewis, Laura; Eatough, Delbert J

    1997-04-01

    The precision and accuracy of the determination of particulate sulfate and fluoride, and gas phase S02 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for highland low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m(3) and ±2.5 nmol/m(3) for the determination of S02 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m(3) and ±2.0 nmol/m(3) for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is +0.3 nmol/m(3). The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m(3). At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m(3)) is small, but important relative to the precision of the data and the concentrations of particulate sulfate present (typically 5-20 nmol sulfate/m(3)). The concentrations of S02(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SOz(g) plus particulate

  5. Impact of improved models for precise orbits of altimetry satellites on the orbit accuracy and regional mean sea level trends

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Esselborn, Saskia; Dettmering, Denise; Schöne, Tilo; Neumayer, Karl-Hans

    2015-04-01

    Precise orbits of altimetry satellites are a prerequisite for investigations of global and regional sea level changes. We show a significant progress obtained in the recent decades in modeling and determination of the orbits of altimetry satellites. This progress was reached due to the improved knowledge of the Earth gravity field obtained by using CHAMP (CHAllenging Mini-Satellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and Ocean Circulation Explorer) data, improved realizations of the terrestrial and celestial reference frames and transformations between these reference frames, improved modeling of ocean and solid Earth tides, improved accuracy of observations and other effects. New precise orbits of altimetry satellites ERS-1 (1991-1996), TOPEX/Poseidon (1992-2005), ERS-2 (1995-2006), Envisat (2002-2012) and Jason-1 (2002-2012) have been recently derived at the time intervals given within the DFG UHR-GravDat project and the ESA Climate Change Initiative Sea Level project using satellite laser ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), Precise Range And Range-Rate Equipment (PRARE) and altimetry single-satellite crossover data (various observation types were used for various satellites). We show the current state of the orbit accuracy and the improvements obtained in the recent years. In particular, we demonstrate the impact of recently developed time-variable Earth gravity field models, improved tropospheric refraction models for DORIS observations, latest release 05 of the atmosphere-ocean dealiasing product (AOD1B) and some other models on the orbit accuracy of these altimetry satellites and regional mean sea level trends computed using these new orbit solutions.

  6. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  7. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  8. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  9. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  10. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  11. Accuracy and precision of the i-STAT portable clinical analyzer: an analytical point of view.

    PubMed

    Pidetcha, P; Ornvichian, S; Chalachiva, S

    2000-04-01

    The introduction of a new point-of-care testing (POCT) instrument into the market affects medical practice and laboratory services. The i-STAT is designed to improve the speed in the decision making of the medical profession. However, reliability of results would ensure the quality of laboratory data. We, therefore, made an evaluation of the performance of i-STAT using a disposable cartridge EG7 + which is capable of measuring pH, pO2, pCO2 (blood gas), Sodium, Potassium (Electrolytes), Ionized calcium and Hematocrit with only 10 microliters of lithium heparinized blood in 2 minutes. The results were compared with those obtained from routine methods. The results were found to be accurate, precise and correlated with acceptable methods used routinely in the laboratory.

  12. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  13. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night.

    PubMed

    Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

    2016-11-15

    During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.

  14. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night

    PubMed Central

    Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

    2016-01-01

    During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061

  15. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.

    PubMed

    Choe, Kyoung Whan; Blake, Randolph; Lee, Sang-Hun

    2016-01-01

    Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task.

  16. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment

    PubMed Central

    Vu, An T.; Phillips, Jeffrey S.; Kay, Kendrick; Phillips, Matthew E.; Johnson, Matthew R.; Shinkareva, Svetlana V.; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2017-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms. PMID:27686111

  17. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  18. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  19. Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision

    PubMed Central

    Friedrich, Björn; Heil, Peter

    2017-01-01

    Onsets of acoustic stimuli are salient transients and are relevant in humans for the perception of music and speech. Previous studies of onset-duration discrimination and matching focused on whether onsets are perceived categorically. In this study, we address two issues. First, we revisit onset-duration matching and measure, for 79 conditions, how accurately and precisely human listeners can adjust the onset duration of a comparison stimulus to subjectively match that of a standard stimulus. Second, we explore measures for quantifying performance in this and other matching tasks. The conventional measures of accuracy and precision are defined by arithmetic descriptive statistics and the Euclidean distance function on the real numbers. We propose novel measures based on geometric descriptive statistics and the log-ratio distance function, the Euclidean distance function on the positive-real numbers. Only these properly account for the fact that the magnitude of onset durations, like the magnitudes of most physical quantities, can attain only positive real values. The conventional (arithmetic) measures possess a convexity bias that yields errors that grow with the width of the distribution of matches. This convexity bias leads to misrepresentations of the constant error and could even imply the existence of perceptual illusions where none exist. This is not so for the proposed (geometric) measures. We collected up to 68 matches from a given listener for each condition (about 34,000 matches in total) and examined inter-listener variability and the effects of onset duration, plateau duration, sound level, carrier, and restriction of the range of adjustable comparison stimuli on measures of accuracy and precision. Results obtained with the conventional measures generally agree with those reported in the literature. The variance across listeners is highly heterogeneous for the conventional measures but is homogeneous for the proposed measures. Furthermore, the proposed

  20. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  1. Precision and accuracy of in vivo bone mineral measurement in rats using dual-energy X-ray absorptiometry.

    PubMed

    Rozenberg, S; Vandromme, J; Neve, J; Aguilera, A; Muregancuro, A; Peretz, A; Kinthaert, J; Ham, H

    1995-01-01

    The aim of this study was to evaluate the precision and accuracy of dual-energy X-ray absorptiometry (DXA) for measuring bone mineral content at different sites of the skeleton in rats. In vitro the reproducibility error was very small (< 1%), but in vivo the intra-observer variability ranged from 0.9% to 6.0%. Several factors have been shown to affect in vivo reproducibility: the reproducibility was better when the results were expressed as bone mineral density (BMD) rather than bone mineral content (BMC), intra-observer variability was better than the inter-observer variability, and a higher error was observed for the tibia compared with that for vertebrae and femur. The accuracy of measurement at the femur and tibia was assessed by comparing the values with ash weight and with biochemically determined calcium content. The correlation coefficients (R) between the in vitro BMC and the dry weight or the calcium content were higher than 0.99 for both the femur and the tibia. SEE ranged between 0.0 g (ash weight) and 2.0 mg (Ca content). Using in vitro BMC, ash weight could be estimated with an accuracy error close to 0 and calcium content with an error ranging between 0.82% and 6.80%. The R values obtained between the in vivo and in vitro BMC were 0.98 and 0.97 respectively for femur and tibia, with SEE of 0.04 and 0.02 g respectively. In conclusion, the in vivo precision of the technique was found to be too low. To be of practical use it is important in the design of experimentation to try to reduce the measurement error.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors.

    PubMed

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of -7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with -0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of -4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely.

  3. Accuracy and precision of free-energy calculations via molecular simulation

    NASA Astrophysics Data System (ADS)

    Lu, Nandou

    A quantitative characterization of the methodologies of free-energy perturbation (FEP) calculations is presented, and optimal implementation of the methods for reliable and efficient calculation is addressed. Some common misunderstandings in the FEP calculations are corrected. The two opposite directions of FEP calculations are uniquely defined as generalized insertion and generalized deletion, according to the entropy change along the perturbation direction. These two calculations are not symmetric; they produce free-energy results differing systematically due to the different capability of each to sample the important phase-space in a finite-length simulation. The FEP calculation errors are quantified by characterizing the simulation sampling process with the help of probability density functions for the potential energy change. While the random error in the FEP calculation is analyzed with a probabilistic approach, the systematic error is characterized as the most-likely inaccuracy, which is modeled considering the poor sampling of low-probability energy distribution tails. Our analysis shows that the entropy difference between the perturbation systems plays a key role in determining the reliability of FEP results, and the perturbation should be carried out in the insertion direction in order to ensure a good sampling and thus a reliable calculation. Easy-to-use heuristics are developed to estimate the simulation errors, as well as the simulation length that ensures a certain accuracy level of the calculation. The fundamental understanding obtained is then applied to tackle the problem of multistage FEP optimization. We provide the first principle of optimal staging: For each substage FEP calculation, the higher entropy system should be used as the reference to govern the sampling, i.e., the calculation should be conducted in the generalized insertion direction for each stage of perturbation. To minimize the simulation error, intermediate states should be

  4. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision.

    PubMed

    Peyton, Philip J; Chong, Simon W

    2010-11-01

    When assessing the accuracy and precision of a new technique for cardiac output measurement, the commonly quoted criterion for acceptability of agreement with a reference standard is that the percentage error (95% limits of agreement/mean cardiac output) should be 30% or less. We reviewed published data on four different minimally invasive methods adapted for use during surgery and critical care: pulse contour techniques, esophageal Doppler, partial carbon dioxide rebreathing, and transthoracic bioimpedance, to assess their bias, precision, and percentage error in agreement with thermodilution. An English language literature search identified published papers since 2000 which examined the agreement in adult patients between bolus thermodilution and each method. For each method a meta-analysis was done using studies in which the first measurement point for each patient could be identified, to obtain a pooled mean bias, precision, and percentage error weighted according to the number of measurements in each study. Forty-seven studies were identified as suitable for inclusion: N studies, n measurements: mean weighted bias [precision, percentage error] were: pulse contour N = 24, n = 714: -0.00 l/min [1.22 l/min, 41.3%]; esophageal Doppler N = 2, n = 57: -0.77 l/min [1.07 l/min, 42.1%]; partial carbon dioxide rebreathing N = 8, n = 167: -0.05 l/min [1.12 l/min, 44.5%]; transthoracic bioimpedance N = 13, n = 435: -0.10 l/min [1.14 l/min, 42.9%]. None of the four methods has achieved agreement with bolus thermodilution which meets the expected 30% limits. The relevance in clinical practice of these arbitrary limits should be reassessed.

  5. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    PubMed

    Wells, Emma; Wolfe, Marlene K; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4-19% error), then test strips (5.2-48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration. Given the

  6. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions

    PubMed Central

    Wells, Emma; Wolfe, Marlene K.; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4–19% error), then test strips (5.2–48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5–11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14–37 for test strips and $33–609 for titration

  7. Accuracy and repeatability of quantitative fluoroscopy for the measurement of sagittal plane translation and finite centre of rotation in the lumbar spine.

    PubMed

    Breen, Alexander; Breen, Alan

    2016-07-01

    Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences.

  8. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.

    PubMed

    Suehiro, Koichi; Joosten, Alexandre; Murphy, Linda Suk-Ling; Desebbe, Olivier; Alexander, Brenton; Kim, Sang-Hyun; Cannesson, Maxime

    2016-10-01

    Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. The inter-study heterogeneity was also assessed using an I(2) statistic. A total of 20 studies (624 patients) were included. The overall random-effects pooled bias, and mean percentage error were 0.13 ± 0.44 l min(-1) and 29.1 %, respectively. Significant inter-study heterogeneity was detected (P < 0.0001, I(2) = 98.3 %). In the sub-analysis regarding the device, electrical cardiometry showed the smallest bias (-0.03 l min(-1)) and lowest percentage error (23.6 %). Significant residual heterogeneity remained after conducting sensitivity and subgroup analyses based on the various study characteristics. By meta-regression analysis, we found no independent effects of study characteristics on weighted mean difference between reference and tested methods. Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics.

  9. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  10. The Precision and Accuracy of Early Epoch of Reionization Foreground Models: Comparing MWA and PAPER 32-antenna Source Catalogs

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Bowman, Judd; Aguirre, James E.

    2013-05-01

    As observations of the Epoch of Reionization (EoR) in redshifted 21 cm emission begin, we assess the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Wide-field Array (MWA). The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision, while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. The two instruments are very similar in resolution, sensitivity, sky coverage, and spectral range and have produced catalogs from nearly contemporaneous data. We use a Bayesian Markov Chain Monte Carlo fitting method to estimate that the two instruments are on the same flux scale to within 20% and find that the images are mostly in good agreement. We then investigate the source of the errors by comparing two overlapping MWA facets where we find that the differences are primarily related to an inaccurate model of the primary beam but also correlated errors in bright sources due to CLEAN. We conclude with suggestions for mitigating and better characterizing these effects.

  11. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    USGS Publications Warehouse

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  12. Synthesized Speech Intelligibility and Early Preschool-Age Children: Comparing Accuracy for Single-Word Repetition with Repeated Exposure

    ERIC Educational Resources Information Center

    Pinkoski-Ball, Carrie L.; Reichle, Joe; Munson, Benjamin

    2012-01-01

    Purpose: This investigation examined the effect of repeated exposure to novel and repeated spoken words in typical environments on the intelligibility of 2 synthesized voices and human recorded speech in preschools. Method: Eighteen preschoolers listened to and repeated single words presented in human-recorded speech, DECtalk Paul, and AT&T Voice…

  13. Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ketrin, Rosi; Handayani, Eka Mardika; Komalasari, Isna

    2017-01-01

    Two significant parameters to evaluate the measurement results are known as precision and accuracy. Both are associated with indeterminate and determinate error, respectively, that normally happen in such spectrometric measurement method as Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). These errors must be eliminated or suppressed to get high precision and accuracy of the method. Decreasing the errors thus increasing the precision and accuracy of the method. In this study, bracketing method using two-point standard calibration was proposed in order to suppress the indeterminate error caused by instrumental drift thus increasing the result precision, and applied for measuring cadmium in drinking water samples. Certified reference material of ERM CA011b-Hard drinking water UK-metals was used to know the determinate error or measurement bias. When bias is obtained, some corrections are needed to get the accurate measurement result. The result was compared to that by external calibration method.

  14. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  15. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.

    PubMed

    Anderson, Will; Kozak, Darby; Coleman, Victoria A; Jämting, Åsa K; Trau, Matt

    2013-09-01

    The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual and a mixed sample of monodisperse, sub-micron (220, 330, and 410 nm - nominal modal size) polystyrene particles. The platforms compared were the qNano Tunable Resistive Pulse Sensor, Nanosight LM10 Particle Tracking Analysis System, the CPS Instruments's UHR24000 Disc Centrifuge, and the routinely used Malvern Zetasizer Nano ZS Dynamic Light Scattering system. All measurements were subjected to a peak detection algorithm so that the detected particle populations could be compared to 'reference' Transmission Electron Microscope measurements of the individual particle samples. Only the Tunable Resistive Pulse Sensor and Disc Centrifuge platforms provided the resolution required to resolve all three particle populations present in the mixed 'multimodal' particle sample. In contrast, the light scattering based Particle Tracking Analysis and Dynamic Light Scattering platforms were only able to detect a single population of particles corresponding to either the largest (410 nm) or smallest (220 nm) particles in the multimodal sample, respectively. When the particle sets were measured separately (monomodal) each platform was able to resolve and accurately obtain a mean particle size within 10% of the Transmission Electron Microscope reference values. However, the broadness of the PSD measured in the monomodal samples deviated greatly, with coefficients of variation being ~2-6-fold larger than the TEM measurements across all four platforms. The large variation in the PSDs obtained from these four, fundamentally different platforms, indicates that great care must still be taken in

  16. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing

    PubMed Central

    Maurer, Florian P.; Pfiffner, Tamara; Böttger, Erik C.; Furrer, Reinhard

    2015-01-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 108 CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of the

  17. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  18. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit.

    PubMed

    Starke, Sandra D; Witte, Thomas H; May, Stephen A; Pfau, Thilo

    2012-05-11

    Gait analysis using small sensor units is becoming increasingly popular in the clinical context. In order to segment continuous movement from a defined point of the stride cycle, knowledge about footfall timings is essential. We evaluated the accuracy and precision of foot contact timings of a defined limb determined using an inertial sensor mounted on the pelvis of ten horses during walk and trot at different speeds and in different directions. Foot contact was estimated from vertical velocity events occurring before maximum sensor roll towards the contralateral limb. Foot contact timings matched data from a synchronised hoof mounted accelerometer well when velocity minimum was used for walk (mean (SD) difference of 15 (18)ms across horses) and velocity zero-crossing for trot (mean (SD) difference from -4 (14) to 12 (7)ms depending on the condition). The stride segmentation method also remained robust when applied to movement data of hind limb lame horses. In future, this method may find application in segmenting overground sensor data of various species.

  19. A first investigation of accuracy, precision and sensitivity of phase-based x-ray dark-field imaging

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Endrizzi, Marco; Kallon, Gibril; Millard, Thomas P.; Vittoria, Fabio A.; Olivo, Alessandro

    2016-12-01

    In the last two decades, x-ray phase contrast imaging (XPCI) has attracted attention as a potentially significant improvement over widespread and established x-ray imaging. The key is its capability to access a new physical quantity (the ‘phase shift’), which can be complementary to x-ray absorption. One additional advantage of XPCI is its sensitivity to micro structural details through the refraction induced dark-field (DF). While DF is extensively mentioned and used for several applications, predicting the capability of an XPCI system to retrieve DF quantitatively is not straightforward. In this article, we evaluate the impact of different design options and algorithms on DF retrieval for the edge-illumination (EI) XPCI technique. Monte Carlo simulations, supported by experimental data, are used to measure the accuracy, precision and sensitivity of DF retrieval performed with several EI systems based on conventional x-ray sources. The introduced tools are easy to implement, and general enough to assess the DF performance of systems based on alternative (i.e. non-EI) XPCI approaches.

  20. Evaluation of the accuracy and precision of four intraoral scanners with 70% reduced inlay and four-unit bridge models of international standard.

    PubMed

    Uhm, Soo-Hyuk; Kim, Jae-Hong; Jiang, Heng Bo; Woo, Chang-Woo; Chang, Minho; Kim, Kyoung-Nam; Bae, Ji-Myung; Oh, Seunghan

    2017-01-31

    The aims of this study were to evaluate the feasibility of 70% reduced inlay and 4-unit bridge models of International Standard (ISO 12836) assessing the accuracy of laboratory scanners to measure the accuracy of intraoral scanner. Four intraoral scanners (CS3500, Trios, Omnicam, and Bluecam) and one laboratory scanner (Ceramill MAP400) were used in this study. The height, depth, length, and angle of the models were measured from thirty scanned stereolithography (STL) images. There were no statistically significant mean deviations in distance accuracy and precision values of scanned images, except the angulation values of the inlay and 4-unit bridge models. The relative errors of inlay model and 4-unit bridge models quantifying the accuracy and precision of obtained mean deviations were less than 0.023 and 0.021, respectively. Thus, inlay and 4-unit bridge models suggested by this study is expected to be feasible tools for testing intraoral scanners.

  1. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles.

  2. In Vivo and in Vitro Evaluations of Repeatability and Accuracy of VITA Easyshade® Advance 4.0 Dental Shade-Matching Device

    PubMed Central

    Illeš, Iva Ž.; Alajbeg, Maja; Žagar

    2015-01-01

    Objectives The objective of this study was to evaluate the intra-device repeatability and accuracy of dental shade-matching device (VITA Easyshade® Advance 4.0) using both in vitro and in vivo models. Materials and methods For the repeatability assessment, the in vivo model utilized shade-matching device to measure the central region of the labial surface of right maxillary central incisors of 10 people twice. The following tooth colors were measured: B1, A1, A2, A3, C1 and C3. The in vitro model included the same six Vitapan Classical tabs. Two measurements were made of the central region of each shade tab. For the accuracy assessment, each shade tab from 3 Vitapan Classical shade guides was measured once. CIE L*a*b* values were determined. Intraclass correlation coefficients (ICCs) were used to analyze the in vitro and in vivo intra-device repeatability of the shade-matching device. The difference between in vitro and in vivo models was analyzed. Accuracy of the device tested was calculated. Results The mean color differences for in vivo and in vitro models were 3.51 and 1.25 E units, respectively. The device repeatability ICCs for in vivo measurements ranged from 0.858 to 0.971 and for in vitro from 0.992 to 0.994. Accuracy of the device tested was 93.75%. Conclusion Within the limitations of the experiment, VITA Easyshade®Advance 4.0 dental shade-matching device enabled reliable and accurate measurement. It can be a valuable tool for the determination of tooth colours. PMID:27688393

  3. An Examination of the Precision and Technical Accuracy of the First Wave of Group-Randomized Trials Funded by the Institute of Education Sciences

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Raudenbush, Stephen W.

    2009-01-01

    This article examines the power analyses for the first wave of group-randomized trials funded by the Institute of Education Sciences. Specifically, it assesses the precision and technical accuracy of the studies. The authors identified the appropriate experimental design and estimated the minimum detectable standardized effect size (MDES) for each…

  4. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    SciTech Connect

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-11-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures.

  5. Accuracy, Precision, and Reproducibility of Four T1 Mapping Sequences: A Head-to-Head Comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE

    PubMed Central

    Roujol, Sébastien; Weingärtner, Sebastian; Foppa, Murilo; Chow, Kelvin; Kawaji, Keigo; Ngo, Long H.; Kellman, Peter; Manning, Warren J.; Thompson, Richard B.

    2014-01-01

    Purpose To compare accuracy, precision, and reproducibility of four commonly used myocardial T1 mapping sequences: modified Look-Locker inversion recovery (MOLLI), shortened MOLLI (ShMOLLI), saturation recovery single-shot acquisition (SASHA), and saturation pulse prepared heart rate independent inversion recovery (SAPPHIRE). Materials and Methods This HIPAA-compliant study was approved by the institutional review board. All subjects provided written informed consent. Accuracy, precision, and reproducibility of the four T1 mapping sequences were first compared in phantom experiments. In vivo analysis was performed in seven healthy subjects (mean age ± standard deviation, 38 years ± 19; four men, three women) who were imaged twice on two separate days. In vivo reproducibility of native T1 mapping and extracellular volume (ECV) were measured. Differences between the sequences were assessed by using Kruskal-Wallis and Wilcoxon rank sum tests (phantom data) and mixed-effect models (in vivo data). Results T1 mapping accuracy in phantoms was lower with ShMOLLI (62 msec) and MOLLI (44 msec) than with SASHA (13 msec; P < .05) and SAPPHIRE (12 msec; P < .05). MOLLI had similar precision to ShMOLLI (4.0 msec vs 5.6 msec; P = .07) but higher precision than SAPPHIRE (6.8 msec; P = .002) and SASHA (8.7 msec; P < .001). All sequences had similar reproducibility in phantoms (P = .1). The four sequences had similar in vivo reproducibility for native T1 mapping (∼25–50 msec; P > .05) and ECV quantification (∼0.01–0.02; P > .05). Conclusion SASHA and SAPPHIRE yield higher accuracy, lower precision, and similar reproducibility compared with MOLLI and ShMOLLI for T1 measurement. Different sequences yield different ECV values; however, all sequences have similar reproducibility for ECV quantification. © RSNA, 2014 Online supplemental material is available for this article. PMID:24702727

  6. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  7. Accuracy And Precision Of Algorithms To Determine The Extent Of Aquatic Plants: Empirical Scaling Of Spectral Indices Vs. Spectral Unmixing

    NASA Astrophysics Data System (ADS)

    Cheruiyot, E.; Menenti, M.; Gorte, B.; Mito, C.; Koenders, R.

