Science.gov

Sample records for accuracy precision stability

  1. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement.

  2. Precision cosmology, Accuracy cosmology and Statistical cosmology

    NASA Astrophysics Data System (ADS)

    Verde, Licia

    2014-05-01

    The avalanche of data over the past 10-20 years has propelled cosmology into the ``precision era''. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available now and coming soon, the only way to meet this challenge is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples.

  3. Ultra-wideband ranging precision and accuracy

    NASA Astrophysics Data System (ADS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-09-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer-Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging.

  4. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  5. [History, accuracy and precision of SMBG devices].

    PubMed

    Dufaitre-Patouraux, L; Vague, P; Lassmann-Vague, V

    2003-04-01

    Self-monitoring of blood glucose started only fifty years ago. Until then metabolic control was evaluated by means of qualitative urinary blood measure often of poor reliability. Reagent strips were the first semi quantitative tests to monitor blood glucose, and in the late seventies meters were launched on the market. Initially the use of such devices was intended for medical staff, but thanks to handiness improvement they became more and more adequate to patients and are now a necessary tool for self-blood glucose monitoring. The advanced technologies allow to develop photometric measurements but also more recently electrochemical one. In the nineties, improvements were made mainly in meters' miniaturisation, reduction of reaction time and reading, simplification of blood sampling and capillary blood laying. Although accuracy and precision concern was in the heart of considerations at the beginning of self-blood glucose monitoring, the recommendations of societies of diabetology came up in the late eighties. Now, the French drug agency: AFSSAPS asks for a control of meter before any launching on the market. According to recent publications very few meters meet reliability criteria set up by societies of diabetology in the late nineties. Finally because devices may be handled by numerous persons in hospitals, meters use as possible source of nosocomial infections have been recently questioned and is subject to very strict guidelines published by AFSSAPS.

  6. Establishing precision and accuracy in PDV results

    SciTech Connect

    Briggs, Matthew E.; Howard, Marylesa; Diaz, Abel

    2016-04-19

    We need to know uncertainties and systematic errors because we create and compare against archival weapons data, we constrain the models, and we provide scientific results. Good estimates of precision from the data record are available and should be incorporated into existing results; reanalysis of valuable data is suggested. Estimates of systematic errors are largely absent. The original work by Jensen et al. using gun shots for window corrections, and the integrated velocity comparison with X-rays by Schultz are two examples where any systematic errors appear to be <1% level.

  7. Stabilized Lasers and Precision Measurements.

    ERIC Educational Resources Information Center

    Hall, J. L.

    1978-01-01

    Traces the development of stabilized lasers from the Massachusetts Institute of Technology passive-stabilization experiments of the early 1960s up through the current epoch of highly stabilized helium-neon and carbon dioxide and continuous wave dye lasers. (Author/HM)

  8. Precision and Accuracy of Topography Measurements on Europa

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Hurford, T. A.; Foley, M. A.; Varland, K.

    2007-03-01

    Reports of the death of the melt-through model for chaotic terrain on Europa have been greatly exaggerated, to paraphrase Mark Twain. They are based on topographic maps of insufficient quantitative accuracy and precision.

  9. MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements: accuracy, precision and long-term stability

    NASA Astrophysics Data System (ADS)

    Eckert, E.; Laeng, A.; Lossow, S.; Kellmann, S.; Stiller, G.; von Clarmann, T.; Glatthor, N.; Höpfner, M.; Kiefer, M.; Oelhaf, H.; Orphal, J.; Funke, B.; Grabowski, U.; Haenel, F.; Linden, A.; Wetzel, G.; Woiwode, W.; Bernath, P. F.; Boone, C.; Dutton, G. S.; Elkins, J. W.; Engel, A.; Gille, J. C.; Kolonjari, F.; Sugita, T.; Toon, G. C.; Walker, K. A.

    2015-07-01

    the FR period. Above approximately 15 km, most comparisons are close to excellent, apart from ILAS-II, which shows large differences above ~ 17 km. Overall, percentage differences are usually smaller for CFC-12 than for CFC-11. For both species - CFC-11 and CFC-12 - we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS Envisat profiles have a maximum in the mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Estimated measurement noise alone can, in most cases, not explain the standard deviation of the differences. This is attributed to error components not considered in the error estimate and also to natural variability which always plays a role when the compared instruments do not measure exactly the same air mass. Investigations concerning the temporal stability show very small negative drifts in MIPAS Envisat CFC-11 measurements. These drifts vary between ~ 1-3 % decade-1. For CFC-12, the drifts are also negative and close to zero up to ~ 30 km. Above that altitude larger drifts of up to ~ 50 % decade-1 appear which are negative up to ~ 35 km and positive, but of a similar magnitude, above.

  10. MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements: accuracy, precision and long-term stability

    NASA Astrophysics Data System (ADS)

    Eckert, E.; Laeng, A.; Lossow, S.; Kellmann, S.; Stiller, G.; von Clarmann, T.; Glatthor, N.; Höpfner, M.; Kiefer, M.; Oelhaf, H.; Orphal, J.; Funke, B.; Grabowski, U.; Haenel, F.; Linden, A.; Wetzel, G.; Woiwode, W.; Bernath, P. F.; Boone, C.; Dutton, G. S.; Elkins, J. W.; Engel, A.; Gille, J. C.; Kolonjari, F.; Sugita, T.; Toon, G. C.; Walker, K. A.

    2016-07-01

    the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10-50 pptv (corresponding to ˜ 2-10 % for CFC-12) for the RR and the FR period. Between ˜ 15 and 30 km, most comparisons agree within 10-20 pptv (10-20 %), apart from ILAS-II, which shows large differences above ˜ 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species - CFC-11 and CFC-12 - we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ˜ 1 and 3 % decade-1. For CFC-12, the drifts are also negative and close to zero up to ˜ 30 km. Above that altitude, larger drifts of up to ˜ 50 % decade-1 appear which are negative up to ˜ 35 km and positive, but of a similar magnitude, above.

  11. A study of laseruler accuracy and precision (1986-1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate Laserruler accuracy and precision. Tests were performed on 0.050 in., 0.100 in., and 0.120 in. gauge block standards. Results showed and accuracy of 3.7 {mu}in. for the 0.12 in. standard, with higher accuracies for the two thinner blocks. The Laserruler precision was 4.83 {mu}in. for the 0.120 in. standard, 3.83 {mu}in. for the 0.100 in. standard, and 4.2 {mu}in. for the 0.050 in. standard.

  12. On precision and accuracy (bias) statements for measurement procedures

    SciTech Connect

    Bruckner, L.A.; Hume, M.W.; Delvin, W.L.

    1988-01-01

    Measurement procedures are often required to contain precision and accuracy of precision and bias statements. This paper contains a glossary that explains various terms that often appear in these statements as well as an example illustrating such statements for a specific set of data. Precision and bias statements are shown to vary according to the conditions under which the data were collected. This paper emphasizes that the error model (an algebraic expression that describes how the various sources of variation affect the measurement) is an important consideration in the formation of precision and bias statements.

  13. Stabilization precision control methods of photoelectric aim-stabilized system

    NASA Astrophysics Data System (ADS)

    Song, Xiaoru; Chen, Hua; Xue, Yonggang

    2015-09-01

    To solve the question that photoelectric aim-stabilized system can be controlled with high precision and stability, this paper researches a new photoelectric aim-stabilized control algorithm, analyzes the photoelectric aim-stabilized system architecture, sets up stability control system mathematical model, designs the stability of the photoelectric aim-stabilized LSSVM identification and control system, discusses uncertain factors and calculates the LSSVM parameters by the Chaos theory, gives the predictive controller model by the LSSVM and designs new photoelectric aim-stabilized system. Through the simulation calculation and experimental analysis, new photoelectric aim-stabilized control algorithm was verified; the results show the new photoelectric aim-stabilized control method can meet the demand of high precision control in photoelectric aim-stabilized system.

  14. Accuracy and precision of temporal artery thermometers in febrile patients.

    PubMed

    Wolfson, Margaret; Granstrom, Patsy; Pomarico, Bernie; Reimanis, Cathryn

    2013-01-01

    The noninvasive temporal artery thermometer offers a way to measure temperature when oral assessment is contraindicated, uncomfortable, or difficult to obtain. In this study, the accuracy and precision of the temporal artery thermometer exceeded levels recommended by experts for use in acute care clinical practice.

  15. Characterizing geometric accuracy and precision in image guided gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Tenn, Stephen Edward

    Gated radiotherapy combined with intensity modulated or three-dimensional conformal radiotherapy for tumors in the thorax and abdomen can deliver dose distributions which conform closely to tumor shapes allowing increased tumor dose while sparing healthy tissues. These conformal fields require more accurate and precise placement than traditional fields or tumors may receive suboptimal dose thereby reducing tumor control probability. Image guidance based on four-dimensional computed tomography (4DCT) provides a means to improve accuracy and precision in radiotherapy. The ability of 4DCT to accurately reproduce patient geometry and the ability of image guided gating equipment to position tumors and place fields around them must be characterized in order to determine treatment parameters such as tumor margins. Fiducial based methods of characterizing accuracy and precision of equipment for 4DCT planning and image guided gated radiotherapy (IGGRT) are presented with results for specific equipment. Fiducial markers of known geometric orientation are used to characterize 4DCT image reconstruction accuracy. Accuracy is determined under different acquisition protocols, reconstruction phases, and phantom trajectories. Targeting accuracy of fiducial based image guided gating is assessed by measuring in-phantom field positions for different motions, gating levels and target rotations. Synchronization parameters for gating equipment are also determined. Finally, end-to-end testing is performed to assess overall accuracy and precision of the equipment under controlled conditions. 4DCT limits fiducial geometric distance errors to 2 mm for repeatable target trajectories and to 5 mm for a pseudo-random trajectory. Largest offsets were in the longitudinal direction. If correctly calibrated and synchronized, the IGGRT system tested here can target reproducibly moving tumors with accuracy better than 1.2 mm. Gating level can affect accuracy if target motion is asymmetric about the

  16. Stability precision dynamic testing system on artillery

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Li, Bo

    2014-12-01

    Dynamic feature of Weapon equipments is one of important performance index for evaluating the performance of the whole weapon system. The construction of target range in our country in fire control dynamic testing is relatively backward; therefore, it has greatly influenced the evaluation on the fire control system. In order to solve this problem, it's urgent to develop a new testing instrument so as to adjust to the armament research process and promote weapon system working more efficiently and thereby meeting the needs of modernization in national defense. This paper proposes a new measure which is used to test the stability precision of the fire control system, and it is installed on the moving base. Using the method, we develop a testing system which can test the stability precision of the fire control system and achieve a high precision results after testing. The innovation of the system is we can receive the image not only by CCD, but our eyes. It also adopts digital image-forming and image processing technique for real-time measurement and storing of the target information; it simultaneously adopts the method adjusting the platform and the corresponding fixture mounted on a sample to measure the stable precision and the precision of corner of stabilizator. In this paper, we make a description on the construction of the system and the idea of the designing of the optical system. Finally, we introduce the actual application of the system and testing results.

  17. Accuracy, precision, and lower detection limits (a deficit reduction approach)

    SciTech Connect

    Bishop, C.T.

    1993-10-12

    The evaluation of the accuracy, precision and lower detection limits of the determination of trace radionuclides in environmental samples can become quite sophisticated and time consuming. This in turn could add significant cost to the analyses being performed. In the present method, a {open_quotes}deficit reduction approach{close_quotes} has been taken to keep costs low, but at the same time provide defensible data. In order to measure the accuracy of a particular method, reference samples are measured over the time period that the actual samples are being analyzed. Using a Lotus spreadsheet, data are compiled and an average accuracy is computed. If pairs of reference samples are analyzed, then precision can also be evaluated from the duplicate data sets. The standard deviation can be calculated if the reference concentrations of the duplicates are all in the same general range. Laboratory blanks are used to estimate the lower detection limits. The lower detection limit is calculated as 4.65 times the standard deviation of a set of blank determinations made over a given period of time. A Lotus spreadsheet is again used to compile data and LDLs over different periods of time can be compared.

  18. The Plus or Minus Game - Teaching Estimation, Precision, and Accuracy

    NASA Astrophysics Data System (ADS)

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-03-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in TPT (Larry Weinstein's "Fermi Questions.") For several years the authors (a college physics professor, a retired algebra teacher, and a fifth-grade teacher) have been playing a game, primarily at home to challenge each other for fun, but also in the classroom as an educational tool. We call the game "The Plus or Minus Game." The game combines estimation with the principle of precision and uncertainty in a competitive and fun way.

  19. Calibration, linearity, precision, and accuracy of a PIXE system

    NASA Astrophysics Data System (ADS)

    Richter, F.-W.; Wätjen, U.

    1984-04-01

    An accuracy and precision of better than 10% each can be achieved with PIXE analysis, with both thin and thick samples. Measures we took to obtain these values for routine analyses in the Marburg PIXE system are discussed. The advantages of an experimental calibration procedure, using thin evaporated standard foils, over the "absolute" method of employing X-ray production cross sections are outlined. The importance of X-ray line intensity ratios, even of weak transitions, for the accurate analysis of interfering elements of low mass content is demonstrated for the Se K α-Pb L ηline overlap. Matrix effects including secondary excitation can be corrected for very well without degrading accuracy under certain conditions.

  20. Fluorescence Axial Localization with Nanometer Accuracy and Precision

    SciTech Connect

    Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

    2012-06-15

    We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

  1. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  2. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  3. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  4. Mineral element analyses of switchgrass biomass: comparison of the accuracy and precision of laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineral concentration of plant biomass can affect its use in thermal conversion to energy. The objective of this study was to compare the precision and accuracy of university and private laboratories that conduct mineral analyses of plant biomass on a fee basis. Accuracy and precision of the laborat...

  5. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  6. Accuracy and Precision of GPS Carrier-Phase Clock Estimates

    DTIC Science & Technology

    2001-01-01

    L‘Geodesy using the Global Positioning System : The eflects of signal scattering o n esti- mates of site positions , ” Journal of Geophysical Research...maia.usno.navy.mil Abstract The accuracy of GPS -based clock estimates is determined by the pseudorange data. For 24-hour arcs of global data sampled...ps) for 1-day integrations. Assuming such positioning results can be realized also as equivalent light-travel times, the po- tential of GPS carrier

  7. Precision Atomic Beam Spectroscopy Using Stabilized Lasers.

    DTIC Science & Technology

    1985-06-30

    spacer (a Zerodur rod 15 cm dia. by 30 cm length) under ir I MN, M A 9 differentials of its own weight. A powerful tilt stabilization concept has been...1120-2523 (1936). 3504. Jo L. Hell, No Len -Sheng and G. Kramer,’Prinuiples of *ptical phase lock ng: :ith eppr catien to internal mirror Ne-o

  8. Solving the stability-accuracy-diversity dilemma of recommender systems

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong

    2017-02-01

    Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.

  9. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  10. Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1998-01-01

    Expands upon the concepts of precision and accuracy at a level suitable for general chemistry. Serves as a bridge to the more extensive treatments in analytical chemistry textbooks and the advanced literature on error analysis. Contains 22 references. (DDR)

  11. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  12. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    NASA Astrophysics Data System (ADS)

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-05-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis.

  13. A benchmark test of accuracy and precision in estimating dynamical systems characteristics from a time series.

    PubMed

    Rispens, S M; Pijnappels, M; van Dieën, J H; van Schooten, K S; Beek, P J; Daffertshofer, A

    2014-01-22

    Characteristics of dynamical systems are often estimated to describe physiological processes. For instance, Lyapunov exponents have been determined to assess the stability of the cardio-vascular system, respiration, and, more recently, human gait and posture. However, the systematic evaluation of the accuracy and precision of these estimates is problematic because the proper values of the characteristics are typically unknown. We fill this void with a set of standardized time series with well-defined dynamical characteristics that serve as a benchmark. Estimates ought to match these characteristics, at least to good approximation. We outline a procedure to employ this generic benchmark test and illustrate its capacity by examining methods for estimating the maximum Lyapunov exponent. In particular, we discuss algorithms by Wolf and co-workers and by Rosenstein and co-workers and evaluate their performances as a function of signal length and signal-to-noise ratio. In all scenarios, the precision of Rosenstein's algorithm was found to be equal to or greater than Wolf's algorithm. The latter, however, appeared more accurate if reasonably large signal lengths are available and noise levels are sufficiently low. Due to its modularity, the presented benchmark test can be used to evaluate and tune any estimation method to perform optimally for arbitrary experimental data.

  14. [Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].

    PubMed

    Krimmel, M; Kluba, S; Dietz, K; Reinert, S

    2005-03-01

    The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.

  15. A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes

    NASA Astrophysics Data System (ADS)

    Alvarez, Pablo; Fishbein, Amos E.; Hyland, Michael W.; Kight, Cheyne L.; Lopez, Hairold; Navarro, Tanya; Rosas, Carlos A.; Schachter, Aubrey E.; Summers, Molly A.; Weise, Eric D.; Hoffman, Megan A.; Mires, Robert C.; Johnson, Jolyon M.; Genet, Russell M.; White, Robin

    2009-01-01

    Using a manual Meade 6" Newtonian telescope and a computerized Meade 10" Schmidt-Cassegrain telescope, students from Arroyo Grande High School measured the well-known separation and position angle of the bright visual double star Albireo. The precision and accuracy of the observations from the two telescopes were compared to each other and to published values of Albireo taken as the standard. It was hypothesized that the larger, computerized telescope would be both more precise and more accurate.

  16. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  17. Synthesis of a combined system for precise stabilization of the Spektr-UF observatory: II

    NASA Astrophysics Data System (ADS)

    Bychkov, I. V.; Voronov, V. A.; Druzhinin, E. I.; Kozlov, R. I.; Ul'yanov, S. A.; Belyaev, B. B.; Telepnev, P. P.; Ul'yashin, A. I.

    2014-03-01

    The paper presents the second part of the results of search studies for the development of a combined system of high-precision stabilization of the optical telescope for the designed Spectr-UF international observatory [1]. A new modification of the strict method of the synthesis of nonlinear discrete-continuous stabilization systems with uncertainties is described, which is based on the minimization of the guaranteed accuracy estimate calculated using vector Lyapunov functions. Using this method, the synthesis of the feedback parameters in the mode of precise inertial stabilization of the optical telescope axis is performed taking the design nonrigidity, quantization of signals over time and level, and errors of orientation meters, as well as the errors and limitation of control moments of executive engine-flywheels into account. The results of numerical experiments that demonstrate the quality of the synthesized system are presented.

  18. Stabilization of posture by precision contact of the index finger

    NASA Technical Reports Server (NTRS)

    Holden, M.; Ventura, J.; Lackner, J. R.

    1994-01-01

    Postural sway during quiet stance increases if sight of the surroundings is denied. We studied how sensory-motor information about body displacement provided by contact of the index finger with a stationary bar can be used to stabilize balance in the absence of vision. Stabilization equivalent to the contribution conferred by vision was achieved at contact force levels less than 1 N. This value is much below that necessary to provide significant physical stabilization of the body. We interpret our findings in relation to tactile thresholds for motion detection, "precision grip," and proprioceptive and sensory-motor information about the configuration of the arm to the torso. In conditions allowing higher force levels at the fingertip (5-8 N), subjects assumed a passively stable state to stabilize their stance.

  19. Photothermal effects in ultra-precisely stabilized tunable microcavities

    NASA Astrophysics Data System (ADS)

    Brachmann, Johannes F. S.; Kaupp, Hanno; Hänsch, Theodor W.; Hunger, David

    2016-09-01

    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of $500\\,$kHz and a noise level of $1.1 \\times 10^{-13}\\,$m rms.

  20. Accuracy and Precision of Partial-Volume Correction in Oncological PET/CT Studies.

    PubMed

    Cysouw, Matthijs C F; Kramer, Gerbrand Maria; Hoekstra, Otto S; Frings, Virginie; de Langen, Adrianus Johannes; Smit, Egbert F; van den Eertwegh, Alfons J M; Oprea-Lager, Daniela E; Boellaard, Ronald

    2016-10-01

    Accurate quantification of tracer uptake in small tumors using PET is hampered by the partial-volume effect as well as by the method of volume-of-interest (VOI) delineation. This study aimed to investigate the effect of partial-volume correction (PVC) combined with several VOI methods on the accuracy and precision of quantitative PET.

  1. Improving the accuracy and precision of cognitive testing in mild dementia.

    PubMed

    Wouters, Hans; Appels, Bregje; van der Flier, Wiesje M; van Campen, Jos; Klein, Martin; Zwinderman, Aeilko H; Schmand, Ben; van Gool, Willem A; Scheltens, Philip; Lindeboom, Robert

    2012-03-01

    The CAMCOG, ADAS-cog, and MMSE, designed to grade global cognitive ability in dementia have inadequate precision and accuracy in distinguishing mild dementia from normal ageing. Adding neuropsychological tests to their scale might improve precision and accuracy in mild dementia. We, therefore, pooled neuropsychological test-batteries from two memory clinics (ns = 135 and 186) with CAMCOG data from a population study and 2 memory clinics (n = 829) and ADAS-cog data from 3 randomized controlled trials (n = 713) to estimate a common dimension of global cognitive ability using Rasch analysis. Item difficulties and individuals' global cognitive ability levels were estimated. Difficulties of 57 items (of 64) could be validly estimated. Neuropsychological tests were more difficult than the CAMCOG, ADAS-cog, and MMSE items. Most neuropsychological tests had difficulties in the ability range of normal ageing to mild dementia. Higher than average ability levels were more precisely measured when neuropsychological tests were added to the MMSE than when these were measured with the MMSE alone. Diagnostic accuracy in mild dementia was consistently better after adding neuropsychological tests to the MMSE. We conclude that extending dementia specific instruments with neuropsychological tests improves measurement precision and accuracy of cognitive impairment in mild dementia.

  2. The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy

    ERIC Educational Resources Information Center

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-01-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…

  3. Improvement on the stabilization of a precision tracking system

    NASA Astrophysics Data System (ADS)

    Kuno, H.; Koshiba, T.

    A tracking system that operates from nonstationary platforms must be able to stabilize the tracking axis for precision tracking. Implementation of a free gyro pointing assembly which has a momentum wheel as an integral part of the inner gimbal assembly and that is oriented with its spin axis parallel to the line of sight, is the most widely used method for tactical missiles. The paper describes two methods to improve the stabilization of this tracking system by adjusting the gimbal balance during accelerated condition and adjusting gimbal friction torque at an optimium level appropriate to the applied torque. The results show a one-fifth improvement of the drift rate.

  4. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the precision and accuracy....584 What are the precision and accuracy criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  5. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the precision and accuracy....584 What are the precision and accuracy criteria for approval of test methods for determining the sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  6. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárrga-Gutierrez, J. M.; García-Garduño, O. A.; Juárez, J.; Prieto, I.; Moreno-Jiménez, S.; Celis, M. A.

    2008-08-01

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  7. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    SciTech Connect

    Ballesteros-Zebadua, P.; Larrga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Juarez, J.; Prieto, I.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution to mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.

  8. Evaluation of the Accuracy and Precision of a Next Generation Computer-Assisted Surgical System

    PubMed Central

    Dai, Yifei; Liebelt, Ralph A.; Gao, Bo; Gulbransen, Scott W.; Silver, Xeve S.

    2015-01-01

    Background Computer-assisted orthopaedic surgery (CAOS) improves accuracy and reduces outliers in total knee arthroplasty (TKA). However, during the evaluation of CAOS systems, the error generated by the guidance system (hardware and software) has been generally overlooked. Limited information is available on the accuracy and precision of specific CAOS systems with regard to intraoperative final resection measurements. The purpose of this study was to assess the accuracy and precision of a next generation CAOS system and investigate the impact of extra-articular deformity on the system-level errors generated during intraoperative resection measurement. Methods TKA surgeries were performed on twenty-eight artificial knee inserts with various types of extra-articular deformity (12 neutral, 12 varus, and 4 valgus). Surgical resection parameters (resection depths and alignment angles) were compared between postoperative three-dimensional (3D) scan-based measurements and intraoperative CAOS measurements. Using the 3D scan-based measurements as control, the accuracy (mean error) and precision (associated standard deviation) of the CAOS system were assessed. The impact of extra-articular deformity on the CAOS system measurement errors was also investigated. Results The pooled mean unsigned errors generated by the CAOS system were equal or less than 0.61 mm and 0.64° for resection depths and alignment angles, respectively. No clinically meaningful biases were found in the measurements of resection depths (< 0.5 mm) and alignment angles (< 0.5°). Extra-articular deformity did not show significant effect on the measurement errors generated by the CAOS system investigated. Conclusions This study presented a set of methodology and workflow to assess the system-level accuracy and precision of CAOS systems. The data demonstrated that the CAOS system investigated can offer accurate and precise intraoperative measurements of TKA resection parameters, regardless of the presence

  9. Stability and accuracy control of k · p parameters

    NASA Astrophysics Data System (ADS)

    Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; Campos, Tiago; Da Silva, Juarez L. F.; Sipahi, Guilherme M.

    2016-10-01

    The k · p method is a successful approach to obtain band structure, optical and transport properties of semiconductors and it depends on external parameters that are obtained either from experiments, tight binding or ab initio calculations. Despite the widespread use of the k · p method, a systematic analysis of the stability and the accuracy of its parameters is not usual in the literature. In this work, we report a theoretical framework to determine the k · p parameters from state-of-the-art hybrid density functional theory including spin-orbit coupling, providing a calculation where the gap and spin-orbit energy splitting are in agreement with the experimental values. The accuracy of the set of parameters is enhanced by fitting over several directions at once, minimizing the overall deviation from the original data. This strategy allows us to systematically evaluate the stability, preserving the accuracy of the parameters, providing a tool to determine optimal parameters for specific ranges around the Γ-point. To prove our concept, we investigate the zinc blende GaAs that shows results in excellent agreement with the most reliable data in the literature.

  10. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  11. Evaluation of precision and accuracy assessment of different 3-D surface imaging systems for biomedical purposes.

    PubMed

    Eder, Maximilian; Brockmann, Gernot; Zimmermann, Alexander; Papadopoulos, Moschos A; Schwenzer-Zimmerer, Katja; Zeilhofer, Hans Florian; Sader, Robert; Papadopulos, Nikolaos A; Kovacs, Laszlo

    2013-04-01

    Three-dimensional (3-D) surface imaging has gained clinical acceptance, especially in the field of cranio-maxillo-facial and plastic, reconstructive, and aesthetic surgery. Six scanners based on different scanning principles (Minolta Vivid 910®, Polhemus FastSCAN™, GFM PRIMOS®, GFM TopoCAM®, Steinbichler Comet® Vario Zoom 250, 3dMD DSP 400®) were used to measure five sheep skulls of different sizes. In three areas with varying anatomical complexity (areas, 1 = high; 2 = moderate; 3 = low), 56 distances between 20 landmarks are defined on each skull. Manual measurement (MM), coordinate machine measurements (CMM) and computer tomography (CT) measurements were used to define a reference method for further precision and accuracy evaluation of different 3-D scanning systems. MM showed high correlation to CMM and CT measurements (both r = 0.987; p < 0.001) and served as the reference method. TopoCAM®, Comet® and Vivid 910® showed highest measurement precision over all areas of complexity; Vivid 910®, the Comet® and the DSP 400® demonstrated highest accuracy over all areas with Vivid 910® being most accurate in areas 1 and 3, and the DSP 400® most accurate in area 2. In accordance to the measured distance length, most 3-D devices present higher measurement precision and accuracy for large distances and lower degrees of precision and accuracy for short distances. In general, higher degrees of complexity are associated with lower 3-D assessment accuracy, suggesting that for optimal results, different types of scanners should be applied to specific clinical applications and medical problems according to their special construction designs and characteristics.

  12. A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Kwiecień, Janusz

    2016-12-01

    Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.

  13. A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Moore, Ashley

    2005-01-01

    The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.

  14. Dimensional accuracy and stability of acrylic resin denture bases.

    PubMed

    Huggett, R; Zissis, A; Harrison, A; Dennis, A

    1992-10-01

    Proponents of injection molding systems have claimed a number of benefits over conventional press-pack dough molding systems. The aim of this study was to evaluate a recently developed injection (dry heat) procedure of processing compared with press-pack dough molding utilizing three curing cycles. The dimensional accuracy and stability of acrylic resin bases produced by the two molding procedures were compared. Dimensional changes were assessed over a period of 4 months using an optical comparator. The results demonstrate that baseplates produced by the injection molding procedure exhibit less shrinkage than those produced by the conventional press-pack procedures.

  15. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  16. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  17. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  18. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction.

    PubMed

    Mahr, Christoph; Müller-Caspary, Knut; Grieb, Tim; Schowalter, Marco; Mehrtens, Thorsten; Krause, Florian F; Zillmann, Dennis; Rosenauer, Andreas

    2015-11-01

    Measurement of lattice strain is important to characterize semiconductor nanostructures. As strain has large influence on the electronic band structure, methods for the measurement of strain with high precision, accuracy and spatial resolution in a large field of view are mandatory. In this paper we present a theoretical study of precision and accuracy of measurement of strain by convergent nano-beam electron diffraction. It is found that the accuracy of the evaluation suffers from halos in the diffraction pattern caused by a variation of strain within the area covered by the focussed electron beam. This effect, which is expected to be strong at sharp interfaces between materials with different lattice plane distances, will be discussed for convergent-beam electron diffraction patterns using a conventional probe and for patterns formed by a precessing electron beam. Furthermore, we discuss approaches to optimize the accuracy of strain measured at interfaces. The study is based on the evaluation of diffraction patterns simulated for different realistic structures that have been investigated experimentally in former publications. These simulations account for thermal diffuse scattering using the frozen-lattice approach and the modulation-transfer function of the image-recording system. The influence of Poisson noise is also investigated.

  19. Accelerator mass spectrometry best practices for accuracy and precision in bioanalytical (14)C measurements.

    PubMed

    Vogel, John S; Giacomo, Jason A; Schulze-König, Tim; Keck, Bradly D; Lohstroh, Peter; Dueker, Stephen

    2010-03-01

    Accelerator mass spectrometers have an energy acceleration and charge exchange between mass definition stages to destroy molecular isobars and allow single ion counting of long-lived isotopes such as (14)C (t½=5370 years.). 'Low' voltage accelerations to 200 kV allow laboratory-sized accelerator mass spectrometers instruments for bioanalytical quantitation of (14)C to 2-3% precision and accuracy in isolated biochemical fractions. After demonstrating this accuracy and precision for our new accelerator mass spectrometer, we discuss the critical aspects of maintaining quantitative accuracy from the defined biological fraction to the accelerator mass spectrometry quantitation. These aspects include sufficient sample mass for routine rapid sample preparation, isotope dilution to assure this mass, isolation of the carbon from other sample combustion gasses and use of high-efficiency biochemical separations. This review seeks to address a bioanalytical audience, who should know that high accuracy data of physiochemical processes within living human subjects are available, as long as a (14)C quantitation can be made indicative of the physiochemistry of interest.

  20. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  1. An optical lattice clock with accuracy and stability at the 10-18 level

    NASA Astrophysics Data System (ADS)

    Bloom, B. J.; Nicholson, T. L.; Williams, J. R.; Campbell, S. L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S. L.; Ye, J.

    2014-02-01

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4×10-18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard--stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  2. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  3. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  4. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  5. Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Leimkuhler, Benedict; Shang, Xiaocheng

    2016-11-01

    We examine the formulation and numerical treatment of dissipative particle dynamics (DPD) and momentum-conserving molecular dynamics. We show that it is possible to improve both the accuracy and the stability of DPD by employing a pairwise adaptive Langevin thermostat that precisely matches the dynamical characteristics of DPD simulations (e.g., autocorrelation functions) while automatically correcting thermodynamic averages using a negative feedback loop. In the low friction regime, it is possible to replace DPD by a simpler momentum-conserving variant of the Nosé-Hoover-Langevin method based on thermostatting only pairwise interactions; we show that this method has an extra order of accuracy for an important class of observables (a superconvergence result), while also allowing larger timesteps than alternatives. All the methods mentioned in the article are easily implemented. Numerical experiments are performed in both equilibrium and nonequilibrium settings; using Lees-Edwards boundary conditions to induce shear flow.

  6. Assessing accuracy and precision for field and laboratory data: a perspective in ecosystem restoration

    USGS Publications Warehouse

    Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly

    2016-01-01

    Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.

  7. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  8. Radiographic total disc replacement angle measurement accuracy using the Oxford Cobbometer: precision and bias

    PubMed Central

    Stafylas, Kosmas; McManus, John; Schizas, Constantin

    2008-01-01

    Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4–L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4° between readings at any individual position, and as high as 6° between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs. PMID:18496719

  9. Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding

    PubMed Central

    Baldassarre, Luca; Pontil, Massimiliano; Mourão-Miranda, Janaina

    2017-01-01

    Structured sparse methods have received significant attention in neuroimaging. These methods allow the incorporation of domain knowledge through additional spatial and temporal constraints in the predictive model and carry the promise of being more interpretable than non-structured sparse methods, such as LASSO or Elastic Net methods. However, although sparsity has often been advocated as leading to more interpretable models it can also lead to unstable models under subsampling or slight changes of the experimental conditions. In the present work we investigate the impact of using stability/reproducibility as an additional model selection criterion1 on several different sparse (and structured sparse) methods that have been recently applied for fMRI brain decoding. We compare three different model selection criteria: (i) classification accuracy alone; (ii) classification accuracy and overlap between the solutions; (iii) classification accuracy and correlation between the solutions. The methods we consider include LASSO, Elastic Net, Total Variation, sparse Total Variation, Laplacian and Graph Laplacian Elastic Net (GraphNET). Our results show that explicitly accounting for stability/reproducibility during the model optimization can mitigate some of the instability inherent in sparse methods. In particular, using accuracy and overlap between the solutions as a joint optimization criterion can lead to solutions that are more similar in terms of accuracy, sparsity levels and coefficient maps even when different sparsity methods are considered. PMID:28261042

  10. Assessment of the accuracy and stability of ENSN sensors responses

    NASA Astrophysics Data System (ADS)

    Nofal, Hamed; Mohamed, Omar; Mohanna, Mahmoud; El-Gabry, Mohamed

    2015-06-01

    The Egyptian National Seismic Network (ENSN) is an advanced scientific tool used to investigate earth structure and seismic activity in Egypt. One of the main tasks of the engineering team of ENSN is to keep the accuracy and stability of the high performance seismic instruments as close as possible to the international standards used in international seismic network. To achieve this task, the seismometers are routinely calibrated. One of the final outcomes of the calibration process is a set of the actual poles and zeros of the seismometers. Due to the strategic importance of the High Dam, we present in this paper the results of the calibrating broad band (BB) seismometers type Trillium-40 (40 second). From these sets we computed both amplitude and phase responses as well as their deviations from the nominal responses of this particular seismometer type. The computed deviation of this sub-network is then statistically analyzed to obtain an overall estimate of the accuracy of measurements recorded by it. Such analysis might also discover some stations which are far from the international standards. This test will be carried out regularly at periods of several months to find out how stable the seismometer response is. As a result, the values of the magnitude and phase errors are confined between 0% and 2% for about 90% of the calibrated seismometers. The average magnitude error was found to be 5% from the nominal and 4% for average phase error. In order to eliminate any possible error in the measured data, the measured (true) poles and zeroes are used in the response files to replace the nominal values.

  11. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    PubMed Central

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-01-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl− electrodes, 10 F− electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity. PMID:28303939

  12. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  13. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl‑ electrodes, 10 F‑ electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  14. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision.

    PubMed

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-17

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl(-) electrodes, 10 F(-) electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  15. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  16. Automated tracking of colloidal clusters with sub-pixel accuracy and precision

    NASA Astrophysics Data System (ADS)

    van der Wel, Casper; Kraft, Daniela J.

    2017-02-01

    Quantitative tracking of features from video images is a basic technique employed in many areas of science. Here, we present a method for the tracking of features that partially overlap, in order to be able to track so-called colloidal molecules. Our approach implements two improvements into existing particle tracking algorithms. Firstly, we use the history of previously identified feature locations to successfully find their positions in consecutive frames. Secondly, we present a framework for non-linear least-squares fitting to summed radial model functions and analyze the accuracy (bias) and precision (random error) of the method on artificial data. We find that our tracking algorithm correctly identifies overlapping features with an accuracy below 0.2% of the feature radius and a precision of 0.1 to 0.01 pixels for a typical image of a colloidal cluster. Finally, we use our method to extract the three-dimensional diffusion tensor from the Brownian motion of colloidal dimers. , which features invited work from the best early-career researchers working within the scope of Journal of Physics: Condensed Matter. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Daniela Kraft was selected by the Editorial Board of Journal of Physics: Condensed Matter as an Emerging Leader.

  17. Estimates of laboratory accuracy and precision on Hanford waste tank samples

    SciTech Connect

    Dodd, D.A.

    1995-02-02

    A review was performed on three sets of analyses generated in Battelle, Pacific Northwest Laboratories and three sets generated by Westinghouse Hanford Company, 222-S Analytical Laboratory. Laboratory accuracy and precision was estimated by analyte and is reported in tables. The sources used to generate this estimate is of limited size but does include the physical forms, liquid and solid, which are representative of samples from tanks to be characterized. This estimate was published as an aid to programs developing data quality objectives in which specified limits are established. Data resulting from routine analyses of waste matrices can be expected to be bounded by the precision and accuracy estimates of the tables. These tables do not preclude or discourage direct negotiations between program and laboratory personnel while establishing bounding conditions. Programmatic requirements different than those listed may be reliably met on specific measurements and matrices. It should be recognized, however, that these are specific to waste tank matrices and may not be indicative of performance on samples from other sources.

  18. Training to Improve Precision and Accuracy in the Measurement of Fiber Morphology

    PubMed Central

    Jeon, Jun; Wade, Mary Beth; Luong, Derek; Palmer, Xavier-Lewis; Bharti, Kapil; Simon, Carl G.

    2016-01-01

    An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability. PMID:27907145

  19. Freehand liver volumetry by using an electromagnetic pen tablet: accuracy, precision, and rapidity.

    PubMed

    Perandini, Simone; Faccioli, Niccolò; Inama, Marco; Pozzi Mucelli, Roberto

    2011-04-01

    The purpose of this study is to assess the accuracy, precision, and rapidity of liver volumes calculated by using a freehand electromagnetic pen tablet contourtracing method as compared with the volumes calculated by using the standard optical mouse contourtracing method. The imaging data used as input for accuracy and precision testing were computed by software developed in our institution. This computer software can generate models of solid organs and allows both standard mouse-based and electromagnetic pen-driven segmentation (number of data sets, n = 70). The images used as input for rapidity testing was partly computed by modeling software (n = 70) and partly selected from contrast-enhanced computed tomography (CT) examinations (n = 12). Mean volumes and time required to perform the segmentation, along with standard deviation and range values with both techniques, were calculated. Student's t test was used to assess significance regarding mean volumes and time calculated by using both segmentation techniques on phantom and CT data sets. P value was also calculated. The mean volume difference was significantly lower with the use of the freehand electromagnetic pen as compared with the optical mouse (0.2% vs. 1.8%; P < .001). The mean segmentation time per patient was significantly shorter with the use of the freehand electromagnetic pen contourtracing method (354.5 vs. 499.1 s on phantoms; 457.4 vs. 610.0 s on CT images; P < .001). Freehand electromagnetic pen-based volumetric technique represents a technologic advancement over manual mouse-based contourtracing because of the superior statistical accuracy and sensibly shorter time required. Further studies focused on intra- and interobserver variability of the technique need to be performed before its introduction in clinical application.

  20. Keystroke dynamics and timing: accuracy, precision and difference between hands in pianist's performance.

    PubMed

    Minetti, Alberto E; Ardigò, Luca P; McKee, Tom

    2007-01-01

    A commercially available acoustic grand piano, originally provided with keystroke speed sensors, is proposed as a standard instrument to quantitatively assess the technical side of pianist's performance, after the mechanical characteristics of the keyboard have been measured. We found a positional dependence of the relationship between the applied force and the resulting downstroke speed (i.e. treble keys descend fastest) due to the different hammer/hammer shaft mass to be accelerated. When this effect was removed by a custom software, the ability of 14 pianists was analysed in terms of variability in stroke intervals and keystroke speeds. C-major scales played by separate hands at different imposed tempos and at 5 subjectively chosen graded force levels were analysed to get insights into the achieved neuromuscular control. Accuracy and precision of time intervals and descent velocity of keystrokes were obtained by processing the generated MIDI files. The results quantitatively show: the difference between hands, the trade off between force range and tempo, and between time interval precision and tempo, the lower precision of descent speed associated to 'soft' playing, etc. Those results reflect well-established physiological and motor control characteristics of our movement system. Apart from revealing fundamental aspects of pianism, the proposed method could be used as a standard tool also for ergonomic (e.g. the mechanical work and power of playing), didactic and rehabilitation monitoring of pianists.

  1. Improvement in precision, accuracy, and efficiency in sstandardizing the characterization of granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Benyahia, Sofiane; Mei, Joseph; Guenther, Chris; Koepke, M. E.

    2013-01-01

    Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future desig

  2. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  3. The Precision and Accuracy of Early Epoch of Reionization Foreground Models: Comparing MWA and PAPER 32-antenna Source Catalogs

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Bowman, Judd; Aguirre, James E.

    2013-05-01

    As observations of the Epoch of Reionization (EoR) in redshifted 21 cm emission begin, we assess the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Wide-field Array (MWA). The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision, while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. The two instruments are very similar in resolution, sensitivity, sky coverage, and spectral range and have produced catalogs from nearly contemporaneous data. We use a Bayesian Markov Chain Monte Carlo fitting method to estimate that the two instruments are on the same flux scale to within 20% and find that the images are mostly in good agreement. We then investigate the source of the errors by comparing two overlapping MWA facets where we find that the differences are primarily related to an inaccurate model of the primary beam but also correlated errors in bright sources due to CLEAN. We conclude with suggestions for mitigating and better characterizing these effects.

  4. Precision and accuracy testing of FMCW ladar-based length metrology.

    PubMed

    Mateo, Ana Baselga; Barber, Zeb W

    2015-07-01

    The calibration and traceability of high-resolution frequency modulated continuous wave (FMCW) ladar sources is a requirement for their use in length and volume metrology. We report the calibration of FMCW ladar length measurement systems by use of spectroscopy of molecular frequency references HCN (C-band) or CO (L-band) to calibrate the chirp rate of the FMCW sources. Propagating the stated uncertainties from the molecular calibrations provided by NIST and measurement errors provide an estimated uncertainty of a few ppm for the FMCW system. As a test of this calibration, a displacement measurement interferometer with a laser wavelength close to that of our FMCW system was built to make comparisons of the relative precision and accuracy. The comparisons performed show <10  ppm agreement, which was within the combined estimated uncertainties of the FMCW system and interferometer.

  5. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; Gates, S. D.; Knight, K. B.; Hutcheon, I. D.

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence of a significant quantity of 238U in the samples.

  6. Estimated results analysis and application of the precise point positioning based high-accuracy ionosphere delay

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.

  7. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence ofmore » a significant quantity of 238U in the samples.« less

  8. The Precise Orbit and the Challenge of Long Term Stability

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Cerri, Luca; Otten, Michiel; Bertiger, William; Zelensky, Nikita; Willis, Pascal

    2012-01-01

    The computation of a precise orbit reference is a fundamental component of the altimetric measurement. Since the dawn of the modern altimeter age, orbit accuracy has been determined by the quality of the GPS, SLR, and DORIS tracking systems, the fidelity of the measurement and force models, and the choice of parameterization for the orbit solutions, and whether a dynamic or a reduced-dynamic strategy is used to calculate the orbits. At the start of the TOPEX mission, the inaccuracies in the modeling of static gravity, dynamic ocean tides, and the nonconservative forces dominated the orbit error budget. Much of the error due to dynamic mismodeling can be compensated by reduced-dynamic tracking techniques depending on the measurement system strength. In the last decade, the launch of the GRACE mission has eliminated the static gravity field as a concern, and the background force models and the terrestrial reference frame have been systematically refined. GPS systems have realized many improvements, including better modeling of the forces on the GPS spacecraft, large increases in the ground tracking network, and improved modeling of the GPS measurements. DORIS systems have achieved improvements through the use of new antennae, more stable monumentation, and of satellite receivers that can track multiple beacons, and as well as through improved modeling of the nonconservative forces. Many of these improvements have been applied in the new reprocessed time series of orbits produced for the ERS satellites, Envisat, TOPEX/Poseidon and the Jason satellites, and as well as for the most recent Cryosat-2 and HY2A. We now face the challenge of maintaining a stable orbit reference for these altimetric satellites. Changes in the time-variable gravity field of the Earth and how these are modelled have been shown to affect the orbit evolution, and the calibration of the altimetric data with tide gauges. The accuracy of the reference frame realizations, and their projection into

  9. Accuracy and precision of estimating age of gray wolves by tooth wear

    USGS Publications Warehouse

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  10. Increasing accuracy and precision of digital image correlation through pattern optimization

    NASA Astrophysics Data System (ADS)

    Bomarito, G. F.; Hochhalter, J. D.; Ruggles, T. J.; Cannon, A. H.

    2017-04-01

    The accuracy and precision of digital image correlation (DIC) is based on three primary components: image acquisition, image analysis, and the subject of the image. Focus on the third component, the image subject, has been relatively limited and primarily concerned with comparing pseudo-random surface patterns. In the current work, a strategy is proposed for the creation of optimal DIC patterns. In this strategy, a pattern quality metric is developed as a combination of quality metrics from the literature rather than optimization based on any single one of them. In this way, optimization produces a pattern which balances the benefits of multiple quality metrics. Specifically, sum of square of subset intensity gradients (SSSIG) was found to be the metric most strongly correlated to DIC accuracy and thus is the main component of the newly proposed pattern quality metric. A term related to the secondary auto-correlation peak height is also part of the proposed quality metric which effectively acts as a constraint upon SSSIG ensuring that a regular (e.g., checkerboard-type) pattern is not achieved. The combined pattern quality metric is used to generate a pattern that was on average 11.6% more accurate than a randomly generated pattern in a suite of numerical experiments. Furthermore, physical experiments were performed which confirm that there is indeed improvement of a similar magnitude in DIC measurements for the optimized pattern compared to a random pattern.

  11. Gaining Precision and Accuracy on Microprobe Trace Element Analysis with the Multipoint Background Method

    NASA Astrophysics Data System (ADS)

    Allaz, J. M.; Williams, M. L.; Jercinovic, M. J.; Donovan, J. J.

    2014-12-01

    Electron microprobe trace element analysis is a significant challenge, but can provide critical data when high spatial resolution is required. Due to the low peak intensity, the accuracy and precision of such analyses relies critically on background measurements, and on the accuracy of any pertinent peak interference corrections. A linear regression between two points selected at appropriate off-peak positions is a classical approach for background characterization in microprobe analysis. However, this approach disallows an accurate assessment of background curvature (usually exponential). Moreover, if present, background interferences can dramatically affect the results if underestimated or ignored. The acquisition of a quantitative WDS scan over the spectral region of interest is still a valuable option to determine the background intensity and curvature from a fitted regression of background portions of the scan, but this technique retains an element of subjectivity as the analyst has to select areas in the scan, which appear to represent background. We present here a new method, "Multi-Point Background" (MPB), that allows acquiring up to 24 off-peak background measurements from wavelength positions around the peaks. This method aims to improve the accuracy, precision, and objectivity of trace element analysis. The overall efficiency is amended because no systematic WDS scan needs to be acquired in order to check for the presence of possible background interferences. Moreover, the method is less subjective because "true" backgrounds are selected by the statistical exclusion of erroneous background measurements, reducing the need for analyst intervention. This idea originated from efforts to refine EPMA monazite U-Th-Pb dating, where it was recognised that background errors (peak interference or background curvature) could result in errors of several tens of million years on the calculated age. Results obtained on a CAMECA SX-100 "UltraChron" using monazite

  12. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  13. Cumulative incidence of childhood autism: a total population study of better accuracy and precision.

    PubMed

    Honda, Hideo; Shimizu, Yasuo; Imai, Miho; Nitto, Yukari

    2005-01-01

    Most studies on the frequency of autism have had methodological problems. Most notable of these have been differences in diagnostic criteria between studies, degree of cases overlooked by the initial screening, and type of measurement. This study aimed to replicate the first report on childhood autism to address cumulative incidence as well as prevalence, as defined in the International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10) Diagnostic Criteria for Research. Here, the same methodological accuracy (exactness of a measurement to the true value) as the first study was used, but population size was four times larger to achieve greater precision (reduction of random error). A community-oriented system of early detection and early intervention for developmental disorders was established in the northern part of Yokohama, Japan. The city's routine health checkup for 18-month-old children served as the initial mass screening, and all facilities that provided child care services aimed to detect all cases of childhood autism and refer them to the Yokohama Rehabilitation Center. Cumulative incidence up to age 5 years was calculated for childhood autism among a birth cohort from four successive years (1988 to 1991). Cumulative incidence of childhood autism was 27.2 per 10000. Cumulative incidences by sex were 38.4 per 10000 in males, and 15.5 per 10000 in females. The male:female ratio was 2.5:1. The proportions of children with high-functioning autism who had Binet IQs of 70 and over and those with Binet IQs of 85 and over were 25.3% and 13.7% respectively. Data on cumulative incidence of childhood autism derived from this study are the first to be drawn from an accurate, as well as precise, screening methodology.

  14. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  15. Analysis of Current Position Determination Accuracy in Natural Resources Canada Precise Point Positioning Service

    NASA Astrophysics Data System (ADS)

    Krzan, Grzegorz; Dawidowicz, Karol; Krzysztof, Świaţek

    2013-09-01

    Precise Point Positioning (PPP) is a technique used to determine highprecision position with a single GNSS receiver. Unlike DGPS or RTK, satellite observations conducted by the PPP technique are not differentiated, therefore they require that parameter models should be used in data processing, such as satellite clock and orbit corrections. Apart from explaining the theory of the PPP technique, this paper describes the available web-based online services used in the post-processing of observation results. The results obtained in the post-processing of satellite observations at three points, with different characteristics of environment conditions, using the CSRS-PPP service, will be presented as the results of the experiment. This study examines the effect of the duration of the measurement session on the results and compares the results obtained by working out observations made by the GPS system and the combined observations from GPS and GLONASS. It also presents the analysis of the position determination accuracy using one and two measurement frequencies

  16. Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm

    SciTech Connect

    Carson, R.E.; Yan, Y.; Chodkowski, B.; Yap, T.K.; Daube-Witherspoon, M.E. )

    1994-09-01

    The imaging characteristics of maximum likelihood (ML) reconstruction using the EM algorithm for emission tomography have been extensively evaluated. There has been less study of the precision and accuracy of ML estimates of regional radioactivity concentration. The authors developed a realistic brain slice simulation by segmenting a normal subject's MRI scan into gray matter, white matter, and CSF and produced PET sinogram data with a model that included detector resolution and efficiencies, attenuation, scatter, and randoms. Noisy realizations at different count levels were created, and ML and filtered backprojection (FBP) reconstructions were performed. The bias and variability of ROI values were determined. In addition, the effects of ML pixel size, image smoothing and region size reduction were assessed. ML estimates at 1,000 iterations (0.6 sec per iteration on a parallel computer) for 1-cm[sup 2] gray matter ROIs showed negative biases of 6% [+-] 2% which can be reduced to 0% [+-] 3% by removing the outer 1-mm rim of each ROI. FBP applied to the full-size ROIs had 15% [+-] 4% negative bias with 50% less noise than ML. Shrinking the FBP regions provided partial bias compensation with noise increases to levels similar to ML. Smoothing of ML images produced biases comparable to FBP with slightly less noise. Because of its heavy computational requirements, the ML algorithm will be most useful for applications in which achieving minimum bias is important.

  17. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  18. The measurement of frequency and frequency stability of precision oscillators

    NASA Technical Reports Server (NTRS)

    Allan, D. W.

    1974-01-01

    The specification and performance of precision oscillators is discussed as a very important topic to the owners and users of these oscillators. This paper presents at the tutorial level some convenient methods of measuring the frequencies of precision oscillators -- giving advantages and disadvantages of these methods. Further it is shown that by processing the data from the frequency measurements in certain ways, one may be able to state more general characteristics of the oscillators being measured. The goal in this regard is to allow the comparisons of different manufacturers' specifications and more importantly to help assess whether these oscillators will meet the standard of performance the user may have in a particular application.

  19. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.

    PubMed

    Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F

    2006-06-01

    Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.

  20. Using statistics and software to maximize precision and accuracy in U-Pb geochronological measurements

    NASA Astrophysics Data System (ADS)

    McLean, N.; Bowring, J. F.; Bowring, S. A.

    2009-12-01

    Uncertainty in U-Pb geochronology results from a wide variety of factors, including isotope ratio determinations, common Pb corrections, initial daughter product disequilibria, instrumental mass fractionation, isotopic tracer calibration, and U decay constants and isotopic composition. The relative contribution of each depends on the proportion of radiogenic to common Pb, the measurement technique, and the quality of systematic error determinations. Random and systematic uncertainty contributions may be propagated into individual analyses or for an entire population, and must be propagated correctly to accurately interpret data. Tripoli and U-Pb_Redux comprise a new data reduction and error propagation software package that combines robust cycle measurement statistics with rigorous multivariate data analysis and presents the results graphically and interactively. Maximizing the precision and accuracy of a measurement begins with correct appraisal and codification of the systematic and random errors for each analysis. For instance, a large dataset of total procedural Pb blank analyses defines a multivariate normal distribution, describing the mean of and variation in isotopic composition (IC) that must be subtracted from each analysis. Uncertainty in the size and IC of each Pb blank is related to the (random) uncertainty in ratio measurements and the (systematic) uncertainty involved in tracer subtraction. Other sample and measurement parameters can be quantified in the same way, represented as statistical distributions that describe their uncertainty or variation, and are input into U-Pb_Redux as such before the raw sample isotope ratios are measured. During sample measurement, U-Pb_Redux and Tripoli can relay cycle data in real time, calculating a date and uncertainty for each new cycle or block. The results are presented in U-Pb_Redux as an interactive user interface with multiple visualization tools. One- and two-dimensional plots of each calculated date and

  1. Compensation of Environment and Motion Error for Accuracy Improvement of Ultra-Precision Lathe

    NASA Astrophysics Data System (ADS)

    Kwac, Lee-Ku; Kim, Jae-Yeol; Kim, Hong-Gun

    The technological manipulation of the piezo-electric actuator could compensate for the errors of the machining precision during the process of machining which lead to an elevation and enhancement in overall precisions. This manipulation is a very convenient method to advance the precision for nations without the solid knowledge of the ultra-precision machining technology. There were 2 divisions of researches conducted to develop the UPCU for precision enhancement of the current lathe and compensation for the environmental errors as shown below; The first research was designed to measure and real-time correct any deviations in variety of areas to achieve a compensation system through more effective optical fiber laser encoder than the encoder resolution which was currently used in the existing lathe. The deviations for a real-time correction were composed of followings; the surrounding air temperature, the thermal deviations of the machining materials, the thermal deviations in spindles, and the overall thermal deviation occurred due to the machine structure. The second research was to develop the UPCU and to improve the machining precision through the ultra-precision positioning and the real-time operative error compensation. The ultimate goal was to improve the machining precision of the existing lathe through completing the 2 research tasks mentioned above.

  2. Accuracy and precision of total mixed rations fed on commercial dairy farms.

    PubMed

    Sova, A D; LeBlanc, S J; McBride, B W; DeVries, T J

    2014-01-01

    Despite the significant time and effort spent formulating total mixed rations (TMR), it is evident that the ration delivered by the producer and that consumed by the cow may not accurately reflect that originally formulated. The objectives of this study were to (1) determine how TMR fed agrees with or differs from TMR formulation (accuracy), (2) determine daily variability in physical and chemical characteristics of TMR delivered (precision), and (3) investigate the relationship between daily variability in ration characteristics and group-average measures of productivity [dry matter intake (DMI), milk yield, milk components, efficiency, and feed sorting] on commercial dairy farms. Twenty-two commercial freestall herds were visited for 7 consecutive days in both summer and winter months. Fresh and refusal feed samples were collected daily to assess particle size distribution, dry matter, and chemical composition. Milk test data, including yield, fat, and protein were collected from a coinciding Dairy Herd Improvement test. Multivariable mixed-effect regression models were used to analyze associations between productivity measures and daily ration variability, measured as coefficient of variation (CV) over 7d. The average TMR [crude protein=16.5%, net energy for lactation (NEL) = 1.7 Mcal/kg, nonfiber carbohydrates = 41.3%, total digestible nutrients = 73.3%, neutral detergent fiber=31.3%, acid detergent fiber=20.5%, Ca = 0.92%, p=0.42%, Mg = 0.35%, K = 1.45%, Na = 0.41%] delivered exceeded TMR formulation for NEL (+0.05 Mcal/kg), nonfiber carbohydrates (+1.2%), acid detergent fiber (+0.7%), Ca (+0.08%), P (+0.02%), Mg (+0.02%), and K (+0.04%) and underfed crude protein (-0.4%), neutral detergent fiber (-0.6%), and Na (-0.1%). Dietary measures with high day-to-day CV were average feed refusal rate (CV = 74%), percent long particles (CV = 16%), percent medium particles (CV = 7.7%), percent short particles (CV = 6.1%), percent fine particles (CV = 13%), Ca (CV = 7

  3. Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision

    NASA Astrophysics Data System (ADS)

    Bednyakov, A. V.; Kniehl, B. A.; Pikelner, A. F.; Veretin, O. L.

    2015-11-01

    We perform a manifestly gauge-independent analysis of the vacuum stability in the standard model including two-loop matching, three-loop renormalization group evolution, and pure QCD corrections through four loops. All these ingredients are exact, except that light-fermion masses are neglected. We in turn apply the criterion of nullifying the Higgs self-coupling and its beta function in the modified minimal-subtraction scheme and a recently proposed consistent method for determining the true minimum of the effective Higgs potential that also avoids gauge dependence. Exploiting our knowledge of the Higgs-boson mass, we derive an upper bound on the pole mass of the top quark by requiring that the standard model be stable all the way up to the Planck mass scale and conservatively estimate the theoretical uncertainty. This bound is compatible with the Monte Carlo mass quoted by the Particle Data Group at the 1.3 σ level.

  4. Long-term accuracy and precision of PIXE and PIGE measurements for thin and thick sample analyses

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Siegele, Rainer; Orlic, Ivo; Stelcer, Ed

    2002-04-01

    This paper describes PIXE/PIGE measurements on thin Micromatter Standard (±5%) foils run over a period of 10 years. The selected foils were typically 50 μg/cm 2 thick and covered the commonly used PIXE X-ray energy range 1.4-20 keV and the light elements F and Na for PIGE studies. For the thousands of thick obsidian and pottery samples analysed over a 6-year period, the Ohio Red Clay standard has been used for both PIXE and PIGE calibration of a range of elements from Li to Rb. For PIXE, the long-term accuracy could be as low as ±1.6% for major elements with precision ranging from ±5% to ±10% depending on the elemental concentration. For PIGE, accuracies were around ±5% with precision ranging from ±5% in thick samples to ±15% in thin samples or for low yield γ-ray production.

  5. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Elmore, Andrew J.; Mustard, John F.; Manning, Sara J.; Elome, Andrew J.

    2000-01-01

    Because in situ techniques for determining vegetation abundance in semiarid regions are labor intensive, they usually are not feasible for regional analyses. Remotely sensed data provide the large spatial scale necessary, but their precision and accuracy in determining vegetation abundance and its change through time have not been quantitatively determined. In this paper, the precision and accuracy of two techniques, Spectral Mixture Analysis (SMA) and Normalized Difference Vegetation Index (NDVI) applied to Landsat TM data, are assessed quantitatively using high-precision in situ data. In Owens Valley, California we have 6 years of continuous field data (1991-1996) for 33 sites acquired concurrently with six cloudless Landsat TM images. The multitemporal remotely sensed data were coregistered to within 1 pixel, radiometrically intercalibrated using temporally invariante surface features and geolocated to within 30 m. These procedures facilitated the accurate location of field-monitoring sites within the remotely sensed data. Formal uncertainties in the registration, radiometric alignment, and modeling were determined. Results show that SMA absolute percent live cover (%LC) estimates are accurate to within ?4.0%LC and estimates of change in live cover have a precision of +/-3.8%LC. Furthermore, even when applied to areas of low vegetation cover, the SMA approach correctly determined the sense of clump, (i.e., positive or negative) in 87% of the samples. SMA results are superior to NDVI, which, although correlated with live cover, is not a quantitative measure and showed the correct sense of change in only 67%, of the samples.