    2013-12-01

    Assessing the accuracy of image classification results is an important but often neglected step. Accuracy information is necessary in assessing the reliability of map products, hence neglecting this step renders the products unusable. With a classified Landsat-7 TM image as reference, we assessed the accuracy of NDVI and linear spectral unmixing (LSU) in vegetation detection from 20 randomly selected MERIS sample pixels in the Winam Gulf section of Lake Victoria. We noted that though easy to compute, empirical scaling of NDVI is not suitable for quantitative estimation of vegetation cover as it is misleading and often omits useful information. LSU performed at 87% based on RMSE. For quick solutions, we propose the use of a conversion factor from NDVI to vegetation fractional abundance (FA). With this conversion which is 96% reliable, the resulting FA from our samples were classified at 84% accuracy, only 3% less than those directly computed using LSU.

  8. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2014-04-02

    Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into...THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air...The regional algorithm products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one

  9. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  10. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes.

  11. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel fuel, and ECA marine fuel? 80.584 Section 80.584 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80... sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  12. Study of the Effect of Modes of Electroerosion Treatment on the Microstructure and Accuracy of Precision Sizes of Small Parts

    NASA Astrophysics Data System (ADS)

    Korobova, N. V.; Aksenenko, A. Yu.; Bashevskaya, O. S.; Nikitin, A. A.

    2016-01-01

    Results of a study of the effect of the parameters of electroerosion treatment in a GF Agie Charmilles CUT 1000 OilTech wire-cutting bench on the size accuracy, the quality of the surface layer of cuts, and the microstructure of the surface of the treated parts are presented.

  13. A more precise, repeatable and diagnostic alternative to surface electromyography - an appraisal of the clinical utility of acoustic myography.

    PubMed

    Harrison, Adrian P

    2017-03-02

    Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers and digital sound recording systems, measurements during physical activity both inside and outside a laboratory setting are now possible and accurate. Muscle sound gives a representation of the work of each muscle group during a complex movement, and under certain forms of movement even reveals both concentric and eccentric activity, something that sEMG is incapable of. Recent findings suggest that AMG has a number of advantages over sEMG, being simple to use, accurate and repeatable as well as being intuitive to interpret. The AMG signal comprises three physiological parameters, namely efficiency/coordination (E-score), spatial summation (S-score) and temporal summation (T-score). It is concluded that modern AMG units have the potential to accurately assess patients with neuromuscular and musculoskeletal complaints in hospital clinics, home monitoring situations as well as sports settings.

  14. Analysis of the accuracy and precision of the Axis-Shield Afinion hemoglobin A1c measurement device.

    PubMed

    Little, Randie R

    2012-03-01

    Point-of-care (POC) hemoglobin A1c measurement is now used by many physicians to make more timely decisions on therapy changes. A few studies have highlighted the drawbacks of some POC methods, e.g., poor precision and lot-to-lot variability. Evaluating performance in the clinical setting is difficult because there is minimal proficiency testing data on POC methods. In this issue of Journal of Diabetes Science and Technology, Wood and colleagues describe their experience with the Afinion method in a pediatric clinic network, comparing these results to another POC method as well as to a laboratory high-performance liquid chromatography method. Although they conclude that the Afinion exhibits adequate performance, they do not evaluate lot-to-lot variability. As with laboratory methods, potential assay interferences must also be considered.

  15. European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability.

    PubMed

    Pearson, J; Ruegsegger, P; Dequeker, J; Henley, M; Bright, J; Reeve, J; Kalender, W; Felsenberg, D; Laval-Jeantet, A M; Adams, J E

    1994-11-01

    A semi-anthropomorphic 'distal radius like' phantom, developed by Kalender and Ruegsegger for use in peripheral bone densitometry using single photon (DPA) dual X-ray (DXA) and quantitative computed tomography (QCT) machines, has been studied with a view to cross-calibrating different types and brands of densitometers in current use. In the context of an EU 'Concerted Action' (second Framework Programme) the phantom was repeatedly measured on six SPA machines, three DXA machines and nine QCT machines (545 measurements). Linear regression equations were derived, individual to each machine, which allowed the derivation of 'standardized densities'. In this way we converted measurements made by machines of the same modality to a common scale of measurements. Two machines (one DXA, one SPA) showed statistically significant instability over time emphasising the need for rigorous quality control in the application of densitometry. In other respects these results provide an encouraging basis for the derivation of standardized normative ranges and the more effective use of peripheral densitometry in future clinical and epidemiological studies.

  16. Quantitative Thin-Film X-ray Microanalysis by STEM/HAADF: Statistical Analysis for Precision and Accuracy Determination

    NASA Astrophysics Data System (ADS)

    Armigliato, Aldo; Balboni, Roberto; Rosa, Rodolfo

    2006-07-01

    Silicon-germanium thin films have been analyzed by EDS microanalysis in a field emission gun scanning transmission electron microscope (FEG-STEM) equipped with a high angular dark-field detector (STEM/HAADF). Several spectra have been acquired in the same homogeneous area of the cross-sectioned sample by drift-corrected linescan acquisitions. The Ge concentrations and the local film thickness have been obtained by using a previously described Monte Carlo based “two tilt angles” method. Although the concentrations are in excellent agreement with the known values, the resulting confidence intervals are not as good as expected from the precision in beam positioning and tilt angle position and readout offered by our state-of-the-art microscope. The Gaussian shape of the SiK[alpha] and GeK[alpha] X-ray intensities allows one to use the parametric bootstrap method of statistics, whereby it becomes possible to perform the same quantitative analysis in sample regions of different compositions and thicknesses, but by doing only one measurement at the two angles.

  17. Toward High-precision Seismic Studies of White Dwarf Stars: Parametrization of the Core and Tests of Accuracy

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.

    2017-01-01

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.

  18. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems.

  19. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Schmidlin, F. J.; Oltmans, S. J.; Smit, H. G. J.

    2004-01-01

    Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 ozone profiles over eleven southern hemisphere tropical and subtropical stations. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used to measure ozone. The data are archived at: &ttp://croc.gsfc.nasa.gov/shadoz>. In analysis of ozonesonde imprecision within the SHADOZ dataset, Thompson et al. [JGR, 108,8238,20031 we pointed out that variations in ozonesonde technique (sensor solution strength, instrument manufacturer, data processing) could lead to station-to-station biases within the SHADOZ dataset. Imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. First, SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release). As for TOMS version 7, satellite total ozone is usually higher than the integrated column amount from the sounding. Discrepancies between the sonde and satellite datasets decline two percentage points on average, compared to version 7 TOMS offsets. Second, the SHADOZ station data are compared to results of chamber simulations (JOSE-2000, Juelich Ozonesonde Intercomparison Experiment) in which the various SHADOZ techniques were evaluated. The range of JOSE column deviations from a standard instrument (-10%) in the chamber resembles that of the SHADOZ station data. It appears that some systematic variations in the SHADOZ ozone record are accounted for by differences in solution strength, data processing and instrument type (manufacturer).

  20. Charts of operational process specifications ("OPSpecs charts") for assessing the precision, accuracy, and quality control needed to satisfy proficiency testing performance criteria.

    PubMed

    Westgard, J O

    1992-07-01

    "Operational process specifications" have been derived from an analytical quality-planning model to assess the precision, accuracy, and quality control (QC) needed to satisfy Proficiency Testing (PT) criteria. These routine operating specifications are presented in the form of an "OPSpecs chart," which describes the operational limits for imprecision and inaccuracy when a desired level of quality assurance is provided by a specific QC procedure. OPSpecs charts can be used to compare the operational limits for different QC procedures and to select a QC procedure that is appropriate for the precision and accuracy of a specific measurement procedure. To select a QC procedure, one plots the inaccuracy and imprecision observed for a measurement procedure on the OPSpecs chart to define the current operating point, which is then compared with the operational limits of candidate QC procedures. Any QC procedure whose operational limits are greater than the measurement procedure's operating point will provide a known assurance, with the percent chance specified by the OPSpecs chart, that critical analytical errors will be detected. OPSpecs charts for a 10% PT criterion are presented to illustrate the selection of QC procedures for measurement procedures with different amounts of imprecision and inaccuracy. Normalized OPSpecs charts are presented to permit a more general assessment of the analytical performance required with commonly used QC procedures.

  1. Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media.

    PubMed

    Akbulut, Songul; Cevik, Ugur; Van, Aydın Ali; De Wael, Karolien; Van Grieken, Rene

    2014-02-01

    The present study was conducted to (i) determine the precision and accuracy of arsenic measurement in soil samples using ST-EDXRF by comparison with the results of ICP-MS analyses and (ii) identify the relationship of As concentration with soil characteristics. For the analysis of samples, inductively coupled plasma mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were performed. According to the results found in the soil samples, the addition of HCl to HNO3, used for the digestion gave significant variations in the recovery of As. However, spectral interferences between peaks for As and Pb can affect detection limits and accuracy for XRF analysis. When comparing the XRF and ICP-MS results a correlation was observed with R(2)=0.8414. This means that using a ST-EDXRF spectrometer, it is possible to achieve accurate and precise analysis by the calibration of certified reference materials and choosing an appropriate secondary target. On the other hand, with regard to soil characteristics analyses, the study highlighted that As is mostly anthropogenically enriched in the studied area.

  2. TanDEM-X IDEM precision and accuracy assessment based on a large assembly of differential GNSS measurements in Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Baade, J.; Schmullius, C.

    2016-09-01

    High resolution Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years, the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unprecedented geometric resolution, precision and accuracy. First TanDEM Intermediate Digital Elevation Models (i.e. IDEM) with a geometric resolution from 0.4 to 3 arcsec have been made available for scientific purposes in November 2014. This includes four 1° × 1° tiles covering the Kruger National Park in South Africa. Here, we document the results of a local scale IDEM height accuracy validation exercise utilizing over 10,000 RTK-GNSS-based ground survey points from fourteen sites characterized by mainly pristine Savanna vegetation. The vertical precision of the ground checkpoints is 0.02 m (1σ). Selected precursor data sets (SRTMGL1, SRTM41, ASTER-GDEM2) are included in the analysis to facilitate the comparison. Although IDEM represents an intermediate product on the way to the new global TanDEM-X DEM, expected to be released in late 2016, it allows first insight into the properties of the forthcoming product. Remarkably, the TanDEM-X tiles include a number of auxiliary files providing detailed information pertinent to a user-based quality assessment. We present examples for the utilization of this information in the framework of a local scale study including the identification of height readings contaminated by water. Furthermore, this study provides evidence for the high precision and accuracy of IDEM height readings and the sensitivity to canopy cover. For open terrain, the 0.4 arcsec resolution edition (IDEM04) yields an average bias of 0.20 ± 0.05 m (95% confidence interval, Cl95), a RMSE = 1.03 m and an absolute vertical height error (LE90) of 1.5 [1.4, 1.7] m (Cl95). The corresponding values for the lower resolution IDEM editions are about the same and provide evidence for the high quality of the IDEM products

  3. Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR.

    PubMed

    Scholdberg, Tandace A; Norden, Tim D; Nelson, Daishia D; Jenkins, G Ronald

    2009-04-08

    The agricultural biotechnology industry routinely utilizes real-time quantitative PCR (RT-qPCR) for the detection of biotechnology-derived traits in plant material, particularly for meeting the requirements of legislative mandates that rely upon the trace detection of DNA. Quantification via real-time RT-qPCR in plant species involves the measurement of the copy number of a taxon-specific, endogenous control gene exposed to the same manipulations as the target gene prior to amplification. The International Organization for Standardization (ISO 21570:2005) specifies that the copy number of an endogenous reference gene be used for normalizing the concentration (expressed as a % w/w) of a trait-specific target gene when using RT-qPCR. For this purpose, the copy number of a constitutively expressed endogenous reference gene in the same sample is routinely monitored. Real-time qPCR was employed to evaluate the predictability and performance of commonly used endogenous control genes (starch synthase, SSIIb-2, SSIIb-3; alcohol dehydrogenase, ADH; high-mobility group, HMG; zein; and invertase, IVR) used to detect biotechnology-derived traits in maize. The data revealed relatively accurate and precise amplification efficiencies when isogenic maize was compared to certified reference standards, but highly variable results when 23 nonisogenic maize cultivars were compared to an IRMM Bt-11 reference standard. Identifying the most suitable endogenous control gene, one that amplifies consistently and predictably across different maize cultivars, and implementing this as an internationally recognized standard would contribute toward harmonized testing of biotechnology-derived traits in maize.

  4. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES

    PubMed Central

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. PMID:26994093

  5. Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Stammer, Detlef

    1994-01-01

    TOPEX/POSEIDON sea surface height measurements are examined for quantitative consistency with known elements of the oceanic general circulation and its variability. Project-provided corrections were accepted but are at tested as part of the overall results. The ocean was treated as static over each 10-day repeat cycle and maps constructed of the absolute sea surface topography from simple averages in 2 deg x 2 deg bins. A hybrid geoid model formed from a combination of the recent Joint Gravity Model-2 and the project-provided Ohio State University geoid was used to estimate the absolute topography in each 10-day period. Results are examined in terms of the annual average, seasonal average, seasonal variations, and variations near the repeat period. Conclusion are as follows: the orbit error is now difficult to observe, having been reduced to a level at or below the level of other error sources; the geoid dominates the error budget of the estimates of the absolute topography; the estimated seasonal cycle is consistent with prior estimates; shorter-period variability is dominated on the largest scales by an oscillation near 50 days in spherical harmonics Y(sup m)(sub 1)(theta, lambda) with an amplitude near 10 cm, close to the simplest alias of the M(sub 2) tide. This spectral peak and others visible in the periodograms support the hypothesis that the largest remaining time-dependent errors lie in the tidal models. Though discrepancies attribute to the geoid are within the formal uncertainties of the good estimates, removal of them is urgent for circulation studies. Current gross accuracy of the TOPEX/POSEIDON mission is in the range of 5-10 cm, distributed overbroad band of frequencies and wavenumbers. In finite bands, accuracies approach the 1-cm level, and expected improvements arising from extended mission duration should reduce these numbers by nearly an order of magnitude.

  6. SU-E-J-147: Monte Carlo Study of the Precision and Accuracy of Proton CT Reconstructed Relative Stopping Power Maps

    SciTech Connect

    Dedes, G; Asano, Y; Parodi, K; Arbor, N; Dauvergne, D; Testa, E; Letang, J; Rit, S

    2015-06-15

    Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)

  7. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best

  8. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  9. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  10. Precise Localization of the Soft Gamma Repeater SGR 1627-41 with Chandra and the Anomalous X-Ray Pulsar AXP 1E1841-045 with Chandra

    NASA Technical Reports Server (NTRS)

    Wachter, Stefanie; Patel, Sandeep K.; Kouveliotou, Chryssa; Bouchet, Patrice; Ozel, Feryal; Tennant, Allyn F.; Woods, Peter M.; Hurley, Kevin; Becker, Werner; Slane, Patrick

    2004-01-01

    We present precise localizations of AXP 1E184-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position, and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known anomalous X-ray pulsar (AXP) and soft gamma repeater (SGR) counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs in order to have counterparts detectable with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new infrared observations during the 2003 July burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.

  11. The Influence of External Loads on Movement Precision During Active Shoulder Internal Rotation Movements as Measured by 3 Indices of Accuracy

    PubMed Central

    Brindle, Timothy J; Uhl, Timothy L; Nitz, Arthur J; Shapiro, Robert

    2006-01-01

    Context: Using constant, variable, and absolute error to measure movement accuracy might provide a more complete description of joint position sense than any of these values alone. Objective: To determine the effect of loaded movements and type of feedback on shoulder joint position sense and movement velocity. Design: Applied study with repeated measures comparing type of feedback and the presence of a load. Setting: Laboratory. Patients or Other Participants: Twenty healthy subjects (age = 27.2 ± 3.3 years, height = 173.2 ± 18.1 cm, mass = 70.8 ± 14.5 kg) were seated with their arms in a custom shoulder wheel. Intervention(s): Subjects internally rotated 27° in the plane of the scapula, with either visual feedback provided by a video monitor or proprioceptive feedback provided by prior passive positioning, to a target at 48° of external rotation. Subjects performed the internal rotation movements with video feedback and proprioceptive feedback and with and without load (5% of body weight). Main Outcome Measure(s): High-speed motion analysis recorded peak rotational velocity and accuracy. Constant, variable, and absolute error for joint position sense was calculated from the final position. Results: Unloaded movements demonstrated significantly greater variable error than for loaded movements (2.0 ± 0.7° and 1.5 ± 0.4°, respectively) (P < .05), but there were no differences in constant or absolute error. Peak velocity was greater for movements with proprioceptive feedback (45.6 ± 2.9°/s) than visual feedback (39.1 ± 2.1°/s) and for unloaded (47.8 ± 3.6°/s) than loaded (36.9 ± 1.0°/s) movements (P < .05). Conclusions: Shoulder joint position sense demonstrated greater variable error unloaded versus loaded movements. Both visual feedback and additional loads decreased peak rotational velocity. PMID:16619096

  12. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Griffith, Elizabeth M.; Buckley, Wayne P.

    2014-02-01

    (BaSO4) is a widely distributed mineral that incorporates strontium (Sr) during formation. Mass-dependent fractionation of Sr isotopes occurs during abiotic precipitation of barite and formation of barite associated with biological processes (e.g., bacterial sulfide oxidation). Sr isotopes in barite can provide provenance information as well as potentially reconstruct sample formation conditions (e.g., saturation state, temperature, biotic versus abiotic). Incomplete separation of Ba from Sr has complicated measurements of Sr isotopes by MC-ICPMS. In this study, we tested the effects of Ba in Sr sample solutions and modified extraction chromatography of Sr using Eichrom Sr Spec (Eichrom Technologies LLC, USA) resin to enable rapid, accurate, and precise measurements of 88Sr/86Sr and 87Sr/86Sr ratios from Ba-rich matrices. Sr isotope ratios of sample solutions doped with Ba were statistically indistinguishable from Ba-free sample solutions below 1 ppm Ba. Deviations in both 87Sr/86Sr and δ88/86Sr occurred above 1 ppm Ba. An updated extraction chromatography method tested with barite and Ba-doped seawater produces Sr sample solutions containing 10-100 ppb levels of Ba. The practice of Zr spiking for external mass-discrimination correction of 88Sr/86Sr ratios was also evaluated, and it was confirmed that variable Zr levels do not have adverse effects on the accuracy and precision of 87Sr/86Sr ratios in the Zr concentration range required to produce accurate δ88/86Sr values.

  13. Functional limits of agreement applied as a novel method comparison tool for accuracy and precision of inertial measurement unit derived displacement of the distal limb in horses.

    PubMed

    Olsen, Emil; Pfau, Thilo; Ritz, Christian

    2013-09-03

    Over ground motion analysis in horses is limited by a small number of strides and restraints of the indoor gait laboratory. Inertial measurement units (IMUs) are transforming the knowledge of human motion and objective clinical assessment through the opportunity to obtain clinically relevant data under various conditions. When using IMUs on the limbs of horses to determine local position estimates, conditions with high dynamic range of both accelerations and rotational velocities prove particularly challenging. Here we apply traditional method agreement and suggest a novel method of functional data analysis to compare motion capture with IMUs placed over the fetlock joint in seven horses. We demonstrate acceptable accuracy and precision at less than or equal to 5% of the range of motion for detection of distal limb mounted cranio-caudal and vertical position. We do not recommend the use of the latero-medial position estimate of the distal metacarpus/metatarsus during walk where the average error is 10% and the maximum error 111% of the range. We also show that functional data analysis and functional limits of agreement are sensitive methods for comparison of cyclical data and could be applied to differentiate changes in gait for individuals across time and conditions.

  14. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

  15. Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

    PubMed Central

    Blevins, Sydney J.; Baker, Brian M.

    2017-01-01

    In cellular immunity, clonally distributed T cell receptors (TCRs) engage complexes of peptides bound to major histocompatibility complex proteins (pMHCs). In the interactions of TCRs with pMHCs, regions of restricted and variable diversity align in a structurally complex fashion. Many studies have used mutagenesis to attempt to understand the “roles” played by various interface components in determining TCR recognition properties such as specificity and cross-reactivity. However, these measurements are often complicated or even compromised by the weak affinities TCRs maintain toward pMHC. Here, we demonstrate how global analysis of multiple datasets can be used to significantly extend the accuracy and precision of such TCR binding experiments. Application of this approach should positively impact efforts to understand TCR recognition and facilitate the creation of mutational databases to help engineer TCRs with tuned molecular recognition properties. We also show how global analysis can be used to analyze double mutant cycles in TCR-pMHC interfaces, which can lead to new insights into immune recognition. PMID:28197404

  16. High-Precision Surface Inspection: Uncertainty Evaluation within an Accuracy Range of 15μm with Triangulation-based Laser Line Scanners

    NASA Astrophysics Data System (ADS)

    Dupuis, Jan; Kuhlmann, Heiner

    2014-06-01

    Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

  17. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  18. Results from a round-robin study assessing the precision and accuracy of LA-ICPMS U/Pb geochronology of zircon

    NASA Astrophysics Data System (ADS)

    Hanchar, J. M.