  6. Interproton distance determinations by NOE--surprising accuracy and precision in a rigid organic molecule.

    PubMed

    Butts, Craig P; Jones, Catharine R; Towers, Emma C; Flynn, Jennifer L; Appleby, Lara; Barron, Nicholas J

    2011-01-07

    The accuracy inherent in the measurement of interproton distances in small molecules by nuclear Overhauser enhancement (NOE) and rotational Overhauser enhancement (ROE) methods is investigated with the rigid model compound strychnine. The results suggest that interproton distances can be established with a remarkable level of accuracy, within a few percent of their true values, using a straight-forward data analysis method if experiments are conducted under conditions that support the initial rate approximation. Dealing with deviations from these conditions and other practical issues regarding these measurements are discussed.

  7. Bloch-Siegert B1-Mapping Improves Accuracy and Precision of Longitudinal Relaxation Measurements in the Breast at 3 T.

    PubMed

    Whisenant, Jennifer G; Dortch, Richard D; Grissom, William; Kang, Hakmook; Arlinghaus, Lori R; Yankeelov, Thomas E

    2016-12-01

    Variable flip angle (VFA) sequences are a popular method of calculating T1 values, which are required in a quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). B1 inhomogeneities are substantial in the breast at 3 T, and these errors negatively impact the accuracy of the VFA approach, thus leading to large errors in the DCE-MRI parameters that could limit clinical adoption of the technique. This study evaluated the ability of Bloch-Siegert B1 mapping to improve the accuracy and precision of VFA-derived T1 measurements in the breast. Test-retest MRI sessions were performed on 16 women with no history of breast disease. T1 was calculated using the VFA sequence, and B1 field variations were measured using the Bloch-Siegert methodology. As a gold standard, inversion recovery (IR) measurements of T1 were performed. Fibroglandular tissue and adipose tissue from each breast were segmented using the IR images, and the mean T1 was calculated for each tissue. Accuracy was evaluated by percent error (%err). Reproducibility was assessed via the 95% confidence interval (CI) of the mean difference and repeatability coefficient (r). After B1 correction, %err significantly (P < .001) decreased from 17% to 8.6%, and the 95% CI and r decreased from ±94 to ±38 milliseconds and from 276 to 111 milliseconds, respectively. Similar accuracy and reproducibility results were observed in the adipose tissue of the right breast and in both tissues of the left breast. Our data show that Bloch-Siegert B1 mapping improves accuracy and precision of VFA-derived T1 measurements in the breast.

  8. Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy.

    PubMed

    Thoenes, Sven; Oberfeld, Daniel

    2017-03-29

    Numerous studies have reported that time perception and temporal processing are impaired in schizophrenia. In a meta-analytical review, we differentiate between time perception (judgments of time intervals) and basic temporal processing (e.g., judgments of temporal order) as well as between effects on accuracy (deviation of estimates from the veridical value) and precision (variability of judgments). In a meta-regression approach, we also included the specific tasks and the different time interval ranges as covariates. We considered 68 publications of the past 65years, and meta-analyzed data from 957 patients with schizophrenia and 1060 healthy control participants. Independent of tasks and interval durations, our results demonstrate that time perception and basic temporal processing are less precise (more variable) in patients (Hedges' g>1.00), whereas effects of schizophrenia on accuracy of time perception are rather small and task-dependent. Our review also shows that several aspects, e.g., potential influences of medication, have not yet been investigated in sufficient detail. In conclusion, the results are in accordance with theoretical assumptions and the notion of a more variable internal clock in patients with schizophrenia, but not with a strong effect of schizophrenia on clock speed. The impairment of temporal precision, however, may also be clock-unspecific as part of a general cognitive deficiency in schizophrenia.

  9. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  10. Event Clustering: Accuracy and Precision of Multiple Event Locations with Sparse Networks

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Wallace, T. C.

    2002-12-01

    In the last 15 years passive PASSCAL experiments have been fielded on every continent. Most of these deployments were designed to record teleseismic or large local seismic events to infer crustal and mantle structure. However, the deployments inevitably record small, local seismicity. Unfortunately, the configuration of the experiments are not optimal for location (typically the stations are arranged in linear arrays), and the seismicity is recorded at a very limited number of stations. The standard location procedure (Geiger's method) is severely limited without a detailed crustal model. A number of methods have been developed to improve relative location precision, including Joint Hypocenter Determination (JHD) and Progressive Multiple Event Location (PMEL). In this study we investigate the performance of PMEL for a very sparse network where there appears to be strong event clustering. CHARGE is a passive deployment of broadband seismometers in Chile and Argentina, with a primary focus of investigating the changes in dip along the descending Nazca Plate. The CHARGE stations recorded a large number of small, local events in 2000-2002. For this study events were selected from the northern profile (approximately along 30o S) in Chile. The events look similar, and appear to be clustered southeast of the city of La Serena. We performed three sets of experiments to investigate precision: (1) iterative Master Event Corrections to measure the scale length of clusters, (2) PMEL locations, and (3) PMEL locations using a cross-correlation to determine accurate relative phase timing. The analysis shows that for the PMEL experiment clusters must occupy an area of 600 km2 for the results to be consistent. We will present a method to estimate the precision errors based on bootstrapping. Charge Team: S. Beck, G. Zandt, M. Anderson, H. Folsom, R. Fromm, T. Shearer, L. Wagner, and P. Alvarado (all University of Arizona), J. Campos, E. Kausel, and J. Paredes (all University of

  11. [Studies on the accuracy and precision of total serum cholesterol in regional interlaboratory trials (author's transl)].

    PubMed

    Hohenwallner, W; Sommer, R; Wimmer, E

    1976-01-02

    The between-run precision of the Liebermann-Burchard reaction modified by Watson was, in our laboratory, 2-3%, the within-run coefficient of variation was 1-2%. The between-run precision of the enzymatic test was 3-4%, the within-run coefficient of variation was 3%. The regression analysis of 92 serum specimens from patients was y = -17.31 + 1.04 chi, the coefficient of regression was r = 0.996. Interlaboratory trials of serum cholesterol were studied in the normal and pathological range. Lyophilized samples of serum prepared commercially and from fresh specimens from patients were analysed by the method of Liebermann-Burchard as well as by the enzymatic procedure. Acceptable results estimated by Liebermann-Burchard were obtained in the different laboratories after using a common standard of cholesterol. The coefficient of variation of the enzymatic test in the interlaboratory trial was higher in comparison to the Liebermann-Burchard reaction. Methodological difficulties of the Liebermann-Burchard reaction are discussed and compared with the specific, enzymatic assay.

  12. Precision and Accuracy in the Determination of Sulfur Oxides, Fluoride, and Spherical Aluminosilicate Fly Ash Particles in Project MOHAVE.

    PubMed

    Eatough, Norman L; Eatough, Michele; Joseph, Jyothi M; Caka, Fern M; Lewis, Laura; Eatough, Delbert J

    1997-04-01

    The precision and accuracy of the determination of particulate sulfate and fluoride, and gas phase S02 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for highland low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m(3) and ±2.5 nmol/m(3) for the determination of S02 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m(3) and ±2.0 nmol/m(3) for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is +0.3 nmol/m(3). The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m(3). At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m(3)) is small, but important relative to the precision of the data and the concentrations of particulate sulfate present (typically 5-20 nmol sulfate/m(3)). The concentrations of S02(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SOz(g) plus particulate

  13. ACCURACY AND PRECISION OF A METHOD TO STUDY KINEMATICS OF THE TEMPOROMANDIBULAR JOINT: COMBINATION OF MOTION DATA AND CT IMAGING

    PubMed Central

    Baltali, Evre; Zhao, Kristin D.; Koff, Matthew F.; Keller, Eugene E.; An, Kai-Nan

    2008-01-01

    The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5 mm for 3D curvilinear path calculations, 0.05 mm for 3D linear distance calculations, and 0.2° for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable. PMID:18617178

  14. Performance characterization of precision micro robot using a machine vision system over the Internet for guaranteed positioning accuracy

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Chiou, Richard; Rauniar, Shreepud; Sosa, Horacio

    2005-11-01

    There is a missing link between a virtual development environment (e.g., a CAD/CAM driven offline robotic programming) and production requirements of the actual robotic workcell. Simulated robot path planning and generation of pick-and-place coordinate points will not exactly coincide with the robot performance due to lack of consideration in variations in individual robot repeatability and thermal expansion of robot linkages. This is especially important when robots are controlled and programmed remotely (e.g., through Internet or Ethernet) since remote users have no physical contact with robotic systems. Using the current technology in Internet-based manufacturing that is limited to a web camera for live image transfer has been a significant challenge for the robot task performance. Consequently, the calibration and accuracy quantification of robot critical to precision assembly have to be performed on-site and the verification of robot positioning accuracy cannot be ascertained remotely. In worst case, the remote users have to assume the robot performance envelope provided by the manufacturers, which may causes a potentially serious hazard for system crash and damage to the parts and robot arms. Currently, there is no reliable methodology for remotely calibrating the robot performance. The objective of this research is, therefore, to advance the current state-of-the-art in Internet-based control and monitoring technology, with a specific aim in the accuracy calibration of micro precision robotic system for the development of a novel methodology utilizing Ethernet-based smart image sensors and other advanced precision sensory control network.

  15. Impact of improved models for precise orbits of altimetry satellites on the orbit accuracy and regional mean sea level trends

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Esselborn, Saskia; Dettmering, Denise; Schöne, Tilo; Neumayer, Karl-Hans

    2015-04-01

    Precise orbits of altimetry satellites are a prerequisite for investigations of global and regional sea level changes. We show a significant progress obtained in the recent decades in modeling and determination of the orbits of altimetry satellites. This progress was reached due to the improved knowledge of the Earth gravity field obtained by using CHAMP (CHAllenging Mini-Satellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and Ocean Circulation Explorer) data, improved realizations of the terrestrial and celestial reference frames and transformations between these reference frames, improved modeling of ocean and solid Earth tides, improved accuracy of observations and other effects. New precise orbits of altimetry satellites ERS-1 (1991-1996), TOPEX/Poseidon (1992-2005), ERS-2 (1995-2006), Envisat (2002-2012) and Jason-1 (2002-2012) have been recently derived at the time intervals given within the DFG UHR-GravDat project and the ESA Climate Change Initiative Sea Level project using satellite laser ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), Precise Range And Range-Rate Equipment (PRARE) and altimetry single-satellite crossover data (various observation types were used for various satellites). We show the current state of the orbit accuracy and the improvements obtained in the recent years. In particular, we demonstrate the impact of recently developed time-variable Earth gravity field models, improved tropospheric refraction models for DORIS observations, latest release 05 of the atmosphere-ocean dealiasing product (AOD1B) and some other models on the orbit accuracy of these altimetry satellites and regional mean sea level trends computed using these new orbit solutions.

  16. NASA hydrogen maser accuracy and stability in relation to world standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Percival, D. B.

    1973-01-01

    Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.

  17. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  18. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  19. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  20. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  1. Accuracy and precision of the i-STAT portable clinical analyzer: an analytical point of view.

    PubMed

    Pidetcha, P; Ornvichian, S; Chalachiva, S

    2000-04-01

    The introduction of a new point-of-care testing (POCT) instrument into the market affects medical practice and laboratory services. The i-STAT is designed to improve the speed in the decision making of the medical profession. However, reliability of results would ensure the quality of laboratory data. We, therefore, made an evaluation of the performance of i-STAT using a disposable cartridge EG7 + which is capable of measuring pH, pO2, pCO2 (blood gas), Sodium, Potassium (Electrolytes), Ionized calcium and Hematocrit with only 10 microliters of lithium heparinized blood in 2 minutes. The results were compared with those obtained from routine methods. The results were found to be accurate, precise and correlated with acceptable methods used routinely in the laboratory.

  2. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  3. Limitations on long-term stability and accuracy in atomic clocks

    NASA Technical Reports Server (NTRS)

    Wineland, D. J.

    1979-01-01

    The limits to accuracy and long term stability in present atomic clocks are examined. Recent proposals for new frequency standards are discussed along with the advantages and disadvantages of frequency standards based on such ideas as laser transitions, single atoms, and atom cooling. The applicability of some of these new techniques to existing standards is examined.

  4. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.

    PubMed

    Choe, Kyoung Whan; Blake, Randolph; Lee, Sang-Hun

    2016-01-01

    Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task.

  5. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment

    PubMed Central

    Vu, An T.; Phillips, Jeffrey S.; Kay, Kendrick; Phillips, Matthew E.; Johnson, Matthew R.; Shinkareva, Svetlana V.; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2017-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms. PMID:27686111

  6. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  7. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    PubMed Central

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  8. Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision

    PubMed Central

    Friedrich, Björn; Heil, Peter

    2017-01-01

    Onsets of acoustic stimuli are salient transients and are relevant in humans for the perception of music and speech. Previous studies of onset-duration discrimination and matching focused on whether onsets are perceived categorically. In this study, we address two issues. First, we revisit onset-duration matching and measure, for 79 conditions, how accurately and precisely human listeners can adjust the onset duration of a comparison stimulus to subjectively match that of a standard stimulus. Second, we explore measures for quantifying performance in this and other matching tasks. The conventional measures of accuracy and precision are defined by arithmetic descriptive statistics and the Euclidean distance function on the real numbers. We propose novel measures based on geometric descriptive statistics and the log-ratio distance function, the Euclidean distance function on the positive-real numbers. Only these properly account for the fact that the magnitude of onset durations, like the magnitudes of most physical quantities, can attain only positive real values. The conventional (arithmetic) measures possess a convexity bias that yields errors that grow with the width of the distribution of matches. This convexity bias leads to misrepresentations of the constant error and could even imply the existence of perceptual illusions where none exist. This is not so for the proposed (geometric) measures. We collected up to 68 matches from a given listener for each condition (about 34,000 matches in total) and examined inter-listener variability and the effects of onset duration, plateau duration, sound level, carrier, and restriction of the range of adjustable comparison stimuli on measures of accuracy and precision. Results obtained with the conventional measures generally agree with those reported in the literature. The variance across listeners is highly heterogeneous for the conventional measures but is homogeneous for the proposed measures. Furthermore, the proposed

  9. On precise phase difference measurement approach using border stability of detection resolution.

    PubMed

    Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan

    2015-01-01

    For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.

  10. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  11. Precision and accuracy of in vivo bone mineral measurement in rats using dual-energy X-ray absorptiometry.

    PubMed

    Rozenberg, S; Vandromme, J; Neve, J; Aguilera, A; Muregancuro, A; Peretz, A; Kinthaert, J; Ham, H

    1995-01-01

    The aim of this study was to evaluate the precision and accuracy of dual-energy X-ray absorptiometry (DXA) for measuring bone mineral content at different sites of the skeleton in rats. In vitro the reproducibility error was very small (< 1%), but in vivo the intra-observer variability ranged from 0.9% to 6.0%. Several factors have been shown to affect in vivo reproducibility: the reproducibility was better when the results were expressed as bone mineral density (BMD) rather than bone mineral content (BMC), intra-observer variability was better than the inter-observer variability, and a higher error was observed for the tibia compared with that for vertebrae and femur. The accuracy of measurement at the femur and tibia was assessed by comparing the values with ash weight and with biochemically determined calcium content. The correlation coefficients (R) between the in vitro BMC and the dry weight or the calcium content were higher than 0.99 for both the femur and the tibia. SEE ranged between 0.0 g (ash weight) and 2.0 mg (Ca content). Using in vitro BMC, ash weight could be estimated with an accuracy error close to 0 and calcium content with an error ranging between 0.82% and 6.80%. The R values obtained between the in vivo and in vitro BMC were 0.98 and 0.97 respectively for femur and tibia, with SEE of 0.04 and 0.02 g respectively. In conclusion, the in vivo precision of the technique was found to be too low. To be of practical use it is important in the design of experimentation to try to reduce the measurement error.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors.

    PubMed

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of -7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with -0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of -4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely.

  13. Accuracy and precision of free-energy calculations via molecular simulation

    NASA Astrophysics Data System (ADS)

    Lu, Nandou

    A quantitative characterization of the methodologies of free-energy perturbation (FEP) calculations is presented, and optimal implementation of the methods for reliable and efficient calculation is addressed. Some common misunderstandings in the FEP calculations are corrected. The two opposite directions of FEP calculations are uniquely defined as generalized insertion and generalized deletion, according to the entropy change along the perturbation direction. These two calculations are not symmetric; they produce free-energy results differing systematically due to the different capability of each to sample the important phase-space in a finite-length simulation. The FEP calculation errors are quantified by characterizing the simulation sampling process with the help of probability density functions for the potential energy change. While the random error in the FEP calculation is analyzed with a probabilistic approach, the systematic error is characterized as the most-likely inaccuracy, which is modeled considering the poor sampling of low-probability energy distribution tails. Our analysis shows that the entropy difference between the perturbation systems plays a key role in determining the reliability of FEP results, and the perturbation should be carried out in the insertion direction in order to ensure a good sampling and thus a reliable calculation. Easy-to-use heuristics are developed to estimate the simulation errors, as well as the simulation length that ensures a certain accuracy level of the calculation. The fundamental understanding obtained is then applied to tackle the problem of multistage FEP optimization. We provide the first principle of optimal staging: For each substage FEP calculation, the higher entropy system should be used as the reference to govern the sampling, i.e., the calculation should be conducted in the generalized insertion direction for each stage of perturbation. To minimize the simulation error, intermediate states should be

  14. The Mitotic Spindle in the One-Cell C. elegans Embryo Is Positioned with High Precision and Stability

    NASA Astrophysics Data System (ADS)

    Pécréaux, Jacques; Redemann, Stefanie; Alayan, Zahraa; Mercat, Benjamin; Pastezeur, Sylvain; Garzon-Coral, Carlos; Hyman, Anthony A.; Howard, Jonathon

    2016-10-01

    Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early C. elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution. We found that the precision is remarkably high: the cell-to-cell variation in the transverse position of the center of the spindle during metaphase, as measured by the standard deviation, was only 1.5% of the length of the short axis of the cell. Spindle position is also very stable: the standard deviation of the fluctuations in transverse spindle position during metaphase was only 0.5% of the short axis of the cell. Assuming that stability is limited by fluctuations in the number of independent motor elements such as microtubules or dyneins underlying the centering machinery, we infer that the number is on the order of one thousand, consistent with the several thousand of astral microtubules in these cells. Astral microtubules grow out from the two spindle poles, make contact with the cell cortex, and then shrink back shortly thereafter. The high stability of centering can be accounted for quantitatively if, while making contact with the cortex, the astral microtubules buckle as they exert compressive, pushing forces. We thus propose that the large number of microtubules in the asters provides a highly precise mechanism for positioning the spindle during metaphase while assembly is completed prior to the onset of anaphase.

  15. Dimensional accuracy and stability of polymethyl methacrylate reinforced with metal wire or with continuous glass fiber.

    PubMed

    Vallittu, P K

    1996-06-01

    The aim of this study was to determine the dimensional accuracy and stability of denture base polymethyl methacrylate (PMMA), which was reinforced in various ways. Autopolymerizing PMMA and heat-cured PMMA were reinforced either with semicircular steel wire or with a prefabricated experimental reinforcement made of continuous E-glass fiber. Control specimens had no reinforcement. The width of each U-shaped test specimen was measured with a digital micrometer under a light microscope immediately after the test specimen was cured and when stored in water for 1, 2, 7, and 14 days. The results revealed that both the type of PMMA and the type of reinforcement affected the dimensional accuracy of the test specimens, especially after 7 and 14 days in water storage (p < 0.001). The greatest dimensional accuracy was found with the unreinforced test specimen made from autopolymerizing PMMA and with test specimens reinforced with the metal wire made from heat-cured PMMA. In terms of the width of the test specimens, the lowest dimensional accuracy was found in unreinforced and glass fiber reinforced specimens made from heat-cured PMMA. Storage in water did not affect the stability of the width (p > 0.1). The results suggest that the polymerization shrinkage of PMMA causes lower dimensional accuracy of the test specimens reinforced with glass fiber. This should be considered when glass-fiber reinforcement is used clinically.

  16. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach

    SciTech Connect

    Xu Rui Stansby, Peter; Laurence, Dominique

    2009-10-01

    The stability and accuracy of three methods which enforce either a divergence-free velocity field, density invariance, or their combination are tested here through the standard Taylor-Green and spin-down vortex problems. While various approaches to incompressible SPH (ISPH) have been proposed in the past decade, the present paper is restricted to the projection method for the pressure and velocity coupling. It is shown that the divergence-free ISPH method cannot maintain stability in certain situations although it is accurate before instability sets in. The density-invariant ISPH method is stable but inaccurate with random-noise like disturbances. The combined ISPH, combining advantages in divergence-free ISPH and density-invariant ISPH, can maintain accuracy and stability although at a higher computational cost. Redistribution of particles on a fixed uniform mesh is also shown to be effective but the attraction of a mesh-free method is lost. A new divergence-free ISPH approach is proposed here which maintains accuracy and stability while remaining mesh free without increasing computational cost by slightly shifting particles away from streamlines, although the necessary interpolation of hydrodynamic characteristics means the formulation ceases to be strictly conservative. This avoids the highly anisotropic particle spacing which eventually triggers instability. Importantly pressure fields are free from spurious oscillations, up to the highest Reynolds numbers tested.

  17. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision.

    PubMed

    Peyton, Philip J; Chong, Simon W

    2010-11-01

    When assessing the accuracy and precision of a new technique for cardiac output measurement, the commonly quoted criterion for acceptability of agreement with a reference standard is that the percentage error (95% limits of agreement/mean cardiac output) should be 30% or less. We reviewed published data on four different minimally invasive methods adapted for use during surgery and critical care: pulse contour techniques, esophageal Doppler, partial carbon dioxide rebreathing, and transthoracic bioimpedance, to assess their bias, precision, and percentage error in agreement with thermodilution. An English language literature search identified published papers since 2000 which examined the agreement in adult patients between bolus thermodilution and each method. For each method a meta-analysis was done using studies in which the first measurement point for each patient could be identified, to obtain a pooled mean bias, precision, and percentage error weighted according to the number of measurements in each study. Forty-seven studies were identified as suitable for inclusion: N studies, n measurements: mean weighted bias [precision, percentage error] were: pulse contour N = 24, n = 714: -0.00 l/min [1.22 l/min, 41.3%]; esophageal Doppler N = 2, n = 57: -0.77 l/min [1.07 l/min, 42.1%]; partial carbon dioxide rebreathing N = 8, n = 167: -0.05 l/min [1.12 l/min, 44.5%]; transthoracic bioimpedance N = 13, n = 435: -0.10 l/min [1.14 l/min, 42.9%]. None of the four methods has achieved agreement with bolus thermodilution which meets the expected 30% limits. The relevance in clinical practice of these arbitrary limits should be reassessed.

  18. Accuracy and stability of positioning in radiosurgery: Long term results of the Gamma Knife system

    SciTech Connect

    Heck, Bernhard; Jess-Hempen, Anja; Kreiner, Hans Juerg; Schoepgens, Hans; Mack, Andreas

    2007-04-15

    precise by additional {+-}0.2 mm. These measurements demonstrate that an irradiation position defined by a CT scan can be hit within the intrinsic system precision. In radiosurgery with the Gamma Knife, a fixation with the Leksell stereotactic frame is applied. As this frame is considered to add no further uncertainties due to patient movements, the measured accuracy applies to a real patient treatment situation. The major contribution to the overall accuracy of an irradiation position is given by the MRI scans.

  19. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    PubMed

    Wells, Emma; Wolfe, Marlene K; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4-19% error), then test strips (5.2-48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration. Given the

  20. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions

    PubMed Central

    Wells, Emma; Wolfe, Marlene K.; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4–19% error), then test strips (5.2–48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5–11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14–37 for test strips and $33–609 for titration

  1. A three-dimensional boundary layer scheme: stability and accuracy analyses

    NASA Astrophysics Data System (ADS)

    Horri-Naceur, Jalil; Buisine, Daniel

    2002-03-01

    We present a numerical scheme for the calculation of incompressible three-dimensional boundary layers (3DBL), designed to take advantage of the 3DBL model's overall hyperbolic nature, which is linked to the existence of wedge-shaped dependence and influence zones. The proposed scheme, explicit along the wall and implicit in the normal direction, allows large time steps, thus enabling fast convergence. In order to keep this partly implicit character, the control volumes for the mass and momentum balances are not staggered along the wall. This results in a lack of numerical viscosity, making the scheme unstable. The implementation of a numerical diffusion, suited to the local zone of influence, restores the stability of the boundary layer scheme while preserving second-order space accuracy. The purpose of this article is to present the analytical and numerical studies carried out to establish the scheme's accuracy and stability properties. Copyright

  2. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.

    PubMed

    Suehiro, Koichi; Joosten, Alexandre; Murphy, Linda Suk-Ling; Desebbe, Olivier; Alexander, Brenton; Kim, Sang-Hyun; Cannesson, Maxime

    2016-10-01

    Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. The inter-study heterogeneity was also assessed using an I(2) statistic. A total of 20 studies (624 patients) were included. The overall random-effects pooled bias, and mean percentage error were 0.13 ± 0.44 l min(-1) and 29.1 %, respectively. Significant inter-study heterogeneity was detected (P < 0.0001, I(2) = 98.3 %). In the sub-analysis regarding the device, electrical cardiometry showed the smallest bias (-0.03 l min(-1)) and lowest percentage error (23.6 %). Significant residual heterogeneity remained after conducting sensitivity and subgroup analyses based on the various study characteristics. By meta-regression analysis, we found no independent effects of study characteristics on weighted mean difference between reference and tested methods. Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics.

  3. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  4. Experimental Investigations of a Precision Sensor for an Automatic Weapons Stabilizer System

    PubMed Central

    Korobiichuk, Igor

    2016-01-01

    This paper presents the results of experimental investigations of a precision sensor for an automatic weapons stabilizer system. It also describes the experimental equipment used and the structure of the developed sensor. A weapons stabilizer is designed for automatic guidance of an armament unit in the horizontal and vertical planes when firing at ground and air targets that are quickly maneuvering, and at lower speeds when firing anti-tank missiles, as well as the bypass of construction elements by the armament unit, and the automatic tracking of moving targets when interacting with a fire control system. The results of experimental investigations have shown that the error of the precision sensor developed on the basis of a piezoelectric element is 6 × 10−10 m/s2 under quasi-static conditions, and ~10−5 m/s2 for mobile use. This paper defines metrological and calibration properties of the developed sensor. PMID:28029120

  5. Experimental Investigations of a Precision Sensor for an Automatic Weapons Stabilizer System.

    PubMed

    Korobiichuk, Igor

    2016-12-24

    This paper presents the results of experimental investigations of a precision sensor for an automatic weapons stabilizer system. It also describes the experimental equipment used and the structure of the developed sensor. A weapons stabilizer is designed for automatic guidance of an armament unit in the horizontal and vertical planes when firing at ground and air targets that are quickly maneuvering, and at lower speeds when firing anti-tank missiles, as well as the bypass of construction elements by the armament unit, and the automatic tracking of moving targets when interacting with a fire control system. The results of experimental investigations have shown that the error of the precision sensor developed on the basis of a piezoelectric element is 6 × 10(-10) m/s² under quasi-static conditions, and ~10(-5) m/s² for mobile use. This paper defines metrological and calibration properties of the developed sensor.

  6. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    USGS Publications Warehouse

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  7. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  8. The modified equation approach to the stability and accuracy analysis of finite-difference methods

    NASA Technical Reports Server (NTRS)

    Warming, R. F.; Hyett, B. J.

    1974-01-01

    The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by certain algebraic manipulations. The connection between 'heuristic' stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.

  9. Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ketrin, Rosi; Handayani, Eka Mardika; Komalasari, Isna

    2017-01-01

    Two significant parameters to evaluate the measurement results are known as precision and accuracy. Both are associated with indeterminate and determinate error, respectively, that normally happen in such spectrometric measurement method as Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). These errors must be eliminated or suppressed to get high precision and accuracy of the method. Decreasing the errors thus increasing the precision and accuracy of the method. In this study, bracketing method using two-point standard calibration was proposed in order to suppress the indeterminate error caused by instrumental drift thus increasing the result precision, and applied for measuring cadmium in drinking water samples. Certified reference material of ERM CA011b-Hard drinking water UK-metals was used to know the determinate error or measurement bias. When bias is obtained, some corrections are needed to get the accurate measurement result. The result was compared to that by external calibration method.

  10. An evaluation of the accuracy and precision of a stand-alone submersible continuous ruminal pH measurement system.

    PubMed

    Penner, G B; Beauchemin, K A; Mutsvangwa, T

    2006-06-01

    The objectives of this study were 1) to develop and evaluate the accuracy and precision of a new stand-alone submersible continuous ruminal pH measurement system called the Lethbridge Research Centre ruminal pH measurement system (LRCpH; Experiment 1); 2) to establish the accuracy and precision of a well-documented, previously used continuous indwelling ruminal pH system (CIpH) to ensure that the new system (LRCpH) was as accurate and precise as the previous system (CIpH; Experiment 2); and 3) to determine the required frequency for pH electrode standardization by comparing baseline millivolt readings of pH electrodes in pH buffers 4 and 7 after 0, 24, 48, and 72 h of ruminal incubation (Experiment 3). In Experiment 1, 6 pregnant Holstein heifers, 3 lactating, primiparous Holstein cows, and 2 Black Angus heifers were used. All experimental animals were fitted with permanent ruminal cannulas. In Experiment 2, the 3 cannulated, lactating, primiparous Holstein cows were used. In both experiments, ruminal pH was determined continuously using indwelling pH electrodes. Subsequently, mean pH values were then compared with ruminal pH values obtained using spot samples of ruminal fluid (MANpH) obtained at the same time. A correlation coefficient accounting for repeated measures was calculated and results were used to calculate the concordance correlation to examine the relationships between the LRCpH-derived values and MANpH, and the CIpH-derived values and MANpH. In Experiment 3, the 6 pregnant Holstein heifers were used along with 6 new submersible pH electrodes. In Experiments 1 and 2, the comparison of the LRCpH output (1- and 5-min averages) to MANpH had higher correlation coefficients after accounting for repeated measures (0.98 and 0.97 for 1- and 5-min averages, respectively) and concordance correlation coefficients (0.96 and 0.97 for 1- and 5-min averages, respectively) than the comparison of CIpH to MANpH (0.88 and 0.87, correlation coefficient and concordance

  11. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.

    PubMed

    Vainio, Markku; Karhu, Juho

    2017-02-20

    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  12. Using AIRS and IASI Data to Evaluate Absolute Radiometric Accuracy and Stability for Climate Applications

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.

    2008-01-01

    The creation of multi-decadal data sets for climate research requires better than 100 mK absolute calibration accuracy for the full range of spectral temperatures encountered under global conditions. Validation that this accuracy is achieved by the operational hyperspectral sounders from polar orbit is facilitated by comparing data from two instruments. Extreme radiometric calibration stability is critical to allow a long time series of noisy, but presumably long-term accurate truth measurements to be used for the validation of absolute accuracy at the 100 mK level. We use the RTGSST in the tropical oceans as ground truth. The difference between the AIRS derived sst2616 and the RTGSST based on six years of data shows a systematic cold bias of about 250 mK, but better than 4 mK/year stability. The double difference between AIRS and the RTGSST and IASI and the RTGSST with less than one year of data already allows statements at the 100 mK absolute level. It shows a 60 mK difference between the AIRS and the IASI calibration at 2616 cm-(sup 1) and 300 K, with a statistically insignificant 20 mK shift in six months.

  13. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  14. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.

    PubMed

    Anderson, Will; Kozak, Darby; Coleman, Victoria A; Jämting, Åsa K; Trau, Matt

    2013-09-01

    The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual and a mixed sample of monodisperse, sub-micron (220, 330, and 410 nm - nominal modal size) polystyrene particles. The platforms compared were the qNano Tunable Resistive Pulse Sensor, Nanosight LM10 Particle Tracking Analysis System, the CPS Instruments's UHR24000 Disc Centrifuge, and the routinely used Malvern Zetasizer Nano ZS Dynamic Light Scattering system. All measurements were subjected to a peak detection algorithm so that the detected particle populations could be compared to 'reference' Transmission Electron Microscope measurements of the individual particle samples. Only the Tunable Resistive Pulse Sensor and Disc Centrifuge platforms provided the resolution required to resolve all three particle populations present in the mixed 'multimodal' particle sample. In contrast, the light scattering based Particle Tracking Analysis and Dynamic Light Scattering platforms were only able to detect a single population of particles corresponding to either the largest (410 nm) or smallest (220 nm) particles in the multimodal sample, respectively. When the particle sets were measured separately (monomodal) each platform was able to resolve and accurately obtain a mean particle size within 10% of the Transmission Electron Microscope reference values. However, the broadness of the PSD measured in the monomodal samples deviated greatly, with coefficients of variation being ~2-6-fold larger than the TEM measurements across all four platforms. The large variation in the PSDs obtained from these four, fundamentally different platforms, indicates that great care must still be taken in

  15. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing

    PubMed Central

    Maurer, Florian P.; Pfiffner, Tamara; Böttger, Erik C.; Furrer, Reinhard

    2015-01-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 108 CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of the

  16. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  17. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit.

    PubMed

    Starke, Sandra D; Witte, Thomas H; May, Stephen A; Pfau, Thilo

    2012-05-11

    Gait analysis using small sensor units is becoming increasingly popular in the clinical context. In order to segment continuous movement from a defined point of the stride cycle, knowledge about footfall timings is essential. We evaluated the accuracy and precision of foot contact timings of a defined limb determined using an inertial sensor mounted on the pelvis of ten horses during walk and trot at different speeds and in different directions. Foot contact was estimated from vertical velocity events occurring before maximum sensor roll towards the contralateral limb. Foot contact timings matched data from a synchronised hoof mounted accelerometer well when velocity minimum was used for walk (mean (SD) difference of 15 (18)ms across horses) and velocity zero-crossing for trot (mean (SD) difference from -4 (14) to 12 (7)ms depending on the condition). The stride segmentation method also remained robust when applied to movement data of hind limb lame horses. In future, this method may find application in segmenting overground sensor data of various species.

  18. A first investigation of accuracy, precision and sensitivity of phase-based x-ray dark-field imaging

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Endrizzi, Marco; Kallon, Gibril; Millard, Thomas P.; Vittoria, Fabio A.; Olivo, Alessandro

    2016-12-01

    In the last two decades, x-ray phase contrast imaging (XPCI) has attracted attention as a potentially significant improvement over widespread and established x-ray imaging. The key is its capability to access a new physical quantity (the ‘phase shift’), which can be complementary to x-ray absorption. One additional advantage of XPCI is its sensitivity to micro structural details through the refraction induced dark-field (DF). While DF is extensively mentioned and used for several applications, predicting the capability of an XPCI system to retrieve DF quantitatively is not straightforward. In this article, we evaluate the impact of different design options and algorithms on DF retrieval for the edge-illumination (EI) XPCI technique. Monte Carlo simulations, supported by experimental data, are used to measure the accuracy, precision and sensitivity of DF retrieval performed with several EI systems based on conventional x-ray sources. The introduced tools are easy to implement, and general enough to assess the DF performance of systems based on alternative (i.e. non-EI) XPCI approaches.

  19. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability.

  20. Precision blood-leak detector with high long-time stability

    NASA Astrophysics Data System (ADS)

    Georgiadis, Christos; Kleuver, Wolfram

    1999-11-01

    With this publication a precision blood-leak-detector is presented. The blood-leak-detector is used for recognition of fractures in the dialyzer of a kidney-machine. It has to detect safely a blood flow of ml/min to exclude any risk for the patient. A lot of systems exist for blood-leak-detection. All of them use the same principle. They detect the light absorption in the dialyze fluid. The actual used detectors are inferior to the new developed sensor in resolution and long-time stability. Regular test of the existing systems and high failure rates are responsible for the high maintenance.

  1. Evaluation of the accuracy and precision of four intraoral scanners with 70% reduced inlay and four-unit bridge models of international standard.

    PubMed

    Uhm, Soo-Hyuk; Kim, Jae-Hong; Jiang, Heng Bo; Woo, Chang-Woo; Chang, Minho; Kim, Kyoung-Nam; Bae, Ji-Myung; Oh, Seunghan

    2017-01-31

    The aims of this study were to evaluate the feasibility of 70% reduced inlay and 4-unit bridge models of International Standard (ISO 12836) assessing the accuracy of laboratory scanners to measure the accuracy of intraoral scanner. Four intraoral scanners (CS3500, Trios, Omnicam, and Bluecam) and one laboratory scanner (Ceramill MAP400) were used in this study. The height, depth, length, and angle of the models were measured from thirty scanned stereolithography (STL) images. There were no statistically significant mean deviations in distance accuracy and precision values of scanned images, except the angulation values of the inlay and 4-unit bridge models. The relative errors of inlay model and 4-unit bridge models quantifying the accuracy and precision of obtained mean deviations were less than 0.023 and 0.021, respectively. Thus, inlay and 4-unit bridge models suggested by this study is expected to be feasible tools for testing intraoral scanners.

  2. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

  3. Stability and accuracy of the sweep rate measurements for LLNL optical streak cameras

    SciTech Connect

    Montgomery, D.S.

    1989-08-04

    Precise pulse shaping is vital for present and future high-power lasers that will attempt to achieve low-entropy laser-fusion implosions. Multichannel, streak-camera-based systems are used to make such measurements. Such systems must be accurately calibrated in order to correct for time-base and flat-field variations. We use an on-line calibration system in order to measure the sweep rate, and in our recent work we have evaluated the accuracy of this measurement technique. By analyzing a large number of calibrations, and the effect of noise on our measurement technique, we have concluded that the sweep rate for our streak camera systems is reproducible to a least {plus minus}1.2% and that our measurement technique contributes an additional {plus minus}0.5% uncertainty in the measurement. 18 refs., 3 figs., 1 tab.

  4. The stabilization of a multiplexed optical fiber interferometer system for on-line precision measurement

    NASA Astrophysics Data System (ADS)

    Fang, Xie; Chen, Zhi Min

    2008-12-01

    The stabilization of a multiplexed optical fiber interferometer system for on-line displacement precision measurement with a simple electric feedback loop is presented. Based on the characteristics of fiber Bragg gratings, the multiplexed optical fiber interferometer system includes two independent optical fiber Michelson interferometers of which the optical path is almost overlapped. One interferometer is used for the stabilization while the other interferometer is used for the measurement. A feed back signal from the feedback loop is driving a tube PZT on which one arm of the fiber interferometer is wounded. The phase-shift in the two arms of the interferometer resulting from the temperature fluctuations and other types of environmental disturbances is compensated. The bandwidth of the feedback loop is 5kHz. This makes the multiplexed fiber interferometer system stable enough for the on-line precision measurement. An active phase tracking technique is applied for signal processing to achieve high resolution. The measurement resolution of the system is less than 2nm.

  5. Creating high-stability high-precision bipolar trim power supply

    SciTech Connect

    Chen, Zhe; Merz, William A.

    2012-07-01

    Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the ±20A ±75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation.

  6. Brain temperature measurement: A study of in vitro accuracy and stability of smart catheter temperature sensors.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Wu, Zhizhen; Ahn, Chong H; LeDoux, David; Shutter, Lori A; Hartings, Jed A; Narayan, Raj K

    2012-02-01

    The injured brain is vulnerable to increases in temperature after severe head injury. Therefore, accurate and reliable measurement of brain temperature is important to optimize patient outcome. In this work, we have fabricated, optimized and characterized temperature sensors for use with a micromachined smart catheter for multimodal intracranial monitoring. Developed temperature sensors have resistance of 100.79 ± 1.19Ω and sensitivity of 67.95 mV/°C in the operating range from15-50°C, and time constant of 180 ms. Under the optimized excitation current of 500 μA, adequate signal-to-noise ratio was achieved without causing self-heating, and changes in immersion depth did not introduce clinically significant errors of measurements (<0.01°C). We evaluated the accuracy and long-term drift (5 days) of twenty temperature sensors in comparison to two types of commercial temperature probes (USB Reference Thermometer, NIST-traceable bulk probe with 0.05°C accuracy; and IT-21, type T type clinical microprobe with guaranteed 0.1°C accuracy) under controlled laboratory conditions. These in vitro experimental data showed that the temperature measurement performance of our sensors was accurate and reliable over the course of 5 days. The smart catheter temperature sensors provided accuracy and long-term stability comparable to those of commercial tissue-implantable microprobes, and therefore provide a means for temperature measurement in a microfabricated, multimodal cerebral monitoring device.

  7. Stability and accuracy of free surface time integration in viscous flows

    NASA Astrophysics Data System (ADS)

    Rose, Ian; Buffett, Bruce; Heister, Timo

    2017-01-01

    Geodynamic simulations increasingly rely on models with a true free surface to investigate questions of dynamic topography, tectonic deformation, gravity perturbations, and global mantle convection. However, implementations of free surface boundary conditions have proven challenging from a standpoint of accuracy, robustness, and stability. In particular, time integration of a free surface tends to suffer from a numerical instability that manifests as sloshing surface motions, also known as the "drunken sailor" instability. This instability severely limits stable timestep sizes to those much smaller than can be used in geodynamic simulations without a free surface. Several schemes have been proposed in the literature to deal with these instabilities. Here we analyze the problem of creeping viscous flow with a free surface and discuss the origin of these instabilities. We demonstrate their cause and how existing stabilization schemes work to damp them out. We also propose a new scheme for removing instabilities from free surface calculations. It does not require modifications to the system matrix, nor additional variables, but is instead an explicit scheme based on nonstandard finite differences. It relies on a single stabilization parameter which may be identified with the smallest relaxation timescale of the free surface. Finally, we present numerical results to show the effectiveness of the new approach and discuss the free surface implementation in the open source, community based mantle convection software ASPECT.

  8. [Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method].

    PubMed

    Jiang, Hai-ling; Yang, Hang; Chen, Xiao-ping; Wang, Shu-dong; Li, Xue-ke; Liu, Kai; Cen, Yi

    2015-04-01

    Spectral index method was widely applied to the inversion of crop chlorophyll content. In the present study, PSR3500 spectrometer and SPAD-502 chlorophyll fluorometer were used to acquire the spectrum and relative chlorophyll content (SPAD value) of winter wheat leaves on May 2nd 2013 when it was at the jointing stage of winter wheat. Then the measured spectra were resampled to simulate TM multispectral data and Hyperion hyperspectral data respectively, using the Gaussian spectral response function. We chose four typical spectral indices including normalized difference vegetation index (NDVD, triangle vegetation index (TVI), the ratio of modified transformed chlorophyll absorption ratio index (MCARI) to optimized soil adjusted vegetation index (OSAVI) (MCARI/OSAVI) and vegetation index based on universal pattern decomposition (VIUPD), which were constructed with the feature bands sensitive to the vegetation chlorophyll. After calculating these spectral indices based on the resampling TM and Hyperion data, the regression equation between spectral indices and chlorophyll content was established. For TM, the result indicates that VIUPD has the best correlation with chlorophyll (R2 = 0.819 7) followed by NDVI (R2 = 0.791 8), while MCARI/OSAVI and TVI also show a good correlation with R2 higher than 0.5. For the simulated Hyperion data, VIUPD again ranks first with R2 = 0.817 1, followed by MCARI/OSAVI (R2 = 0.658 6), while NDVI and TVI show very low values with R2 less than 0.2. It was demonstrated that VIUPD has the best accuracy and stability to estimate chlorophyll of winter wheat whether using simulated TM data or Hyperion data, which reaffirms that VIUPD is comparatively sensor independent. The chlorophyll estimation accuracy and stability of MCARI/OSAVI also works well, partly because OSAVI could reduce the influence of backgrounds. Two broadband spectral indices NDVI and TVI are weak for the chlorophyll estimation of simulated Hyperion data mainly because of

  9. An Examination of the Precision and Technical Accuracy of the First Wave of Group-Randomized Trials Funded by the Institute of Education Sciences

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Raudenbush, Stephen W.

    2009-01-01

    This article examines the power analyses for the first wave of group-randomized trials funded by the Institute of Education Sciences. Specifically, it assesses the precision and technical accuracy of the studies. The authors identified the appropriate experimental design and estimated the minimum detectable standardized effect size (MDES) for each…

  10. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    SciTech Connect

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-11-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures.

  11. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two

  12. Development of a High Precision and Stability Ambient N2O and CO Analyzer

    NASA Astrophysics Data System (ADS)

    Zhou, Jingang; Hoffnagle, John; Tan, Sze; Dong, Feng; Fleck, Derek; Yiu, John; Huang, Kuan; Leggett, Graham; He, Yonggang

    2016-04-01

    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5 % of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 75 % of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, while measuring H2O as well. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The ambient N2O and CO measurement precisions are 0.1ppb (10sec), 0.014ppb (600sec), and 0.006ppb (3000sec); and the measurements could even be averaged down over 3 hours, giving measurement precisions of 0.003ppb. The measurable N2O and CO ranges have been tested up to 2.5ppm. With the high precision and unparalleled stability, G5310 is believed a promising tool for long-term monitoring in atmospheric sciences. The new optical analyzer was set up to monitor N2O and CO (G5310), along with CO2 and CH4(G4301), in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

  13. Accuracy, Precision, and Reproducibility of Four T1 Mapping Sequences: A Head-to-Head Comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE

    PubMed Central

    Roujol, Sébastien; Weingärtner, Sebastian; Foppa, Murilo; Chow, Kelvin; Kawaji, Keigo; Ngo, Long H.; Kellman, Peter; Manning, Warren J.; Thompson, Richard B.

    2014-01-01

    Purpose To compare accuracy, precision, and reproducibility of four commonly used myocardial T1 mapping sequences: modified Look-Locker inversion recovery (MOLLI), shortened MOLLI (ShMOLLI), saturation recovery single-shot acquisition (SASHA), and saturation pulse prepared heart rate independent inversion recovery (SAPPHIRE). Materials and Methods This HIPAA-compliant study was approved by the institutional review board. All subjects provided written informed consent. Accuracy, precision, and reproducibility of the four T1 mapping sequences were first compared in phantom experiments. In vivo analysis was performed in seven healthy subjects (mean age ± standard deviation, 38 years ± 19; four men, three women) who were imaged twice on two separate days. In vivo reproducibility of native T1 mapping and extracellular volume (ECV) were measured. Differences between the sequences were assessed by using Kruskal-Wallis and Wilcoxon rank sum tests (phantom data) and mixed-effect models (in vivo data). Results T1 mapping accuracy in phantoms was lower with ShMOLLI (62 msec) and MOLLI (44 msec) than with SASHA (13 msec; P < .05) and SAPPHIRE (12 msec; P < .05). MOLLI had similar precision to ShMOLLI (4.0 msec vs 5.6 msec; P = .07) but higher precision than SAPPHIRE (6.8 msec; P = .002) and SASHA (8.7 msec; P < .001). All sequences had similar reproducibility in phantoms (P = .1). The four sequences had similar in vivo reproducibility for native T1 mapping (∼25–50 msec; P > .05) and ECV quantification (∼0.01–0.02; P > .05). Conclusion SASHA and SAPPHIRE yield higher accuracy, lower precision, and similar reproducibility compared with MOLLI and ShMOLLI for T1 measurement. Different sequences yield different ECV values; however, all sequences have similar reproducibility for ECV quantification. © RSNA, 2014 Online supplemental material is available for this article. PMID:24702727

  14. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  15. Accuracy And Precision Of Algorithms To Determine The Extent Of Aquatic Plants: Empirical Scaling Of Spectral Indices Vs. Spectral Unmixing

    NASA Astrophysics Data System (ADS)

    Cheruiyot, E.; Menenti, M.; Gorte, B.; Mito, C.; Koenders, R.

    2013-12-01

    Assessing the accuracy of image classification results is an important but often neglected step. Accuracy information is necessary in assessing the reliability of map products, hence neglecting this step renders the products unusable. With a classified Landsat-7 TM image as reference, we assessed the accuracy of NDVI and linear spectral unmixing (LSU) in vegetation detection from 20 randomly selected MERIS sample pixels in the Winam Gulf section of Lake Victoria. We noted that though easy to compute, empirical scaling of NDVI is not suitable for quantitative estimation of vegetation cover as it is misleading and often omits useful information. LSU performed at 87% based on RMSE. For quick solutions, we propose the use of a conversion factor from NDVI to vegetation fractional abundance (FA). With this conversion which is 96% reliable, the resulting FA from our samples were classified at 84% accuracy, only 3% less than those directly computed using LSU.

  16. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2014-04-02

    Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into...THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air...The regional algorithm products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one

  17. The improvement of OPC accuracy and stability by the model parameters' analysis and optimization

    NASA Astrophysics Data System (ADS)

    Chung, No-Young; Choi, Woon-Hyuk; Lee, Sung-Ho; Kim, Sung-Il; Lee, Sun-Yong

    2007-10-01

    The OPC model is very critical in the sub 45nm device because the Critical Dimension Uniformity (CDU) is so tight to meet the device performance and the process window latitude for the production level. The OPC model is generally composed of an optical model and a resist model. Each of them has physical terms to be calculated without any wafer data and empirical terms to be fitted with real wafer data to make the optical modeling and the resist modeling. Empirical terms are usually related to the OPC accuracy, but are likely to be overestimated with the wafer data and so those terms can deteriorate OPC stability in case of being overestimated by a small cost function. Several physical terms have been used with ideal value in the optical property and even weren't be considered because those parameters didn't give a critical impact on the OPC accuracy, but these parameters become necessary to be applied to the OPC modeling at the low k1 process. Currently, real optic parameter instead of ideal optical parameter like the laser bandwidth, source map, pupil polarization including the phase and intensity difference start to be measured and those real measured value are used for the OPC modeling. These measured values can improve the model accuracy and stability. In the other hand these parameters can make the OPC model to overcorrect the process proximity errors without careful handling. The laser bandwidth, source map, pupil polarization, and focus centering for the optical modeling are analyzed and the sample data weight scheme and resist model terms are investigated, too. The image blurring by actual laser bandwidth in the exposure system is modeled and the modeling result shows that the extraction of the 2D patterns is necessary to get a reasonable result due to the 2D patterns' measurement noise in the SEM. The source map data from the exposure machine shows lots of horizontal and vertical intensity difference and this phenomenon must come from the measurement noise

  18. The Effects of Random Vibration on the Dimensional Stability of Precision Structures

    NASA Astrophysics Data System (ADS)

    Edeson, Ruben L.; Aglietti, Guglielmo S.; Tatnall, Adrian R.

    2012-07-01

    Precision structures for space-based optical systems are typically subjected to brief periods of random vibration during the launch and ground testing phases. Such events pose a potential threat to the dimensional stability of such structures, which may be required to maintain positional tolerances on large optics in the low 10s of microns to meet optical performance requirements. Whilst there is an abundance of information in the literature on structural instability caused by hygrothermal cycling, there appears to have been little work done on the effects of random vibration. This issue has recently been addressed at RAL with a series of tests aimed at characterizing the behavior of dimensional instability in structures for high-resolution Earth-imaging cameras subject to random vibration. Firstly, a breadboard model of a typical “conventional” CFRP-based optical payload structure was produced and subjected to a range of environmental tests. The effects of random vibration were compared to those of other environmental stressors (such as thermal vacuum testing) and found to be significant. Next, controlled tests were performed on specific structural areas in order to assess the specific contributions of each area to overall instability. These tests made use of novel test setups and metrology techniques to assess the dimensional stability response of material samples and bolted joints to random vibration exposure. The tests were able to measure dimensional instability, characterize it over a series of tests of increasing vibration levels, and assess variability in results between identical samples. Finally, a predictive technique using a Finite Element Model with nonlinear kinematic hardening was produced. A time domain solution was obtained, using an analogy to Miner’s Rule to determine load cycle amplitudes. This model correlated reasonably well with test results. This paper presents this program of work, and the results. It also proposes ways to minimize

  19. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  20. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes.

  1. 40 CFR 80.584 - What are the precision and accuracy criteria for approval of test methods for determining the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel fuel, and ECA marine fuel? 80.584 Section 80.584 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80... sulfur content of motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Precision....

  2. Factors determining the stability, resolution, and precision of a conventional Raman spectrometer.

    PubMed

    Fukura, Satoshi; Mizukami, Tomoyuki; Odake, Shoko; Kagi, Hiroyuki

    2006-08-01

    We verified the performance of a conventional Raman spectrometer, which is composed of a 30 cm single polychromator, a Si based charge-coupled device (CCD) camera, and a holographic supernotch filter. For that purpose, the time change of the peak positions of Raman spectra of naphthalene and fluorescence spectra of ruby (Cr-doped Al(2)O(3)) were monitored continually. A time-dependent deviation composed of two components was observed: a monotonous drift up to 0.4 cm(-1) and a periodic oscillation with a range of 0.15 cm(-1). The former component was stabilized at approximately 2000 s after the CCD detector was cooled, indicating that incomplete refrigeration of the CCD detector induced the drift. The latter component synchronized with the periodic oscillation of the room temperature, indicating that thermal expansion or contraction of the whole apparatus induced this oscillation. The implemental deviation is reduced when measurements are conducted using a sufficiently cooled CCD detector at a constant room temperature. Moreover, the effect of the room temperature oscillation is lowered in a spectrum acquired over a duration that is longer than one cycle of this oscillation. Applying the least squares fitting method to carefully measured spectra enhanced the precision of the determination of the peak position to 0.05 cm(-1) using the spectrometer with pixel resolution of 1.5 cm(-1).

  3. Study of the Effect of Modes of Electroerosion Treatment on the Microstructure and Accuracy of Precision Sizes of Small Parts

    NASA Astrophysics Data System (ADS)

    Korobova, N. V.; Aksenenko, A. Yu.; Bashevskaya, O. S.; Nikitin, A. A.

    2016-01-01

    Results of a study of the effect of the parameters of electroerosion treatment in a GF Agie Charmilles CUT 1000 OilTech wire-cutting bench on the size accuracy, the quality of the surface layer of cuts, and the microstructure of the surface of the treated parts are presented.

  4. High resolution and stability roll angle measurement method for precision linear displacement stages

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  5. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination.

    PubMed

    Shi, Hui; Wang, Xin; Mo, Xiaorong; Tang, Chao; Zhong, Shangwei; Deng, Xing Wang

    2015-03-24

    Seed is an essential propagation organ and a critical strategy adopted by terrestrial flowering plants to colonize the land. The ability of seeds to accurately respond to light is vital for plant survival. However, the underlying mechanism is largely unknown. In this study, we reveal a circuit of triple feed-forward loops adopted by Arabidopsis seeds to exclusively repress germination in dark conditions and precisely initiate germination under diverse light conditions. We identify that de-etiolated 1 (DET1), an evolutionarily conserved protein, is a central repressor of light-induced seed germination. Genetic analysis demonstrates that DET1 functions upstream of long hypocotyl in far-red 1 (HFR1) and phytochrome interacting factor 1 (PIF1), the key positive and negative transcription regulators in seed germination. We further find that DET1 and constitutive photomorphogenic 10 (COP10) target HFR1 for protein degradation by assembling a COP10-DET1-damaged DNA binding protein 1-cullin4 E3 ligase complex. Moreover, DET1 and COP10 directly interact with and promote the protein stability of PIF1. Computational modeling reveals that phytochrome B (phyB)-DET1-HFR1-PIF1 and phyB-DET1-Protease-PIF1 are new signaling pathways, independent of the previously identified phyB-PIF1 pathway, respectively mediating the rapid and time-lapse responses to light irradiation. The model-simulated results are highly consistent with their experimental validations, suggesting that our mathematical model captures the essence of Arabidopsis seed germination networks. Taken together, this study provides a comprehensive molecular framework for light-regulated seed germination, improving our understanding of how plants respond to changeable environments.

  6. Numerical Stability and Accuracy of Temporally Coupled Multi-Physics Modules in Wind-Turbine CAE Tools

    SciTech Connect

    Gasmi, A.; Sprague, M. A.; Jonkman, J. M.; Jones, W. B.

    2013-02-01

    In this paper we examine the stability and accuracy of numerical algorithms for coupling time-dependent multi-physics modules relevant to computer-aided engineering (CAE) of wind turbines. This work is motivated by an in-progress major revision of FAST, the National Renewable Energy Laboratory's (NREL's) premier aero-elastic CAE simulation tool. We employ two simple examples as test systems, while algorithm descriptions are kept general. Coupled-system governing equations are framed in monolithic and partitioned representations as differential-algebraic equations. Explicit and implicit loose partition coupling is examined. In explicit coupling, partitions are advanced in time from known information. In implicit coupling, there is dependence on other-partition data at the next time step; coupling is accomplished through a predictor-corrector (PC) approach. Numerical time integration of coupled ordinary-differential equations (ODEs) is accomplished with one of three, fourth-order fixed-time-increment methods: Runge-Kutta (RK), Adams-Bashforth (AB), and Adams-Bashforth-Moulton (ABM). Through numerical experiments it is shown that explicit coupling can be dramatically less stable and less accurate than simulations performed with the monolithic system. However, PC implicit coupling restored stability and fourth-order accuracy for ABM; only second-order accuracy was achieved with RK integration. For systems without constraints, explicit time integration with AB and explicit loose coupling exhibited desired accuracy and stability.

  7. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    PubMed Central

    Kamiński, Radosław; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-01-01

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3–4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample. PMID:20567080

  8. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  9. Analysis of the accuracy and precision of the Axis-Shield Afinion hemoglobin A1c measurement device.

    PubMed

    Little, Randie R

    2012-03-01

    Point-of-care (POC) hemoglobin A1c measurement is now used by many physicians to make more timely decisions on therapy changes. A few studies have highlighted the drawbacks of some POC methods, e.g., poor precision and lot-to-lot variability. Evaluating performance in the clinical setting is difficult because there is minimal proficiency testing data on POC methods. In this issue of Journal of Diabetes Science and Technology, Wood and colleagues describe their experience with the Afinion method in a pediatric clinic network, comparing these results to another POC method as well as to a laboratory high-performance liquid chromatography method. Although they conclude that the Afinion exhibits adequate performance, they do not evaluate lot-to-lot variability. As with laboratory methods, potential assay interferences must also be considered.

  10. Quantitative Thin-Film X-ray Microanalysis by STEM/HAADF: Statistical Analysis for Precision and Accuracy Determination

    NASA Astrophysics Data System (ADS)

    Armigliato, Aldo; Balboni, Roberto; Rosa, Rodolfo

    2006-07-01

    Silicon-germanium thin films have been analyzed by EDS microanalysis in a field emission gun scanning transmission electron microscope (FEG-STEM) equipped with a high angular dark-field detector (STEM/HAADF). Several spectra have been acquired in the same homogeneous area of the cross-sectioned sample by drift-corrected linescan acquisitions. The Ge concentrations and the local film thickness have been obtained by using a previously described Monte Carlo based “two tilt angles” method. Although the concentrations are in excellent agreement with the known values, the resulting confidence intervals are not as good as expected from the precision in beam positioning and tilt angle position and readout offered by our state-of-the-art microscope. The Gaussian shape of the SiK[alpha] and GeK[alpha] X-ray intensities allows one to use the parametric bootstrap method of statistics, whereby it becomes possible to perform the same quantitative analysis in sample regions of different compositions and thicknesses, but by doing only one measurement at the two angles.

  11. Toward High-precision Seismic Studies of White Dwarf Stars: Parametrization of the Core and Tests of Accuracy

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.

    2017-01-01

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.

  12. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems.

  13. Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry.