    2009-12-01

    A round-robin study was undertaken to assess the current state of precision and accuracy that can be achieved in LA-ICPMS U/Pb geochronology of zircon. The initial plan was to select abundant, well-characterized zircon samples to distribute to participants in the study. Three suitable samples were found, evaluated, and dated using ID-TIMS. Twenty-five laboratories in North America and Europe were asked to participate in the study. Eighteen laboratories agreed to participate, of which seventeen submitted final results. It was decided at the outset of the project that the identities of the participating researchers and laboratories not be revealed until the manuscript stemming from the project was completed. Participants were sent either fragments of zircon crystal or whole zircon crystals, selected randomly after being thoroughly mixed. Participants were asked to conform to specific requirements. These include providing all analytical conditions and equipment used, submission of all data acquired, and submitting their preferred data and preferred ages for the three samples. The participating researchers used a wide range of analytical methods (e.g., instrumentation, data reduction, error propagation) for the LA-ICPMS U/Th geochronology. These combined factors made it difficult for direct comparison of the results that were submitted. Most of the LA-ICPMS results submitted were within 2% r.s.d. of the ID-TIMS values for the three samples in the study. However, the error bars for the majority of the LA-ICPMS results for the three samples did not overlap with the ID-TIMS results. These results suggest a general underestimation of the errors calculated for the LA-ICPMS analyses U/Pb zircon analyses.

  19. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  20. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  1. Two dimensional assisted liquid chromatography - a chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution.

    PubMed

    Cook, Daniel W; Rutan, Sarah C; Stoll, Dwight R; Carr, Peter W

    2015-02-15

    Comprehensive two-dimensional liquid chromatography (LC×LC) is rapidly evolving as the preferred method for the analysis of complex biological samples owing to its much greater resolving power compared to conventional one-dimensional (1D-LC). While its enhanced resolving power makes this method appealing, it has been shown that the precision of quantitation in LC×LC is generally not as good as that obtained with 1D-LC. The poorer quantitative performance of LC×LC is due to several factors including but not limited to the undersampling of the first dimension and the dilution of analytes during transit from the first dimension ((1)D) column to the second dimension ((2)D) column, and the larger relative background signals. A new strategy, 2D assisted liquid chromatography (2DALC), is presented here. 2DALC makes use of a diode array detector placed at the end of each column, producing both multivariate (1)D and two-dimensional (2D) chromatograms. The increased resolution of the analytes provided by the addition of a second dimension of separation enables the determination of analyte absorbance spectra from the (2)D detector signal that are relatively pure and can be used to initiate the treatment of data from the first dimension detector using multivariate curve resolution-alternating least squares (MCR-ALS). In this way, the approach leverages the strengths of both separation methods in a single analysis: the (2)D detector data is used to provide relatively pure analyte spectra to the MCR-ALS algorithm, and the final quantitative results are obtained from the resolved (1)D chromatograms, which has a much higher sampling rate and lower background signal than obtained in conventional single detector LC×LC, to obtain accurate and precise quantitative results. It is shown that 2DALC is superior to both single detector selective or comprehensive LC×LC and 1D-LC for quantitation of compounds that appear as severely overlapped peaks in the (1)D chromatogram - this is

  2. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  3. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  4. Non-Destructive Assay (NDA) Uncertainties Impact on Physical Inventory Difference (ID) and Material Balance Determination: Sources of Error, Precision/Accuracy, and ID/Propagation of Error (POV)

    SciTech Connect

    Wendelberger, James G.

    2016-10-31

    These are slides from a presentation made by a researcher from Los Alamos National Laboratory. The following topics are covered: sources of error for NDA gamma measurements, precision and accuracy are two important characteristics of measurements, four items processed in a material balance area during the inventory time period, inventory difference and propagation of variance, sum in quadrature, and overview of the ID/POV process.

  5. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  6. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography.

    PubMed

    Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2014-05-15

    Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings.

  7. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  8. Two-Site Evaluation of the Repeatability and Precision of an Automated Dual-Column Hydrogen/Deuterium Exchange Mass Spectrometry Platform.

    PubMed

    Cummins, David J; Espada, Alfonso; Novick, Scott J; Molina-Martin, Manuel; Stites, Ryan E; Espinosa, Juan Felix; Broughton, Howard; Goswami, Devrishi; Pascal, Bruce D; Dodge, Jeffrey A; Chalmers, Michael J; Griffin, Patrick R

    2016-06-21

    Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) is an information-rich biophysical method for the characterization of protein dynamics. Successful applications of differential HDX-MS include the characterization of protein-ligand binding. A single differential HDX-MS data set (protein ± ligand) is often comprised of more than 40 individual HDX-MS experiments. To eliminate laborious manual processing of samples, and to minimize random and gross errors, automated systems for HDX-MS analysis have become routine in many laboratories. However, an automated system, while less prone to random errors introduced by human operators, may have systematic errors that go unnoticed without proper detection. Although the application of automated (and manual) HDX-MS has become common, there are only a handful of studies reporting the systematic evaluation of the performance of HDX-MS experiments, and no reports have been published describing a cross-site comparison of HDX-MS experiments. Here, we describe an automated HDX-MS platform that operates with a parallel, two-trap, two-column configuration that has been installed in two remote laboratories. To understand the performance of the system both within and between laboratories, we have designed and completed a test-retest repeatability study for differential HDX-MS experiments implemented at each of two laboratories, one in Florida and the other in Spain. This study provided sufficient data to do both within and between laboratory variability assessments. Initial results revealed a systematic run-order effect within one of the two systems. Therefore, the study was repeated, and this time the conclusion was that the experimental conditions were successfully replicated with minimal systematic error.

  9. Improving accuracy and precision of ice core δD (CH4) analyses using methane pre- and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2013-12-01

    Firn and polar ice cores offer the only direct paleoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD (CH4)) 0.5 to 1.5 kg of ice was previously necessary to achieve the required precision. Here we present a method to improve precision and reduce the sample amount for δD (CH4) measurements on (ice core) air. Pre-concentrated methane is focused before a high temperature oven (pre pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. A small amount of methane and krypton are trapped together with H2 and must be separated using a short second chromatographic column to ensure accurate results. Pre and post pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods we estimate a precision of 2.2‰ for 350 g of ice (or roughly 30 mL (at standard temperature and pressure (STP)) of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  10. Are the surgeon's movements repeatable? An analysis of the feasibility and expediency of implementing support procedures guiding the surgical tools and increasing motion accuracy during the performance of stereotypical movements by the surgeon.

    PubMed

    Podsędkowski, Leszek Robert; Moll, Jacek; Moll, Maciej; Frącczak, Łukasz

    2014-03-01

    The developments in surgical robotics suggest that it will be possible to entrust surgical robots with a wider range of tasks. So far, it has not been possible to automate the surgery procedures related to soft tissue. Thus, the objective of the conducted studies was to confirm the hypothesis that the surgery telemanipulator can be equipped with certain routines supporting the surgeon in leading the surgical tools and increasing motion accuracy during stereotypical movements. As the first step in facilitating the surgery, an algorithm will be developed which will concurrently provide automation and allow the surgeon to maintain full control over the slave robot. The algorithm will assist the surgeon in performing typical movement sequences. This kind of support must, however, be preceded by determining the reference points for accurately defining the position of the stitched tissue. It is in relation to these points that the tool's trajectory will be created, along which the master manipulator will guide the surgeon's hand. The paper presents the first stage, concerning the selection of movements for which the support algorithm will be used. The work also contains an analysis of surgical movement repeatability. The suturing movement was investigated in detail by experimental research in order to determine motion repeatability and verify the position of the stitched tissue. Tool trajectory was determined by a motion capture stereovision system. The study has demonstrated that the suturing movement could be considered as repeatable; however, the trajectories performed by different surgeons exhibit some individual characteristics.

  11. Accuracy and precision of a new portable ultrasound scanner, the BME-150A, in residual urine volume measurement: a comparison with the BladderScan BVI 3000.

    PubMed

    Choe, Jin Ho; Lee, Ji Yeon; Lee, Kyu-Sung

    2007-06-01

    The objective of the study was to determine the relative accuracy of a new portable ultrasound unit, BME-150A, and the BladderScan BVI 3000, as assessed in comparison with the catheterized residual urine volume. We used both of these machines to prospectively measure the residual urine volumes of 89 patients (40 men and 49 women) who were undergoing urodynamic studies. The ultrasound measurements were compared with the post-scan bladder volumes obtained by catheterization in the same patients. The ultrasounds were followed immediately (within 5 min) by in-and-out catheterizations while the patients were in a supine position. There were a total of 116 paired measurements made. The BME-150A and the BVI 3000 demonstrated a correlation with the residual volume of 0.92 and 0.94, and a mean difference from the true residual volume of 7.8 and 3.6 ml, respectively. Intraclass correlation coefficients for the accuracy of the two bladder scans were 0.90 for BME-150A and 0.95 for BVI 3000. The difference of accuracy between the two models was not significant (p = 0.2421). There were six cases in which a follow-up evaluation of falsely elevated post-void residual urine volume measurements on the ultrasound studies resulted in comparatively low catheterized volumes, with a range of differences from 66 to 275.5 ml. These cases were diagnosed with an ovarian cyst, uterine myoma, or uterine adenomyosis on pelvic ultrasonography. The accuracy of the BME-150A is comparable to that of the BVI 3000 in estimating the true residual urine volumes and is sufficient enough for us to recommend its use as an alternative to catheterization.

  12. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2014-07-01

    Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL - at standard temperature and pressure (STP) - of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  13. Simultaneous Variable Flip Angle – Actual Flip Angle Imaging (VAFI) Method for Improved Accuracy and Precision of Three-dimensional T1 and B1 Measurements

    PubMed Central

    Hurley, Samuel A.; Yarnykh, Vasily L.; Johnson, Kevin M.; Field, Aaron S.; Alexander, Andrew L.; Samsonov, Alexey A.

    2011-01-01

    A new time-efficient and accurate technique for simultaneous mapping of T1 and B1 is proposed based on a combination of the Actual Flip angle Imaging (AFI) and Variable Flip Angle (VFA) methods: VAFI. VAFI utilizes a single AFI and one or more spoiled gradient-echo (SPGR) acquisitions with a simultaneous non-linear fitting procedure to yield accurate T1/B1 maps. The advantage of VAFI is high accuracy at either short T1 times or long TR in the AFI sequence. Simulations show this method is accurate to 0.03% in FA and 0.07% in T1 for TR/T1 times over the range of 0.01 to 0.45. We show for the case of brain imaging that it is sufficient to use only one small flip angle SPGR acquisition, which results in reduced spoiling requirements and a significant scan time reduction compared to the original VFA. In-vivo validation yielded high-quality 3D T1 maps and T1 measurements within 10% of previously published values, and within a clinically acceptable scan time. The VAFI method will increase the accuracy and clinical feasibility of many quantitative MRI methods requiring T1/B1 mapping such as DCE perfusion and quantitative MTI. PMID:22139819

  14. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  15. Accuracy and precision of reconstruction of complex refractive index in near-field single-distance propagation-based phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Gureyev, Timur; Mohammadi, Sara; Nesterets, Yakov; Dullin, Christian; Tromba, Giuliana

    2013-10-01

    We investigate the quantitative accuracy and noise sensitivity of reconstruction of the 3D distribution of complex refractive index, n(r)=1-δ(r)+iβ(r), in samples containing materials with different refractive indices using propagation-based phase-contrast computed tomography (PB-CT). Our present study is limited to the case of parallel-beam geometry with monochromatic synchrotron radiation, but can be readily extended to cone-beam CT and partially coherent polychromatic X-rays at least in the case of weakly absorbing samples. We demonstrate that, except for regions near the interfaces between distinct materials, the distribution of imaginary part of the refractive index, β(r), can be accurately reconstructed from a single projection image per view angle using phase retrieval based on the so-called homogeneous version of the Transport of Intensity equation (TIE-Hom) in combination with conventional CT reconstruction. In contrast, the accuracy of reconstruction of δ(r) depends strongly on the choice of the "regularization" parameter in TIE-Hom. We demonstrate by means of an instructive example that for some multi-material samples, a direct application of the TIE-Hom method in PB-CT produces qualitatively incorrect results for δ(r), which can be rectified either by collecting additional projection images at each view angle, or by utilising suitable a priori information about the sample. As a separate observation, we also show that, in agreement with previous reports, it is possible to significantly improve signal-to-noise ratio by increasing the sample-to-detector distance in combination with TIE-Hom phase retrieval in PB-CT compared to conventional ("contact") CT, with the maximum achievable gain of the order of 0.3δ /β. This can lead to improved image quality and/or reduction of the X-ray dose delivered to patients in medical imaging.

  16. The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.

    2015-01-01

    Simple reaction time (SRT), the latency to respond to a stimulus, has been widely used as a basic measure of processing speed. In the current experiments, we examined clinically-relevant properties of a new SRT test that presents visual stimuli to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined test-retest reliability in 48 participants who underwent three test sessions at weekly intervals. In the first test, log-transformed (log-SRT) z-scores, corrected for the influence of age and computer-use, were well predicted by regression functions derived from a normative population of 189 control participants. Test-retest reliability of log-SRT z-scores was measured with an intraclass correlation coefficient (ICC = 0.83) and equaled or exceeded those of other SRT tests and other widely used tests of processing speed that are administered manually. No significant learning effects were observed across test sessions. Experiment 2 investigated the same participants when instructed to malinger during a fourth testing session: 94% showed abnormal log-SRT z-scores, with 83% producing log-SRT z-scores exceeding a cutoff of 3.0, a degree of abnormality never seen in full-effort conditions. Thus, a log-SRT z-score cutoff of 3.0 had a sensitivity (83%) and specificity (100%) that equaled or exceeded that of existing symptom validity tests. We argue that even expert malingerers, fully informed of the malingering-detection metric, would be unable to successfully feign impairments on the SRT test because of the precise control of SRT latencies that would be required. Experiment 3 investigated 26 patients with traumatic brain injury (TBI) tested more than 1 year post-injury. The 22 patients with mild TBI showed insignificantly faster SRTs than controls, but a small group of four patients with severe TBI showed slowed SRTs. Simple visual reaction time is a reliable measure of processing speed that is sensitive to the effects of malingering

  17. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  18. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset 1998-2000 in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Schmidlin, F. J.; Oltmans, S. J.; McPeters, R. D.; Smit, H. G. J.

    2003-01-01

    A network of 12 southern hemisphere tropical and subtropical stations in the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 profiles of stratospheric and tropospheric ozone since 1998. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used with standard radiosondes for pressure, temperature and relative humidity measurements. The archived data are available at:http: //croc.gsfc.nasa.gov/shadoz. In Thompson et al., accuracies and imprecisions in the SHADOZ 1998- 2000 dataset were examined using ground-based instruments and the TOMS total ozone measurement (version 7) as references. Small variations in ozonesonde technique introduced possible biases from station-to-station. SHADOZ total ozone column amounts are now compared to version 8 TOMS; discrepancies between the two datasets are reduced 2\\% on average. An evaluation of ozone variations among the stations is made using the results of a series of chamber simulations of ozone launches (JOSIE-2000, Juelich Ozonesonde Intercomparison Experiment) in which a standard reference ozone instrument was employed with the various sonde techniques used in SHADOZ. A number of variations in SHADOZ ozone data are explained when differences in solution strength, data processing and instrument type (manufacturer) are taken into account.

  19. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  20. Repeatable assessment protocol for electromagnetic trackers

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamas; Sirokai, Beáta; Fenyvesi, Gábor; Kovács, Levente; Benyó, Balázs; Benyó, Zoltán

    2012-02-01

    In the past decades, many new trends appeared in interventional medicine. One of the most groundbreaking ones is Image-Guided Surgery (IGS). The main benefit of IGS procedures is the reduction of the patient's pain and collateral damage through improved accuracy and targeting. Electromagnetic Tracking (EMT) has been introduced to medical applications as an effective tool for navigation. However, magnetic fields can be severely distorted by ferromagnetic materials and electronic equipment, which is a major barrier towards their wider application. The focus of the study is to determine and compensate the inherent errors of the different types of EMTs, in order to improve their accuracy. Our aim is to develop a standardized, simple and repeatable assessment protocol; to determine tracking errors with sub-millimeter accuracy, hence increasing the measurement precision and reliability. For initial experiments, the NDI Aurora and the Ascension medSAFE systems were used in a standard laboratory environment. We aim to advance to the state-of-the art by describing and disseminating an easily reproducible calibration method, publishing the CAD files of the accuracy phantom and the source of the evaluation data. This should allow the wider spread of the technique, and eventually lead to the repeatable and comparable assessment of EMT systems.

  1. Thyroid Imaging Reporting and Data System and Ultrasound Elastography: Diagnostic Accuracy as a Tool in Recommending Repeat Fine-Needle Aspiration for Solid Thyroid Nodules with Non-Diagnostic Fine-Needle Aspiration Cytology.

    PubMed

    Park, Vivian Youngjean; Kim, Eun-Kyung; Kwak, Jin Young; Yoon, Jung Hyun; Kim, Min Jung; Moon, Hee Jung

    2016-02-01

    The Thyroid Imaging Reporting and Data System (TIRADS) has been found to be accurate in the stratification of malignancy risk, and elastography has been found to have a high negative predictive value in non-diagnostic thyroid nodules. Through assessment of 104 solid non-diagnostic thyroid nodules, this study investigated the role of both in recommending repeat ultrasonography-guided fine-needle aspiration for solid thyroid nodules with non-diagnostic cytology. All nodules were classified by TIRADS (categories 4a, 4b, 4c and 5), and elastography scores were assigned according to the Rago and Asteria criteria. The malignancy risks for TIRADS categories 4a, 4b, 4c and 5 were 12.5%, 25.0%, 25.8% and 16.7%, respectively. Elastography revealed the highest diagnostic performance for TIRADS category 4a, with a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 100%, 85.7%, 100%, 50% and 87.5% for the Asteria criteria. Observation may be considered for non-diagnostic solid nodules that have no other suspicious ultrasonographic features and are also benign on real-time strain elastography using the Asteria criteria.

  2. Evaluation of the automated hematology analyzer Sysmex XT-2000iV™ compared to the ADVIA® 2120 for its use in dogs, cats, and horses: Part I--precision, linearity, and accuracy of complete blood cell count.

    PubMed

    Bauer, Natali; Nakagawa, Julia; Dunker, Cathrin; Failing, Klaus; Moritz, Andreas

    2011-11-01

    The automated laser-based hematology analyzer Sysmex XT-2000iV™ providing a complete blood cell count (CBC) and 5-part differential has been introduced in large veterinary laboratories. The aim of the current study was to determine precision, linearity, and accuracy of the Sysmex analyzer. Reference method for the accuracy study was the laser-based hematology analyzer ADVIA® 2120. For evaluation of accuracy, consecutive fresh blood samples from healthy and diseased cats (n = 216), dogs (n = 314), and horses (n = 174) were included. A low intra-assay coefficient of variation (CV) of approximately 1% was seen for the CBC except platelet count (PLT). An intra-assay CV ranging between 2% and 5.5% was evident for the differential count except for feline and equine monocytes (7.7%) and horse eosinophils (15.7%). Linearity was excellent for white blood cell count (WBC), hematocrit value, red blood cell count (RBC), and PLT. For all evaluated species, agreement was excellent for WBC and RBC, with Spearman rank correlation coefficients (r(s)) ranging from >0.99 to 0.98. Hematocrit value correlated excellently in cats and dogs, whereas for horses, a good correlation was evident. A good correlation between both analyzers was seen in feline and equine PLT (r(s) = 0.89 and 0.92, respectively), whereas correlation was excellent for dogs (r(s) = 0.93). Biases were close to 0 except for mean corpuscular hemoglobin concentration (4.11 to -7.25 mmol/l) and canine PLT (57 × 10(9)/l). Overall, the performance of the Sysmex analyzer was excellent and compared favorably with the ADVIA analyzer.

  3. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  4. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  5. Seasonal Effects on GPS PPP Accuracy

    NASA Astrophysics Data System (ADS)

    Saracoglu, Aziz; Ugur Sanli, D.

    2016-04-01

    GPS Precise Point Positioning (PPP) is now routinely used in many geophysical applications. Static positioning and 24 h data are requested for high precision results however real life situations do not always let us collect 24 h data. Thus repeated GPS surveys of 8-10 h observation sessions are still used by some research groups. Positioning solutions from shorter data spans are subject to various systematic influences, and the positioning quality as well as the estimated velocity is degraded. Researchers pay attention to the accuracy of GPS positions and of the estimated velocities derived from short observation sessions. Recently some research groups turned their attention to the study of seasonal effects (i.e. meteorological seasons) on GPS solutions. Up to now usually regional studies have been reported. In this study, we adopt a global approach and study the various seasonal effects (including the effect of the annual signal) on GPS solutions produced from short observation sessions. We use the PPP module of the NASA/JPL's GIPSY/OASIS II software and globally distributed GPS stations' data of the International GNSS Service. Accuracy studies previously performed with 10-30 consecutive days of continuous data. Here, data from each month of a year, incorporating two years in succession, is used in the analysis. Our major conclusion is that a reformulation for the GPS positioning accuracy is necessary when taking into account the seasonal effects, and typical one term accuracy formulation is expanded to a two-term one.

  6. Repeated nightmares

    MedlinePlus

    ... different from night terrors . Alternative Names Nightmares - repeated; Dream anxiety disorder References American Academy of Family Physicians. Information from your family doctor. Nightmares and night terrors in children. ...

  7. Comparative Analysis of the Equivital EQ02 Lifemonitor with Holter Ambulatory ECG Device for Continuous Measurement of ECG, Heart Rate, and Heart Rate Variability: A Validation Study for Precision and Accuracy.