    PubMed

    Weinberg, Seth M; Naidoo, Sybill; Govier, Daniel P; Martin, Rick A; Kane, Alex A; Marazita, Mary L

    2006-05-01

    A variety of commercially available three-dimensional (3D) surface imaging systems are currently in use by craniofacial specialists. Little is known, however, about how measurement data generated from alternative 3D systems compare, specifically in terms of accuracy and precision. The purpose of this study was to compare anthropometric measurements obtained by way of two different digital 3D photogrammetry systems (Genex and 3dMD) as well as direct anthropometry and to evaluate intraobserver precision across these three methods. On a sample of 18 mannequin heads, 12 linear distances were measured twice by each method. A two-factor repeated measures analysis of variance was used to test simultaneously for mean differences in precision across methods. Additional descriptive statistics (e.g., technical error of measurement [TEM]) were used to quantify measurement error magnitude. Statistically significant (P < 0.05) mean differences were observed across methods for nine anthropometric variables; however, the magnitude of these differences was consistently at the submillimeter level. No significant differences were noted for precision. Moreover, the magnitude of imprecision was determined to be very small, with TEM scores well under 1 mm, and intraclass correlation coefficients ranging from 0.98 to 1. Results indicate that overall mean differences across these three methods were small enough to be of little practical importance. In terms of intraobserver precision, all methods fared equally well. This study is the first attempt to simultaneously compare 3D surface imaging systems directly with one another and with traditional anthropometry. Results suggest that craniofacial surface data obtained by way of alternative 3D photogrammetric systems can be combined or compared statistically.

  14. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Schmidlin, F. J.; Oltmans, S. J.; Smit, H. G. J.

    2004-01-01

    Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 ozone profiles over eleven southern hemisphere tropical and subtropical stations. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used to measure ozone. The data are archived at: &ttp://croc.gsfc.nasa.gov/shadoz>. In analysis of ozonesonde imprecision within the SHADOZ dataset, Thompson et al. [JGR, 108,8238,20031 we pointed out that variations in ozonesonde technique (sensor solution strength, instrument manufacturer, data processing) could lead to station-to-station biases within the SHADOZ dataset. Imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. First, SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release). As for TOMS version 7, satellite total ozone is usually higher than the integrated column amount from the sounding. Discrepancies between the sonde and satellite datasets decline two percentage points on average, compared to version 7 TOMS offsets. Second, the SHADOZ station data are compared to results of chamber simulations (JOSE-2000, Juelich Ozonesonde Intercomparison Experiment) in which the various SHADOZ techniques were evaluated. The range of JOSE column deviations from a standard instrument (-10%) in the chamber resembles that of the SHADOZ station data. It appears that some systematic variations in the SHADOZ ozone record are accounted for by differences in solution strength, data processing and instrument type (manufacturer).

  15. Charts of operational process specifications ("OPSpecs charts") for assessing the precision, accuracy, and quality control needed to satisfy proficiency testing performance criteria.

    PubMed

    Westgard, J O

    1992-07-01

    "Operational process specifications" have been derived from an analytical quality-planning model to assess the precision, accuracy, and quality control (QC) needed to satisfy Proficiency Testing (PT) criteria. These routine operating specifications are presented in the form of an "OPSpecs chart," which describes the operational limits for imprecision and inaccuracy when a desired level of quality assurance is provided by a specific QC procedure. OPSpecs charts can be used to compare the operational limits for different QC procedures and to select a QC procedure that is appropriate for the precision and accuracy of a specific measurement procedure. To select a QC procedure, one plots the inaccuracy and imprecision observed for a measurement procedure on the OPSpecs chart to define the current operating point, which is then compared with the operational limits of candidate QC procedures. Any QC procedure whose operational limits are greater than the measurement procedure's operating point will provide a known assurance, with the percent chance specified by the OPSpecs chart, that critical analytical errors will be detected. OPSpecs charts for a 10% PT criterion are presented to illustrate the selection of QC procedures for measurement procedures with different amounts of imprecision and inaccuracy. Normalized OPSpecs charts are presented to permit a more general assessment of the analytical performance required with commonly used QC procedures.

  16. Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media.

    PubMed

    Akbulut, Songul; Cevik, Ugur; Van, Aydın Ali; De Wael, Karolien; Van Grieken, Rene

    2014-02-01

    The present study was conducted to (i) determine the precision and accuracy of arsenic measurement in soil samples using ST-EDXRF by comparison with the results of ICP-MS analyses and (ii) identify the relationship of As concentration with soil characteristics. For the analysis of samples, inductively coupled plasma mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were performed. According to the results found in the soil samples, the addition of HCl to HNO3, used for the digestion gave significant variations in the recovery of As. However, spectral interferences between peaks for As and Pb can affect detection limits and accuracy for XRF analysis. When comparing the XRF and ICP-MS results a correlation was observed with R(2)=0.8414. This means that using a ST-EDXRF spectrometer, it is possible to achieve accurate and precise analysis by the calibration of certified reference materials and choosing an appropriate secondary target. On the other hand, with regard to soil characteristics analyses, the study highlighted that As is mostly anthropogenically enriched in the studied area.

  17. TanDEM-X IDEM precision and accuracy assessment based on a large assembly of differential GNSS measurements in Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Baade, J.; Schmullius, C.

    2016-09-01

    High resolution Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years, the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unprecedented geometric resolution, precision and accuracy. First TanDEM Intermediate Digital Elevation Models (i.e. IDEM) with a geometric resolution from 0.4 to 3 arcsec have been made available for scientific purposes in November 2014. This includes four 1° × 1° tiles covering the Kruger National Park in South Africa. Here, we document the results of a local scale IDEM height accuracy validation exercise utilizing over 10,000 RTK-GNSS-based ground survey points from fourteen sites characterized by mainly pristine Savanna vegetation. The vertical precision of the ground checkpoints is 0.02 m (1σ). Selected precursor data sets (SRTMGL1, SRTM41, ASTER-GDEM2) are included in the analysis to facilitate the comparison. Although IDEM represents an intermediate product on the way to the new global TanDEM-X DEM, expected to be released in late 2016, it allows first insight into the properties of the forthcoming product. Remarkably, the TanDEM-X tiles include a number of auxiliary files providing detailed information pertinent to a user-based quality assessment. We present examples for the utilization of this information in the framework of a local scale study including the identification of height readings contaminated by water. Furthermore, this study provides evidence for the high precision and accuracy of IDEM height readings and the sensitivity to canopy cover. For open terrain, the 0.4 arcsec resolution edition (IDEM04) yields an average bias of 0.20 ± 0.05 m (95% confidence interval, Cl95), a RMSE = 1.03 m and an absolute vertical height error (LE90) of 1.5 [1.4, 1.7] m (Cl95). The corresponding values for the lower resolution IDEM editions are about the same and provide evidence for the high quality of the IDEM products

  18. Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR.

    PubMed

    Scholdberg, Tandace A; Norden, Tim D; Nelson, Daishia D; Jenkins, G Ronald

    2009-04-08

    The agricultural biotechnology industry routinely utilizes real-time quantitative PCR (RT-qPCR) for the detection of biotechnology-derived traits in plant material, particularly for meeting the requirements of legislative mandates that rely upon the trace detection of DNA. Quantification via real-time RT-qPCR in plant species involves the measurement of the copy number of a taxon-specific, endogenous control gene exposed to the same manipulations as the target gene prior to amplification. The International Organization for Standardization (ISO 21570:2005) specifies that the copy number of an endogenous reference gene be used for normalizing the concentration (expressed as a % w/w) of a trait-specific target gene when using RT-qPCR. For this purpose, the copy number of a constitutively expressed endogenous reference gene in the same sample is routinely monitored. Real-time qPCR was employed to evaluate the predictability and performance of commonly used endogenous control genes (starch synthase, SSIIb-2, SSIIb-3; alcohol dehydrogenase, ADH; high-mobility group, HMG; zein; and invertase, IVR) used to detect biotechnology-derived traits in maize. The data revealed relatively accurate and precise amplification efficiencies when isogenic maize was compared to certified reference standards, but highly variable results when 23 nonisogenic maize cultivars were compared to an IRMM Bt-11 reference standard. Identifying the most suitable endogenous control gene, one that amplifies consistently and predictably across different maize cultivars, and implementing this as an internationally recognized standard would contribute toward harmonized testing of biotechnology-derived traits in maize.

  19. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES

    PubMed Central

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. PMID:26994093

  20. SU-E-J-147: Monte Carlo Study of the Precision and Accuracy of Proton CT Reconstructed Relative Stopping Power Maps

    SciTech Connect

    Dedes, G; Asano, Y; Parodi, K; Arbor, N; Dauvergne, D; Testa, E; Letang, J; Rit, S

    2015-06-15

    Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)

  1. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best

  2. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  3. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.

    PubMed

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G

    2016-03-11

    This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions.

  4. European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability.

    PubMed

    Pearson, J; Ruegsegger, P; Dequeker, J; Henley, M; Bright, J; Reeve, J; Kalender, W; Felsenberg, D; Laval-Jeantet, A M; Adams, J E

    1994-11-01

    A semi-anthropomorphic 'distal radius like' phantom, developed by Kalender and Ruegsegger for use in peripheral bone densitometry using single photon (DPA) dual X-ray (DXA) and quantitative computed tomography (QCT) machines, has been studied with a view to cross-calibrating different types and brands of densitometers in current use. In the context of an EU 'Concerted Action' (second Framework Programme) the phantom was repeatedly measured on six SPA machines, three DXA machines and nine QCT machines (545 measurements). Linear regression equations were derived, individual to each machine, which allowed the derivation of 'standardized densities'. In this way we converted measurements made by machines of the same modality to a common scale of measurements. Two machines (one DXA, one SPA) showed statistically significant instability over time emphasising the need for rigorous quality control in the application of densitometry. In other respects these results provide an encouraging basis for the derivation of standardized normative ranges and the more effective use of peripheral densitometry in future clinical and epidemiological studies.

  5. Using Lunar Observations to Validate Pointing Accuracy and Geolocation, Detector Sensitivity Stability and Static Point Response of the CERES Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2 Deg. in azimuth and 0.17 Deg. in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1o with most detector telescopes showing a consistent alignment offset of less than 0.02 Deg.

  6. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    NASA Astrophysics Data System (ADS)

    Panek, Petr; Prochazka, Ivan

    2007-09-01

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3ps rms that corresponds to the time of arrival precision of 0.9ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5ps/K, and the long term stability is better than ±0.2ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  7. High stability interleaved fiber Michelson interferometer for on-line precision displacement measurements

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Chen, Xianfeng; Zhang, Lin

    2009-11-01

    A self-reference fiber Michelson interferometer measurement system, which employs fiber Bragg gratings (FBGs) as in-fiber reflective mirrors and interleaves together two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the influences resulting from the environmental disturbances, while the other one is used to perform the measurement task. The influences resulting from the environmental disturbances have been eliminated by the compensating action of the electronic feedback loop, this makes the system suitable for on-line precision measurement. By means of the homodyne phase-tracking technique, the linearity of the measurement results of displacement measurements has been very high.

  8. Stability, precision, and near-24-hour period of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Duffy, J. F.; Shanahan, T. L.; Brown, E. N.; Mitchell, J. F.; Rimmer, D. W.; Ronda, J. M.; Silva, E. J.; Allan, J. S.; Emens, J. S.; Dijk, D. J.; Kronauer, R. E.

    1999-01-01

    Regulation of circadian period in humans was thought to differ from that of other species, with the period of the activity rhythm reported to range from 13 to 65 hours (median 25.2 hours) and the period of the body temperature rhythm reported to average 25 hours in adulthood, and to shorten with age. However, those observations were based on studies of humans exposed to light levels sufficient to confound circadian period estimation. Precise estimation of the periods of the endogenous circadian rhythms of melatonin, core body temperature, and cortisol in healthy young and older individuals living in carefully controlled lighting conditions has now revealed that the intrinsic period of the human circadian pacemaker averages 24.18 hours in both age groups, with a tight distribution consistent with other species. These findings have important implications for understanding the pathophysiology of disrupted sleep in older people.

  9. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Griffith, Elizabeth M.; Buckley, Wayne P.

    2014-02-01

    (BaSO4) is a widely distributed mineral that incorporates strontium (Sr) during formation. Mass-dependent fractionation of Sr isotopes occurs during abiotic precipitation of barite and formation of barite associated with biological processes (e.g., bacterial sulfide oxidation). Sr isotopes in barite can provide provenance information as well as potentially reconstruct sample formation conditions (e.g., saturation state, temperature, biotic versus abiotic). Incomplete separation of Ba from Sr has complicated measurements of Sr isotopes by MC-ICPMS. In this study, we tested the effects of Ba in Sr sample solutions and modified extraction chromatography of Sr using Eichrom Sr Spec (Eichrom Technologies LLC, USA) resin to enable rapid, accurate, and precise measurements of 88Sr/86Sr and 87Sr/86Sr ratios from Ba-rich matrices. Sr isotope ratios of sample solutions doped with Ba were statistically indistinguishable from Ba-free sample solutions below 1 ppm Ba. Deviations in both 87Sr/86Sr and δ88/86Sr occurred above 1 ppm Ba. An updated extraction chromatography method tested with barite and Ba-doped seawater produces Sr sample solutions containing 10-100 ppb levels of Ba. The practice of Zr spiking for external mass-discrimination correction of 88Sr/86Sr ratios was also evaluated, and it was confirmed that variable Zr levels do not have adverse effects on the accuracy and precision of 87Sr/86Sr ratios in the Zr concentration range required to produce accurate δ88/86Sr values.

  10. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  11. Accuracy and Stability of a Terrestrial Reference Frame Realized from GPS Data

    NASA Astrophysics Data System (ADS)

    Haines, B. J.; Bertiger, W.; Desai, S. D.; Harvey, N. E.; Sibois, A.; Weiss, J. P.

    2012-12-01

    We describe new realizations of the terrestrial reference frame (TRF) based exclusively on GPS data. One of the historical weaknesses of the GPS technique is determination of scale at the level necessary to support the most demanding applications of the TRF (e.g., sea-level change). This weakness is linked primarily to uncertainties in the the antenna phase variations (APV) of the GPS satellite transmitters, which are designed to support navigation rather than mm-level geodesy. Building on our prior work, we characterize the APV of the GPS satellite transmitters using GPS data collected by satellites in low-Earth orbit (LEO). LEO data offer a number of substantial advantages for characterizing the APV of the GPS satellites. The perspective afforded by GPS receivers in orbit is unmatched in terms of both spatial and temporal coverage. In addition, there is no troposphere signal to confound interpretation of the GPS data. More important, however, the scale (mean height) of the precise orbit solutions is well determined (cm-level) from dynamical constraints. This scale knowledge translates into improved scale for the TRF, assuming the APV of the reference LEO antenna is well understood. For our latest APV solutions, the GPS antenna on the TOPEX/POSEIDON mission (1992-2005) serves as our reference LEO antenna. A choke-ring on a 4-m boom extending above the spacecraft, the antenna configuration is very favorable from the standpoint of phase multipath. In addition, the intrinsic APV of the choke-ring antenna assembly was measured before launch at the JPL test range. Since T/P observed only the legacy (Block II/IIA) GPS satellites, we use data from the GRACE mission (2002-pr.) to transfer the T/P reference to the replenishment (Block IIR) GPS satellites. We apply the resulting APV models in weekly network solutions in order to realize the terrestrial reference frame from GPS alone. Current comparisons of our GPS-based TRF (1999-2012) with ITRF2008 yield 0.2 mm

  12. Functional limits of agreement applied as a novel method comparison tool for accuracy and precision of inertial measurement unit derived displacement of the distal limb in horses.

    PubMed

    Olsen, Emil; Pfau, Thilo; Ritz, Christian

    2013-09-03

    Over ground motion analysis in horses is limited by a small number of strides and restraints of the indoor gait laboratory. Inertial measurement units (IMUs) are transforming the knowledge of human motion and objective clinical assessment through the opportunity to obtain clinically relevant data under various conditions. When using IMUs on the limbs of horses to determine local position estimates, conditions with high dynamic range of both accelerations and rotational velocities prove particularly challenging. Here we apply traditional method agreement and suggest a novel method of functional data analysis to compare motion capture with IMUs placed over the fetlock joint in seven horses. We demonstrate acceptable accuracy and precision at less than or equal to 5% of the range of motion for detection of distal limb mounted cranio-caudal and vertical position. We do not recommend the use of the latero-medial position estimate of the distal metacarpus/metatarsus during walk where the average error is 10% and the maximum error 111% of the range. We also show that functional data analysis and functional limits of agreement are sensitive methods for comparison of cyclical data and could be applied to differentiate changes in gait for individuals across time and conditions.

  13. Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

    PubMed Central

    Blevins, Sydney J.; Baker, Brian M.

    2017-01-01

    In cellular immunity, clonally distributed T cell receptors (TCRs) engage complexes of peptides bound to major histocompatibility complex proteins (pMHCs). In the interactions of TCRs with pMHCs, regions of restricted and variable diversity align in a structurally complex fashion. Many studies have used mutagenesis to attempt to understand the “roles” played by various interface components in determining TCR recognition properties such as specificity and cross-reactivity. However, these measurements are often complicated or even compromised by the weak affinities TCRs maintain toward pMHC. Here, we demonstrate how global analysis of multiple datasets can be used to significantly extend the accuracy and precision of such TCR binding experiments. Application of this approach should positively impact efforts to understand TCR recognition and facilitate the creation of mutational databases to help engineer TCRs with tuned molecular recognition properties. We also show how global analysis can be used to analyze double mutant cycles in TCR-pMHC interfaces, which can lead to new insights into immune recognition. PMID:28197404

  14. High-Precision Surface Inspection: Uncertainty Evaluation within an Accuracy Range of 15μm with Triangulation-based Laser Line Scanners

    NASA Astrophysics Data System (ADS)

    Dupuis, Jan; Kuhlmann, Heiner

    2014-06-01

    Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

  15. Does the Precision and Stability of Value-Added Estimates of Teacher Performance Depend on the Types of Students They Serve? Working Paper #35

    ERIC Educational Resources Information Center

    Stacy, Brian; Reckase, Mark; Wooldridge, Jeffrey; Guarino, Cassandra

    2013-01-01

    This paper investigates how the precision and stability of a teacher's value-added estimate relates to the characteristics of the teacher's students. Using a large administrative data set and a variety of teacher value-added estimators, it finds that the stability over time of teacher value-added estimates can depend on the previous achievement…

  16. Experimental setup to demonstrate low-frequency high-precision frequency stabilization of 1550 nm ECL Lasers

    NASA Astrophysics Data System (ADS)

    Shoen, Steven; Téllez, Gregorio; Quetschke, Volker

    2012-02-01

    Advances in fiber and waveguide technologies have brought about a new type of laser: the Planar Waveguide External Cavity Laser (PW-ECL) that shows a great potential for precision interferometric measurements. We show an experimental setup based on a 1550nm PW-ECL which was designed to achieve a frequency stabilization of 30 Hz/sqrt(Hz) or less at 10 mHz. The presented design makes use of thermal shielding to suppress temperature fluctuations at low frequencies as well as a vacuum system, high finesse cavity and low-noise electronics to reduce the frequency noise. A description of the components used in the design is given and initial results are presented.

  17. A Study of Lipid Bilayer Membrane Stability Using Precise Measurements of Specific Capacitance

    PubMed Central

    White, Stephen H.

    1970-01-01

    A method is described for measuring the specific capacitance (Cm) of lipid bilayer membranes with an estimated experimental error of only 1%. The gross capacitance was measured with an AC Wheatstone bridge and a photographic technique was used to determine the area of thin membrane. The results of measurements on oxidized cholesterol-decane membranes formed in 1 × 10-2 M KCl show that Cm depends upon temperature, voltage, time, and the age of the bulk membrane solutions. For a freshly thinned membrane (from 5 week old solution), Cm increases exponentially from an initial value of 0.432 ±0.021 (SD) μF/cm2 with a time constant of ∼15 min. A 100 mv potential applied across the membrane for 10-20 min prior to making measurements eliminated this time dependence and produced final-state membranes. Cm of final-state membranes depends upon applied voltage (Va) and obeys the equation Cm = C0 + βVa2 where Va ≃ VDC + VrmsAC. C0 and β depend upon temperature; C0 decreases linearly with temperature while β increases linearly. At 20°C, C0 = 0.559 ±0.01 (SD) μF/cm2 and β = 0.0123 ±0.0036 (SD) (μF/cm2)/(mv2) and at 34°C, C0 = 0.472 ±0.01 and β = 0.0382 ±0.0039. These variations in Cm are interpreted as resulting from thickness changes. The possibility that they result from diffuse layer and/or membrane dielectric phenomena is discussed and found to be unlikely. The results are discussed in terms of membrane stability by constructing hypothetical potential energy vs. thickness curves. ImagesFigure 2 PMID:5489777

  18. Deconvolution of u channel magnetometer data: Experimental study of accuracy, resolution, and stability of different inversion methods

    NASA Astrophysics Data System (ADS)

    Jackson, Mike; Bowles, Julie A.; Lascu, Ioan; Solheid, Peat

    2010-07-01

    We explore the effects of sampling density, signal/noise ratios, and position-dependent measurement errors on deconvolution calculations for u channel magnetometer data, using a combination of experimental and numerical approaches. Experiments involve a synthetic sample set made by setting hydraulic cement in a 30-cm u channel and slicing the hardened material into ˜2-cm lengths, and a natural lake sediment u channel sample. The cement segments can be magnetized and measured individually, and reassembled for continuous u channel measurement and deconvolution; the lake sediment channel was first measured continuously and then sliced into discrete samples for individual measurement. Each continuous data set was deconvolved using the ABIC minimization code of Oda and Shibuya (1996) and two new approaches that we have developed, using singular-value decomposition and regularized least squares. These involve somewhat different methods to stabilize the inverse calculations and different criteria for identifying the optimum solution, but we find in all of our experiments that the three methods converge to essentially identical solutions. Repeat scans in several experiments show that measurement errors are not distributed with position-independent variance; errors in setting/determining the u channel position (standard deviation ˜0.2 mm) translate in regions of strong gradients into measurement uncertainties much larger than those due to instrument noise and drift. When we incorporate these depth-dependent measurement uncertainties into the deconvolution calculations, the resulting models show decreased stability and accuracy compared to inversions assuming depth-independent measurement errors. The cement experiments involved varying directions and uniform intensities downcore, and very good accuracy was obtained using all of the methods when the signal/noise ratio was greater than a few hundred and the sampling interval no larger than half the length scale of

  19. Precise measurement of the 222Rn half-life: A probe to monitor the stability of radioactivity

    NASA Astrophysics Data System (ADS)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2015-04-01

    We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the half-life of a short lifetime (days) source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years) source. In particular, we give a possible reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8 ṡ10-5 precision. Finally, we provide the most precise value for the 222Rn half-life: 3.82146(16)stat(4)syst days.

  20. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  1. Results from a round-robin study assessing the precision and accuracy of LA-ICPMS U/Pb geochronology of zircon

    NASA Astrophysics Data System (ADS)

    Hanchar, J. M.

    2009-12-01

    A round-robin study was undertaken to assess the current state of precision and accuracy that can be achieved in LA-ICPMS U/Pb geochronology of zircon. The initial plan was to select abundant, well-characterized zircon samples to distribute to participants in the study. Three suitable samples were found, evaluated, and dated using ID-TIMS. Twenty-five laboratories in North America and Europe were asked to participate in the study. Eighteen laboratories agreed to participate, of which seventeen submitted final results. It was decided at the outset of the project that the identities of the participating researchers and laboratories not be revealed until the manuscript stemming from the project was completed. Participants were sent either fragments of zircon crystal or whole zircon crystals, selected randomly after being thoroughly mixed. Participants were asked to conform to specific requirements. These include providing all analytical conditions and equipment used, submission of all data acquired, and submitting their preferred data and preferred ages for the three samples. The participating researchers used a wide range of analytical methods (e.g., instrumentation, data reduction, error propagation) for the LA-ICPMS U/Th geochronology. These combined factors made it difficult for direct comparison of the results that were submitted. Most of the LA-ICPMS results submitted were within 2% r.s.d. of the ID-TIMS values for the three samples in the study. However, the error bars for the majority of the LA-ICPMS results for the three samples did not overlap with the ID-TIMS results. These results suggest a general underestimation of the errors calculated for the LA-ICPMS analyses U/Pb zircon analyses.

  2. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  3. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  4. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2011-02-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

  5. Two dimensional assisted liquid chromatography - a chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution.

    PubMed

    Cook, Daniel W; Rutan, Sarah C; Stoll, Dwight R; Carr, Peter W

    2015-02-15

    Comprehensive two-dimensional liquid chromatography (LC×LC) is rapidly evolving as the preferred method for the analysis of complex biological samples owing to its much greater resolving power compared to conventional one-dimensional (1D-LC). While its enhanced resolving power makes this method appealing, it has been shown that the precision of quantitation in LC×LC is generally not as good as that obtained with 1D-LC. The poorer quantitative performance of LC×LC is due to several factors including but not limited to the undersampling of the first dimension and the dilution of analytes during transit from the first dimension ((1)D) column to the second dimension ((2)D) column, and the larger relative background signals. A new strategy, 2D assisted liquid chromatography (2DALC), is presented here. 2DALC makes use of a diode array detector placed at the end of each column, producing both multivariate (1)D and two-dimensional (2D) chromatograms. The increased resolution of the analytes provided by the addition of a second dimension of separation enables the determination of analyte absorbance spectra from the (2)D detector signal that are relatively pure and can be used to initiate the treatment of data from the first dimension detector using multivariate curve resolution-alternating least squares (MCR-ALS). In this way, the approach leverages the strengths of both separation methods in a single analysis: the (2)D detector data is used to provide relatively pure analyte spectra to the MCR-ALS algorithm, and the final quantitative results are obtained from the resolved (1)D chromatograms, which has a much higher sampling rate and lower background signal than obtained in conventional single detector LC×LC, to obtain accurate and precise quantitative results. It is shown that 2DALC is superior to both single detector selective or comprehensive LC×LC and 1D-LC for quantitation of compounds that appear as severely overlapped peaks in the (1)D chromatogram - this is

  6. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  7. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  8. WebRASP: a server for computing energy scores to assess the accuracy and stability of RNA 3D structures

    PubMed Central

    Norambuena, Tomas; Cares, Jorge F.; Capriotti, Emidio; Melo, Francisco

    2013-01-01

    Summary: The understanding of the biological role of RNA molecules has changed. Although it is widely accepted that RNAs play important regulatory roles without necessarily coding for proteins, the functions of many of these non-coding RNAs are unknown. Thus, determining or modeling the 3D structure of RNA molecules as well as assessing their accuracy and stability has become of great importance for characterizing their functional activity. Here, we introduce a new web application, WebRASP, that uses knowledge-based potentials for scoring RNA structures based on distance-dependent pairwise atomic interactions. This web server allows the users to upload a structure in PDB format, select several options to visualize the structure and calculate the energy profile. The server contains online help, tutorials and links to other related resources. We believe this server will be a useful tool for predicting and assessing the quality of RNA 3D structures. Availability and implementation: The web server is available at http://melolab.org/webrasp. It has been tested on the most popular web browsers and requires Java plugin for Jmol visualization. Contact: fmelo@bio.puc.cl PMID:23929030

  9. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: Ways to improve accuracy and stability

    NASA Astrophysics Data System (ADS)

    Verschaeve, Joris C. G.

    2009-09-01

    An analytical and numerical analysis of the no-slip boundary condition at walls at rest for the lattice Boltzmann Bhatnagar-Gross-Krook method is performed. The main result of this analysis is an alternative formulation for the no-slip boundary condition at walls at rest. Numerical experiments assess the accuracy and stability of this formulation for Poiseuille and Womersley flows, flow over a backward facing step, and unsteady flow around a square cylinder. This no-slip boundary condition is compared analytically and numerically to the boundary conditions of Inamuro [Phys. Fluids 7, 2928 (1995)] and Zou and He [Phys. Fluids 9, 1591 (1997)] and it is found that all three make use of the same mechanism for the off-diagonal element of the stress tensor. Mass conservation, however, is only assured by the present one. In addition, our analysis points out which mechanism lies behind the instabilities also observed by Lätt [Phys. Rev. E 77, 056703 (2008)] for this kind of boundary conditions. We present a way to remove these instabilities, allowing one to reach relaxation frequencies considerably closer to 2.

  10. Non-Destructive Assay (NDA) Uncertainties Impact on Physical Inventory Difference (ID) and Material Balance Determination: Sources of Error, Precision/Accuracy, and ID/Propagation of Error (POV)

    SciTech Connect

    Wendelberger, James G.

    2016-10-31

    These are slides from a presentation made by a researcher from Los Alamos National Laboratory. The following topics are covered: sources of error for NDA gamma measurements, precision and accuracy are two important characteristics of measurements, four items processed in a material balance area during the inventory time period, inventory difference and propagation of variance, sum in quadrature, and overview of the ID/POV process.

  11. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    SciTech Connect

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  12. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography.

    PubMed

    Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2014-05-15

    Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings.

  13. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  14. High precision modeling for fundamental physics experiments

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus

    With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.

  15. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  16. Improving accuracy and precision of ice core δD (CH4) analyses using methane pre- and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2013-12-01

    Firn and polar ice cores offer the only direct paleoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD (CH4)) 0.5 to 1.5 kg of ice was previously necessary to achieve the required precision. Here we present a method to improve precision and reduce the sample amount for δD (CH4) measurements on (ice core) air. Pre-concentrated methane is focused before a high temperature oven (pre pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. A small amount of methane and krypton are trapped together with H2 and must be separated using a short second chromatographic column to ensure accurate results. Pre and post pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods we estimate a precision of 2.2‰ for 350 g of ice (or roughly 30 mL (at standard temperature and pressure (STP)) of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  17. Accuracy and precision of a new portable ultrasound scanner, the BME-150A, in residual urine volume measurement: a comparison with the BladderScan BVI 3000.