    PubMed

    Akintola, Abimbola A; van de Pol, Vera; Bimmel, Daniel; Maan, Arie C; van Heemst, Diana

    2016-01-01

    Background: The Equivital (EQ02) is a multi-parameter telemetric device offering both real-time and/or retrospective, synchronized monitoring of ECG, HR, and HRV, respiration, activity, and temperature. Unlike the Holter, which is the gold standard for continuous ECG measurement, EQO2 continuously monitors ECG via electrodes interwoven in the textile of a wearable belt. Objective: To compare EQ02 with the Holter for continuous home measurement of ECG, heart rate (HR), and heart rate variability (HRV). Methods: Eighteen healthy participants wore, simultaneously for 24 h, the Holter and EQ02 monitors. Per participant, averaged HR, and HRV per 5 min from the two devices were compared using Pearson correlation, paired T-test, and Bland-Altman analyses. Accuracy and precision metrics included mean absolute relative difference (MARD). Results: Artifact content of EQ02 data varied widely between (range 1.93-56.45%) and within (range 0.75-9.61%) participants. Comparing the EQ02 to the Holter, the Pearson correlations were respectively 0.724, 0.955, and 0.997 for datasets containing all data and data with < 50 or < 20% artifacts respectively. For datasets containing respectively all data, data with < 50, or < 20% artifacts, bias estimated by Bland-Altman analysis was -2.8, -1.0, and -0.8 beats per minute and 24 h MARD was 7.08, 3.01, and 1.5. After selecting a 3-h stretch of data containing 1.15% artifacts, Pearson correlation was 0.786 for HRV measured as standard deviation of NN intervals (SDNN). Conclusions: Although the EQ02 can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact content. This is a limitation for clinical use in individual patients. However, the advantages of the EQ02 (ability to simultaneously monitor several physiologic parameters) may outweigh its disadvantages (higher artifact load) for research purposes and/ or for home monitoring in larger groups of study participants. Further studies can be aimed at

  8. Comparative Analysis of the Equivital EQ02 Lifemonitor with Holter Ambulatory ECG Device for Continuous Measurement of ECG, Heart Rate, and Heart Rate Variability: A Validation Study for Precision and Accuracy

    PubMed Central

    Akintola, Abimbola A.; van de Pol, Vera; Bimmel, Daniel; Maan, Arie C.; van Heemst, Diana

    2016-01-01

    Background: The Equivital (EQ02) is a multi-parameter telemetric device offering both real-time and/or retrospective, synchronized monitoring of ECG, HR, and HRV, respiration, activity, and temperature. Unlike the Holter, which is the gold standard for continuous ECG measurement, EQO2 continuously monitors ECG via electrodes interwoven in the textile of a wearable belt. Objective: To compare EQ02 with the Holter for continuous home measurement of ECG, heart rate (HR), and heart rate variability (HRV). Methods: Eighteen healthy participants wore, simultaneously for 24 h, the Holter and EQ02 monitors. Per participant, averaged HR, and HRV per 5 min from the two devices were compared using Pearson correlation, paired T-test, and Bland-Altman analyses. Accuracy and precision metrics included mean absolute relative difference (MARD). Results: Artifact content of EQ02 data varied widely between (range 1.93–56.45%) and within (range 0.75–9.61%) participants. Comparing the EQ02 to the Holter, the Pearson correlations were respectively 0.724, 0.955, and 0.997 for datasets containing all data and data with < 50 or < 20% artifacts respectively. For datasets containing respectively all data, data with < 50, or < 20% artifacts, bias estimated by Bland-Altman analysis was −2.8, −1.0, and −0.8 beats per minute and 24 h MARD was 7.08, 3.01, and 1.5. After selecting a 3-h stretch of data containing 1.15% artifacts, Pearson correlation was 0.786 for HRV measured as standard deviation of NN intervals (SDNN). Conclusions: Although the EQ02 can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact content. This is a limitation for clinical use in individual patients. However, the advantages of the EQ02 (ability to simultaneously monitor several physiologic parameters) may outweigh its disadvantages (higher artifact load) for research purposes and/ or for home monitoring in larger groups of study participants. Further studies can be aimed

  9. Reassure on accuracy of laser tracker based on single point measurement model

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Lijuan; Zhao, Yan h.; Hua, Caoguo

    2015-10-01

    The Space point measurement repeatability is a prerequisite for achieving high-precision measurements to tracker, so it is important to Spatial positioning accuracy. Different measurement object means different error propagation model. In this paper, we research on the tracker measure a fixed point in a manner such single point, which according to model arrangement, under controlled conditions. Experimental measurements from three different perspectives just as different distances, different horizontal and different Vertical angle. From the integrated angle error, the repeat single point measurement accuracy is given. Then establish of a single point evaluate model that combine with algorithm.

  10. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  11. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  12. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  13. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  14. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    SciTech Connect

    Zhang, D; Wang, W; Jiang, B; Fu, D

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  15. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  16. Accuracy of Digital vs. Conventional Implant Impressions

    PubMed Central

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  17. Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method.

    PubMed

    Hapfelmeier, Alexander; Cecconi, Maurizio; Saugel, Bernd

    2016-04-01

    Cardiac output (CO) plays a crucial role in the hemodynamic management of critically ill patients treated in the intensive care unit and in surgical patients undergoing major surgery. In the field of cardiovascular dynamics, innovative techniques for CO determination are increasingly available. Therefore, the number of studies comparing these techniques with a reference, such as pulmonary artery thermodilution, is rapidly growing. There are mainly two outcomes of such method comparison studies: (1) the accuracy of agreement and (2) the precision of agreement. The precision of agreement depends on the precision of each method, i.e., the precision that the studied and the reference technique are able to achieve. We call this "precision of method". A decomposition of variance shows that method agreement does not only depend on the precision of method but also on another important source of variability, i.e., the method's general variability about the true values. Ignorance of that fact leads to falsified conclusions about the precision of method of the studied technique. In CO studies, serial measurements are frequently confused with repeated measurements. But as the actual CO of a subject changes from assessment to assessment, there is no real repetition of a measurement. This situation equals a scenario in which single measurements are given for multiple true values per subject. In such a case it is not possible to assess the precision of method.

  18. Application of AFINCH as a tool for evaluating the effects of streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the southeast Lake Michigan hydrologic subregion

    USGS Publications Warehouse

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations.  Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the

  19. Precision Measurement.

    ERIC Educational Resources Information Center

    Radius, Marcie; And Others

    The manual provides information for precision measurement (counting of movements per minute of a chosen activity) of achievement in special education students. Initial sections give guidelines for the teacher, parent, and student to follow for various methods of charting behavior. It is explained that precision measurement is a way to measure the…

  20. Temporal accuracy of human cortico-cortical interactions

    PubMed Central

    Abeles, Moshe

    2016-01-01

    The precision in space and time of interactions among multiple cortical sites was evaluated by examining repeating precise spatiotemporal patterns of instances in which cortical currents showed brief amplitude undulations. The amplitudes of the cortical current dipoles were estimated by applying a variant of synthetic aperture magnetometry to magnetoencephalographic (MEG) recordings of subjects tapping to metric auditory rhythms of drum beats. Brief amplitude undulations were detected in the currents by template matching at a rate of 2–3 per second. Their timing was treated as point processes, and precise spatiotemporal patterns were searched for. By randomly teetering these point processes within a time window W, we estimated the accuracy of the timing of these brief amplitude undulations and compared the results with those obtained by applying the same analysis to traces composed of random numbers. The results demonstrated that the timing accuracy of patterns was better than 3 ms. Successful classification of two different cognitive processes based on these patterns suggests that at least some of the repeating patterns are specific to a cognitive process. PMID:26843604

  1. The GBT precision telescope control system

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Constantikes, Kim T.; Balser, Dana S.; Condon, James J.

    2004-10-01

    The NRAO Robert C. Byrd Green Bank Telescope (GBT) is a 100m diameter advanced single dish radio telescope designed for a wide range of astronomical projects with special emphasis on precision imaging. Open-loop adjustments of the active surface, and real-time corrections to pointing and focus on the basis of structural temperatures already allow observations at frequencies up to 50GHz. Our ultimate goal is to extend the observing frequency limit up to 115GHz; this will require a two dimensional tracking error better than 1.3", and an rms surface accuracy better than 210μm. The Precision Telescope Control System project has two main components. One aspect is the continued deployment of appropriate metrology systems, including temperature sensors, inclinometers, laser rangefinders and other devices. An improved control system architecture will harness this measurement capability with the existing servo systems, to deliver the precision operation required. The second aspect is the execution of a series of experiments to identify, understand and correct the residual pointing and surface accuracy errors. These can have multiple causes, many of which depend on variable environmental conditions. A particularly novel approach is to solve simultaneously for gravitational, thermal and wind effects in the development of the telescope pointing and focus tracking models. Our precision temperature sensor system has already allowed us to compensate for thermal gradients in the antenna, which were previously responsible for the largest "non-repeatable" pointing and focus tracking errors. We are currently targetting the effects of wind as the next, currently uncompensated, source of error.

  2. Precision Medicine

    PubMed Central

    Cholerton, Brenna; Larson, Eric B.; Quinn, Joseph F.; Zabetian, Cyrus P.; Mata, Ignacio F.; Keene, C. Dirk; Flanagan, Margaret; Crane, Paul K.; Grabowski, Thomas J.; Montine, Kathleen S.; Montine, Thomas J.

    2017-01-01

    Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease. PMID:26724389

  3. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  4. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  5. Precision optical navigation guidance system

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  6. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  7. Precision metrology.

    PubMed

    Jiang, X; Whitehouse, D J

    2012-08-28

    This article is a summary of the Satellite Meeting, which followed on from the Discussion Meeting at the Royal Society on 'Ultra-precision engineering: from physics to manufacture', held at the Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire, UK. The meeting was restricted to 18 invited experts in various aspects of precision metrology from academics from the UK and Sweden, Government Institutes from the UK and Germany and global aerospace industries. It examined and identified metrology problem areas that are, or may be, limiting future developments in precision engineering and, in particular, metrology. The Satellite Meeting was intended to produce a vision that will inspire academia and industry to address the solutions of those open-ended problems identified. The discussion covered three areas, namely the function of engineering parts, their measurement and their manufacture, as well as their interactions.

  8. Positioning accuracy assessment for the 4GEO/5IGSO/2MEO constellation of COMPASS

    NASA Astrophysics Data System (ADS)

    Zhou, ShanShi; Cao, YueLing; Zhou, JianHua; Hu, XiaoGong; Tang, ChengPan; Liu, Li; Guo, Rui; He, Feng; Chen, JunPing; Wu, Bin

    2012-12-01

    Determined to become a new member of the well-established GNSS family, COMPASS (or BeiDou-2) is developing its capabilities to provide high accuracy positioning services. Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation. Precise Point Positioning (PPP) for geodetic users and real-time positioning for common navigation users are utilized. To evaluate PPP accuracy, coordinate time series repeatability and discrepancies with GPS' precise positioning are computed. Experiments show that COMPASS PPP repeatability for the east, north and up components of a receiver within mainland China is better than 2 cm, 2 cm and 5 cm, respectively. Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning, indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems. For common positioning users, COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users. Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m (RMS), respectively, which may be improved to about 3 m and 4 m (RMS) with the addition of differential corrections. Less accurate Signal In Space User Ranging Error (SIS URE) and Geometric Dilution of Precision (GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS. Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP, the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE, or both.

  9. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  10. Development of a precision reverse offset printing system.

    PubMed

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man; Kwon, Sin; Lee, Seunghyun; Jo, Jeongdai; Lee, Taik-Min; Kang, Dongwoo

    2016-01-01

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) at a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.

  11. Development of a precision reverse offset printing system

    NASA Astrophysics Data System (ADS)

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man; Kwon, Sin; Lee, Seunghyun; Jo, Jeongdai; Lee, Taik-Min; Kang, Dongwoo

    2016-01-01

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) at a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.

  12. Development of a precision reverse offset printing system

    SciTech Connect

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man; Kwon, Sin; Lee, Seunghyun; Jo, Jeongdai; Lee, Taik-Min; Kang, Dongwoo

    2016-01-15

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) at a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.

  13. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  14. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  15. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  16. Geodesy by radio interferometry - Determination of a 1.24-km base line vector with approximately 5-mm repeatability

    NASA Technical Reports Server (NTRS)

    Rogers, A. E. E.; Knight, C. A.; Hinteregger, H. F.; Whitney, A. R.; Counselman, C. C., III; Shapiro, I. I.; Gourevitch, S. A.; Clark, T. A.

    1978-01-01

    The paper describes a new method for determining the base line vector from X band radio interferometric observations of extragalactic sources. The procedure utilizes the precision inherent in fringe phase measurements. Eleven separate experiments were conducted to measure the 1.24-km base line vector between the two antennas of the Haystack Observatory in Westford, Mass. The repeatability, scatter, and level of accuracy are discussed.

  17. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.

    2016-01-01

    Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.

  18. Ultra-precise particle velocities in pulsed supersonic beams

    SciTech Connect

    Christen, Wolfgang

    2013-07-14

    We describe an improved experimental method for the generation of cold, directed particle bunches, and the highly accurate determination of their velocities in a pulsed supersonic beam, allowing for high-resolution experiments of atoms, molecules, and clusters. It is characterized by a pulsed high pressure jet source with high brilliance and optimum repeatability, a flight distance of few metres that can be varied with a tolerance of setting of 50 {mu}m, and a precision in the mean flight time of particles of better than 10{sup -4}. The technique achieves unmatched accuracies in particle velocities and kinetic energies and also permits the reliable determination of enthalpy changes with very high precision.

  19. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  20. Assessing the Accuracy and Precision of Inorganic Geochemical Data Produced through Flux Fusion and Acid Digestions: Multiple (60+) Comprehensive Analyses of BHVO-2 and the Development of Improved "Accepted" Values

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Scudder, R.; Dunlea, A. G.; Anderson, C. H.; Murray, R. W.

    2014-12-01

    The use of geological standard reference materials (SRMs) to assess both the accuracy and the reproducibility of geochemical data is a vital consideration in determining the major and trace element abundances of geologic, oceanographic, and environmental samples. Calibration curves commonly are generated that are predicated on accurate analyses of these SRMs. As a means to verify the robustness of these calibration curves, a SRM can also be run as an unknown item (i.e., not included as a data point in the calibration). The experimentally derived composition of the SRM can thus be compared to the certified (or otherwise accepted) value. This comparison gives a direct measure of the accuracy of the method used. Similarly, if the same SRM is analyzed as an unknown over multiple analytical sessions, the external reproducibility of the method can be evaluated. Two common bulk digestion methods used in geochemical analysis are flux fusion and acid digestion. The flux fusion technique is excellent at ensuring complete digestion of a variety of sample types, is quick, and does not involve much use of hazardous acids. However, this technique is hampered by a high amount of total dissolved solids and may be accompanied by an increased analytical blank for certain trace elements. On the other hand, acid digestion (using a cocktail of concentrated nitric, hydrochloric and hydrofluoric acids) provides an exceptionally clean digestion with very low analytical blanks. However, this technique results in a loss of Si from the system and may compromise results for a few other elements (e.g., Ge). Our lab uses flux fusion for the determination of major elements and a few key trace elements by ICP-ES, while acid digestion is used for Ti and trace element analyses by ICP-MS. Here we present major and trace element data for BHVO-2, a frequently used SRM derived from a Hawaiian basalt, gathered over a period of over two years (30+ analyses by each technique). We show that both digestion

  1. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  2. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data, and the Southwest Pacific campaign data analysis.

  3. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  4. Short communication: Intraoperator repeatability and interoperator reproducibility of devices measuring teat dimensions in dairy cows.

    PubMed

    Zwertvaegher, I; De Vliegher, S; Baert, J; Van Weyenberg, S

    2013-01-01

    Various methods have been applied to measure teat dimensions. However, the accuracy and precision needed to obtain reliable results are often poor or have not yet been investigated. To determine the precision of the ruler, the caliper, and a recently developed 2-dimensional (2D) vision-based measuring device under field conditions, for respectively teat length, teat diameter, and both teat length and diameter, 2 experiments were conducted in which the consistency of measurements within operators (repeatability) and between operators (reproducibility) was tested. In addition, the agreement of the 2D device with the ruler and the caliper was studied. Although the ruler and the 2D device poorly agreed, both methods were precise in measuring teat length when the operators had experience in working with cows. The caliper was repeatable in measuring teat diameter, but was not reproducible. The 2D device was also repeatable in measuring teat diameter, and reproducible when the operators had experience with the device. The methods had poor agreement, most likely due to the operator-dependent pressure applied by the caliper. Because the 2D device has the advantage of measuring both teat length and teat diameters in a single measurement and is accurate and practical, this method allows efficient and fast collection of data on a large scale for various applications.

  5. Study of precise positioning at L-band using communications satellites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The L-band positioning experiment is reported which encompassed experiment design, experimentation, and data reduction and analysis. In the experiment the ATS-5 synchronous satellite L-band transponder was used in conjunction with the modified ALPHA 2 navigation receivers to demonstrate the technical capability of precision position fixing for oceanographic purposes. The feasibility of using relative ranging techniques implemented by two identical receiving systems, properly calibrated, to determine a line of position accurately on the surface of the earth was shown. The program demonstrated the level of resolution, repeatibility, precision, and accuracy of existing modest-cost effective navigation equipment. The experiment configuration and data reduction techniques were developed in parallel with the hardware modification tasks. Test results verify the ability of a satellite-based system to satisfy the requirements of precision position fixing.

  6. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  7. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  8. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  9. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  10. High accuracy determination of the thermal properties of supported 2D materials.

    PubMed

    Judek, Jarosław; Gertych, Arkadiusz P; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-16

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  11. High accuracy determination of the thermal properties of supported 2D materials

    NASA Astrophysics Data System (ADS)

    Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-01

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  12. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  13. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  14. Precision and accuracy of visual foliar injury assessments

    SciTech Connect

    Gumpertz, M.L.; Tingey, D.T.; Hogsett, W.E.

    1982-07-01

    The study compared three measures of foliar injury: (i) mean percent leaf area injured of all leaves on the plant, (ii) mean percent leaf area injured of the three most injured leaves, and (iii) the proportion of injured leaves to total number of leaves. For the first measure, the variation caused by reader biases and day-to-day variations were compared with the innate plant-to-plant variation. Bean (Phaseolus vulgaris 'Pinto'), pea (Pisum sativum 'Little Marvel'), radish (Rhaphanus sativus 'Cherry Belle'), and spinach (Spinacia oleracea 'Northland') plants were exposed to either 3 ..mu..L L/sup -1/ SO/sub 2/ or 0.3 ..mu..L L/sup -1/ ozone for 2 h. Three leaf readers visually assessed the percent injury on every leaf of each plant while a fourth reader used a transparent grid to make an unbiased assessment for each plant. The mean leaf area injured of the three most injured leaves was highly correlated with all leaves on the plant only if the three most injured leaves were <100% injured. The proportion of leaves injured was not highly correlated with percent leaf area injured of all leaves on the plant for any species in this study. The largest source of variation in visual assessments was plant-to-plant variation, which ranged from 44 to 97% of the total variance, followed by variation among readers (0-32% of the variance). Except for radish exposed to ozone, the day-to-day variation accounted for <18% of the total. Reader bias in assessment of ozone injury was significant but could be adjusted for each reader by a simple linear regression (R/sup 2/ = 0.89-0.91) of the visual assessments against the grid assessments.

  15. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  16. Precision and Accuracy of Intercontinental Distance Determinations Using Radio Interferometry.

    DTIC Science & Technology

    1983-07-01

    Variations of the dispersion of at least this amount occur in the Mark III system. We cannot place an upper bound on the variations of the dispersion...final two terms will be 0.002 psec and 0.020 psec when t23=2.OxlO 6 sec/sec and vl2-0.02 sec. The latter two values are upper bounds for Earth based...neglected in the derivations in Section 4.1. We will now analyze each of these terms and try to place upper bounds on their contributions to the

  17. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  18. Mixed-Precision Spectral Deferred Correction: Preprint

    SciTech Connect

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  19. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  20. The Spring 1985 high precision baseline test of the JPL GPS-based geodetic system

    NASA Technical Reports Server (NTRS)

    Davidson, John M.; Thornton, Catherine L.; Stephens, Scott A.; Blewitt, Geoffrey; Lichten, Stephen M.; Sovers, Ojars J.; Kroger, Peter M.; Skrumeda, Lisa L.; Border, James S.; Neilan, Ruth E.

    1987-01-01

    The Spring 1985 High Precision Baseline Test (HPBT) was conducted. The HPBT was designed to meet a number of objectives. Foremost among these was the demonstration of a level of accuracy of 1 to 2:10 to the 7th power, or better, for baselines ranging in length up to several hundred kilometers. These objectives were all met with a high degree of success, with respect to the demonstration of system accuracy in particular. The results from six baselines ranging in length from 70 to 729 km were examined for repeatability and, in the case of three baselines, were compared to results from colocated VLBI systems. Repeatability was found to be 5:10 to the 8th power (RMS) for the north baseline coordinate, independent of baseline length, while for the east coordinate RMS repeatability was found to be larger than this by factors of 2 to 4. The GPS-based results were found to be in agreement with those from colocated VLBI measurements, when corrected for the physical separations of the VLBI and CPG antennas, at the level of 1 to 2:10 to the 7th power in all coordinates, independent of baseline length. The results for baseline repeatability are consistent with the current GPA error budget, but the GPS-VLBI intercomparisons disagree at a somewhat larger level than expected. It is hypothesized that these differences may result from errors in the local survey measurements used to correct for the separations of the GPS and VLBI antenna reference centers.

  1. A consensus on protein structure accuracy in NMR?

    PubMed

    Billeter, Martin

    2015-02-03

    The precision of an NMR structure may be manipulated by calculation parameters such as calibration factors. Its accuracy is, however, a different issue. In this issue of Structure, Buchner and Güntert present "consensus structure bundles," where precision analysis allows estimation of accuracy.

  2. Precision grid and hand motion for accurate needle insertion in brachytherapy

    SciTech Connect

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J.

    2011-08-15

    Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on the measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2{sup 3} factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.

  3. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  4. High-precision three-dimensional shape reconstruction via digital refocusing in multi-wavelength digital holography.