    PubMed

    Choe, Jin Ho; Lee, Ji Yeon; Lee, Kyu-Sung

    2007-06-01

    The objective of the study was to determine the relative accuracy of a new portable ultrasound unit, BME-150A, and the BladderScan BVI 3000, as assessed in comparison with the catheterized residual urine volume. We used both of these machines to prospectively measure the residual urine volumes of 89 patients (40 men and 49 women) who were undergoing urodynamic studies. The ultrasound measurements were compared with the post-scan bladder volumes obtained by catheterization in the same patients. The ultrasounds were followed immediately (within 5 min) by in-and-out catheterizations while the patients were in a supine position. There were a total of 116 paired measurements made. The BME-150A and the BVI 3000 demonstrated a correlation with the residual volume of 0.92 and 0.94, and a mean difference from the true residual volume of 7.8 and 3.6 ml, respectively. Intraclass correlation coefficients for the accuracy of the two bladder scans were 0.90 for BME-150A and 0.95 for BVI 3000. The difference of accuracy between the two models was not significant (p = 0.2421). There were six cases in which a follow-up evaluation of falsely elevated post-void residual urine volume measurements on the ultrasound studies resulted in comparatively low catheterized volumes, with a range of differences from 66 to 275.5 ml. These cases were diagnosed with an ovarian cyst, uterine myoma, or uterine adenomyosis on pelvic ultrasonography. The accuracy of the BME-150A is comparable to that of the BVI 3000 in estimating the true residual urine volumes and is sufficient enough for us to recommend its use as an alternative to catheterization.

  18. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2014-07-01

    Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL - at standard temperature and pressure (STP) - of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  19. Simultaneous Variable Flip Angle – Actual Flip Angle Imaging (VAFI) Method for Improved Accuracy and Precision of Three-dimensional T1 and B1 Measurements

    PubMed Central

    Hurley, Samuel A.; Yarnykh, Vasily L.; Johnson, Kevin M.; Field, Aaron S.; Alexander, Andrew L.; Samsonov, Alexey A.

    2011-01-01

    A new time-efficient and accurate technique for simultaneous mapping of T1 and B1 is proposed based on a combination of the Actual Flip angle Imaging (AFI) and Variable Flip Angle (VFA) methods: VAFI. VAFI utilizes a single AFI and one or more spoiled gradient-echo (SPGR) acquisitions with a simultaneous non-linear fitting procedure to yield accurate T1/B1 maps. The advantage of VAFI is high accuracy at either short T1 times or long TR in the AFI sequence. Simulations show this method is accurate to 0.03% in FA and 0.07% in T1 for TR/T1 times over the range of 0.01 to 0.45. We show for the case of brain imaging that it is sufficient to use only one small flip angle SPGR acquisition, which results in reduced spoiling requirements and a significant scan time reduction compared to the original VFA. In-vivo validation yielded high-quality 3D T1 maps and T1 measurements within 10% of previously published values, and within a clinically acceptable scan time. The VAFI method will increase the accuracy and clinical feasibility of many quantitative MRI methods requiring T1/B1 mapping such as DCE perfusion and quantitative MTI. PMID:22139819

  20. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  1. Accuracy and precision of reconstruction of complex refractive index in near-field single-distance propagation-based phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Gureyev, Timur; Mohammadi, Sara; Nesterets, Yakov; Dullin, Christian; Tromba, Giuliana

    2013-10-01

    We investigate the quantitative accuracy and noise sensitivity of reconstruction of the 3D distribution of complex refractive index, n(r)=1-δ(r)+iβ(r), in samples containing materials with different refractive indices using propagation-based phase-contrast computed tomography (PB-CT). Our present study is limited to the case of parallel-beam geometry with monochromatic synchrotron radiation, but can be readily extended to cone-beam CT and partially coherent polychromatic X-rays at least in the case of weakly absorbing samples. We demonstrate that, except for regions near the interfaces between distinct materials, the distribution of imaginary part of the refractive index, β(r), can be accurately reconstructed from a single projection image per view angle using phase retrieval based on the so-called homogeneous version of the Transport of Intensity equation (TIE-Hom) in combination with conventional CT reconstruction. In contrast, the accuracy of reconstruction of δ(r) depends strongly on the choice of the "regularization" parameter in TIE-Hom. We demonstrate by means of an instructive example that for some multi-material samples, a direct application of the TIE-Hom method in PB-CT produces qualitatively incorrect results for δ(r), which can be rectified either by collecting additional projection images at each view angle, or by utilising suitable a priori information about the sample. As a separate observation, we also show that, in agreement with previous reports, it is possible to significantly improve signal-to-noise ratio by increasing the sample-to-detector distance in combination with TIE-Hom phase retrieval in PB-CT compared to conventional ("contact") CT, with the maximum achievable gain of the order of 0.3δ /β. This can lead to improved image quality and/or reduction of the X-ray dose delivered to patients in medical imaging.

  2. Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Stammer, Detlef

    1994-01-01

    TOPEX/POSEIDON sea surface height measurements are examined for quantitative consistency with known elements of the oceanic general circulation and its variability. Project-provided corrections were accepted but are at tested as part of the overall results. The ocean was treated as static over each 10-day repeat cycle and maps constructed of the absolute sea surface topography from simple averages in 2 deg x 2 deg bins. A hybrid geoid model formed from a combination of the recent Joint Gravity Model-2 and the project-provided Ohio State University geoid was used to estimate the absolute topography in each 10-day period. Results are examined in terms of the annual average, seasonal average, seasonal variations, and variations near the repeat period. Conclusion are as follows: the orbit error is now difficult to observe, having been reduced to a level at or below the level of other error sources; the geoid dominates the error budget of the estimates of the absolute topography; the estimated seasonal cycle is consistent with prior estimates; shorter-period variability is dominated on the largest scales by an oscillation near 50 days in spherical harmonics Y(sup m)(sub 1)(theta, lambda) with an amplitude near 10 cm, close to the simplest alias of the M(sub 2) tide. This spectral peak and others visible in the periodograms support the hypothesis that the largest remaining time-dependent errors lie in the tidal models. Though discrepancies attribute to the geoid are within the formal uncertainties of the good estimates, removal of them is urgent for circulation studies. Current gross accuracy of the TOPEX/POSEIDON mission is in the range of 5-10 cm, distributed overbroad band of frequencies and wavenumbers. In finite bands, accuracies approach the 1-cm level, and expected improvements arising from extended mission duration should reduce these numbers by nearly an order of magnitude.

  3. The Influence of External Loads on Movement Precision During Active Shoulder Internal Rotation Movements as Measured by 3 Indices of Accuracy

    PubMed Central

    Brindle, Timothy J; Uhl, Timothy L; Nitz, Arthur J; Shapiro, Robert

    2006-01-01

    Context: Using constant, variable, and absolute error to measure movement accuracy might provide a more complete description of joint position sense than any of these values alone. Objective: To determine the effect of loaded movements and type of feedback on shoulder joint position sense and movement velocity. Design: Applied study with repeated measures comparing type of feedback and the presence of a load. Setting: Laboratory. Patients or Other Participants: Twenty healthy subjects (age = 27.2 ± 3.3 years, height = 173.2 ± 18.1 cm, mass = 70.8 ± 14.5 kg) were seated with their arms in a custom shoulder wheel. Intervention(s): Subjects internally rotated 27° in the plane of the scapula, with either visual feedback provided by a video monitor or proprioceptive feedback provided by prior passive positioning, to a target at 48° of external rotation. Subjects performed the internal rotation movements with video feedback and proprioceptive feedback and with and without load (5% of body weight). Main Outcome Measure(s): High-speed motion analysis recorded peak rotational velocity and accuracy. Constant, variable, and absolute error for joint position sense was calculated from the final position. Results: Unloaded movements demonstrated significantly greater variable error than for loaded movements (2.0 ± 0.7° and 1.5 ± 0.4°, respectively) (P < .05), but there were no differences in constant or absolute error. Peak velocity was greater for movements with proprioceptive feedback (45.6 ± 2.9°/s) than visual feedback (39.1 ± 2.1°/s) and for unloaded (47.8 ± 3.6°/s) than loaded (36.9 ± 1.0°/s) movements (P < .05). Conclusions: Shoulder joint position sense demonstrated greater variable error unloaded versus loaded movements. Both visual feedback and additional loads decreased peak rotational velocity. PMID:16619096

  4. Postoperative skeletal stability and accuracy of a new combined Le Fort I and horseshoe osteotomy for superior repositioning of the maxilla.

    PubMed

    Yoshioka, I; Khanal, A; Kodama, M; Furuta, N; Tominaga, K

    2009-12-01

    Postoperative skeletal stability and accuracy were evaluated in a combination of Le Fort I and horseshoe osteotomies for superior repositioning of maxilla in bi-maxillary surgeries in 19 consecutive patients. 9 underwent Le Fort I osteotomy alone (preoperative planned superior movement <3.5 mm). 10 underwent Le Fort I and horseshoe osteotomy (combination group) (preoperative planned superior movement >3.5 mm). The maxilla was osteotomized and fixed with 4 titanium Le Fort plates followed by bilateral sagittal split ramus osteotomy of the mandible, fixed with 2 semi-rigid titanium miniplates. Maxillomandibular fixation was performed for 1 week. Lateral cephalograms were obtained preoperatively, 1 week postoperatively, 3, 6, 12 months later. The changes in point A, point of maxillary tuberosity, and upper molar mesial cusp tip were examined. Discrepancy between the planned and measured superior movement of the maxilla in the Le Fort I and combination groups was 0.30 and 0.23 mm, respectively. The maxillae in both groups were repositioned close to their planned positions during surgery. 1 year later, both groups showed skeletal stability with no significant postoperative changes. When high superior repositioning of the maxilla is indicated, horseshoe osteotomy combined with Le Fort I is reliable and useful for accuracy and postoperative stability.

  5. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  6. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset 1998-2000 in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Schmidlin, F. J.; Oltmans, S. J.; McPeters, R. D.; Smit, H. G. J.

    2003-01-01

    A network of 12 southern hemisphere tropical and subtropical stations in the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 profiles of stratospheric and tropospheric ozone since 1998. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used with standard radiosondes for pressure, temperature and relative humidity measurements. The archived data are available at:http: //croc.gsfc.nasa.gov/shadoz. In Thompson et al., accuracies and imprecisions in the SHADOZ 1998- 2000 dataset were examined using ground-based instruments and the TOMS total ozone measurement (version 7) as references. Small variations in ozonesonde technique introduced possible biases from station-to-station. SHADOZ total ozone column amounts are now compared to version 8 TOMS; discrepancies between the two datasets are reduced 2\\% on average. An evaluation of ozone variations among the stations is made using the results of a series of chamber simulations of ozone launches (JOSIE-2000, Juelich Ozonesonde Intercomparison Experiment) in which a standard reference ozone instrument was employed with the various sonde techniques used in SHADOZ. A number of variations in SHADOZ ozone data are explained when differences in solution strength, data processing and instrument type (manufacturer) are taken into account.

  7. A Versatile Technique to Enable Sub-milli-Kelvin Instrument Stability for Precise Radial Velocity Measurements: Tests with the Habitable-zone Planet Finder

    NASA Astrophysics Data System (ADS)

    Stefansson, Gudmundur; Hearty, Frederick; Robertson, Paul; Mahadevan, Suvrath; Anderson, Tyler; Levi, Eric; Bender, Chad; Nelson, Matthew; Monson, Andrew; Blank, Basil; Halverson, Samuel; Henderson, Chuck; Ramsey, Lawrence; Roy, Arpita; Schwab, Christian; Terrien, Ryan

    2016-12-01

    Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s-1 Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 {{m}} Hobby-Eberly Telescope at McDonald Observatory. HPF will operate at 180 {{K}}, driven by the choice of an H2RG NIR detector array with a 1.7 μ {{m}} cutoff. This ECS has demonstrated 0.6 {mK} rms stability over 15 days at both 180 and 300 {{K}}, and maintained high-quality vacuum (\\lt {10}-7 {Torr}) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from ˜77 {{K}} to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 {{m}} WIYN telescope at Kitt Peak, operating at 300 {{K}}. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment

  8. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  9. An investigation into the accuracy, stability and parallel performance of a highly stable explicit technique for stiff reaction-transport PDEs

    SciTech Connect

    Franz, A., LLNL

    1998-02-17

    The numerical simulation of chemically reacting flows is a topic, that has attracted a great deal of current research At the heart of numerical reactive flow simulations are large sets of coupled, nonlinear Partial Differential Equations (PDES). Due to the stiffness that is usually present, explicit time differencing schemes are not used despite their inherent simplicity and efficiency on parallel and vector machines, since these schemes require prohibitively small numerical stepsizes. Implicit time differencing schemes, although possessing good stability characteristics, introduce a great deal of computational overhead necessary to solve the simultaneous algebraic system at each timestep. This thesis examines an algorithm based on a preconditioned time differencing scheme. The algorithm is explicit and permits a large stable time step. An investigation of the algorithm`s accuracy, stability and performance on a parallel architecture is presented

  10. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    PubMed

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  11. Evaluation of the automated hematology analyzer Sysmex XT-2000iV™ compared to the ADVIA® 2120 for its use in dogs, cats, and horses: Part I--precision, linearity, and accuracy of complete blood cell count.

    PubMed

    Bauer, Natali; Nakagawa, Julia; Dunker, Cathrin; Failing, Klaus; Moritz, Andreas

    2011-11-01

    The automated laser-based hematology analyzer Sysmex XT-2000iV™ providing a complete blood cell count (CBC) and 5-part differential has been introduced in large veterinary laboratories. The aim of the current study was to determine precision, linearity, and accuracy of the Sysmex analyzer. Reference method for the accuracy study was the laser-based hematology analyzer ADVIA® 2120. For evaluation of accuracy, consecutive fresh blood samples from healthy and diseased cats (n = 216), dogs (n = 314), and horses (n = 174) were included. A low intra-assay coefficient of variation (CV) of approximately 1% was seen for the CBC except platelet count (PLT). An intra-assay CV ranging between 2% and 5.5% was evident for the differential count except for feline and equine monocytes (7.7%) and horse eosinophils (15.7%). Linearity was excellent for white blood cell count (WBC), hematocrit value, red blood cell count (RBC), and PLT. For all evaluated species, agreement was excellent for WBC and RBC, with Spearman rank correlation coefficients (r(s)) ranging from >0.99 to 0.98. Hematocrit value correlated excellently in cats and dogs, whereas for horses, a good correlation was evident. A good correlation between both analyzers was seen in feline and equine PLT (r(s) = 0.89 and 0.92, respectively), whereas correlation was excellent for dogs (r(s) = 0.93). Biases were close to 0 except for mean corpuscular hemoglobin concentration (4.11 to -7.25 mmol/l) and canine PLT (57 × 10(9)/l). Overall, the performance of the Sysmex analyzer was excellent and compared favorably with the ADVIA analyzer.

  12. A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions

    NASA Astrophysics Data System (ADS)

    Yoon, Heesung; Hyun, Yunjung; Ha, Kyoochul; Lee, Kang-Kun; Kim, Gyoo-Bum

    2016-05-01

    The prediction of long-term groundwater level fluctuations is necessary to effectively manage groundwater resources and to assess the effects of changes in rainfall patterns on groundwater resources. In the present study, a weighted error function approach was utilised to improve the performance of artificial neural network (ANN)- and support vector machine (SVM)-based recursive prediction models for the long-term prediction of groundwater levels in response to rainfall. The developed time series models were applied to groundwater level data from 5 groundwater-monitoring stations in South Korea. The results demonstrated that the weighted error function approach can improve the stability and accuracy of recursive prediction models, especially for ANN models. The comparison of the model performance showed that the recursive prediction performance of the SVM was superior to the performance of the ANN in this case study.

  13. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  14. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration

    SciTech Connect

    Rong Yi

    2010-10-01

    Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulate sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site

  15. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  16. Comparative Analysis of the Equivital EQ02 Lifemonitor with Holter Ambulatory ECG Device for Continuous Measurement of ECG, Heart Rate, and Heart Rate Variability: A Validation Study for Precision and Accuracy.

    PubMed

    Akintola, Abimbola A; van de Pol, Vera; Bimmel, Daniel; Maan, Arie C; van Heemst, Diana

    2016-01-01

    Background: The Equivital (EQ02) is a multi-parameter telemetric device offering both real-time and/or retrospective, synchronized monitoring of ECG, HR, and HRV, respiration, activity, and temperature. Unlike the Holter, which is the gold standard for continuous ECG measurement, EQO2 continuously monitors ECG via electrodes interwoven in the textile of a wearable belt. Objective: To compare EQ02 with the Holter for continuous home measurement of ECG, heart rate (HR), and heart rate variability (HRV). Methods: Eighteen healthy participants wore, simultaneously for 24 h, the Holter and EQ02 monitors. Per participant, averaged HR, and HRV per 5 min from the two devices were compared using Pearson correlation, paired T-test, and Bland-Altman analyses. Accuracy and precision metrics included mean absolute relative difference (MARD). Results: Artifact content of EQ02 data varied widely between (range 1.93-56.45%) and within (range 0.75-9.61%) participants. Comparing the EQ02 to the Holter, the Pearson correlations were respectively 0.724, 0.955, and 0.997 for datasets containing all data and data with < 50 or < 20% artifacts respectively. For datasets containing respectively all data, data with < 50, or < 20% artifacts, bias estimated by Bland-Altman analysis was -2.8, -1.0, and -0.8 beats per minute and 24 h MARD was 7.08, 3.01, and 1.5. After selecting a 3-h stretch of data containing 1.15% artifacts, Pearson correlation was 0.786 for HRV measured as standard deviation of NN intervals (SDNN). Conclusions: Although the EQ02 can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact content. This is a limitation for clinical use in individual patients. However, the advantages of the EQ02 (ability to simultaneously monitor several physiologic parameters) may outweigh its disadvantages (higher artifact load) for research purposes and/ or for home monitoring in larger groups of study participants. Further studies can be aimed at

  17. Comparative Analysis of the Equivital EQ02 Lifemonitor with Holter Ambulatory ECG Device for Continuous Measurement of ECG, Heart Rate, and Heart Rate Variability: A Validation Study for Precision and Accuracy

    PubMed Central

    Akintola, Abimbola A.; van de Pol, Vera; Bimmel, Daniel; Maan, Arie C.; van Heemst, Diana

    2016-01-01

    Background: The Equivital (EQ02) is a multi-parameter telemetric device offering both real-time and/or retrospective, synchronized monitoring of ECG, HR, and HRV, respiration, activity, and temperature. Unlike the Holter, which is the gold standard for continuous ECG measurement, EQO2 continuously monitors ECG via electrodes interwoven in the textile of a wearable belt. Objective: To compare EQ02 with the Holter for continuous home measurement of ECG, heart rate (HR), and heart rate variability (HRV). Methods: Eighteen healthy participants wore, simultaneously for 24 h, the Holter and EQ02 monitors. Per participant, averaged HR, and HRV per 5 min from the two devices were compared using Pearson correlation, paired T-test, and Bland-Altman analyses. Accuracy and precision metrics included mean absolute relative difference (MARD). Results: Artifact content of EQ02 data varied widely between (range 1.93–56.45%) and within (range 0.75–9.61%) participants. Comparing the EQ02 to the Holter, the Pearson correlations were respectively 0.724, 0.955, and 0.997 for datasets containing all data and data with < 50 or < 20% artifacts respectively. For datasets containing respectively all data, data with < 50, or < 20% artifacts, bias estimated by Bland-Altman analysis was −2.8, −1.0, and −0.8 beats per minute and 24 h MARD was 7.08, 3.01, and 1.5. After selecting a 3-h stretch of data containing 1.15% artifacts, Pearson correlation was 0.786 for HRV measured as standard deviation of NN intervals (SDNN). Conclusions: Although the EQ02 can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact content. This is a limitation for clinical use in individual patients. However, the advantages of the EQ02 (ability to simultaneously monitor several physiologic parameters) may outweigh its disadvantages (higher artifact load) for research purposes and/ or for home monitoring in larger groups of study participants. Further studies can be aimed

  18. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  19. SEALDH-II—An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design–Setup–Accuracy/Stability Stress Test

    PubMed Central

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-01-01

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively. PMID:28042844

  20. SEALDH-II-An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design-Setup-Accuracy/Stability Stress Test.

    PubMed

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-12-30

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.

  1. Stability and accuracy assessment of identification of traditional Chinese materia medica using DNA barcoding: a case study on Flos Lonicerae Japonicae.

    PubMed

    Hou, Dianyun; Song, Jingyuan; Shi, Linchun; Ma, Xiaochong; Xin, Tianyi; Han, Jianping; Xiao, Wei; Sun, Zhiying; Cheng, Ruiyang; Yao, Hui

    2013-01-01

    DNA barcoding is a novel molecular identification method that aids in identifying traditional Chinese materia medica using traditional identification techniques. However, further study is needed to assess the stability and accuracy of DNA barcoding. Flos Lonicerae Japonicae, a typical medicinal flower, is widely used in China, Korea, and other Southeast Asian countries. However, Flos Lonicerae Japonicae and its closely related species have been misused and traded at varying for a wide range of prices. Therefore, Flos Lonicerae Japonicae must be accurately identified. In this study, the ITS2 and psbA-trnH regions were amplified by polymerase chain reaction (PCR). Sequence assembly was performed using CodonCode Aligner V 3.5.4. The intra- versus inter-specific variations were assessed using six metrics and "barcoding gaps." Species identification was conducted using BLAST1 and neighbor-joining (NJ) trees. Results reveal that ITS2 and psbA-trnH exhibited an average intraspecific divergence of 0.001 and 0, respectively, as well as an average inter-specific divergence of 0.0331 and 0.0161. The identification efficiency of ITS2 and psbA-trnH evaluated using BLAST1 was 100%. Flos Lonicerae Japonicae was formed into one clade through the NJ trees. Therefore, Flos Lonicerae Japonicae can be stably and accurately identified through the ITS2 and psbA-trnH regions, respectively.

  2. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  3. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  4. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  5. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  6. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  7. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    SciTech Connect

    Zhang, D; Wang, W; Jiang, B; Fu, D

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  8. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  9. A review of precision oscillators. [for frequency standards

    NASA Technical Reports Server (NTRS)

    Hellwig, H.

    1974-01-01

    Precision oscillators used in PTTI applications include quartz crystal, rubidium gas cell, cesium beam, and hydrogen maser oscillators. A general characterization and comparison of these devices is given including accuracy, stability, environmental sensitivity, size, weight, power consumption, availability and cost. Areas of special concern in practical applications are identified and a projection of future performance specifications is given. An attempt is made to predict physical and performance characteristics of new designs potentially available in the near future.

  10. Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    NASA Technical Reports Server (NTRS)

    Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)

    1972-01-01

    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.

  11. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Le Grand, Scott; Götz, Andreas W.; Walker, Ross C.

    2013-02-01

    A new precision model is proposed for the acceleration of all-atom classical molecular dynamics (MD) simulations on graphics processing units (GPUs). This precision model replaces double precision arithmetic with fixed point integer arithmetic for the accumulation of force components as compared to a previously introduced model that uses mixed single/double precision arithmetic. This significantly boosts performance on modern GPU hardware without sacrificing numerical accuracy. We present an implementation for NVIDIA GPUs of both generalized Born implicit solvent simulations as well as explicit solvent simulations using the particle mesh Ewald (PME) algorithm for long-range electrostatics using this precision model. Tests demonstrate both the performance of this implementation as well as its numerical stability for constant energy and constant temperature biomolecular MD as compared to a double precision CPU implementation and double and mixed single/double precision GPU implementations.

  12. Application of AFINCH as a tool for evaluating the effects of streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the southeast Lake Michigan hydrologic subregion

    USGS Publications Warehouse

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations.  Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the

  13. Precision Measurement.

    ERIC Educational Resources Information Center

    Radius, Marcie; And Others

    The manual provides information for precision measurement (counting of movements per minute of a chosen activity) of achievement in special education students. Initial sections give guidelines for the teacher, parent, and student to follow for various methods of charting behavior. It is explained that precision measurement is a way to measure the…

  14. Soviet precision timekeeping research and technology

    SciTech Connect

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  15. Precise attitude rate estimation using star images obtained by mission telescope for satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Hosonuma, Takayuki; Ikari, Satoshi; Saisutjarit, Phongsatorn; Sako, Nobutada; Nakasuka, Shinichi

    2015-02-01

    Recently, small satellites have been employed in various satellite missions such as astronomical observation and remote sensing. During these missions, the attitudes of small satellites should be stabilized to a higher accuracy to obtain accurate science data and images. To achieve precise attitude stabilization, these small satellites should estimate their attitude rate under the strict constraints of mass, space, and cost. This research presents a new method for small satellites to precisely estimate angular rate using star blurred images by employing a mission telescope to achieve precise attitude stabilization. In this method, the angular velocity is estimated by assessing the quality of a star image, based on how blurred it appears to be. Because the proposed method utilizes existing mission devices, a satellite does not require additional precise rate sensors, which makes it easier to achieve precise stabilization given the strict constraints possessed by small satellites. The research studied the relationship between estimation accuracy and parameters used to achieve an attitude rate estimation, which has a precision greater than 1 × 10-6 rad/s. The method can be applied to all attitude sensors, which use optics systems such as sun sensors and star trackers (STTs). Finally, the method is applied to the nano astrometry satellite Nano-JASMINE, and we investigate the problems that are expected to arise with real small satellites by performing numerical simulations.

  16. Precision Medicine

    PubMed Central

    Cholerton, Brenna; Larson, Eric B.; Quinn, Joseph F.; Zabetian, Cyrus P.; Mata, Ignacio F.; Keene, C. Dirk; Flanagan, Margaret; Crane, Paul K.; Grabowski, Thomas J.; Montine, Kathleen S.; Montine, Thomas J.

    2017-01-01

    Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease. PMID:26724389

  17. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  18. Precision optical navigation guidance system

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  19. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  20. Precision metrology.

    PubMed

    Jiang, X; Whitehouse, D J

    2012-08-28

    This article is a summary of the Satellite Meeting, which followed on from the Discussion Meeting at the Royal Society on 'Ultra-precision engineering: from physics to manufacture', held at the Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire, UK. The meeting was restricted to 18 invited experts in various aspects of precision metrology from academics from the UK and Sweden, Government Institutes from the UK and Germany and global aerospace industries. It examined and identified metrology problem areas that are, or may be, limiting future developments in precision engineering and, in particular, metrology. The Satellite Meeting was intended to produce a vision that will inspire academia and industry to address the solutions of those open-ended problems identified. The discussion covered three areas, namely the function of engineering parts, their measurement and their manufacture, as well as their interactions.

  1. The low-cost and precise piston gas pressure regulator

    NASA Astrophysics Data System (ADS)

    Kudasik, Mateusz; Skoczylas, Norbert

    2016-03-01

    The present paper discusses the concept and functioning of an innovative instrument for precise stabilization of gas pressure. The piston gas pressure regulator was constructed at the Strata Mechanics Research Institute of the Polish Academy of Sciences. The tests to which the instrument was subjected involved observing the values of stabilized pressure at the level of 10 bar and 3 bar, for various gas flow rates at the outlet of the instrument. The piston gas pressure regulator operates within the range of 0-10 bar and the gas flow range of 0-240 cm3 min-1. The precision of the process of stabilizing the initial pressure is  ±0.005 bar, regardless of the gas pressure value and the flow rate observed at the outlet of the instrument. Although the pressure transducer’s accuracy is 0.25% of the full range, the conducted tests of the regulator demonstrated that the obtained changeability of the stabilized pressure is at least two times lower. Unlike some other gas pressure regulators available on the market, the instrument constructed by the authors of the present paper is highly precise when it comes to the process of stabilization, and inexpensive to build.

  2. DORIS precise orbit determination and location system performances of ultra stable oscillators

    NASA Astrophysics Data System (ADS)

    Brunet, M.

    1992-06-01

    Elements of the DORIS (Doppler precise positioning System) performances and performances of the DORIS USO (Ultra Stable Oscillators) are described. The DORIS system was designed and developed to meet new needs in precision orbit determination and high accuracy beacon location. DORIS payload was integrated on three French SPOT satellites and on the Topex-Poseidon NASA satellite. The first model DORIS SPOT 2 began operating on 22 Jan. 1990. The fundamental measurement precision depends strongly on the stability of USO, which are used in the onboard receiver, and in ground location beacons.

  3. Numerical accuracy assessment

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-12-01

    A framework is provided for numerical accuracy assessment. The purpose of numerical flow simulations is formulated. This formulation concerns the classes of aeronautical configurations (boundaries), the desired flow physics (flow equations and their properties), the classes of flow conditions on flow boundaries (boundary conditions), and the initial flow conditions. Next, accuracy and economical performance requirements are defined; the final numerical flow simulation results of interest should have a guaranteed accuracy, and be produced for an acceptable FLOP-price. Within this context, the validation of numerical processes with respect to the well known topics of consistency, stability, and convergence when the mesh is refined must be done by numerical experimentation because theory gives only partial answers. This requires careful design of text cases for numerical experimentation. Finally, the results of a few recent evaluation exercises of numerical experiments with a large number of codes on a few test cases are summarized.

  4. Precise verification of a fibre link for frequency transfer

    NASA Astrophysics Data System (ADS)

    Matthee, C. F.; Burger, J. P.; Kritzinger, R.

    2014-06-01

    A new electrically insensitive optical fibre link was installed between two buildings using commercially available equipment. The aim of the link was to transfer the frequency accuracy from the South African National Measure- ment Standard for Time and Frequency (derived from caesium atomic clocks) to an optical frequency comb. This enables direct traceability of optical frequency measurements to internationally verified time standards (UTC), via the timing links at the National Metrology Institute of South Africa (NMISA). A clean-up oscillator is used to improve any degrading of the stability caused by the laser link. Highly precise loop-back experiments were done to verify the accuracy and stability of the fibre link and clean-up oscillator combination. The nature and results of such experiments are presented here, in order to demonstrate the traceability of the fibre link, and therefore the traceable link between the optical frequency comb and the National Measurement Standards for Time and Frequency of South Africa.

  5. The development of high precision carbon fiber composite mirror

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Ding, Jiao-teng; Wang, Yong-jie; Xie, Yong-jie; Ma, Zhen; Fan, Xue-wu

    2016-10-01

    Due to low density, high stiffness, low thermal expansion coefficient, duplicate molding, etc., carbon fiber reinforced polymer (CFRP) is one of the potential materials of the optical mirror. The process developed for Φ300mm high precision CFRP mirror described in this paper. A placement tool used to improve laying accuracy up to ± 0.1°.A special reinforced cell structure designed to increase rigidity and thermal stability. Optical replication process adopted for surface modification of the carbon fiber composite mirror blank. Finally, surface accuracy RMS of Φ300mm CFRP mirror is 0.22μm, surface roughness Ra is about 2nm, and the thermal stability can achieve 13nm /°C from the test result. The research content is of some reference value in the infrared as well as visible light applications.