    PubMed

    Xu, Li; Aleksoff, Carl C; Ni, Jun

    2012-05-20

    Three-dimensional (3D) shape reconstructions and metrology measurements are often limited by depth-of-field constraints. Current focus-detection-based techniques are insufficient to profile out-of-focus 3D objects with high axial accuracy. Extended-focus imaging (EFI) techniques can improve the range and precision of such measurements. By incorporating digital refocusing with multiwavelength interferometry, a holographic imaging solution is presented in this paper to accurately measure 3D objects over a large depth range. Accuracy and repeatability of the proposed EFI technique are validated by digital simulations and refocusing experiments. A reconstruction example demonstrates the feasibility of high-precision 3D measurements of objects deeper than the system's classical depth of field.

  5. Three-dimensional surface figure measurement of high-accuracy spherical mirror with nanoprofiler using normal vector tracing method.

    PubMed

    Kudo, R; Okuda, K; Usuki, K; Nakano, M; Yamamura, K; Endo, K

    2014-04-01

    Processing technology using an extreme ultraviolet light source, e.g., next-generation lithography, requires next-generation high-accuracy mirrors. As it will be difficult to attain the degree of precision required by next-generation high-accuracy mirrors such as aspherical mirrors through conventional processing methods, rapid progress in nanomeasurement technologies will be needed to produce such mirrors. Because the measuring methods used for the surface figure measurement of next-generation mirrors will require high precision, we have developed a novel nanoprofiler that can measure the figures of high-accuracy mirrors without the use of a reference surface. Because the accuracy of the proposed method is not limited by the accuracy of a reference surface, the measurement of free-form mirrors is expected to be realized. By using an algorithm to process normal vectors and their coordinate values at the measurement point obtained by a nanoprofiler, our measurement method can reconstruct three-dimensional shapes. First, we measured the surface of a concave spherical mirror with a 1000-mm radius of curvature using the proposed method, and the measurement repeatability is evaluated as 0.6 nm. Sub-nanometer repeatability is realized, and an increase in the repeatability would be expected by improving the dynamic stiffness of the nanoprofiler. The uncertainty of the measurement using the present apparatus is estimated to be approximately 10 nm by numerical simulation. Further, the uncertainty of a Fizeau interferometer is also approximately 10 nm. The results obtained using the proposed method are compared with those obtained using a Fizeau interferometer. The resulting profiles are consistent within the range of each uncertainty over the middle portions of the mirror.

  6. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  7. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  8. Superiority of experts over novices in trueness and precision of concentration estimation of sodium chloride solutions.

    PubMed

    Masuda, Tomohiro; Wada, Yuji; Okamoto, Masako; Kyutoku, Yasushi; Yamaguchi, Yui; Kimura, Atsushi; Kobayakawa, Tatsu; Kawai, Takayuki; Dan, Ippeita; Hayakawa, Fumiyo

    2013-03-01

    Several studies have reported that experts outperform novices in specific domains. However, the superiority of experts in accuracy, taking both trueness and precision into consideration, has not yet been explored. Here, we examined differences between expert and novice performances by evaluating the accuracy of their estimations of physical concentrations of sodium chloride in solutions while employing a visual analog scale. In Experiment 1, 14 experts and 13 novices tasted 6 concentrations of the solutions until they had learned their intensities. Subsequently, they repeatedly rated the concentration of 3 other solutions in random order. Although we did not find a difference between the performances of the 2 groups in trueness (difference between rating and correct concentration), the precision (consistency of ratings for each participant) of experts was higher than that of novices. In Experiment 2, 13 experts who had participated in Experiment 1 and 10 experts and 12 novices who had not participated in Experiment 1 rated the salt concentration in sodium chloride/sucrose mixtures in the same way as in Experiment 1. Both trueness and precision of performance were higher in both expert groups than in the novice group. By introducing precision and trueness parameters, we succeeded in quantifying the estimations of experts and novices in rating the concentration of solutions, revealing experts' superiority even for a task they had not been trained for.

  9. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  10. Design for H type co-planar precision stage based on closed air bearing guideway with vacuum attraction force

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Shi, Zhaoyao; Lin, Jiachun; Zhang, Hua

    2011-12-01

    The accuracy of traditional two-dimensional precision stage is limited not only by the accuracy of each guideway but also by the configuration of the stage. It is not easy to calculate and compensate the total accuracy of the stage due to the complicated influence caused by the different position of the slides. An air bearing guideways with vacuum attraction forces has been designed with closed slide structure to enhance the stiffness and avoid the deformation caused by the weight of slide and workpieces. An H style two-dimension ultra-precision stage with co-planar structure has been developed based on the air bearing guideways to avoid the multi-influence by the axes. Driven by linear motors, the position of the workpiece is encoded by length scales with resolution of 50nm and thermal expansion of 0.6 μm/m/°C (0 °C to 30 °C). The travel span of the stage is 320x320mm, during which each axis has a positioning accuracy of +/-1μm, a repeatability of +/-0.3μm and a straightness of +/-0.5μm. The stage can be applied in precision manufacturing and measurement.

  11. High precision modeling for fundamental physics experiments

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus

    With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.

  12. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  13. Intrinsic unsharpness and approximate repeatability of quantum measurements

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Heinonen, Teiko; Toigo, Alessandro

    2007-02-01

    The intrinsic unsharpness of a quantum observable is studied by introducing the notion of resolution width. This quantification of accuracy is shown to be closely connected with the possibility of making approximately repeatable measurements. As a case study, the intrinsic unsharpness and approximate repeatability of position and momentum measurements are examined in detail.

  14. Precise predictions for slepton pair production

    SciTech Connect

    Ayres Freitas; Andreas von Manteuffel

    2002-11-07

    At a future linear collider, the masses and couplings of scalar leptons can be measured with high accuracy, thus requiring precise theoretical predictions for the relevant processes. In this work, after a discussion of the expected experimental precision, the complete one-loop corrections to smuon and selectron pair production in the MSSM are presented and the effect of different contributions in the result is analyzed.

  15. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  16. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Zheng, Lou; Yuan, Qian; Sheng-hong, Fan; Chang-ru, Liu; Hai-ren, Wang; Ying-xi, Zuo; Jin-quan, Cheng; Ji, Yang

    2017-01-01

    Limited by the working temperature of the test equipment, most of high-precision surface figure measurement techniques cannot be put into application under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high-resolution industrial camera sitting on the automatic testing platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm (rms) is achieved under the cryogenic environment. Furthermore, the surface figure measured by a three-coordinate measuring machine under the room temperature is used to calibrate the thickness differences of the targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C to obtain the rule of variation of surface deformation of the panel under low temperatures.

  17. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  18. Design and experiment on a multi-functioned and programmable piezoelectric ceramic power supply with high precision for speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Ye, Yan; Wang, Yong-hong; Yang, En-zhen

    2016-01-01

    Speckle interferometry is a method of measuring structure's tiny deformations which requires accurate phase information of interference fringes. The phase information is acquired by micro-displacement produced by piezoelectric ceramic (PZT). In order to drive the PZT micro-displacement actuator, a multi-functioned and programmable PZT power supply with high precision is designed. Calibration experiment has been done to the PZT micro-actuator in speckle interferometry. Some experiments were also done to test its relevant characteristics. The experiment results show that it has high linearity, repeatability, stability, low ripple and can meet the requirement of the reliability and displacement accuracy in speckle interferometry.

  19. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  20. Mutagenic inverted repeat assisted genome engineering (MIRAGE).

    PubMed

    Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Here we describe a one-step method to create precise modifications in the genome of Saccharomyces cerevisiae as a tool for synthetic biology, metabolic engineering, systems biology and genetic studies. Through homologous recombination, a mutagenesis cassette containing an inverted repeat of selection marker(s) is integrated into the genome. Due to its inherent instability in genomic DNA, the inverted repeat catalyzes spontaneous self-excision, resulting in precise genome modification. Since this excision occurs at very high frequencies, selection for the integration event can be followed immediately by counterselection, without the need for growth in permissive conditions. This is the first time a truly one-step method has been described for genome modification in any organism.

  1. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  2. Platform Precision Autopilot Overview and Mission Performance

    NASA Technical Reports Server (NTRS)

    Strovers, Brian K.; Lee, James A.

    2009-01-01

    The Platform Precision Autopilot is an instrument landing system-interfaced autopilot system, developed to enable an aircraft to repeatedly fly nearly the same trajectory hours, days, or weeks later. The Platform Precision Autopilot uses a novel design to interface with a NASA Gulfstream III jet by imitating the output of an instrument landing system approach. This technique minimizes, as much as possible, modifications to the baseline Gulfstream III jet and retains the safety features of the aircraft autopilot. The Platform Precision Autopilot requirement is to fly within a 5-m (16.4-ft) radius tube for distances to 200 km (108 nmi) in the presence of light turbulence for at least 90 percent of the time. This capability allows precise repeat-pass interferometry for the Unmanned Aerial Vehicle Synthetic Aperture Radar program, whose primary objective is to develop a miniaturized, polarimetric, L-band synthetic aperture radar. Precise navigation is achieved using an accurate differential global positioning system developed by the Jet Propulsion Laboratory. Flight-testing has demonstrated the ability of the Platform Precision Autopilot to control the aircraft within the specified tolerance greater than 90 percent of the time in the presence of aircraft system noise and nonlinearities, constant pilot throttle adjustments, and light turbulence.

  3. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  4. Daily Bone Alignment With Limited Repeat CT Correction Rivals Daily Ultrasound Alignment for Prostate Radiotherapy

    SciTech Connect

    O'Daniel, Jennifer C.; Dong Lei Zhang Lifei; Wang He; Tucker, Susan L.; Kudchadker, Rajat J.; Lee, Andrew K.; Cheung, Rex; Cox, James D.; Kuban, Deborah A.; Mohan, Radhe

    2008-05-01

    Purpose: To compare the effectiveness of daily ultrasound (US)- and computed tomography (CT)-guided alignments with an off-line correction protocol using daily bone alignment plus a correction factor for systematic internal prostate displacement (CF{sub ID}). Methods and Materials: Ten prostate cancer patients underwent CT scans three times weekly using an integrated CT-linear accelerator system, followed by alignment using US for daily radiotherapy. Intensity-modulated radiotherapy plans were designed with our current clinical margins. The treatment plan was copied onto the repeat CT images and aligned using several methods: (1) bone alignment plus CF{sub ID} after three off-line CT scans (bone+3CT), (2) bone alignment plus CF{sub ID} after six off-line CT scans (bone+6CT), (3) US alignment, and (4) CT alignment. The accuracy of the repeated US and CT measurements to determine the CF{sub ID} was compared. The target dosimetric effect was quantified. Results: The CF{sub ID} for internal systematic prostate displacements was more accurately measured with limited repeat CT scans than with US (residual error, 0.0 {+-} 0.7 mm vs. 2.0 {+-} 3.2 mm). Bone+3CT, bone+6CT, and US provided equivalent prostate and seminal vesicle dose coverage, but bone+3CT and bone+6CT produced more precise daily alignments. Daily CT alignment provided the greatest target dose coverage. Conclusion: Daily bone alignment plus CF{sub ID} for internal systematic prostate displacement provided better daily alignment precision and equivalent dose coverage compared with daily US alignment. The CF{sub ID} should be based on at least three repeat CT scans, which could be collected before the start of treatment or during the first 3 treatment days. Daily bone alignment plus CF{sub ID} provides another option for accurate prostate cancer patient positioning.

  5. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  6. Automatic precision measurement of spectrograms.

    PubMed

    Palmer, B A; Sansonetti, C J; Andrew, K L

    1978-08-01

    A fully automatic comparator has been designed and implemented to determine precision wavelengths from high-resolution spectrograms. The accuracy attained is superior to that of an experienced operator using a semiautomatic comparator with a photoelectric setting device. The system consists of a comparator, slightly modified for simultaneous data acquisition from two parallel scans of the spectrogram, interfaced to a minicomputer. The software which controls the system embodies three innovations of special interest. (1) Data acquired from two parallel scans are compared and used to separate unknown from standard lines, to eliminate spurious lines, to identify blends of unknown with standard lines, to improve the accuracy of the measured positions, and to flag lines which require special examination. (2) Two classes of lines are automatically recognized and appropriate line finding methods are applied to each. This provides precision measurement for both simple and complex line profiles. (3) Wavelength determination using a least-squares fitted grating equation is supported in addition to polynomial interpolation. This is most useful in spectral regions with sparsely distributed standards. The principles and implementation of these techniques are fully described.

  7. Repeating the Past

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-05-01

    As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.

  8. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  9. Validity and repeatability of three in-shoe pressure measurement systems.

    PubMed

    Price, Carina; Parker, Daniel; Nester, Christopher

    2016-05-01

    In-shoe pressure measurement devices are used in research and clinic to quantify plantar foot pressures. Various devices are available, differing in size, sensor number and type; therefore accuracy and repeatability. Three devices (Medilogic, Tekscan and Pedar) were examined in a 2 day×3 trial design, quantifying insole response to regional and whole insole loading. The whole insole protocol applied an even pressure (50-600kPa) to the insole surface for 0-30s in the Novel TruBlue™ device. The regional protocol utilised cylinders with contact surfaces of 3.14 and 15.9cm(2) to apply pressures of 50 and 200kPa. The validity (% difference and Root Mean Square Error: RMSE) and repeatability (Intra-Class Correlation Coefficient: ICC) of the applied pressures (whole insole) and contact area (regional) were outcome variables. Validity of the Pedar system was highest (RMSE 2.6kPa; difference 3.9%), with the Medilogic (RMSE 27.0kPa; difference 13.4%) and Tekscan (RMSE 27.0kPa; difference 5.9%) systems displaying reduced validity. The average and peak pressures demonstrated high between-day repeatability for all three systems and each insole size (ICC≥0.859). The regional contact area % difference ranged from -97 to +249%, but the ICC demonstrated medium to high between-day repeatability (ICC≥0.797). Due to the varying responses of the systems, the choice of an appropriate pressure measurement device must be based on the loading characteristics and the outcome variables sought. Medilogic and Tekscan were most effective between 200 and 300kPa; Pedar performed well across all pressures. Contact area was less precise, but relatively repeatable for all systems.

  10. [Precision and personalized medicine].

    PubMed

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  11. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  12. Precision aerial application for site-specific rice crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  13. Validation of a Non-Invasive Technique to Precisely Measure In Vivo Three-Dimensional Cervical Spine Movement

    PubMed Central

    Anderst, William J; Baillargeon, Emma; Donaldson, William F; Lee, Joon Y; Kang, James D

    2011-01-01

    Study Design In vivo validation during functional loading. Objective To determine the accuracy and repeatability of a model-based tracking technique that combines subject-specific CT models and high-speed biplane X-ray images to measure three-dimensional (3D) in vivo cervical spine motion. Summary of Background Data Accurate 3D spine motion is difficult to obtain in vivo during physiological loading due to the inability to directly attach measurement equipment to individual vertebrae. Previous measurement systems were limited by two-dimensional (2D) results and/or their need for manual identification of anatomical landmarks, precipitating unreliable and inaccurate results. All previous techniques lack the ability to capture true 3D motion during dynamic functional loading. Methods Three subjects had 1.0 mm diameter tantalum beads implanted into their fused and adjacent vertebrae during ACDF surgery. High resolution CT scans were obtained following surgery and used to create subject-specific 3D models of each cervical vertebra. Biplane X-rays were collected at 30 frames per second while the subjects performed flexion/extension and axial rotation movements six months after surgery. Individual bone motion, intervertebral kinematics, and arthrokinematics derived from dynamic RSA served as a gold standard to evaluate the accuracy of the model-based tracking technique. Results Individual bones were tracked with an average precision of 0.19 mm and 0.33 mm in non-fused and fused bones, respectively. Precision in measuring 3D joint kinematics in fused and adjacent segments averaged 0.4 mm for translations and 1.1° for rotations, while anterior and posterior disc height above and below the fusion were measured with a precision ranging between 0.2 mm and 0.4 mm. The variability in 3D joint kinematics associated with tracking the same trial repeatedly was 0.02 mm in translation and 0.06° in rotation. Conclusions 3D cervical spine motion can be precisely measured in vivo with

  14. Matrix-based concordance correlation coefficient for repeated measures.

    PubMed

    Hiriote, Sasiprapa; Chinchilli, Vernon M

    2011-09-01

    In many clinical studies, Lin's concordance correlation coefficient (CCC) is a common tool to assess the agreement of a continuous response measured by two raters or methods. However, the need for measures of agreement may arise for more complex situations, such as when the responses are measured on more than one occasion by each rater or method. In this work, we propose a new CCC in the presence of repeated measurements, called the matrix-based concordance correlation coefficient (MCCC) based on a matrix norm that possesses the properties needed to characterize the level of agreement between two p× 1 vectors of random variables. It can be shown that the MCCC reduces to Lin's CCC when p= 1. For inference, we propose an estimator for the MCCC based on U-statistics. Furthermore, we derive the asymptotic distribution of the estimator of the MCCC, which is proven to be normal. The simulation studies confirm that overall in terms of accuracy, precision, and coverage probability, the estimator of the MCCC works very well in general cases especially when n is greater than 40. Finally, we use real data from an Asthma Clinical Research Network (ACRN) study and the Penn State Young Women's Health Study for demonstration.

  15. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  16. Construction of accuracy-preserving surrogate for the eigenvalue radiation diffusion and/or transport problem

    SciTech Connect

    Wang, C.; Abdel-Khalik, H. S.

    2012-07-01

    The construction of surrogate models for high fidelity models is now considered an important objective in support of all engineering activities which require repeated execution of the simulation, such as verification studies, validation exercises, and uncertainty quantification. The surrogate must be computationally inexpensive to allow its repeated execution, and must be computationally accurate in order for its predictions to be credible. This manuscript introduces a new surrogate construction approach that reduces the dimensionality of the state solution via a range-finding algorithm from linear algebra. It then employs a proper orthogonal decomposition-like approach to solve for the reduced state. The algorithm provides an upper bound on the error resulting from the reduction. Different from the state-of-the-art, the new approach allows the user to define the desired accuracy a priori which controls the maximum allowable reduction. We demonstrate the utility of this approach using an eigenvalue radiation diffusion model, where the accuracy is selected to match machine precision. Results indicate that significant reduction is possible for typical reactor assembly models, which are currently considered expensive given the need to employ very fine mesh many group calculations to ensure the highest possible fidelity for the downstream core calculations. Given the potential for significant reduction in the computational cost, we believe it is possible to rethink the manner in which homogenization theory is currently employed in reactor design calculations. (authors)

  17. Precision antenna reflector structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    The assembly of the Large Precise Reflector Infrared Telescope is detailed. Also given are the specifications for the Aft Cargo Carrier and the Large Precision Reflector structure. Packaging concepts and options, stowage depth and support truss geometry are also considered. An example of a construction scenario is given.

  18. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  19. Taking the Measure of the Universe : Precision Astrometry with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Allen, Ronald J.; Beichman, Charles A.; Boboltz, David; Catanzarite, Joseph H.; Chaboyer, Brian C.; Ciardi, David R.; Edberg, Stephen J.; Fey, Alan L.; Fischer, Debra A.; Gelino, Christopher R.; Gould, Andrew P.; Grillmair, Carl; Henry, Todd J.; Johnston, Kathryn V.; Johnston, Kenneth J.; Jones, Dayton L.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Majewski, Steven R.; Makarov, Valeri V.; Marcy, Geoffrey W.; Meier, David L.

    2008-01-01

    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion

  20. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  1. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  2. Landsat wildland mapping accuracy

    USGS Publications Warehouse

    Todd, William J.; Gehring, Dale G.; Haman, J. F.

    1980-01-01

    A Landsat-aided classification of ten wildland resource classes was developed for the Shivwits Plateau region of the Lake Mead National Recreation Area. Single stage cluster sampling (without replacement) was used to verify the accuracy of each class.

  3. A 3-D Multilateration: A Precision Geodetic Measurement System

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Fliegel, H. F.; Jaffe, R. M.; Muller, P. M.; Ong, K. M.; Vonroos, O. H.

    1972-01-01

    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination.

  4. Accuracy of vertical deflection determination by present-day inertial instrumentation

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.

    1978-01-01

    An analysis of results obtained in the Canadian Rock Mountains indicates that the observation of deflection differences along the same line can be repeated with a precision of about 0.5 sec but that there are systematic discrepancies between the forward and the backward running of the same line. A comparison with the available astronomically determined deflections also shows systematic differences of 2 sec and 3 sec. These errors are most likely due to the overshooting of the Kalman procedure at gradient changes. It appears that the software can be altered in such a way that deflection differences between stations, not more than half an hour of travel time apart, can be determined by the inertial system with an accuracy of better than + or - 1 sec.

  5. Formation of the Arabidopsis pentatricopeptide repeat family.

    PubMed

    Rivals, Eric; Bruyère, Clémence; Toffano-Nioche, Claire; Lecharny, Alain

    2006-07-01

    In Arabidopsis (Arabidopsis thaliana) the 466 pentatricopeptide repeat (PPR) proteins are putative RNA-binding proteins with essential roles in organelles. Roughly half of the PPR proteins form the plant combinatorial and modular protein (PCMP) subfamily, which is land-plant specific. PCMPs exhibit a large and variable tandem repeat of a standard pattern of three PPR variant motifs. The association or not of this repeat with three non-PPR motifs at their C terminus defines four distinct classes of PCMPs. The highly structured arrangement of these motifs and the similar repartition of these arrangements in the four classes suggest precise relationships between motif organization and substrate specificity. This study is an attempt to reconstruct an evolutionary scenario of the PCMP family. We developed an innovative approach based on comparisons of the proteins at two levels: namely the succession of motifs along the protein and the amino acid sequence of the motifs. It enabled us to infer evolutionary relationships between proteins as well as between the inter- and intraprotein repeats. First, we observed a polarized elongation of the repeat from the C terminus toward the N-terminal region, suggesting local recombinations of motifs. Second, the most N-terminal PPR triple motif proved to evolve under different constraints than the remaining repeat. Altogether, the evidence indicates different evolution for the PPR region and the C-terminal one in PCMPs, which points to distinct functions for these regions. Moreover, local sequence homogeneity observed across PCMP classes may be due to interclass shuffling of motifs, or to deletions/insertions of non-PPR motifs at the C terminus.