  6. Investigating the Stability and Accuracy of the Phase Response for NOx Sensing 5% Mg-modified LaCrO3 Electrodes

    SciTech Connect

    Murray, E P; Novak, R F; Kubinski, D J; Soltis, R E; Visser, J H; Woo, L Y; Martin, L P; Glass, R S

    2007-06-14

    Impedance spectroscopy measurements were carried out on LaCr{sub 0.95}Mg{sub 0.05}O{sub 3} (LCM) asymmetric interdigitated electrodes supported on fully stabilized 8-mol% Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} (YSZ) electrolytes. Experiments were carried out using 0-50 ppm NO{sub x}, 5-15% O{sub 2} with N{sub 2} as the balance, over temperatures ranging from 600-700 C. AC measurements taken at a constant frequency between 1-100 Hz indicated the phase response of the sensor was less sensitive to fluctuations in the O{sub 2} concentration and the baseline drift was limited. Specific frequencies were observed where the sensor response was essentially temperature independent.

  7. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  8. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  9. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  10. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  11. State of the Field: Extreme Precision Radial Velocities

    NASA Astrophysics Data System (ADS)

    Fischer, Debra A.; Anglada-Escude, Guillem; Arriagada, Pamela; Baluev, Roman V.; Bean, Jacob L.; Bouchy, Francois; Buchhave, Lars A.; Carroll, Thorsten; Chakraborty, Abhijit; Crepp, Justin R.; Dawson, Rebekah I.; Diddams, Scott A.; Dumusque, Xavier; Eastman, Jason D.; Endl, Michael; Figueira, Pedro; Ford, Eric B.; Foreman-Mackey, Daniel; Fournier, Paul; Fűrész, Gabor; Gaudi, B. Scott; Gregory, Philip C.; Grundahl, Frank; Hatzes, Artie P.; Hébrard, Guillaume; Herrero, Enrique; Hogg, David W.; Howard, Andrew W.; Johnson, John A.; Jorden, Paul; Jurgenson, Colby A.; Latham, David W.; Laughlin, Greg; Loredo, Thomas J.; Lovis, Christophe; Mahadevan, Suvrath; McCracken, Tyler M.; Pepe, Francesco; Perez, Mario; Phillips, David F.; Plavchan, Peter P.; Prato, Lisa; Quirrenbach, Andreas; Reiners, Ansgar; Robertson, Paul; Santos, Nuno C.; Sawyer, David; Segransan, Damien; Sozzetti, Alessandro; Steinmetz, Tilo; Szentgyorgyi, Andrew; Udry, Stéphane; Valenti, Jeff A.; Wang, Sharon X.; Wittenmyer, Robert A.; Wright, Jason T.

    2016-06-01

    The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s-1 measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can

  12. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  13. Assessing the Accuracy and Precision of Inorganic Geochemical Data Produced through Flux Fusion and Acid Digestions: Multiple (60+) Comprehensive Analyses of BHVO-2 and the Development of Improved "Accepted" Values

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Scudder, R.; Dunlea, A. G.; Anderson, C. H.; Murray, R. W.

    2014-12-01

    The use of geological standard reference materials (SRMs) to assess both the accuracy and the reproducibility of geochemical data is a vital consideration in determining the major and trace element abundances of geologic, oceanographic, and environmental samples. Calibration curves commonly are generated that are predicated on accurate analyses of these SRMs. As a means to verify the robustness of these calibration curves, a SRM can also be run as an unknown item (i.e., not included as a data point in the calibration). The experimentally derived composition of the SRM can thus be compared to the certified (or otherwise accepted) value. This comparison gives a direct measure of the accuracy of the method used. Similarly, if the same SRM is analyzed as an unknown over multiple analytical sessions, the external reproducibility of the method can be evaluated. Two common bulk digestion methods used in geochemical analysis are flux fusion and acid digestion. The flux fusion technique is excellent at ensuring complete digestion of a variety of sample types, is quick, and does not involve much use of hazardous acids. However, this technique is hampered by a high amount of total dissolved solids and may be accompanied by an increased analytical blank for certain trace elements. On the other hand, acid digestion (using a cocktail of concentrated nitric, hydrochloric and hydrofluoric acids) provides an exceptionally clean digestion with very low analytical blanks. However, this technique results in a loss of Si from the system and may compromise results for a few other elements (e.g., Ge). Our lab uses flux fusion for the determination of major elements and a few key trace elements by ICP-ES, while acid digestion is used for Ti and trace element analyses by ICP-MS. Here we present major and trace element data for BHVO-2, a frequently used SRM derived from a Hawaiian basalt, gathered over a period of over two years (30+ analyses by each technique). We show that both digestion

  14. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  15. Process stability assessed by selecting Shewhart's psi statistical analysis technique of the influence of matrix modifier and furnace program in the optimization and precision of zinc determinations by graphite furnace atomic absorption spectroscopy.

    PubMed

    Al-Tufail, M; Akram, M; Haq, A

    1999-03-01

    The method previously used in the Toxicology Laboratories of King Faisal Specialist Hospital and Research Center for determining the zinc concentration in serum by Zeeman atomic absorption spectrometer was improved by modifying the matrix modifier and by changing the heated graphite furnace atomization (HGA) program. After trying several methods we failed to achieve the required precision and the accuracy of methods for serum zinc determination. We changed the matrix modifier to a fifty percent mixture (v/v) of 3.90 grams per liter of ammonium phosphate in Type 1 water with 0.2% nitric acid and 1.0 gram per liter of magnesium nitrate in acidic water (0.2% HNO3) with 0.1% triton X-100 was used as matrix modifier. A twenty-five fold dilution of the sample in matrix modifier was injected on the L'vov's platform of the furnace. In order to reduce the high sensitivity of Zn the furnace program was modified. The method is found very robust. The average reproducibility between inter-runs and intra-run is less than 1.59% with a high degree of accuracy. We used two levels of controls i.e. normal or low level and abnormal or high level. The linearity and the detection limit of the assay were 0.9992 and 0.010 micromol/L respectively. Average recovery of the analyte was 98.65%. The X-Bar and R charts were constructed by using Shewhart's statistical analysis technique to assess the test methodology. It was found that the assay is capable and stable for routine clinical and research analysis. The capability index (C(P)) of the assay, an indicator of the precision, was calculated.

  16. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data, and the Southwest Pacific campaign data analysis.

  17. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    NASA Astrophysics Data System (ADS)

    Adams, B. W.; Kim, K.-J.

    2015-03-01

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as 57Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as 181Ta or 45Sc.

  18. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    SciTech Connect

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  19. Laser interferometric high-precision geometry (angle and length) monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Arai, K.; Ueda, A.; Sakagami, M.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.

    2008-07-01

    The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 pm or 10 to 100 prad of rms over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. Useful techniques for measuring displacements on extremely small scales are the wave-front sensing method and the heterodyne interferometrical method. Experiments for verification of measurement principles are well advanced.

  20. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  1. The reliability of single precision computations in the simulation of deep soil heat diffusion in a land surface model

    NASA Astrophysics Data System (ADS)

    Harvey, Richard; Verseghy, Diana L.

    2016-06-01

    Climate models need discretized numerical algorithms and finite precision arithmetic to solve their differential equations. Most efforts to date have focused on reducing truncation errors due to discretization effects, whereas rounding errors due to the use of floating-point arithmetic have received little attention. However, there are increasing concerns about more frequent occurrences of rounding errors in larger parallel computing platforms (due to the conflicting needs of stability and accuracy vs. performance), and while this has not been the norm in climate and forecast models using double precision, this could change with some models that are now compiled with single precision, which raises questions about the validity of using such low precision in climate applications. For example, processes occurring over large time scales such as permafrost thawing are potentially more vulnerable to this issue. In this study we analyze the theoretical and experimental effects of using single and double precision on simulated deep soil temperature from the Canadian LAnd Surface Scheme (CLASS), a state-of-the-art land surface model. We found that reliable single precision temperatures are limited to depths of less than about 20-25 m while double precision shows no loss of accuracy to depths of at least several hundred meters. We also found that, for a given precision level, model accuracy deteriorates when using smaller time steps, further reducing the usefulness of single precision. There is thus a clear danger of using single precision in some climate model applications, in particular any scientifically meaningful study of deep soil permafrost must at least use double precision. In addition, climate modelling teams might well benefit from paying more attention to numerical precision and roundoff issues to offset the potentially more frequent numerical anomalies in future large-scale parallel climate applications.

  2. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  3. Application of length vernier in phase coincidence detection and precision frequency measurement.

    PubMed

    Miao, Miao; Wei, Zhou; Bin, Wang

    2012-02-01

    For comparison of arbitrary frequency signals, the paper proposed two levels of length vernier based on the time-space relationship are used in three levels of phase coincidence detecting circuits to extract the phase coincidence information by proper logic calculation. The length∕phase of each vernier is respectively corresponding to the accuracy and the resolution of detecting circuit. The time-space relationship is based on high-stability, high-accuracy, and high-speed of signal transmission. The method is effective to reduce the fuzzy region in the phase coincidence information and reach a higher measuring precision.

  4. High precision innovative micropump for artificial pancreas

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  5. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  6. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  7. Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Foster, Roger S.; Matsakis, Demetrios N.

    1996-01-01

    We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.

  8. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 3. Geometric Adaptive Control for Accuracy and Stability in Machining Cylindrical Workpiece.

    DTIC Science & Technology

    1985-09-01

    34Metal-cutting Chatter and Its Elimination," Trans. ASME, Vol. 75, 1953 , pp. 1073-1080. [41] Harris, C. J. and Billings, S. A. (Eds.), Self-tuning and...N ANO.. DANO ~ I X-R*25( ANG) Y-R*S IN( ANG) 3600 CALL PLOT(X,Y,2) RETURN END SUBROUTINE LABEL(NT,XI0,XLO,YIO,YLO,THMIN) C

  9. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  10. Tomography & Geochemistry: Precision, Repeatability, Accuracy and Joint Interpretations

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Panza, G. F.; Artemieva, I. M.; Bastow, I. D.; Cammarano, F.; Doglioni, C.; Evans, J. R.; Hamilton, W. B.; Julian, B. R.; Lustrino, M.; Thybo, H.; Yanovskaya, T. B.

    2015-12-01

    Seismic tomography can reveal the spatial seismic structure of the mantle, but has little ability to constrain composition, phase or temperature. In contrast, petrology and geochemistry can give insights into mantle composition, but have severely limited spatial control on magma sources. For these reasons, results from these three disciplines are often interpreted jointly. Nevertheless, the limitations of each method are often underestimated, and underlying assumptions de-emphasized. Examples of the limitations of seismic tomography include its ability to image in detail the three-dimensional structure of the mantle or to determine with certainty the strengths of anomalies. Despite this, published seismic anomaly strengths are often unjustifiably translated directly into physical parameters. Tomography yields seismological parameters such as wave speed and attenuation, not geological or thermal parameters. Much of the mantle is poorly sampled by seismic waves, and resolution- and error-assessment methods do not express the true uncertainties. These and other problems have become highlighted in recent years as a result of multiple tomography experiments performed by different research groups, in areas of particular interest e.g., Yellowstone. The repeatability of the results is often poorer than the calculated resolutions. The ability of geochemistry and petrology to identify magma sources and locations is typically overestimated. These methods have little ability to determine source depths. Models that assign geochemical signatures to specific layers in the mantle, including the transition zone, the lower mantle, and the core-mantle boundary, are based on speculative models that cannot be verified and for which viable, less-astonishing alternatives are available. Our knowledge is poor of the size, distribution and location of protoliths, and of metasomatism of magma sources, the nature of the partial-melting and melt-extraction process, the mixing of disparate melts, and the re-assimilation of crust and mantle lithosphere by rising melt. Interpretations of seismic tomography, petrologic and geochemical observations, and all three together, are ambiguous, and this needs to be emphasized more in presenting interpretations so that the viability of the models can be assessed more reliably.

  11. Precision and accuracy of visual foliar injury assessments

    SciTech Connect

    Gumpertz, M.L.; Tingey, D.T.; Hogsett, W.E.

    1982-07-01

    The study compared three measures of foliar injury: (i) mean percent leaf area injured of all leaves on the plant, (ii) mean percent leaf area injured of the three most injured leaves, and (iii) the proportion of injured leaves to total number of leaves. For the first measure, the variation caused by reader biases and day-to-day variations were compared with the innate plant-to-plant variation. Bean (Phaseolus vulgaris 'Pinto'), pea (Pisum sativum 'Little Marvel'), radish (Rhaphanus sativus 'Cherry Belle'), and spinach (Spinacia oleracea 'Northland') plants were exposed to either 3 ..mu..L L/sup -1/ SO/sub 2/ or 0.3 ..mu..L L/sup -1/ ozone for 2 h. Three leaf readers visually assessed the percent injury on every leaf of each plant while a fourth reader used a transparent grid to make an unbiased assessment for each plant. The mean leaf area injured of the three most injured leaves was highly correlated with all leaves on the plant only if the three most injured leaves were <100% injured. The proportion of leaves injured was not highly correlated with percent leaf area injured of all leaves on the plant for any species in this study. The largest source of variation in visual assessments was plant-to-plant variation, which ranged from 44 to 97% of the total variance, followed by variation among readers (0-32% of the variance). Except for radish exposed to ozone, the day-to-day variation accounted for <18% of the total. Reader bias in assessment of ozone injury was significant but could be adjusted for each reader by a simple linear regression (R/sup 2/ = 0.89-0.91) of the visual assessments against the grid assessments.

  12. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  13. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  14. Precision and Accuracy of Intercontinental Distance Determinations Using Radio Interferometry.

    DTIC Science & Technology

    1983-07-01

    Variations of the dispersion of at least this amount occur in the Mark III system. We cannot place an upper bound on the variations of the dispersion...final two terms will be 0.002 psec and 0.020 psec when t23=2.OxlO 6 sec/sec and vl2-0.02 sec. The latter two values are upper bounds for Earth based...neglected in the derivations in Section 4.1. We will now analyze each of these terms and try to place upper bounds on their contributions to the

  15. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  16. Mixed-Precision Spectral Deferred Correction: Preprint

    SciTech Connect

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  17. Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    SciTech Connect

    Durfee, D. S.; Shaham, Y. K.; Kasevich, M. A.

    2006-12-15

    We report the first demonstration of a matter-wave interference gyroscope that meets both the short-term noise and long-term stability requirements for high accuracy navigation. This performance level resulted from implementation of a novel technique to precisely reverse the input axis of the gyroscope.

  18. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  19. Spacecraft attitude determination accuracy from mission experience

    NASA Astrophysics Data System (ADS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-10-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  20. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  1. A consensus on protein structure accuracy in NMR?

    PubMed

    Billeter, Martin

    2015-02-03

    The precision of an NMR structure may be manipulated by calculation parameters such as calibration factors. Its accuracy is, however, a different issue. In this issue of Structure, Buchner and Güntert present "consensus structure bundles," where precision analysis allows estimation of accuracy.

  2. Micromechanical silicon precision scale

    NASA Astrophysics Data System (ADS)

    Oja, Aarne S.; Sillanpaa, Teuvo; Seppae, H.; Kiihamaki, Jyrki; Seppala, P.; Karttunen, Jani; Riski, Kari

    2000-04-01

    A micro machined capacitive silicon scale has been designed and fabricated. It is intended for weighing masses on the order of 1 g at the resolution of about 1 ppm and below. The device consists of a micro machined SOI chip which is anodically bonded to a glass chip. The flexible electrode is formed in the SOI device layer. The other electrode is metallized on the glass and is divided into three sections. The sections are used for detecting tilting of the top electrode due to a possible off-centering of the mass load. The measuring circuit implements electrostatic force feedback and keeps the top electrode at a constant horizontal position irrespective of its mass loading. First measurements have demonstrated the stability allowing measurement of 1 g masses at an accuracy of 2...3 ppm.

  3. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  4. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  5. A high accuracy sun sensor

    NASA Astrophysics Data System (ADS)

    Bokhove, H.

    The High Accuracy Sun Sensor (HASS) is described, concentrating on measurement principle, the CCD detector used, the construction of the sensorhead and the operation of the sensor electronics. Tests on a development model show that the main aim of a 0.01-arcsec rms stability over a 10-minute period is closely approached. Remaining problem areas are associated with the sensor sensitivity to illumination level variations, the shielding of the detector, and the test and calibration equipment.

  6. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  7. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  8. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  9. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  10. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  11. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  12. Measurement of the frequency stability of responders in aircraft

    NASA Technical Reports Server (NTRS)

    Liu, Xiaofan

    1994-01-01

    Measurement on an aircraft orbit, such as a satellite launching orbit, is made by the responder in the aircraft along with several remote track stations on the ground. During the launching, the system is required to have precise time synchronization and frequency accuracy. At the same time, accurate measurement of aircraft velocity requires high frequency stability of the system. However, atomic frequency standards in the ground stations supply time and frequency reference standard with excellent long term and short term frequency stability for the above-mentioned goals. The stability of responder is also an important factor affecting the performance of the system and there are more requirements for the corresponding time/frequency measurements. In the system, the responders do not use continuous wave (CW) but narrow pulse modulated wave; consequently, the characterization theory of their stability is more complicated and the measurement technique is more difficult for pulsed wave than that for CW. A systematic characterization theory of the frequency stability for pulsed wave is demonstrated and the measuring methods are discussed. The measurement systems, which have been set up in Beijing Institute of Radio Metrology and Measurement (BIRMM) and can be used to test the frequency stability of pulse coherent responders in time domain and frequency domain with high sensitivity and accuracy, are described. Using these measurement systems, successful measurements for the responders were made with which the satellite launching orbits were precisely obtained and tracked.

  13. Precise predictions for slepton pair production

    SciTech Connect

    Ayres Freitas; Andreas von Manteuffel

    2002-11-07

    At a future linear collider, the masses and couplings of scalar leptons can be measured with high accuracy, thus requiring precise theoretical predictions for the relevant processes. In this work, after a discussion of the expected experimental precision, the complete one-loop corrections to smuon and selectron pair production in the MSSM are presented and the effect of different contributions in the result is analyzed.

  14. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  15. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  16. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  17. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  18. Nonlinear analysis for image stabilization in IR imaging system

    NASA Astrophysics Data System (ADS)

    Xie, Zhan-lei; Lu, Jin; Luo, Yong-hong; Zhang, Mei-sheng

    2009-07-01

    In order to acquire stabilization image for IR imaging system, an image stabilization system is required. Linear method is often used in current research on the system and a simple PID controller can meet the demands of common users. In fact, image stabilization system is a structure with nonlinear characters such as structural errors, friction and disturbances. In up-grade IR imaging system, although conventional PID controller is optimally designed, it cannot meet the demands of higher accuracy and fast responding speed when disturbances are present. To get high-quality stabilization image, nonlinear characters should be rejected. The friction and gear clearance are key factors and play an important role in the image stabilization system. The friction induces static error of system. When the system runs at low speed, stick-slip and creeping induced by friction not only decrease resolution and repeating accuracy, but also increase the tracking error and the steady state error. The accuracy of the system is also limited by gear clearance, and selfexcited vibration is brought on by serious clearance. In this paper, effects of different nonlinear on image stabilization precision are analyzed, including friction and gear clearance. After analyzing the characters and influence principle of the friction and gear clearance, a friction model is established with MATLAB Simulink toolbox, which is composed of static friction, Coulomb friction and viscous friction, and the gear clearance non-linearity model is built, providing theoretical basis for the future engineering practice.

  19. Development of laser interferometric high-precision geometry monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Ueda, Akitoshi; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2008-07-01

    The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 picometer or 10 to 100 picoradian in root-mean-square over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. One of useful techniques for measuring displacements in extremely minute scales is the heterodyne interferometrical method. Experiment for verification of multi degree of freedom measurement was performed and mirror motions were successfully monitored with three degree of freedom.

  20. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  1. Automatic precision measurement of spectrograms.

    PubMed

    Palmer, B A; Sansonetti, C J; Andrew, K L

    1978-08-01

    A fully automatic comparator has been designed and implemented to determine precision wavelengths from high-resolution spectrograms. The accuracy attained is superior to that of an experienced operator using a semiautomatic comparator with a photoelectric setting device. The system consists of a comparator, slightly modified for simultaneous data acquisition from two parallel scans of the spectrogram, interfaced to a minicomputer. The software which controls the system embodies three innovations of special interest. (1) Data acquired from two parallel scans are compared and used to separate unknown from standard lines, to eliminate spurious lines, to identify blends of unknown with standard lines, to improve the accuracy of the measured positions, and to flag lines which require special examination. (2) Two classes of lines are automatically recognized and appropriate line finding methods are applied to each. This provides precision measurement for both simple and complex line profiles. (3) Wavelength determination using a least-squares fitted grating equation is supported in addition to polynomial interpolation. This is most useful in spectral regions with sparsely distributed standards. The principles and implementation of these techniques are fully described.

  2. Wafer-Scale Precise Patterning of Organic Single-Crystal Nanowire Arrays via a Photolithography-Assisted Spin-Coating Method.

    PubMed

    Deng, Wei; Zhang, Xiujuan; Wang, Liang; Wang, Jincheng; Shang, Qixun; Zhang, Xiaohong; Huang, Liming; Jie, Jiansheng

    2015-12-02

    A photolithography-assisted spin-coating approach is developed to produce single-crystal organic nanowire (NW) arrays at designated locations with high precision and high efficiency. This strategy enables the large-scale fabrication of organic NW arrays with nearly the same accuracy, reliability, and flexibility as photolithography. The high mobilities of the organic NWs enable the control of the switch of multicolored light-emitting devices with good stability.

  3. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  4. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  5. Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.

    2015-11-01

    There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.

  6. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  7. [Precision and personalized medicine].

    PubMed

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  8. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  9. Precision aerial application for site-specific rice crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  10. Assessing the Intraoperative Accuracy of Pedicle Screw Placement by Using a Bone-Mounted Miniature Robot System through Secondary Registration

    PubMed Central

    Wu, Chieh-Hsin; Tsai, Cheng-Yu; Chang, Chih-Hui; Lin, Chih-Lung; Tsai, Tai-Hsin

    2016-01-01

    Introduction Pedicle screws are commonly employed to restore spinal stability and correct deformities. The Renaissance robotic system was developed to improve the accuracy of pedicle screw placement. Purpose In this study, we developed an intraoperative classification system for evaluating the accuracy of pedicle screw placements through secondary registration. Furthermore, we evaluated the benefits of using the Renaissance robotic system in pedicle screw placement and postoperative evaluations. Finally, we examined the factors affecting the accuracy of pedicle screw implantation. Results Through use of the Renaissance robotic system, the accuracy of Kirschner-wire (K-wire) placements deviating <3 mm from the planned trajectory was determined to be 98.74%. According to our classification system, the robot-guided pedicle screw implantation attained an accuracy of 94.00% before repositioning and 98.74% after repositioning. However, the malposition rate before repositioning was 5.99%; among these placements, 4.73% were immediately repositioned using the robot system and 1.26% were manually repositioned after a failed robot repositioning attempt. Most K-wire entry points deviated caudally and laterally. Conclusion The Renaissance robotic system offers high accuracy in pedicle screw placement. Secondary registration improves the accuracy through increasing the precision of the positioning; moreover, intraoperative evaluation enables immediate repositioning. Furthermore, the K-wire tends to deviate caudally and laterally from the entry point because of skiving, which is characteristic of robot-assisted pedicle screw placement. PMID:27054360

  11. Research on high accuracy diameter measurement system with CCD

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng

    2011-08-01

    Non-touch measurement is an important technology in many domains such as the monitoring of tool breakage and tool wear, et al. Based on the method of curve fitting and demanding inflection point, we present a high accuracy non-touch diameter measurement system. The measurement system comprise linear array CCD, CCD driving circuit, power supply, workseat, light source, data acquisition card and so on. The picture element of the linear array CCD is 2048, and the size of every pixel and the spacing of adjacent pixels have the same size of 14μmx14μm. The stabilized voltage supply has a constant voltage output of 3V. The light is generated by a halogen tungsten lamp, which does not represent any risk to the health of the whole system. The data acquisition card converts the analog signal to digital signal with the accuracy of 12 bit. The error of non-uniform of the CCD pixels in sensitivity and the electrical noise error are indicated in detail. The measurement system has a simple structure, high measuring precision, and can be carried out automatically. Experiment proves that the diameter measurement of the system is within the range of Φ0.5~Φ10mm, and the total measuring unstability of the system is within the range of +/- 1.4μm.

  12. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  13. Optical timing receiver for the NASA laser ranging system. Part 2: High precision time interval digitizer

    NASA Technical Reports Server (NTRS)

    Leskovar, B.; Turko, B.

    1977-01-01

    The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.

  14. Precision Pointing Control System (PPCS) system design and analysis. [for gimbaled experiment platforms

    NASA Technical Reports Server (NTRS)

    Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.

    1972-01-01

    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.

  15. Precision Mass Measurements at CARIBU

    NASA Astrophysics Data System (ADS)

    Lascar, D.; van Schelt, J.; Savard, G.; Caldwell, S.; Chaudhuri, A.; Clark, J. A.; Levand, A. F.; Li, G.; Sternberg, M.; Sun, T.; Zabransky, B. J.; Segel, R.; Sharma, K.

    2010-02-01

    Neutron separation energies (Sn) are essential inputs to models of explosive r-process nucleosynthesis. However, for nuclei farther from stability, the precision of Sn decreases as production decreases and observation of those nuclei become more difficult. Many of the most critical inputs to the models are based on extrapolations from measurements of masses closer to stability than the predicted r-process path. Measuring masses that approach and lie on the predicted r-process path will further constrain the systematic uncertainties in these extrapolated values. The Canadian Penning Trap Mass Spectrometer (CPT) at Argonne National Laboratory (ANL) has measured the masses of more than 160 nuclei to high precision. A recent move to the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) at ANL has given the CPT unique access to weakly produced nuclei that cannot be easily reached via proton induced fission of ^238U. CARIBU will eventually use a 1 Ci source of ^252Cf to produce these nuclei. Installation of the CPT at CARIBU as well as the first CPT mass measurements of neutron rich nuclei at CARIBU will be discussed. )

  16. Precision antenna reflector structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    The assembly of the Large Precise Reflector Infrared Telescope is detailed. Also given are the specifications for the Aft Cargo Carrier and the Large Precision Reflector structure. Packaging concepts and options, stowage depth and support truss geometry are also considered. An example of a construction scenario is given.

  17. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  18. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  19. Landsat wildland mapping accuracy

    USGS Publications Warehouse

    Todd, William J.; Gehring, Dale G.; Haman, J. F.

    1980-01-01

    A Landsat-aided classification of ten wildland resource classes was developed for the Shivwits Plateau region of the Lake Mead National Recreation Area. Single stage cluster sampling (without replacement) was used to verify the accuracy of each class.

  20. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  1. High precision predictions for exclusive VH production at the LHC

    DOE PAGES

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading ordermore » calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  2. HVDC models used in stability studies

    SciTech Connect

    Johnson, B.K.

    1989-04-01

    A new generation of detailed models for HVDC systems has recently been applied in power system stability programs. These models represent the high speed dynamics of the converter controllers as well as the L/R dynamics of the dc transmission. Older dc models such as those described in reference which are based upon pseudo-steady state relationships are however still in general use. The latter models remain popular since they require a minimum of data and significantly less computer resources than the detailed models. The following questions therefore need to be answered concerning the two types of models: (1) To what extent is simulation accuracy impacted by using the older HVDC model. (2) Is the difference in precision significant compared to other uncertainties which are inherent in stability calculations. This paper addresses these questions and also considers a third type of HVDC model described in Appendix I which relieves some of the assumptions associated with the pseudo steady state models.

  3. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  4. A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy

    SciTech Connect

    Sow, P. L. T.; Mejri, S.; Tokunaga, S. K.; Lopez, O.; Argence, B.; Chardonnet, C.; Darquié, B.; Goncharov, A.; Amy-Klein, A.; Daussy, C.

    2014-06-30

    We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-μm to the secondary frequency standard of this spectral region, a CO{sub 2} laser stabilized on a saturated absorption line of OsO{sub 4}. The stability and accuracy of the standard are transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH{sub 3} and methyltrioxorhenium, two species of interest for applications in precision measurements.

  5. Programming supramolecular biohybrids as precision therapeutics.

    PubMed

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  6. A 3-D Multilateration: A Precision Geodetic Measurement System

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Fliegel, H. F.; Jaffe, R. M.; Muller, P. M.; Ong, K. M.; Vonroos, O. H.

    1972-01-01

    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination.

  7. High-precision measurement of magnetic penetration depth in superconducting films

    NASA Astrophysics Data System (ADS)

    He, X.; Gozar, A.; Sundling, R.; Božović, I.

    2016-11-01

    The magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other deposition methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. The sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.

  8. High-precision measurement of magnetic penetration depth in superconducting films

    SciTech Connect

    He, X.; Gozar, A.; Sundling, R.; Božović, I.

    2016-11-01

    We report that the magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other deposition methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. Lastly, the sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.

  9. High-precision measurement of magnetic penetration depth in superconducting films

    DOE PAGES

    He, X.; Gozar, A.; Sundling, R.; ...

    2016-11-01

    We report that the magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other depositionmore » methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. Lastly, the sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.« less

  10. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  11. Electron bunch timing with femtosecond precision in a superconducting free-electron laser.

    PubMed

    Löhl, F; Arsov, V; Felber, M; Hacker, K; Jalmuzna, W; Lorbeer, B; Ludwig, F; Matthiesen, K-H; Schlarb, H; Schmidt, B; Schmüser, P; Schulz, S; Szewinski, J; Winter, A; Zemella, J

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  12. Accuracy of analyses of microelectronics nanostructures in atom probe tomography

    NASA Astrophysics Data System (ADS)

    Vurpillot, F.; Rolland, N.; Estivill, R.; Duguay, S.; Blavette, D.