  6. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  7. A demonstration of sub-meter GPS orbit determination and high precision user positioning

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Lichten, Stephen M.; Katsigris, Eugenia C.

    1988-01-01

    It was demonstrated that the submeter GPS (Global Positioning System) orbits can be determined using multiday arc solutions with the current GPS constellation subset visible for about 8 h each day from North America. Submeter orbit accuracy was shown through orbit repeatability and orbit prediction. North American baselines of 1000-2000 km length can be estimated simultaneously with the GPS orbits to an accuracy of better than 1.5 parts in 108 (3 cm over 2000 km distance) with a daily precision of two parts in 108 or better. The most reliable baseline solutions are obtained using the same type of receivers and antennas at each end of the baseline. Baselines greater than 1000 km distance from Florida to sites in the Caribbean region have also been determined with daily precision of 1-4 parts in 108. The Caribbean sites are located well outside the fiducial tracking network and the region of optimal GPS common visibility. Thus, these results further demonstrate the robustness of the multiday arc GPS orbit solutions.

  8. Isara 400 ultra-precision CMM

    NASA Astrophysics Data System (ADS)

    Spaan, H. A. M.; Widdershoven, I.

    2011-10-01

    This paper presents the realization of the Isara 400 ultra-precision 3D coordinate measuring machine, which features a measuring volume of 400 × 400 × 100 mm and a traceable measurement uncertainty better than 50 nm. In order to achieve these challenging specifications, specific calibration strategies need to be applied, such as the calibration of the system's mirror table. In addition, a newly developed ultra-precision tactile probe system is described, featuring a probe tip radius of 35 μm results of the 3D sensitivity calibration of this probe are presented. Finally, results are presented measuring a full hemisphere in 3D of a SiN ultra precision master ball, resulting in a repeatability of 7.9 nm rms.

  9. Accuracy of analyses of microelectronics nanostructures in atom probe tomography

    NASA Astrophysics Data System (ADS)

    Vurpillot, F.; Rolland, N.; Estivill, R.; Duguay, S.; Blavette, D.

    2016-07-01

    The routine use of atom probe tomography (APT) as a nano-analysis microscope in the semiconductor industry requires the precise evaluation of the metrological parameters of this instrument (spatial accuracy, spatial precision, composition accuracy or composition precision). The spatial accuracy of this microscope is evaluated in this paper in the analysis of planar structures such as high-k metal gate stacks. It is shown both experimentally and theoretically that the in-depth accuracy of reconstructed APT images is perturbed when analyzing this structure composed of an oxide layer of high electrical permittivity (higher-k dielectric constant) that separates the metal gate and the semiconductor channel of a field emitter transistor. Large differences in the evaporation field between these layers (resulting from large differences in material properties) are the main sources of image distortions. An analytic model is used to interpret inaccuracy in the depth reconstruction of these devices in APT.

  10. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  11. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  12. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  13. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  14. Precision medicine in cardiology.

    PubMed

    Antman, Elliott M; Loscalzo, Joseph

    2016-10-01

    The cardiovascular research and clinical communities are ideally positioned to address the epidemic of noncommunicable causes of death, as well as advance our understanding of human health and disease, through the development and implementation of precision medicine. New tools will be needed for describing the cardiovascular health status of individuals and populations, including 'omic' data, exposome and social determinants of health, the microbiome, behaviours and motivations, patient-generated data, and the array of data in electronic medical records. Cardiovascular specialists can build on their experience and use precision medicine to facilitate discovery science and improve the efficiency of clinical research, with the goal of providing more precise information to improve the health of individuals and populations. Overcoming the barriers to implementing precision medicine will require addressing a range of technical and sociopolitical issues. Health care under precision medicine will become a more integrated, dynamic system, in which patients are no longer a passive entity on whom measurements are made, but instead are central stakeholders who contribute data and participate actively in shared decision-making. Many traditionally defined diseases have common mechanisms; therefore, elimination of a siloed approach to medicine will ultimately pave the path to the creation of a universal precision medicine environment.

  15. Calibration of High Precision Robot Arm for the Crafting of Magnets for Use in Neutron Experiments

    NASA Astrophysics Data System (ADS)

    Riley, Benjamin; Crawford, Christopher

    2017-01-01

    The magnetic scalar potential can be used to design precision magnetic fields with surface currents in arbitrary geometry. We are using this technique to design holding field coils for spin transport of neutrons and 3He atoms into the measurement cell of the SNS EDM experiment. We construct holding field coils as three-dimensional printed circuits boards using a Staubli RX130 6-axis industrial robotic arm to etch the circuit. While the arm has a 35-micron repeatability position, the absolute accuracy depends on calibration of transformation matrices between each link, characterized by Denavit-Hartenberg parameters. After factors such as coordinate system degeneracies and free parameters are taken into account, there are 29 parameters that must be calibrated. The robot model, calibration method, and results are presented in this poster.

  16. Methods for analysing cardiovascular studies with repeated measures.

    PubMed

    Cleophas, T J; Zwinderman, A H; van Ouwerkerk, B M

    2009-11-01

    Background. Repeated measurements in a single subject are generally more similar than unrepeated measurements in different subjects. Unrepeated analyses of repeated data cause underestimation of the treatment effects.Objective. To review methods adequate for the analysis of cardiovascular studies with repeated measures.Results. (1) For between-subjects comparisons, summary measures and random-effects mixedlinear models are possible. Examples of summary measures include the area under the curve of drug time-concentration and time-efficacy curves, maximal values, mean values, and changes from baseline. A problem is that precision is lost because averages, rather than individual data, are applied. Random-effects mixed-linear models, available in SPSS statistical software and other software programmes, provide better precision for that purpose. (2) For within-subjects comparisons, repeated-measures ANOVAs are available in SPSS and other software programmes. Subgroup factors such as gender differences and age class can be included.Discussion. For non-Gaussian data, Wilcoxon's and Friedman's tests are available, for binary data McNemar's tests can be used in case of two repeated observations. No standard methods are available for repeated binary measures with more than two observations. The purpose of this review was not to present a complete report but, rather, to underline that ample efforts should be made to account for the special nature of repeated measures. (Neth Heart J 2009;17:429-33.).

  17. Manual accuracy in comparison with a miniature master slave device--preclinical evaluation for ear surgery.

    PubMed

    Runge, A; Hofer, M; Dittrich, E; Neumuth, T; Haase, R; Strauss, M; Dietz, A; Lüth, T; Strauss, G

    2011-01-01

    Manual accuracy in microsurgery is reduced by tremor and limited access. A surgical approach through the middle ear also puts delicate structures at risk, while the surgeon is often working at an unergonomic position. At this point a micromanipulator could have a positive influence. A system was developed to measure "working accuracy", time and precision during manipulation in the middle ear. 10 ENT-surgeons simulated a perforation of the stapedial footplate on a modified 3D print of a human skull in a mock OR. Each trial was repeated more than 200 times aiming manually and using a micro-manipulator. Data of over 4000 measurements was tested and graphically processed. Work strain was evaluated with a questionnaire. Accuracy for manual and micromanipulator perforation revealed a small difference. Learning curves showed a stronger decrease both in deviation and time when the micromanipulator was used. Also a lower work strain was apparent. The micromanipulator has the potential as an aiding device in ear surgery.

  18. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    SciTech Connect

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R.; National Inst. of Standards and Technology, Gaithersburg, MD )

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  19. Numerical accuracy assessment

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-12-01

    A framework is provided for numerical accuracy assessment. The purpose of numerical flow simulations is formulated. This formulation concerns the classes of aeronautical configurations (boundaries), the desired flow physics (flow equations and their properties), the classes of flow conditions on flow boundaries (boundary conditions), and the initial flow conditions. Next, accuracy and economical performance requirements are defined; the final numerical flow simulation results of interest should have a guaranteed accuracy, and be produced for an acceptable FLOP-price. Within this context, the validation of numerical processes with respect to the well known topics of consistency, stability, and convergence when the mesh is refined must be done by numerical experimentation because theory gives only partial answers. This requires careful design of text cases for numerical experimentation. Finally, the results of a few recent evaluation exercises of numerical experiments with a large number of codes on a few test cases are summarized.

  20. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  1. The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Smith, Thomas B.

    2007-01-01

    As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.

  2. Repeat Customer Success in Extension

    ERIC Educational Resources Information Center

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  3. 78 FR 65594 - Vehicular Repeaters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... changes, and on whether current mobile repeater filter technologies can support reduced frequency... feasibility of adapting SAW filters, or other filter technology, for mobile repeater use. We particularly... mobile repeaters by public safety licensees on certain frequencies in the VHF band. DATES:...

  4. Repeats identification using improved suffix trees.

    PubMed

    Huo, Hongwei; Wang, Xiaowu; Stojkovic, Vojislav

    2009-01-01

    The suffix tree data structure plays an important role in the efficient implementations of some querying algorithms. This paper presents the fast Rep(eats)Seeker algorithm for repeats identification based on the improvements of suffix tree construction. The leaf nodes and the branch nodes are numbered in different ways during the construction of a suffix tree and extra information is added to the branch nodes. The experimental results show that improvements reduce the running time of the RepSeeker algorithm without losing the accuracy. The experimental results coincide with the theoretical expectations.

  5. The Paradox of Abstraction: Precision Versus Concreteness.

    PubMed

    Iliev, Rumen; Axelrod, Robert

    2016-11-22

    We introduce a novel measure of abstractness based on the amount of information of a concept computed from its position in a semantic taxonomy. We refer to this measure as precision. We propose two alternative ways to measure precision, one based on the path length from a concept to the root of the taxonomic tree, and another one based on the number of direct and indirect descendants. Since more information implies greater processing load, we hypothesize that nouns higher in precision will have a processing disadvantage in a lexical decision task. We contrast precision to concreteness, a common measure of abstractness based on the proportion of sensory-based information associated with a concept. Since concreteness facilitates cognitive processing, we predict that while both concreteness and precision are measures of abstractness, they will have opposite effects on performance. In two studies we found empirical support for our hypothesis. Precision and concreteness had opposite effects on latency and accuracy in a lexical decision task, and these opposite effects were observable while controlling for word length, word frequency, affective content and semantic diversity. Our results support the view that concepts organization includes amodal semantic structures which are independent of sensory information. They also suggest that we should distinguish between sensory-based and amount-of-information-based abstractness.

  6. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  7. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use.

  8. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  9. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  10. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  11. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  12. RepeatsDB: a database of tandem repeat protein structures

    PubMed Central

    Di Domenico, Tomás; Potenza, Emilio; Walsh, Ian; Gonzalo Parra, R.; Giollo, Manuel; Minervini, Giovanni; Piovesan, Damiano; Ihsan, Awais; Ferrari, Carlo; Kajava, Andrey V.; Tosatto, Silvio C.E.

    2014-01-01

    RepeatsDB (http://repeatsdb.bio.unipd.it/) is a database of annotated tandem repeat protein structures. Tandem repeats pose a difficult problem for the analysis of protein structures, as the underlying sequence can be highly degenerate. Several repeat types haven been studied over the years, but their annotation was done in a case-by-case basis, thus making large-scale analysis difficult. We developed RepeatsDB to fill this gap. Using state-of-the-art repeat detection methods and manual curation, we systematically annotated the Protein Data Bank, predicting 10 745 repeat structures. In all, 2797 structures were classified according to a recently proposed classification schema, which was expanded to accommodate new findings. In addition, detailed annotations were performed in a subset of 321 proteins. These annotations feature information on start and end positions for the repeat regions and units. RepeatsDB is an ongoing effort to systematically classify and annotate structural protein repeats in a consistent way. It provides users with the possibility to access and download high-quality datasets either interactively or programmatically through web services. PMID:24311564

  13. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  14. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  15. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  16. Five critical elements to ensure the precision medicine.

    PubMed

    Chen, Chengshui; He, Mingyan; Zhu, Yichun; Shi, Lin; Wang, Xiangdong

    2015-06-01

    The precision medicine as a new emerging area and therapeutic strategy has occurred and was practiced in the individual and brought unexpected successes, and gained high attentions from professional and social aspects as a new path to improve the treatment and prognosis of patients. There will be a number of new components to appear or be discovered, of which clinical bioinformatics integrates clinical phenotypes and informatics with bioinformatics, computational science, mathematics, and systems biology. In addition to those tools, precision medicine calls more accurate and repeatable methodologies for the identification and validation of gene discovery. Precision medicine will bring more new therapeutic strategies, drug discovery and development, and gene-oriented treatment. There is an urgent need to identify and validate disease-specific, mechanism-based, or epigenetics-dependent biomarkers to monitor precision medicine, and develop "precision" regulations to guard the application of precision medicine.

  17. Accuracy evaluation of a lower-cost and four higher-cost laser scanners.

    PubMed

    Campanelli, Valentina; Howell, Stephen M; Hull, Maury L

    2016-01-04

    Knowing the accuracy of laser scanners is imperative to select the best scanner to generate bone models. However, errors stated by manufacturers may not apply to bones. The three objectives of this study were to determine: 1) whether the overall error stated by the manufacturers of five laser scanners was different from the root mean squared error (RMSE) computed by scanning a gage block; 2) the repeatability of 3D models generated by the laser scanners when scanning a complex freeform surface such as a distal femur and whether this differed from the repeatability when scanning a gage block; 3) whether the errors for one lower-cost laser scanner are comparable to those of four higher-cost laser scanners. The RMSEs in scanning the gage block were 2 to 52µm lower than the overall errors stated by the manufacturers. The repeatability in scanning the bovine femur 10 times was significantly worse than that in scanning the gage block 10 times. The precision of the lower-cost laser scanner was comparable to that of the higher-cost laser scanners, but the bias was an order of magnitude greater. The contributions of this study are that 1) the overall errors stated by the manufacturers are an upper bound when simple geometric objects like a gage block are scanned, 2) the repeatability is worse on average three times when scanning a complex freeform surface compared to scanning the gage block, and 3) the main difference between the lower-cost and the higher-cost laser scanners is the bias.

  18. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Samuel M. Y.; Cheung, Benny C. F.; Whitehouse, David; Cheng, Ching-Hsiang

    2016-11-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools.

  19. Teaching with Precision.

    ERIC Educational Resources Information Center

    Raybould, Ted; Solity, Jonathan

    1982-01-01

    Use of precision teaching principles with learning problem students involves five steps: specifying performance, recording daily behavior, charting daily behavior, recording the teaching approach, and analyzing data. The approach has been successfully implemented through consultation of school psychologists in Walsall, England. (CL)

  20. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  1. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  2. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  3. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.

    PubMed

    McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S

    2014-06-07

    Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.

  4. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  5. Ultrahigh precision coupling of angular motion for a constant exit-height monochromator (abstract)

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Schug, J.

    1989-07-01

    An ultrahigh precision coupling of the angular motion of the two axes in a double-crystal monochromator with constant exit height has been constructed. The coupling device is a double parallelogram similar to the kind used for drafting tables. Computer simulations have been used to minimize the angular motion in the joints of the parallelograms to less than ±5° for the entire Bragg-angle range from 10° to 71°. This allows the use of backlash-free and friction-free flexural pivots. The axis of the first crystal is controlled by a precision rotary table. The shaft of the second crystal stage is supported by a trolley riding on a translation stage. Bearings allow for free rotation of the shaft. The double parallelogram provides only for the exact angular position of the second axis but does not support any weight of the second crystal stage and freely follows the trolley. The trolley is positioned so that the beam from the first crystal is intercepted and reflected at the correct height. The device is ultrahigh vacuum compatible. This design, which fully separates the two demands for extremely precise angular tracking and for less precise positioning for constant exit height, has several advantages beyond its superior tracking accuracy. The stationary first axis allows efficient, in-vacuum cooling of the first crystal. A direct rotary drive can be used for the first axis thus providing direct linear Bragg-angle control. A heavy weight second crystal stage, e.g., for sagittal focusing, may be used without deforming the angular linkage mechanism since all weight is carried by the rugged translation stage. No high-precision machining such as grinding or lapping is needed for the double-parallelogram linkage. The arms of the parallelogram, i.e., the distance between the holes for the flexural pivots, need to be only of precisely the same length. Testing the linkage shows the expected high accuracy. The maximum nonrepeatable deviation between the two axes is less than

  6. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  7. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  8. Increasing Accuracy in Computed Inviscid Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Roger

    2004-01-01

    of time derivatives of surface-normal velocity (consistent with no flow through the boundary) up to arbitrarily high order. The corrections for the first-order spatial derivatives of pressure are calculated by use of the first-order time derivative velocity. The corrected first-order spatial derivatives are used to calculate the second- order time derivatives of velocity, which, in turn, are used to calculate the corrections for the second-order pressure derivatives. The process as described is repeated, progressing through increasing orders of derivatives, until the desired accuracy is attained.

  9. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  10. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  11. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  12. High-precision laser machining of ceramics

    NASA Astrophysics Data System (ADS)

    Toenshoff, Hans K.; von Alvensleben, Ferdinand; Graumann, Christoph; Willmann, Guido

    1998-09-01

    The increasing demand for highly developed ceramic materials for various applications calls for innovative machining technologies yielding high accuracy and efficiency. Associated problems with conventional, i.e. mechanical methods, are unacceptable tool wear as well as force induced damages on ceramic components. Furthermore, the established grinding techniques often meet their limits if accurate complex 2D or 3D structures are required. In contrast to insufficient mechanical processes, UV-laser precision machining of ceramics offers not only a valuable technological alternative but a considerable economical aspect as well. In particular, excimer lasers provide a multitude of advantages for applications in high precision and micro technology. Within the UV wavelength range and pulses emitted in the nano-second region, minimal thermal effects on ceramics and polymers are observed. Thus, the ablation geometry can be controlled precisely in the lateral and vertical directions. In this paper, the excimer laser machining technology developed at the Laser Zentrum Hannover is explained. Representing current and future industrial applications, examinations concerning the precision cutting of alumina (Al2O3), and HF-composite materials, the ablation of ferrite ceramics for precision inductors and the structuring of SiC sealing and bearing rings are presented.

  13. A Radiometer for Precision Coherent Radiation Measurements

    PubMed Central

    Thomas, Douglas B.; Zalewski, Edward F.

    1992-01-01

    A radiometer has been designed for precision colierent radiation measurements and tested for long-term repeatability at wavelengths of 488 and 633 nm. The radiometer consists of a pn silicon photodiode maintained in a nitrogen atmosphere with a quartz window designed to eliminate interference problems. Ratio measurements between the radiometer and an absolute type detector were made over a period of 215 d. At 0.5 mW, the standard deviations were 0.008% and 0.009% at 488 and 633 nm, respectively. The maximum deviations from the mean were 0.016% and 0.015% at the respective wavelengths. Measurements were also made on the radiometer with respect to angular and spatial uniformity and linearity. The high precision, simplicity, and portability of the radiometer suggest it for use as a transfer standard for radiometric measurements. PMID:28053435

  14. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  15. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  16. To Repeat or Not to Repeat a Course

    ERIC Educational Resources Information Center

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  17. The Precision Field Lysimeter Concept

    NASA Astrophysics Data System (ADS)

    Fank, J.

    2009-04-01

    The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent

  18. Markerless modification of trinucleotide repeat loci in BACs.

    PubMed

    Benzow, Kellie A; Koob, Michael D

    2013-01-01

    Transcription and splicing of human genes are regulated by nucleotide sequences encoded across large segments of our genome, and trinucleotide repeat expansion mutations can have both profound and subtle effects on these processes. In the course of our work to understand the impact of the Spinocerebellar Ataxia type 8 (SCA8) CTG repeat expansion on the transcription and splicing of the RNAs encoded near the SCA8 locus, we have developed a set of reagents and protocols for modifying large genomic BAC clones of this region. We describe the two-step procedure that allows us to precisely replace unexpanded trinucleotide repeats with expanded variants of these repeat sequences without leaving any exogenous sequences in the final constructs, and we discuss how this approach can be adapted to make other desired sequence changes to these genomic clones.

  19. Principles and techniques for designing precision machines

    SciTech Connect

    Hale, Layton Carter

    1999-02-01

    This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High- Productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Deterministic Damping, damping designs that can be analyzed and optimized with predictive results. Several chapters present a main thrust of the thesis, Exact-Constraint Design. A main contribution is a generalized modeling approach developed through the course of creating several unique designs. The final chapter is the primary case study of the thesis, the Conceptual Design of a Horizontal Machining Center.

  20. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  1. Precision disablement aiming system

    SciTech Connect

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  2. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  3. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  4. Precision orbit determination of altimetric satellites

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Ries, John C.; Tapley, Byron D.

    1994-01-01

    The ability to determine accurate global sea level variations is important to both detection and understanding of changes in climate patterns. Sea level variability occurs over a wide spectrum of temporal and spatial scales, and precise global measurements are only recently possible with the advent of spaceborne satellite radar altimetry missions. One of the inherent requirements for accurate determination of absolute sea surface topography is that the altimetric satellite orbits be computed with sub-decimeter accuracy within a well defined terrestrial reference frame. SLR tracking in support of precision orbit determination of altimetric satellites is significant. Recent examples are the use of SLR as the primary tracking systems for TOPEX/Poseidon and for ERS-1 precision orbit determination. The current radial orbit accuracy for TOPEX/Poseidon is estimated to be around 3-4 cm, with geographically correlated orbit errors around 2 cm. The significance of the SLR tracking system is its ability to allow altimetric satellites to obtain absolute sea level measurements and thereby provide a link to other altimetry measurement systems for long-term sea level studies. SLR tracking allows the production of precise orbits which are well centered in an accurate terrestrial reference frame. With proper calibration of the radar altimeter, these precise orbits, along with the altimeter measurements, provide long term absolute sea level measurements. The U.S. Navy's Geosat mission is equipped with only Doppler beacons and lacks laser retroreflectors. However, its orbits, and even the Geosat orbits computed using the available full 40-station Tranet tracking network, yield orbits with significant north-south shifts with respect to the IERS terrestrial reference frame. The resulting Geosat sea surface topography will be tilted accordingly, making interpretation of long-term sea level variability studies difficult.

  5. High Precision GPS Measurements

    DTIC Science & Technology

    2010-02-28

    troposphere delays with cm-level accuracy [15]. For example, the modified Hopfield model (MHM) has been shown to accurately calculate both the...differences between two locations near Rayleigh, North Carolina; RALR and NCRD which are part of the network of Continuously Operating Reference...Fritsche, M., R. Dietrich, A. Rulke, M. Rothacher, R. Steigenberger, “Impact of higher-order ionosphere terms on GPS-derived global network solutions

  6. Detection of repeating and "anti-repeating" earthquakes in the Bucaramanga Nest

    NASA Astrophysics Data System (ADS)

    Barrett, S. A.; Prieto, G.; Beroza, G. C.

    2011-12-01

    The Bucaramanga Nest, beneath northern Colombia represents the densest concentration of intermediate-depth earthquakes in the world. The roughly 11 km3 volume produces approximately 15 events per day, yielding an active catalog of seismicity well separated from surrounding seismic activity. We correlate template-event waveforms from known earthquakes to continuous records from the Colombian National (RSNC) seismic network. Typical repeating events are identified as well as the more curious "anti-repeat" events for which seismograms show reversed polarity and nearly perfect anti-correlation. These events are of particular interest as they are not known for shallow, crustal earthquake populations. By compiling a more complete catalog of earthquakes, and by developing precise relative locations, we seek to understand the temporal and size variations of these recurring events in the Bucaramanga Nest.

  7. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  8. Highly Parallel, High-Precision Numerical Integration

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-04-22

    This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.

  9. Repeatability Evaluation of Finger Tapping Device with Magnetic Sensors

    NASA Astrophysics Data System (ADS)

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Tamura, Yasuhiro; Takagi, Hiroshi; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    We tested the repeatability of a finger tapping device with magnetic sensors to determine its reliability. This device, which was developed to assist in the diagnosis of movement disorders such as Parkinson's disease (PD) and strokes, measures the distance between the first and index fingers during finger tapping movements (opening and closing the fingers repeatedly). We evaluated three types of repeatability based on ICC (interclass correlation coefficient) and Welch's test (test for equal means in a oneway layout): repeatability when measured at different times, when using different devices, and when using different measurers. We calculated these three types for three finger tapping tasks on both hands for 21 characteristics calculated from finger tapping waveforms. Results demonstrated that the repeatability when using different devices is high regardless of the task or hand. The repeatability when measuring at different times and when using different measurers is high at some tasks, but not all. One of the finger tapping tasks (finger tapping movement with the largest amplitude and highest velocity), which is used in a conventional PD diagnosis method (UPDRS), does not have enough repeatability, while other tasks show high repeatability. Results also showed that five characteristics have the highest repeatability (ICC ≥ 0.5 or significance probability of Welch's test ≥ 5% in all tasks): “total moving distance,” “average of local minimum acceleration in opening motion,” “average of local minimum acceleration in closing motion,” “average of local maximum distance” and “average of local minimum velocity”. These results clearly demonstrate the strong repeatability of this device and lead to more precise diagnosis of movement disorders.

  10. Nifty Nines and Repeating Decimals

    ERIC Educational Resources Information Center

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  11. Exploring the repeat protein universe through computational protein design.

    PubMed

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.

  12. All-photonic quantum repeaters

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-04-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  13. Arizona Vegetation Resource Inventory (AVRI) accuracy assessment

    USGS Publications Warehouse

    Szajgin, John; Pettinger, L.R.; Linden, D.S.; Ohlen, D.O.

    1982-01-01

    A quantitative accuracy assessment was performed for the vegetation classification map produced as part of the Arizona Vegetation Resource Inventory (AVRI) project. This project was a cooperative effort between the Bureau of Land Management (BLM) and the Earth Resources Observation Systems (EROS) Data Center. The objective of the accuracy assessment was to estimate (with a precision of ?10 percent at the 90 percent confidence level) the comission error in each of the eight level II hierarchical vegetation cover types. A stratified two-phase (double) cluster sample was used. Phase I consisted of 160 photointerpreted plots representing clusters of Landsat pixels, and phase II consisted of ground data collection at 80 of the phase I cluster sites. Ground data were used to refine the phase I error estimates by means of a linear regression model. The classified image was stratified by assigning each 15-pixel cluster to the stratum corresponding to the dominant cover type within each cluster. This method is known as stratified plurality sampling. Overall error was estimated to be 36 percent with a standard error of 2 percent. Estimated error for individual vegetation classes ranged from a low of 10 percent ?6 percent for evergreen woodland to 81 percent ?7 percent for cropland and pasture. Total cost of the accuracy assessment was $106,950 for the one-million-hectare study area. The combination of the stratified plurality sampling (SPS) method of sample allocation with double sampling provided the desired estimates within the required precision levels. The overall accuracy results confirmed that highly accurate digital classification of vegetation is difficult to perform in semiarid environments, due largely to the sparse vegetation cover. Nevertheless, these techniques show promise for providing more accurate information than is presently available for many BLM-administered lands.

  14. Radiocarbon dating accuracy improved

    NASA Astrophysics Data System (ADS)

    Scientists have extended the accuracy of carbon-14 (14C) dating by correlating dates older than 8,000 years with uranium-thorium dates that span from 8,000 to 30,000 years before present (ybp, present = 1950). Edouard Bard, Bruno Hamelin, Richard Fairbanks and Alan Zindler, working at Columbia University's Lamont-Doherty Geological Observatory, dated corals from reefs off Barbados using both 14C and uranium-234/thorium-230 by thermal ionization mass spectrometry techniques. They found that the two age data sets deviated in a regular way, allowing the scientists to correlate the two sets of ages. The 14C dates were consistently younger than those determined by uranium-thorium, and the discrepancy increased to about 3,500 years at 20,000 ybp.

  15. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  16. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  17. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  18. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  19. Accuracy of post-bomb 137Cs and 14C in dating fluvial deposits

    USGS Publications Warehouse

    Ely, L.L.; Webb, R.H.; Enzel, Y.

    1992-01-01

    The accuracy and precision of 137Cs and 14C for dating post-1950 alluvial deposits were evaluated for deposits from known floods on two rivers in Arizona. The presence of 137Cs reliably indicates that deposition occurred after intensive above-ground nuclear testing was initiated around 1950. There was a positive correlation between the measured level of 137Cs activity and the clay content of the sediments, although 137Cs was detected even in sandy flood sediments with low clay content. 137Cs is a valuable dating tool in arid environments where organic materials for 14C or tree-ring dating are scarce and observational records are limited. The 14C activity measured in different types of fine organic detritus yielded dates within 1 to 8 yr of a 1980 flood deposit, and the accuracy was species-dependent. However, undifferentiated mixtures of fine organic materials from several post-bomb deposits of various ages repeatedly yielded dates between 1958 and 1962, and detrital charcoal yielded a date range of 1676-1939. In semiarid environments, the residence time of most types of organic debris precludes accurate annual resolution of post-bomb 14C dates. ?? 1992.

  20. Evaluating accuracy of structural geometry by DXA methods with an anthropometric proximal femur phantom.

    PubMed

    Khoo, B C C; Beck, T J; Brown, K; Price, R I

    2013-09-01

    DXA-derived bone structural geometry has been reported extensively but lacks an accuracy standard. In this study, we describe a novel anthropometric structural geometry phantom that simulates the proximal femur for use in assessing accuracy of geometry measurements by DXA or other X-ray methods. The phantom consists of seven different interchangeable neck modules with geometries that span the range of dimensions in an adult human proximal femur, including those representing osteoporosis. Ten repeated hip scans of each neck module using two current DXA scanner models were performed without repositioning. After scanner specific calibration, hip structure analysis was used to derive structural geometry. Scanner performance was similar for the two manufacturers. DXA-derived HSA geometric measurements were highly correlated with values derived directly from phantom geometry and position; R² between DXA and phantom measures were greater than 94% for all parameters, while precision error ranged between 0.3 and 3.9%. Despite high R² there were some systematic geometry errors for both scanners that were small for outer diameter, but increasing with complexity of geometrical parameter; e.g. buckling ratio. In summary, the anthropometric phantom and its fabrication concept were shown to be appropriate for evaluating proximal femoral structural geometry in two different DXA systems.

  1. 47 CFR 25.263 - Information sharing requirements for SDARS terrestrial repeater operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... repeater within 5 kilometers of the boundary of an MEA or REAG in which the terrestrial repeater is to be... sea level, both to an accuracy of no less than ±1 meter; (iv) The antenna gain pattern(s) in...

  2. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    NASA Astrophysics Data System (ADS)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  3. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  4. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  5. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  6. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  7. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  8. Precise Ground-In-the-Loop Orbit Control for Low Earth Observation Satellites

    NASA Astrophysics Data System (ADS)

    Arbinger, C.; D'Amico, S.; Eineder, M.

    The growing interest in earth observation missions equipped with space-borne optical and synthetic aperture radar (SAR) sensors drives the accuracy requirements with respect to orbit determination and control. Especially SAR interferometry with its capability to resolve the velocity of on-ground objects (e.g. for traffic monitoring, ocean currents and glacier monitoring) and to determine highly precise digital elevation models is of significant interest for scientific applications. These goals may be achieved using along-track and repeat-pass interferometry with a satellite formation, based on the precise orbit control of one satellite with respect to the osculating trajectory of the second satellite. Such a control concept will be realized by the German TerraSAR-X mission, with an expected launch in 2006, using a virtual formation, where a single satellite will be controlled in a tight manner with respect to a predefined osculating reference trajectory. This is very challenging, since common orbit disturbances, like for close twin formations, do not cancel out in this scenario. The predefined trajectory in the TerraSAR-X case could also be the orbit of a second satellite. The paper describes the generation of such a virtual reference orbit, discusses the ground-in-the-loop control concept and presents results from a long-term simulation.

  9. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy

    PubMed Central

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy. PMID:25628867

  10. Visual inspection reliability for precision manufactured parts

    DOE PAGES

    See, Judi E.

    2015-09-04

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. In addition visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied.

  11. Precise and automated microfluidic sample preparation.

    SciTech Connect

    Crocker, Robert W.; Patel, Kamlesh D.; Mosier, Bruce P.; Harnett, Cindy K.

    2004-07-01

    Autonomous bio-chemical agent detectors require sample preparation involving multiplex fluid control. We have developed a portable microfluidic pump array for metering sub-microliter volumes at flowrates of 1-100 {micro}L/min. Each pump is composed of an electrokinetic (EK) pump and high-voltage power supply with 15-Hz feedback from flow sensors. The combination of high pump fluid impedance and active control results in precise fluid metering with nanoliter accuracy. Automated sample preparation will be demonstrated by labeling proteins with fluorescamine and subsequent injection to a capillary gel electrophoresis (CGE) chip.

  12. Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison--an in vitro study.

    PubMed

    Hofmann, Elisabeth; Medelnik, Jürgen; Fink, Martin; Lell, Michael; Hirschfelder, Ursula

    2013-06-01

    The aim of this study was to analyze the imaging accuracy of cone beam computed tomography (CBCT) data sets compared with multislice spiral computed tomography (MSCT) data sets in determining the exact mesiodistal width of unerupted porcine tooth germs and to compare the radiologically obtained results of width measurements with the actual mesiodistal dimension of the tooth germs. In MSCT and CBCT data sets, the largest diameter of 24 tooth germs was determined with the aid of the mesial and distal contact points. The reference method used was mesiodistal width measurement using sliding callipers after the tooth germs had been osteotomized. Accuracy and precision were ascertained with difference plots and a one-way model II analysis of variance with random effects. Analysis of accuracy revealed marked differences between the measuring methods in the difference plot: slightly higher mean values were measured by MSCT and markedly lower values by CBCT than by the reference method (calliper); the mean deviation was significantly greater for CBCT. The width of the confidence interval in the comparison of CBCT versus clinical measurements is more than 4 times higher than in the comparison of MSCT versus clinical values. Precision analysis found that repeatability was twice as high with CBCT as with clinical measurement, whereas MSCT and clinical measurement differed only slightly. The mesiodistal width of displaced teeth can be determined by MSCT but also by CBCT. MSCT is superior to CBCT in determining tooth width; the difference was statistically significant (P = 0.05).

  13. State of the art in high accuracy high detail DTMs derived from ALS

    NASA Astrophysics Data System (ADS)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  14. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Rianon, Nahid; Feiveson, Alan; Shackelford, Linda; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Bone Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift. The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values (less than 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  15. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  16. Perceived articulatory precision in patients with Parkinson's disease after deep brain stimulation of subthalamic nucleus and caudal zona incerta.

    PubMed

    Eklund, Elisabeth; Qvist, Johanna; Sandström, Lena; Viklund, Fanny; Van Doorn, Jan; Karlsson, Fredrik

    2015-02-01

    The effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and caudal zona incerta (cZi) on speech articulation in patients with Parkinson's disease (PD) was investigated. Read speech samples were collected from nine patients with STN-DBS and 10 with cZi-DBS. The recordings were made pre-operatively and 12 months post-operatively with stimulator on and off (on medication). Blinded, randomised, repeated perceptual assessments were performed on words and isolated fricatives extracted from the recordings to assess (1) overall articulatory quality ratings, (2) frequency of occurrence of misarticulation patterns and (3) fricative production. Statistically significant worsening of articulatory measures on- compared with off-stimulation occurred in the cZi-DBS group, with deteriorated articulatory precision ratings, increased presence of misarticulations (predominately altered realisations of plosives and fricatives) and a reduced accuracy in fricative production. A similar, but not significant, trend was found for the STN-DBS group.

  17. Reticence, Accuracy and Efficacy

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  18. Groves model accuracy study

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew C.

    1991-08-01

    The United States Air Force Environmental Technical Applications Center (USAFETAC) was tasked to review the scientific literature for studies of the Groves Neutral Density Climatology Model and compare the Groves Model with others in the 30-60 km range. The tasking included a request to investigate the merits of comparing accuracy of the Groves Model to rocketsonde data. USAFETAC analysts found the Groves Model to be state of the art for middle-atmospheric climatological models. In reviewing previous comparisons with other models and with space shuttle-derived atmospheric densities, good density vs altitude agreement was found in almost all cases. A simple technique involving comparison of the model with range reference atmospheres was found to be the most economical way to compare the Groves Model with rocketsonde data; an example of this type is provided. The Groves 85 Model is used routinely in USAFETAC's Improved Point Analysis Model (IPAM). To create this model, Dr. Gerald Vann Groves produced tabulations of atmospheric density based on data derived from satellite observations and modified by rocketsonde observations. Neutral Density as presented here refers to the monthly mean density in 10-degree latitude bands as a function of altitude. The Groves 85 Model zonal mean density tabulations are given in their entirety.

  19. Precision Medicine in Cancer Treatment

    Cancer.gov

    Precision medicine helps doctors select cancer treatments that are most likely to help patients based on a genetic understanding of their disease. Learn about the promise of precision medicine and the role it plays in cancer treatment.

  20. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  1. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  2. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  3. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    PubMed

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  4. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  5. Quantum repeaters: fundamental and future

    NASA Astrophysics Data System (ADS)

    Li, Yue; Hua, Sha; Liu, Yu; Ye, Jun; Zhou, Quan

    2007-04-01

    An overview of the Quantum Repeater techniques based on Entanglement Distillation and Swapping is provided. Beginning with a brief history and the basic concepts of the quantum repeaters, the article primarily focuses on the communication model based on the quantum repeater techniques, which mainly consists of two fundamental modules --- the Entanglement Distillation module and the Swapping module. The realizations of Entanglement Distillation are discussed, including the Bernstein's Procrustean method, the Entanglement Concentration and the CNOT-purification method, etc. The schemes of implementing Swapping, which include the Swapping based on Bell-state measurement and the Swapping in Cavity QED, are also introduced. Then a comparison between these realizations and evaluations on them are presented. At last, the article discusses the experimental schemes of quantum repeaters at present, documents some remaining problems and emerging trends in this field.

  6. Repeatability in redundant manipulator systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ranjan

    1994-02-01

    Terrestrial manipulators with more DOF than the dimension of the workspace and space manipulators with as many manipulator DOF as the dimension of the workspace are both redundant systems. An interesting problem of such redundant systems has been the repeatability problem due to the presence of nonholonomic constraints. We show, contrary to the existing belief, that integrability of the nonholonomic constraints is not a necessary condition for the repeatability of the configuration variables. There exist certain trajectories in the independent configuration variable space that are like 'holonomic loops' along which the redundant manipulators exhibit repeatable motion. We present a simple method based on optimization techniques for designing repeatable trajectories for free-flying space manipulators and terrestrial manipulators under pseudoinverse control.

  7. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  8. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  9. Platform Precision Autopilot Overview and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Lin, V.; Strovers, B.; Lee, J.; Beck, R.

    2008-01-01

    The Platform Precision Autopilot is an instrument landing system interfaced autopilot system, developed to enable an aircraft to repeatedly fly nearly the same trajectory hours, days, or weeks later. The Platform Precision Autopilot uses a novel design to interface with a NASA Gulfstream III jet by imitating the output of an instrument landing system approach. This technique minimizes, as much as possible, modifications to the baseline Gulfstream III jet and retains the safety features of the aircraft autopilot. The Platform Precision Autopilot requirement is to fly within a 5-m (16.4-ft) radius tube for distances to 200 km (108 nmi) in the presence of light turbulence for at least 90 percent of the time. This capability allows precise repeat-pass interferometry for the Uninhabited Aerial Vehicle Synthetic Aperture Radar program, whose primary objective is to develop a miniaturized, polarimetric, L-band synthetic aperture radar. Precise navigation is achieved using an accurate differential global positioning system developed by the Jet Propulsion Laboratory. Flight-testing has demonstrated the ability of the Platform Precision Autopilot to control the aircraft within the specified tolerance greater than 90 percent of the time in the presence of aircraft system noise and nonlinearities, constant pilot throttle adjustments, and light turbulence.

  10. Mathematics for modern precision engineering.

    PubMed

    Scott, Paul J; Forbes, Alistair B

    2012-08-28

    The aim of precision engineering is the accurate control of geometry. For this reason, mathematics has a long association with precision engineering: from the calculation and correction of angular scales used in surveying and astronomical instrumentation to statistical averaging techniques used to increase precision. This study illustrates the enabling role the mathematical sciences are playing in precision engineering: modelling physical processes, instruments and complex geometries, statistical characterization of metrology systems and error compensation.

  11. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  12. Micromechanical silicon precision scale

    NASA Astrophysics Data System (ADS)

    Oja, Aarne S.; Sillanpaa, Teuvo; Seppae, H.; Kiihamaki, Jyrki; Seppala, P.; Karttunen, Jani; Riski, Kari

    2000-04-01

    A micro machined capacitive silicon scale has been designed and fabricated. It is intended for weighing masses on the order of 1 g at the resolution of about 1 ppm and below. The device consists of a micro machined SOI chip which is anodically bonded to a glass chip. The flexible electrode is formed in the SOI device layer. The other electrode is metallized on the glass and is divided into three sections. The sections are used for detecting tilting of the top electrode due to a possible off-centering of the mass load. The measuring circuit implements electrostatic force feedback and keeps the top electrode at a constant horizontal position irrespective of its mass loading. First measurements have demonstrated the stability allowing measurement of 1 g masses at an accuracy of 2...3 ppm.

  13. Nanospring behaviour of ankyrin repeats.

    PubMed

    Lee, Gwangrog; Abdi, Khadar; Jiang, Yong; Michaely, Peter; Bennett, Vann; Marszalek, Piotr E

    2006-03-09

    Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel alpha-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of spring-like behaviour of the putative superhelix. Moreover, stacks of 17-29 ankyrin repeats in the cytoplasmic domains of transient receptor potential (TRP) channels have been identified as candidates for a spring that gates mechanoreceptors in hair cells as well as in Drosophila bristles. Here we report that tandem ankyrin repeats exhibit tertiary-structure-based elasticity and behave as a linear and fully reversible spring in single-molecule measurements by atomic force microscopy. We also observe an unexpected ability of unfolded repeats to generate force during refolding, and report the first direct measurement of the refolding force of a protein domain. Thus, we show that one of the most common amino-acid motifs has spring properties that could be important in mechanotransduction and in the design of nanodevices.

  14. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  15. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  16. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  17. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  18. Precision Astronomy with Imperfect Deep Depletion CCDs

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team

    2014-01-01

    While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.

  19. Transition from precise to accurate critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ukraintsev, Vladimir A.; Tsai, Margaret C.; Lii, Tom; Jackson, Ricky A.

    2007-03-01

    A new measurement system analysis (MSA) methodology has been developed at Texas Instruments (TI) to evaluate the status of the 65 nm technology critical dimension (CD) metrology and its readiness for production. Elements of the methodology were used in a previously reported scatterometry evaluation [1]. At every critical process level the precision, bias, linearity and total measurement uncertainty (TMU) were evaluated for metrology fleet over extended periods of time, and with the technology representative set of samples. The samples with variations that fully covered and often exceeded process space were pre-calibrated by CD atomic force microscope (AFM). CD AFM measurement precision was determined for every analyzed process level based on repeated measurements conducted over several days. The National Institute of Standards and Technologies (NIST) traceable standards were used to verify CD AFM line CD and scale calibrations. Therefore, for the first time the NIST traceability has been established for CD metrology at every critical process level for the entire technology. The data indicates an overall healthy status of the 65 nm CD metrology. Sub-nanometer accuracy has been established for gate CD metrology. The thorough CD metrology characterization and specifically absolute CD calibration were instrumental in seamless technology transfer from 200 mm to 300 mm fabs. The qualification of CD metrology also revealed several problems. Most of these are well-known from previous studies and should soon be addressed. CD scanning electron microscopy (SEM) has a systematic problem with bias of CD measurements. The problem is common for several front-end and back-end of line process levels. For most process levels, TMU of CD SEM is noticeably affected by sample modification inflicted by electron irradiation (shrinkage, charging, buildups, etc.). This causes problems, especially in the case of fleet TMU evaluation. An improved data collection methodology should be devised

  20. EVALUATION OF METRIC PRECISION FOR A RIPARIAN FOREST SURVEY

    EPA Science Inventory

    This paper evaluates the performance of a protocol to monitor riparian forests in western Oregon based on the quality of the data obtained from a recent field survey. Precision and accuracy are the criteria used to determine the quality of 19 field metrics. The field survey con...

  1. Precise measurement of planeness.

    PubMed

    Schulz, G; Schwider, J

    1967-06-01

    Interference methods are reviewed-particularly those developed at the German Academy of Sciences in Berlin-with which the deviations of an optically flat surface from the ideal plane can be measured with a high degree of exactness. One aid to achieve this is the relative methods which measure the differences in planeness between two surfaces. These are then used in the absolute methods which determine the absolute planeness of a surface. This absolute determination can be effected in connection with a liquid surface, or (as done by the authors) only by suitable evaluation of relative measurements between unknown plates in various positional combinations. Experimentally, one uses two- or multiple-beam interference fringes of equal thickness(1) or of equal inclination. The fringes are observed visually, scanned, or photographed, and in part several wavelengths or curves of equal density (Aquidensiten) are employed. The survey also brings the following new methods: a relative method, where, with the aid of fringes of superposition, the fringe separation is subdivided equidistantly thus achieving an increase of measuring precision, and an absolute method which determines the deviations of a surface from ideal planeness along arbitrary central sections, without a liquid surface, from four relative interference photographs.

  2. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  3. Soviet precision timekeeping research and technology

    SciTech Connect

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  4. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  5. CD-SEM precision: improved procedure and analysis

    NASA Astrophysics Data System (ADS)

    Menaker, Mina

    1999-06-01

    Accurate precision assessment becomes increasingly important as we proceed along the SIA road map, in to more advanced processes and smaller critical dimensions. Accurate precision is necessary in order to determine the P/T ratio which is used to decide whether a specific CD-SEM is valid for controlling a specific process. The customer's needs, as been presented by the SEMATECH Advanced Metrology Advisory Group, are to receive a detailed precision report, in the form of a full repeatability and reproducibility (RR) analysis. The 3 sigma single tool RR, of an in-line SEM, are determined in the same operational modes as used in production, and should include the effects of time and process variants on the SEM performance. We hereby present an RR procedure by a modulate approach which enables the user extending the evaluation according to her/his needs. It includes direct assessment of repeatability, reproducibility and stability analysis. It also allows for a study of wafer non homogeneity, induced process variation and a measured feature type effect on precision. The procedure is based on the standard ISO RR procedure, and includes a modification for a correct compensation for bias, or so called measurement turned. A close examination of the repeatability and reproducibility variations, provides insight to the possible sources of those variations, such as S/N ratio, SEM autofocus mechanism, automation etc. For example, poor wafer alignment might not effect the repeatability, but severally reduce reproducibility. Therefore the analysis is a key to better understanding and improving of CD-SEM performance, on production layers. The procedure is fully implemented on an automated CD-SEM, providing on line precision assessment. RR < 1 nm has been demonstrated on well defined resist and etched structures. Examples of the automatic analysis results, using the new procedure are presented.

  6. Can Repeated Painful Blunt Impact Deter Approach Toward a Goal?

    DTIC Science & Technology

    2010-11-29

    1 CAN REPEATED PAINFUL BLUNT IMPACT DETER APPROACH TOWARD A GOAL? K. R. Short*, G. Reid, G. Cooke Target Behavioral Response Laboratory, US...Angeles, CA 90095 ABSTRACT Painful blunt impact from a low-mass, high-speed projectile has been considered as a possible non-lethal weapon for...accuracy. Blunt impacts produced varied pain ratings, but pain was not a predictive factor in any escape, avoidance, or performance measure. Subjects

  7. Parameters optimization and control in precision laser scribing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiu'e.; Li, Yongda; Li, Yongzheng

    2005-01-01

    The positional precision of laser scribing and laser marking in precision metrological tools, such as scale plate and scale dial, is of the order of μm. The control of scribing must be very accurate. The laser beam parameters, focal length of the lens, and the position of the focal spot must be carefully selected and accurately controlled. The workpiece must also be accurately and repeatedly positioned. Any deviation from the required parameters would seriously affect the product quality. This paper studied an Nd:YAG laser scribing system specially designed for scribing of extremely high precision dial scale used in petroleum drilling machine. The relevant parameters were carefully selected and optimized. CAD, CAM, NC and automatic control technology were employed in the system. The integration of optics, mechanics, electronics and computer ensured high precision laser scribing.

  8. Improving the precision of astrometry for space debris

    SciTech Connect

    Sun, Rongyu; Zhao, Changyin; Zhang, Xiaoxiang

    2014-03-01

    The data reduction method for optical space debris observations has many similarities with the one adopted for surveying near-Earth objects; however, due to several specific issues, the image degradation is particularly critical, which makes it difficult to obtain precise astrometry. An automatic image reconstruction method was developed to improve the astrometry precision for space debris, based on the mathematical morphology operator. Variable structural elements along multiple directions are adopted for image transformation, and then all the resultant images are stacked to obtain a final result. To investigate its efficiency, trial observations are made with Global Positioning System satellites and the astrometry accuracy improvement is obtained by comparison with the reference positions. The results of our experiments indicate that the influence of degradation in astrometric CCD images is reduced, and the position accuracy of both objects and stellar stars is improved distinctly. Our technique will contribute significantly to optical data reduction and high-order precision astrometry for space debris.

  9. Estimating trend precision and power to detect trends across grouped count data

    USGS Publications Warehouse

    Gray, B.R.; Burlew, M.M.

    2007-01-01

    Ecologists commonly use grouped or clustered count data to estimate temporal trends in counts, abundance indices, or abundance. For example, the U.S. Breeding Bird Survey data represent multiple counts of birds from within each of multiple, spatially defined routes. Despite a reliance on grouped counts, analytical methods for prospectively estimating precision of trend estimates or statistical power to detect trends that explicitly acknowledge the characteristics of grouped count data are undescribed. These characteristics include the fact that the sampling variance is an increasing function of the mean, and that sampling and group-level variance estimates are generally estimated on different scales (the sampling and log scales, respectively). We address these issues for repeated sampling of a single population using an analytical approach that has the flavor of a generalized linear mixed model, specifically that of a negative binomial-distributed count variable with random group effects. The count mean, including grand intercept, trend, and random group effects, is modeled linearly on the log scale, while sampling variance of the mean is estimated on the log scale via the delta method. Results compared favorably with those derived using Monte Carlo simulations. For example, at trend = 5% per temporal unit, differences in standard errors and in power were modest relative to those estimated by simulation (???|11|% and ???|16|%, respectively), with relative differences among power estimates decreasing to ???|7|% when power estimated by simulations was ???0.50. Similar findings were obtained using data from nine surveys of fingernail clams in the Mississippi River. The proposed method is suggested (1) where simulations are not practical and relative precision or power is desired, or (2) when multiple precision or power calculations are required and where the accuracy of a fraction of those calculations will be confirmed using simulations. ?? 2007 by the Ecological

  10. 3D precision measurements of meter sized surfaces using low cost illumination and camera techniques

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Daemi, Bita; Mattsson, Lars

    2017-04-01

    Using dedicated stereo camera systems and structured light is a well-known method for measuring the 3D shape of large surfaces. However the problem is not trivial when high accuracy, in the range of few tens of microns, is needed. Many error sources need to be handled carefully in order to obtain high quality results. In this study, we present a measurement method based on low-cost camera and illumination solutions combined with high-precision image analysis and a new approach in camera calibration and 3D reconstruction. The setup consists of two ordinary digital cameras and a Gobo projector as a structured light source. A matrix of dots is projected onto the target area. The two cameras capture the images of the projected pattern on the object. The images are processed by advanced subpixel resolution algorithms prior to the application of the 3D reconstruction technique. The strength of the method lays in a different approach for calibration, 3D reconstruction, and high-precision image analysis algorithms. Using a 10 mm pitch pattern of the light dots, the method is capable of reconstructing the 3D shape of surfaces. The precision (1σ repeatability) in the measurements is  <10 µm over a volume of 60  ×  50  ×  10 cm3 at a hardware cost of ~2% of available advanced measurement techniques. The expanded uncertainty (95% confidence level) is estimated to be 83 µm, with the largest uncertainty contribution coming from the absolute length of the metal ruler used as reference.

  11. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  12. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  13. [Precision nutrition in the era of precision medicine].

    PubMed

    Chen, P Z; Wang, H

    2016-12-06

    Precision medicine has been increasingly incorporated into clinical practice and is enabling a new era for disease prevention and treatment. As an important constituent of precision medicine, precision nutrition has also been drawing more attention during physical examinations. The main aim of precision nutrition is to provide safe and efficient intervention methods for disease treatment and management, through fully considering the genetics, lifestyle (dietary, exercise and lifestyle choices), metabolic status, gut microbiota and physiological status (nutrient level and disease status) of individuals. Three major components should be considered in precision nutrition, including individual criteria for sufficient nutritional status, biomarker monitoring or techniques for nutrient detection and the applicable therapeutic or intervention methods. It was suggested that, in clinical practice, many inherited and chronic metabolic diseases might be prevented or managed through precision nutritional intervention. For generally healthy populations, because lifestyles, dietary factors, genetic factors and environmental exposures vary among individuals, precision nutrition is warranted to improve their physical activity and reduce disease risks. In summary, research and practice is leading toward precision nutrition becoming an integral constituent of clinical nutrition and disease prevention in the era of precision medicine.

  14. Accuracy of an earpiece face-bow.

    PubMed

    Palik, J F; Nelson, D R; White, J T

    1985-06-01

    The validity of the Hanau ear-bow to transfer an arbitrary hinge axis to a Hanau articulator was clinically compared with a Hanau kinematic face-bow. The study was conducted with 18 randomly selected patients. This investigation demonstrated a significant statistical difference between the arbitrary axis located with an ear-bow and the terminal hinge axis. This discrepancy was significant in the anteroposterior direction but not in the superior-inferior direction. Only 50% of the arbitrary hinge axes were within a 5 mm radius of the terminal hinge axis, while 89% were within a 6 mm radius. Furthermore, the ear-bow method was not repeatable statistically. Additional study is needed to determine the practical value of the arbitrary face-bow and to pursue modifications to improve its accuracy.

  15. ACCURACY LIMITATIONS IN LONG TRACE PROFILOMETRY.

    SciTech Connect

    TAKACS,P.Z.; QIAN,S.

    2003-08-25

    As requirements for surface slope error quality of grazing incidence optics approach the 100 nanoradian level, it is necessary to improve the performance of the measuring instruments to achieve accurate and repeatable results at this level. We have identified a number of internal error sources in the Long Trace Profiler (LTP) that affect measurement quality at this level. The LTP is sensitive to phase shifts produced within the millimeter diameter of the pencil beam probe by optical path irregularities with scale lengths of a fraction of a millimeter. We examine the effects of mirror surface ''macroroughness'' and internal glass homogeneity on the accuracy of the LTP through experiment and theoretical modeling. We will place limits on the allowable surface ''macroroughness'' and glass homogeneity required to achieve accurate measurements in the nanoradian range.

  16. Design of high-precision ranging system for laser fuze

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Zhang, He; Xu, Xiaobin

    2016-10-01

    According to the problem of the high-precision ranging in the circumferential scanning probe laser proximity fuze, a new type of pulsed laser ranging system has been designed. The laser transmitting module, laser receiving module and ranging processing module have been designed respectively. The factors affecting the ranging accuracy are discussed. And the method of improving the ranging accuracy is studied. The high-precision ranging system adopts the general high performance microprocessor C8051FXXX as the core. And the time interval measurement chip TDC-GP21 was used to implement the system. A PCB circuit board was processed to carry on the experiment. The results of the experiment prove that a centimeter level accuracy ranging system has been achieved. The works can offer reference for ranging system design of the circumferential scanning probe laser proximity fuze.

  17. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  18. Magnetars as soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    O'Meara, Karen

    1999-05-01

    The source of non-periodic, repeating, gamma-ray bursts located within our galaxy and near supernova remnants has been a mystery. A new theory by Christopher Thompson and Robert Duncan, postulating the existence of young neutron stars with intense magnetic fields (1E14 Gauss or more) offers an explanation. The intense magnetic fields of these "magnetars" suffice to create the phenomena detected from soft gamma-ray repeaters. The poles of a magnetar are hot enough to emit steady, low level x-ray emissions. Stresses on the star's crust due to the drifting of the magnetic field through the superfluid core create seismic activity and "starquakes," which release enormous bursts of energy. Data collected from recent soft gamma-ray repeater bursts appear to be strong evidence in support of this exciting new theory.

  19. Limitations on quantum key repeaters

    NASA Astrophysics Data System (ADS)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-01

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  20. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  1. Precision respiratory medicine and the microbiome.

    PubMed

    Rogers, Geraint B; Wesselingh, Steve

    2016-01-01

    A decade of rapid technological advances has provided an exciting opportunity to incorporate information relating to a range of potentially important disease determinants in the clinical decision-making process. Access to highly detailed data will enable respiratory medicine to evolve from one-size-fits-all models of care, which are associated with variable clinical effectiveness and high rates of side-effects, to precision approaches, where treatment is tailored to individual patients. The human microbiome has increasingly been recognised as playing an important part in determining disease course and response to treatment. Its inclusion in precision models of respiratory medicine, therefore, is essential. Analysis of the microbiome provides an opportunity to develop novel prognostic markers for airways disease, improve definition of clinical phenotypes, develop additional guidance to aid treatment selection, and increase the accuracy of indicators of treatment effect. In this Review we propose that collaboration between researchers and clinicians is needed if respiratory medicine is to replicate the successes of precision medicine seen in other clinical specialties.

  2. Personalized Proteomics: The Future of Precision Medicine.

    PubMed

    Duarte, Trevor T; Spencer, Charles T

    2016-01-01

    Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient's response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient's condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.

  3. Personalized Proteomics: The Future of Precision Medicine

    PubMed Central

    Duarte, Trevor T.; Spencer, Charles T.

    2016-01-01

    Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate. PMID:27882306

  4. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  5. On-line measurements in pig carcass classification: Repeatability and variation caused by the operator and the copy of instrument.

    PubMed

    Olsen, Eli V; Candek-Potokar, Marjeta; Oksama, Marjatta; Kien, Stefan; Lisiak, Dariusz; Busk, Hans

    2007-01-01

    For nearly all pigs slaughtered in the EU, the lean meat content is assessed on-line at the slaughter line. The assessment is made indirectly by an instrument performing a number of informative measurements including the thickness of back fat as one of the most important and common measurements. Several types of instruments are used for making the measurements. The quality of the calibration (the prediction ability) has to be approved by the EU Commission. However, the maintenance of instruments, training of operators, working conditions and other factors influencing the routine are quite as important for the accuracy as the calibration. As a part of an EU funded project, partners representing thirteen European countries have investigated the instruments used in their countries focusing on the precision of indirect measurements. The preconditions have differed considerably between the countries resulting in a wide range of estimates of the repeatability and the reproducibility (precision) of fat and muscle thickness. Totally, there have been three different types of manual instruments - invasive probe instruments from three manufacturers, non-invasive ultrasound and callipers. Furthermore, the precision of two automatic instruments with respect to lean meat content has partly been estimated. Even though neither the aim nor the design of the experiments was set for a direct comparison between different instruments, none of them seemed to deviate notably from the others with respect to the precision of fat thickness. In this study, the only investigated influencing factors were the variations in operators and copies of instruments. Generally, the variations between operators were more important than the variation between copies of the same type of instrument.

  6. High-Precision Coupling Mechanism Operable By Robots

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.

  7. Accuracy Evaluation of Electron-Probe Microanalysis as Applied to Semiconductors and Silicates

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2003-01-01

    An evaluation of precision and accuracy will be presented for representative semiconductor and silicate compositions. The accuracy of electron-probe analysis depends on high precision measurements and instrumental calibration, as well as correction algorithms and fundamental parameter data sets. A critical assessment of correction algorithms and mass absorption coefficient data sets can be made using the alpha factor technique. Alpha factor analysis can be used to identify systematic errors in data sets and also of microprobe standards used for calibration.

  8. Apparatus Makes Precisely Saturated Solutions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1989-01-01

    Simple laboratory apparatus establishes equilibrium conditions of temperature and concentration in solutions for use in precise measurements of saturation conditions. With equipment typical measurement of saturation concentration of protein in solution established and measured within about 24 hours. Precisely saturated solution made by passing solvent or solution slowly along column packed with solute at precisely controlled temperature. If necessary, flow stopped for experimentally determined interval to allow equilibrium to be established in column.

  9. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  10. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  11. Centroid precision and orientation precision of planar localization microscopy.

    PubMed

    McGray, C; Copeland, C R; Stavis, S M; Geist, J

    2016-09-01

    The concept of localization precision, which is essential to localization microscopy, is formally extended from optical point sources to microscopic rigid bodies. Measurement functions are presented to calculate the planar pose and motion of microscopic rigid bodies from localization microscopy data. Physical lower bounds on the associated uncertainties - termed centroid precision and orientation precision - are derived analytically in terms of the characteristics of the optical measurement system and validated numerically by Monte Carlo simulations. The practical utility of these expressions is demonstrated experimentally by an analysis of the motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts due to the generality of the expressions and the widespread interest in localization microscopy for super-resolution imaging and particle tracking.

  12. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  13. Do Twelfths Terminate or Repeat?

    ERIC Educational Resources Information Center

    Ambrose, Rebecca; Burnison, Erica

    2015-01-01

    When finding the decimal equivalent of a fraction with 12 in the denominator, will it terminate or repeat? This question came from a seventh grader in author Erica Burnison's class as the student was pondering a poster generated by one of her classmates. Not only was the question intriguing, but it also affirmed the belief in the power of…

  14. Mechanical Anisotropy of Ankyrin Repeats

    PubMed Central

    Lee, Whasil; Zeng, Xiancheng; Rotolo, Kristina; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Yang, Weitao; Marszalek, Piotr E.

    2012-01-01

    Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ∼60 pN), as compared to the unfolding in the opposite direction (unfolding force ∼ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo. PMID:22404934

  15. Pentapeptide Repeat Proteins and Cyanobacteria

    SciTech Connect

    Buchko, Garry W.

    2009-10-16

    Cyanobacteria are unique in many ways and one unusual feature is the presence of a suite of proteins that contain at least one domain with a minimum of eight tandem repeated five-residues (Rfr) of the general consensus sequence A[N/D]LXX. The function of such pentapeptide repeat proteins (PRPs) are still unknown, however, their prevalence in cyanobacteria suggests that they may play some role in the unique biological activities of cyanobacteria. As part of an inter-disciplinary Membrane Biology Grand Challenge at the Environmental Molecular Sciences Laboratory (Pacific Northwest National Laboratory) and Washington University in St. Louis, the genome of Cyanothece 51142 was sequenced and its molecular biology studied with relation to circadian rhythms. The genome of Cyanothece encodes for 35 proteins that contain at least one PRP domain. These proteins range in size from 105 (Cce_3102) to 930 (Cce_2929) kDa with the PRP domains ranging in predicted size from 12 (Cce_1545) to 62 (cce_3979) tandem pentapeptide repeats. Transcriptomic studies with 29 out of the 35 genes showed that at least three of the PRPs in Cyanothece 51142 (cce_0029, cce_3083, and cce_3272) oscillated with repeated periods of light and dark, further supporting a biological function for PRPs. Using X-ray diffraction crystallography, the structure for two pentapeptide repeat proteins from Cyanothece 51142 were determined, cce_1272 (aka Rfr32) and cce_4529 (aka Rfr23). Analysis of their molecular structures suggests that all PRP may share the same structural motif, a novel type of right-handed quadrilateral β-helix, or Rfr-fold, reminiscent of a square tower with four distinct faces. Each pentapeptide repeat occupies one face of the Rfr-fold with four consecutive pentapeptide repeats completing a coil that, in turn, stack upon each other to form “protein skyscrapers”. Details of the structural features of the Rfr-fold are reviewed here together with a discussion for the possible role of end

  16. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  17. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  18. High-precision thermal and electrical characterization of thermoelectric modules

    SciTech Connect

    Kolodner, Paul

    2014-05-15

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  19. Precision analysis of passive BD aided pseudolites positioning system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2007-11-01

    In recent years BD (BeiDou positioning system), an active satellite navigation system, has been widely applied in geodetic survey, precise engineering survey and GNC (guide, navigation and control system) of weapons because of its reliability and availability. However, it has several problems on the accuracy, anti-interference and active-positioning. A passive BD aided pseudolites positioning system is introduced in details in this paper. The configuration and the operating principle of system are presented. In analyzing the precision of location, one of the crucial aspects to be studied is how to determine the arrangement of the pseudolites to get the good GDOP, which is discussed in the different arrangements of the pseudolites in this paper. The simulation results show that the VDOP (vertical dilution of precision) of BD is improved due to introducing the pseudolites. The experiments indicate the validity of the methods and the improvement of the positioning precision in the BD aided pseudolite system.

  20. Evaluation of Factors Affecting Repeatability and Accuracy of Turbine Rig Test Results.

    DTIC Science & Technology

    1980-06-01

    RESOLUTION TEST CHART ( TABLE A-III (Cont’d) m In 0 wNw I- 0 10 O + WVN-4 119 Jb ( TABLE A-IV PROGRAM4 TTR2" IIw + co In N I LL I CC\\OIa CDa N we In t...CL Q) I- mW 0 0 Q U . X CL~ W CC) -W- I-- w - I-LUi L) W U- ~~~ LULLI Uzoct LU = LA- I- CL M C CXWW 0- U) W~W W CLU U) LUU _ aci~ L III.J 00 M𔃺 W