    2016-07-01

    The routine use of atom probe tomography (APT) as a nano-analysis microscope in the semiconductor industry requires the precise evaluation of the metrological parameters of this instrument (spatial accuracy, spatial precision, composition accuracy or composition precision). The spatial accuracy of this microscope is evaluated in this paper in the analysis of planar structures such as high-k metal gate stacks. It is shown both experimentally and theoretically that the in-depth accuracy of reconstructed APT images is perturbed when analyzing this structure composed of an oxide layer of high electrical permittivity (higher-k dielectric constant) that separates the metal gate and the semiconductor channel of a field emitter transistor. Large differences in the evaporation field between these layers (resulting from large differences in material properties) are the main sources of image distortions. An analytic model is used to interpret inaccuracy in the depth reconstruction of these devices in APT.

  13. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  14. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  15. Reaching sub-milimag photometric precision on Beta Pictoris with a nanosat: the PicSat mission

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Lacour, S.; Lapeyrère, V.; David, L.; Crouzier, A.; Dufoing, C.; Faiz, H.; Lemoult, T.; Trébuchet, P.

    2016-07-01

    PicSat is a nanosatellite currently being developed to observe the transit of the giant planet β Pictoris, expected some time between July 2017 and June 2018. The mission is based on a Cubesat architecture, with a small but ambitious 2 kg opto-mechanical payload specifically designed for high precision photometry. The satellite will be launched in early 2017, probably on a 600 km Sun synchronous orbit. The main objective of the mission is the constant monitoring of the brightness of Pic at an unprecedented combination of reliability and precision (200 ppm per hour, with interruptions of at most 30 minutes) to finely characterize the transiting exoplanet and detect exocomets in the Pictoris system. To achieve this difficult objective, the payload is designed with a 3.5 cm effective aperture telescope which injects the light in a single-mode optical fiber linked to an avalanche photodioode. A two-axis piezoelectric actuation system, driven by a tailor-made feedback loop control algorithm, is used to lock the fiber on the center of the star in the focal plane. These actuators complement the attitude determination and control system of the satellite to maintain the sub-arcsecond pointing accuracy required to reach the excellent level of photometric precision. Overall, the mission raises multiple very difficult challenges: high temperature stability of the avalanche detector (achieved with a thermoelectric colling device), high pointing accuracy and stability, and short timeframe for the development.

  16. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  17. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  18. Precision medicine in cardiology.

    PubMed

    Antman, Elliott M; Loscalzo, Joseph

    2016-10-01

    The cardiovascular research and clinical communities are ideally positioned to address the epidemic of noncommunicable causes of death, as well as advance our understanding of human health and disease, through the development and implementation of precision medicine. New tools will be needed for describing the cardiovascular health status of individuals and populations, including 'omic' data, exposome and social determinants of health, the microbiome, behaviours and motivations, patient-generated data, and the array of data in electronic medical records. Cardiovascular specialists can build on their experience and use precision medicine to facilitate discovery science and improve the efficiency of clinical research, with the goal of providing more precise information to improve the health of individuals and populations. Overcoming the barriers to implementing precision medicine will require addressing a range of technical and sociopolitical issues. Health care under precision medicine will become a more integrated, dynamic system, in which patients are no longer a passive entity on whom measurements are made, but instead are central stakeholders who contribute data and participate actively in shared decision-making. Many traditionally defined diseases have common mechanisms; therefore, elimination of a siloed approach to medicine will ultimately pave the path to the creation of a universal precision medicine environment.

  19. Next generation KATRIN high precision voltage divider for voltages up to 65kV

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.

    2013-10-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.

  20. Seasonal Effects on GPS PPP Accuracy

    NASA Astrophysics Data System (ADS)

    Saracoglu, Aziz; Ugur Sanli, D.

    2016-04-01

    GPS Precise Point Positioning (PPP) is now routinely used in many geophysical applications. Static positioning and 24 h data are requested for high precision results however real life situations do not always let us collect 24 h data. Thus repeated GPS surveys of 8-10 h observation sessions are still used by some research groups. Positioning solutions from shorter data spans are subject to various systematic influences, and the positioning quality as well as the estimated velocity is degraded. Researchers pay attention to the accuracy of GPS positions and of the estimated velocities derived from short observation sessions. Recently some research groups turned their attention to the study of seasonal effects (i.e. meteorological seasons) on GPS solutions. Up to now usually regional studies have been reported. In this study, we adopt a global approach and study the various seasonal effects (including the effect of the annual signal) on GPS solutions produced from short observation sessions. We use the PPP module of the NASA/JPL's GIPSY/OASIS II software and globally distributed GPS stations' data of the International GNSS Service. Accuracy studies previously performed with 10-30 consecutive days of continuous data. Here, data from each month of a year, incorporating two years in succession, is used in the analysis. Our major conclusion is that a reformulation for the GPS positioning accuracy is necessary when taking into account the seasonal effects, and typical one term accuracy formulation is expanded to a two-term one.

  1. Accuracy of schemes with nonuniform meshes for compressible fluid flows

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The accuracy of the space discretization for time-dependent problems when a nonuniform mesh is used is considered. Many schemes reduce to first-order accuracy while a popular finite volume scheme is even inconsistent for general grids. This accuracy is based on physical variables. However, when accuracy is measured in computational variables then second-order accuracy can be obtained. This is meaningful only if the mesh accurately reflects the properties of the solution. In addition, the stability properties of some improved accurate schemes are analyzed and it can be shown that they also allow for larger time steps when Runge-Kutta type methods are used to advance in time.

  2. The Paradox of Abstraction: Precision Versus Concreteness.

    PubMed

    Iliev, Rumen; Axelrod, Robert

    2016-11-22

    We introduce a novel measure of abstractness based on the amount of information of a concept computed from its position in a semantic taxonomy. We refer to this measure as precision. We propose two alternative ways to measure precision, one based on the path length from a concept to the root of the taxonomic tree, and another one based on the number of direct and indirect descendants. Since more information implies greater processing load, we hypothesize that nouns higher in precision will have a processing disadvantage in a lexical decision task. We contrast precision to concreteness, a common measure of abstractness based on the proportion of sensory-based information associated with a concept. Since concreteness facilitates cognitive processing, we predict that while both concreteness and precision are measures of abstractness, they will have opposite effects on performance. In two studies we found empirical support for our hypothesis. Precision and concreteness had opposite effects on latency and accuracy in a lexical decision task, and these opposite effects were observable while controlling for word length, word frequency, affective content and semantic diversity. Our results support the view that concepts organization includes amodal semantic structures which are independent of sensory information. They also suggest that we should distinguish between sensory-based and amount-of-information-based abstractness.

  3. Design and experiment on a multi-functioned and programmable piezoelectric ceramic power supply with high precision for speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Ye, Yan; Wang, Yong-hong; Yang, En-zhen

    2016-01-01

    Speckle interferometry is a method of measuring structure's tiny deformations which requires accurate phase information of interference fringes. The phase information is acquired by micro-displacement produced by piezoelectric ceramic (PZT). In order to drive the PZT micro-displacement actuator, a multi-functioned and programmable PZT power supply with high precision is designed. Calibration experiment has been done to the PZT micro-actuator in speckle interferometry. Some experiments were also done to test its relevant characteristics. The experiment results show that it has high linearity, repeatability, stability, low ripple and can meet the requirement of the reliability and displacement accuracy in speckle interferometry.

  4. Trade-off between frequency and precision during stepping movements: Kinematic and BOLD brain activation patterns.

    PubMed

    Martínez, Martin; Valencia, Miguel; Vidorreta, Marta; Luis, Elkin O; Castellanos, Gabriel; Villagra, Federico; Fernández-Seara, Maria A; Pastor, Maria A

    2016-05-01

    The central nervous system has the ability to adapt our locomotor pattern to produce a wide range of gait modalities and velocities. In reacting to external pacing stimuli, deviations from an individual preferred cadence provoke a concurrent decrease in accuracy that suggests the existence of a trade-off between frequency and precision; a compromise that could result from the specialization within the control centers of locomotion to ensure a stable transition and optimal adaptation to changing environment. Here, we explore the neural correlates of such adaptive mechanisms by visually guiding a group of healthy subjects to follow three comfortable stepping frequencies while simultaneously recording their BOLD responses and lower limb kinematics with the use of a custom-built treadmill device. In following the visual stimuli, subjects adopt a common pattern of symmetric and anti-phase movements across pace conditions. However, when increasing the stimulus frequency, an improvement in motor performance (precision and stability) was found, which suggests a change in the control mode from reactive to predictive schemes. Brain activity patterns showed similar BOLD responses across pace conditions though significant differences were observed in parietal and cerebellar regions. Neural correlates of stepping precision were found in the insula, cerebellum, dorsolateral pons and inferior olivary nucleus, whereas neural correlates of stepping stability were found in a distributed network, suggesting a transition in the control strategy across the stimulated range of frequencies: from unstable/reactive at lower paces (i.e., stepping stability managed by subcortical regions) to stable/predictive at higher paces (i.e., stability managed by cortical regions). Hum Brain Mapp 37:1722-1737, 2016. © 2016 Wiley Periodicals, Inc.

  5. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  6. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  7. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  8. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  9. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  10. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  11. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  12. Precision gravimetric survey at the conditions of urban agglomerations

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana; Lygin, Ivan; Fadeev, Alexander

    2014-05-01

    internal convergence are independent on transportation mode. Actually, measurements differ just by the processing time and appropriate number of readings. Important, that the internal convergence is the individual attribute of particular device. For the investigated gravimeters it varies from ±3 up to ±8 μGals. Various stability of the gravimeters location base. The most stable basis (minimum microseisms) in this experiment was a concrete pedestal, the least stable - point on the 28th floor. There is no direct dependence of the measurement results variance at the external noise level. Moreover, the external dispersion between different gravimeters is minimal in the point of the highest microseisms. Conclusions. The quality of the modern high-precision gravimeters Scintrex CG-5 Autograv measurements is determined by stability of the particular device, its standard deviation value and the nonlinearity drift degree. Despite the fact, that mentioned parameters of the tested gravimeters, generally corresponded to the factory characters, for the surveys required accuracy ±2-5 μGals, the best gravimeters should be selected. Practical gravimetric survey with such accuracy allowed reliable determination of the position of technical communication boxes and underground walkway in the urban area, indicated by gravity minimums with the amplitudes from 6-8 μGals and 1 - 15 meters width. The holes' parameters, obtained as the result of interpretationare well aligned with priori data.

  13. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  14. Teaching with Precision.

    ERIC Educational Resources Information Center

    Raybould, Ted; Solity, Jonathan

    1982-01-01

    Use of precision teaching principles with learning problem students involves five steps: specifying performance, recording daily behavior, charting daily behavior, recording the teaching approach, and analyzing data. The approach has been successfully implemented through consultation of school psychologists in Walsall, England. (CL)

  15. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  16. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  17. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  18. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  19. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  20. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  1. High-precision laser machining of ceramics

    NASA Astrophysics Data System (ADS)

    Toenshoff, Hans K.; von Alvensleben, Ferdinand; Graumann, Christoph; Willmann, Guido

    1998-09-01

    The increasing demand for highly developed ceramic materials for various applications calls for innovative machining technologies yielding high accuracy and efficiency. Associated problems with conventional, i.e. mechanical methods, are unacceptable tool wear as well as force induced damages on ceramic components. Furthermore, the established grinding techniques often meet their limits if accurate complex 2D or 3D structures are required. In contrast to insufficient mechanical processes, UV-laser precision machining of ceramics offers not only a valuable technological alternative but a considerable economical aspect as well. In particular, excimer lasers provide a multitude of advantages for applications in high precision and micro technology. Within the UV wavelength range and pulses emitted in the nano-second region, minimal thermal effects on ceramics and polymers are observed. Thus, the ablation geometry can be controlled precisely in the lateral and vertical directions. In this paper, the excimer laser machining technology developed at the Laser Zentrum Hannover is explained. Representing current and future industrial applications, examinations concerning the precision cutting of alumina (Al2O3), and HF-composite materials, the ablation of ferrite ceramics for precision inductors and the structuring of SiC sealing and bearing rings are presented.

  2. Converting Human Proteins into Precision Polymer Therapeutics.

    PubMed

    Boldt, Felix; Liu, Weina; Wu, Yuzhou; Weil, Tanja

    2016-01-01

    Cells as the smallest unit of life rely on precise macromolecules and programmable supramolecular interactions to accomplish the various vital functions. To translate such strategies to precisely control architectures and interactions into the synthetic world represents an exciting endeavor. Polymers with distinct structures, sequences and architectures are still challenging to achieve. However, in particular for biomedical applications, reproducible synthesis, narrow dispersities, tunable functionalities and additionally biocompatibility of the polymeric materials are crucial. Polymers derived from protein precursors provide many advantages of proteins such as precise monomer sequences and contour lengths, biodegradability and multiple functionalities, which can be synergistically combined with the valuable features of synthetic polymers e.g. stability, tunable solubility and molecular weights. The resulting polymeric biohybrid materials offer many applications ranging from drug delivery to biosensing and therapeutic hydrogels. This minireview summarizes the most recent advances in this field.

  3. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  4. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  5. The Precision Field Lysimeter Concept

    NASA Astrophysics Data System (ADS)

    Fank, J.

    2009-04-01

    The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent

  6. Principles and techniques for designing precision machines

    SciTech Connect

    Hale, Layton Carter

    1999-02-01

    This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High- Productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Deterministic Damping, damping designs that can be analyzed and optimized with predictive results. Several chapters present a main thrust of the thesis, Exact-Constraint Design. A main contribution is a generalized modeling approach developed through the course of creating several unique designs. The final chapter is the primary case study of the thesis, the Conceptual Design of a Horizontal Machining Center.

  7. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  8. Precision disablement aiming system

    SciTech Connect

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  9. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  10. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  11. Precision orbit determination of altimetric satellites

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Ries, John C.; Tapley, Byron D.

    1994-01-01

    The ability to determine accurate global sea level variations is important to both detection and understanding of changes in climate patterns. Sea level variability occurs over a wide spectrum of temporal and spatial scales, and precise global measurements are only recently possible with the advent of spaceborne satellite radar altimetry missions. One of the inherent requirements for accurate determination of absolute sea surface topography is that the altimetric satellite orbits be computed with sub-decimeter accuracy within a well defined terrestrial reference frame. SLR tracking in support of precision orbit determination of altimetric satellites is significant. Recent examples are the use of SLR as the primary tracking systems for TOPEX/Poseidon and for ERS-1 precision orbit determination. The current radial orbit accuracy for TOPEX/Poseidon is estimated to be around 3-4 cm, with geographically correlated orbit errors around 2 cm. The significance of the SLR tracking system is its ability to allow altimetric satellites to obtain absolute sea level measurements and thereby provide a link to other altimetry measurement systems for long-term sea level studies. SLR tracking allows the production of precise orbits which are well centered in an accurate terrestrial reference frame. With proper calibration of the radar altimeter, these precise orbits, along with the altimeter measurements, provide long term absolute sea level measurements. The U.S. Navy's Geosat mission is equipped with only Doppler beacons and lacks laser retroreflectors. However, its orbits, and even the Geosat orbits computed using the available full 40-station Tranet tracking network, yield orbits with significant north-south shifts with respect to the IERS terrestrial reference frame. The resulting Geosat sea surface topography will be tilted accordingly, making interpretation of long-term sea level variability studies difficult.

  12. High Precision GPS Measurements

    DTIC Science & Technology

    2010-02-28

    troposphere delays with cm-level accuracy [15]. For example, the modified Hopfield model (MHM) has been shown to accurately calculate both the...differences between two locations near Rayleigh, North Carolina; RALR and NCRD which are part of the network of Continuously Operating Reference...Fritsche, M., R. Dietrich, A. Rulke, M. Rothacher, R. Steigenberger, “Impact of higher-order ionosphere terms on GPS-derived global network solutions

  13. Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan

    2006-01-01

    Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.

  14. Highly Parallel, High-Precision Numerical Integration

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-04-22

    This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.

  15. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  16. Stabilized Zeeman split laser

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a stablized Zeeman split laser for use in a polarization profilometer is discussed. A Hewlett-Packard laser was modified to stabilize the Zeeman split beat frequency thereby increasing the phase measurement accuracy from the Hewlett-Packard 3 degrees to an accuracy of .01 degrees. The addition of a two layered inductive winding converts the laser to a current controlled oscillator whose frequency is linearly related to coil current. This linear relationship between coil current and laser frequency permits phase locking the laser frequency to a stable crystal controlled reference frequency. The stability of the system is examined and the equipment operation procedures are outlined.

  17. Thermocouple Calibration and Accuracy in a Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Nathal, M. V.; Keller, D. J.

    2002-01-01

    A consolidation of information has been provided that can be used to define procedures for enhancing and maintaining accuracy in temperature measurements in materials testing laboratories. These studies were restricted to type R and K thermocouples (TCs) tested in air. Thermocouple accuracies, as influenced by calibration methods, thermocouple stability, and manufacturer's tolerances were all quantified in terms of statistical confidence intervals. By calibrating specific TCs the benefits in accuracy can be as great as 6 C or 5X better compared to relying on manufacturer's tolerances. The results emphasize strict reliance on the defined testing protocol and on the need to establish recalibration frequencies in order to maintain these levels of accuracy.

  18. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  19. Accuracy of Digital vs. Conventional Implant Impressions

    PubMed Central

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  20. Arizona Vegetation Resource Inventory (AVRI) accuracy assessment

    USGS Publications Warehouse

    Szajgin, John; Pettinger, L.R.; Linden, D.S.; Ohlen, D.O.

    1982-01-01

    A quantitative accuracy assessment was performed for the vegetation classification map produced as part of the Arizona Vegetation Resource Inventory (AVRI) project. This project was a cooperative effort between the Bureau of Land Management (BLM) and the Earth Resources Observation Systems (EROS) Data Center. The objective of the accuracy assessment was to estimate (with a precision of ?10 percent at the 90 percent confidence level) the comission error in each of the eight level II hierarchical vegetation cover types. A stratified two-phase (double) cluster sample was used. Phase I consisted of 160 photointerpreted plots representing clusters of Landsat pixels, and phase II consisted of ground data collection at 80 of the phase I cluster sites. Ground data were used to refine the phase I error estimates by means of a linear regression model. The classified image was stratified by assigning each 15-pixel cluster to the stratum corresponding to the dominant cover type within each cluster. This method is known as stratified plurality sampling. Overall error was estimated to be 36 percent with a standard error of 2 percent. Estimated error for individual vegetation classes ranged from a low of 10 percent ?6 percent for evergreen woodland to 81 percent ?7 percent for cropland and pasture. Total cost of the accuracy assessment was $106,950 for the one-million-hectare study area. The combination of the stratified plurality sampling (SPS) method of sample allocation with double sampling provided the desired estimates within the required precision levels. The overall accuracy results confirmed that highly accurate digital classification of vegetation is difficult to perform in semiarid environments, due largely to the sparse vegetation cover. Nevertheless, these techniques show promise for providing more accurate information than is presently available for many BLM-administered lands.

  1. Radiocarbon dating accuracy improved

    NASA Astrophysics Data System (ADS)

    Scientists have extended the accuracy of carbon-14 (14C) dating by correlating dates older than 8,000 years with uranium-thorium dates that span from 8,000 to 30,000 years before present (ybp, present = 1950). Edouard Bard, Bruno Hamelin, Richard Fairbanks and Alan Zindler, working at Columbia University's Lamont-Doherty Geological Observatory, dated corals from reefs off Barbados using both 14C and uranium-234/thorium-230 by thermal ionization mass spectrometry techniques. They found that the two age data sets deviated in a regular way, allowing the scientists to correlate the two sets of ages. The 14C dates were consistently younger than those determined by uranium-thorium, and the discrepancy increased to about 3,500 years at 20,000 ybp.

  2. High precision metrology based microwave effective linewidth measurement technique

    SciTech Connect

    Mo, Nan; Green, Jerome J.; Beitscher, Bailey A.; Patton, Carl E.

    2007-11-15

    A precision microwave effective linewidth measurement technique for magnetic samples has been developed. The measurement utilizes a high-Q cylindrical cavity that contains the sample of interest, a highly stable and programable static magnetic field source, a computer controlled network analyzer for cavity center frequency {omega}{sub c} and quality factor Q{sub c} determinations, and the standard metrological substitution ABA method for accurate relative {omega}{sub c} and Q{sub c} measurements. Sequential long term ABA measurements show that the time and temperature drifts and random errors are the dominant sources of error, with uncertainties in {omega}{sub c}/2{pi} and Q{sub c} in the range of 50 kHz and 25, respectively. The ABA method is applied to eliminate these drifts and minimize the random errors. For measurements over 25 ABA cycles, accuracy is improved to 0.14 kHz for {omega}{sub c}/2{pi} and 3 for Q{sub c}. The temperature variation over a single ABA cycle is generally on the order of 10{sup -3}-10{sup -5} deg. C and there is no need for any further temperature stabilization or correction measures. The overall uncertainty in the 10 GHz effective linewidth determinations for a 3 mm diam, 0.5 mm thick polycrystalline yttrium iron garnet (YIG) disk is 0.15 Oe or less, well below the intrinsic single crystal YIG linewidth. This represents a factor of 10 improvement in measurement accuracy over previous work.

  3. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  4. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  5. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  6. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  7. Laser interferometric high-precision angle monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2006-06-01

    The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.

  8. A System For Load Isolation And Precision Pointing

    NASA Astrophysics Data System (ADS)

    Keckler, Claude R.; Hamilton, Brian J.

    1983-11-01

    A system capable of satisfying the accuracy and stability requirements dictated by Shuttle-borne payloads utilizing large optics has been under joint NASA/Sperry development. This device, denoted the Annular Suspension and Pointing System, employs a unique combination of conventional gimbals and magnetic bearing actuators, thereby providing for the "complete" isolation of the payload from its external environment, as well as for extremely accurate and stable pointing (≍0.01 arcseconds). This effort has been pursued through the fabrication and laboratory evaluation of engineering model hardware. Results from these tests have been instrumental in generating high fidelity computer simulations of this load isolation and precision pointing system, and in permitting confident predictions of the system's on-orbit performance. Applicability of this system to the Solar Optical Telescope mission has been examined using the computer simulation. The worst case pointing error predicted for this payload while subjected to vernier reaction control system thruster firings and crew motions aboard Shuttle was approximately 0.006 arcseconds.

  9. Picometer Precision Measurements of Fringe Phase and Wavelengths in MAM

    NASA Astrophysics Data System (ADS)

    Pan, X.; Shao, M.; Goullioud, R.

    2004-12-01

    The Space Interferometry Mission (SIM), a micro-arcsecond astrometry mission, is the only mission, either operational or in planning, that will be capable of measuring the mass of extra-solar planets, mass being the fundamental property that determines whether the planet is capable of holding an Earth-like atmosphere. One of the SIM testbeds at JPL, the Micro-Arcsecond Metrology (MAM) testbed, addresses how to measure interferometer fringe phase and wavelengths accurately at the level of picometers (10-12 m). The MAM testbed uses a pathlength modulation scheme for fringe detection, using ten samples per stroke, with stroke-length close to the wavelength of a spectral channel. The MAM testbed has demonstrated the measurement of optical pathlength delays to picometer precision. Longer strokes (tens of microns) enable both fringe and modulation envelope to be detected, yielding accurate wavelength measurements at the picometer level for the first time. This paper describes the fundamental principles of a new technique for calibration and measurement of fringes for targets that have various spectra, in which effective wavelength varies significantly for different spectral channels. Test results and variations with time are analyzed. Conformation of measurenet accuracy and stability are described in this paper.

  10. Precise on-line position measurement for particle therapy

    NASA Astrophysics Data System (ADS)

    Actis, O.; Meer, D.; König, S.

    2014-12-01

    An on-line beam position monitoring and regular beam stability tests are of utmost importance for the Quality Assurance (QA) of the patient treatment at any particle therapy facility. The Gantry 2 at the Paul Scherrer Institute uses a strip ionization chamber for the on-line beam position verification. The design of the strip chamber placed in the beam in front of the patient allows for a small beam penumbra in order to achieve a high-quality lateral beam delivery. The position error of 1 mm in a lateral plane (plane perpendicular to the beam direction) can result in a dose inhomogeneity of more than 5%. Therefore the goal of Gantry 2 commissioning was to reach a sub-millimeter level of the reconstruction accuracy in order to bring a dose uncertainty to a level of 1%. In fact, we observed that for beams offered by Gantry 2 signal profiles in a lateral plane can be reconstructed with a precision of 0.1 mm. This is a necessary criterion to perform a reliable patient treatment. The front end electronics and the whole data processing sequence have been optimized for minimizing the dead time in between two consecutive spots to about 2 ms: the charge collection is performed in about 1 ms, read-out takes place in about 100μs while data verification and logging are completed in less than 1 ms.

  11. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  12. Determination of the accuracy and operating constants in a digitally biased ring core magnetometer

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    By using a very stable voltage reference and a high precision digital-to-analog converter to set bias in digital increments, the inherently high stability and accuracy of a ring core magnetometer can be significantly enhanced. In this case it becomes possible to measure not only variations about the bias level, but to measure the entire value of the field along each magnetometer sensing axis in a nearly absolute sense. To accomplish this, one must accurately determine the value of the digital bias increment for each axis, the zero field offset value for each axis, the scale values, and the transfer coefficients (or nonorthogonality angles) for pairs of axes. This determination can be carried out very simply, using only the Earth's field, a proton magnetometer, and a tripod-mounted fixture which is capable of rotations about two axes that are mutually perpendicular to the Earth's magnetic field vector. ?? 1990.

  13. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  14. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  15. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  16. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  17. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  18. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    SciTech Connect

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringe on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.

  19. Fiber Scrambling for High Precision Spectrographs

    NASA Astrophysics Data System (ADS)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  20. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy

    PubMed Central

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy. PMID:25628867

  1. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  2. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling.

    PubMed

    Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick

    2015-10-30

    The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing.

  3. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling

    PubMed Central

    Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick

    2015-01-01

    The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing. PMID:26528976

  4. Visual inspection reliability for precision manufactured parts

    DOE PAGES

    See, Judi E.

    2015-09-04

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. In addition visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied.

  5. Precise and automated microfluidic sample preparation.

    SciTech Connect

    Crocker, Robert W.; Patel, Kamlesh D.; Mosier, Bruce P.; Harnett, Cindy K.

    2004-07-01

    Autonomous bio-chemical agent detectors require sample preparation involving multiplex fluid control. We have developed a portable microfluidic pump array for metering sub-microliter volumes at flowrates of 1-100 {micro}L/min. Each pump is composed of an electrokinetic (EK) pump and high-voltage power supply with 15-Hz feedback from flow sensors. The combination of high pump fluid impedance and active control results in precise fluid metering with nanoliter accuracy. Automated sample preparation will be demonstrated by labeling proteins with fluorescamine and subsequent injection to a capillary gel electrophoresis (CGE) chip.

  6. The GBT precision telescope control system

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Constantikes, Kim T.; Balser, Dana S.; Condon, James J.

    2004-10-01

    The NRAO Robert C. Byrd Green Bank Telescope (GBT) is a 100m diameter advanced single dish radio telescope designed for a wide range of astronomical projects with special emphasis on precision imaging. Open-loop adjustments of the active surface, and real-time corrections to pointing and focus on the basis of structural temperatures already allow observations at frequencies up to 50GHz. Our ultimate goal is to extend the observing frequency limit up to 115GHz; this will require a two dimensional tracking error better than 1.3", and an rms surface accuracy better than 210μm. The Precision Telescope Control System project has two main components. One aspect is the continued deployment of appropriate metrology systems, including temperature sensors, inclinometers, laser rangefinders and other devices. An improved control system architecture will harness this measurement capability with the existing servo systems, to deliver the precision operation required. The second aspect is the execution of a series of experiments to identify, understand and correct the residual pointing and surface accuracy errors. These can have multiple causes, many of which depend on variable environmental conditions. A particularly novel approach is to solve simultaneously for gravitational, thermal and wind effects in the development of the telescope pointing and focus tracking models. Our precision temperature sensor system has already allowed us to compensate for thermal gradients in the antenna, which were previously responsible for the largest "non-repeatable" pointing and focus tracking errors. We are currently targetting the effects of wind as the next, currently uncompensated, source of error.

  7. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling.

    PubMed

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-06-30

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1-7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%-40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the

  8. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling

    PubMed Central

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-01-01

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the

  9. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    NASA Technical Reports Server (NTRS)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  10. Precise computer controlled positioning of robot end effectors using force sensors

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Mcinnis, B. C.; Wang, J. C.

    1988-01-01

    A thorough study of combined position/force control using sensory feedback for a one-dimensional manipulator model, which may count for the spacecraft docking problem or be extended to the multi-joint robot manipulator problem, was performed. The additional degree of freedom introduced by the compliant force sensor is included in the system dynamics in the design of precise position control. State feedback based on the pole placement method and with integral control is used to design the position controller. A simple constant gain force controller is used as an example to illustrate the dependence of the stability and steady-state accuracy of the overall position/force control upon the design of the inner position controller. Supportive simulation results are also provided.

  11. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO(2) detection lidar.

    PubMed

    Gong, Wei; Ma, Xin; Han, Ge; Xiang, Chengzhi; Liang, Ailin; Fu, Weidong

    2015-03-09

    High-accuracy on-line wavelength stabilization is required for differential absorption lidar (DIAL), which is ideal for precisely measuring atmospheric CO(2) concentration. Using a difference-frequency laser, we developed a ground-based 1.57-μm pulsed DIAL for performing atmospheric CO(2) measurements. Owing to the system complexity, lacking phase, and intensity instability, the stabilization method was divided into two parts-wavelength calibration and locking-based on saturated absorption. After obtaining the on-line laser position, accuracy verification using statistical theory and locking stabilization using a one-dimensional template matching method, namely least-squares matching (LSM), were adopted to achieve wavelength locking. The resulting system is capable of generating a stable wavelength.

  12. Reticence, Accuracy and Efficacy

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  13. Groves model accuracy study

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew C.

    1991-08-01

    The United States Air Force Environmental Technical Applications Center (USAFETAC) was tasked to review the scientific literature for studies of the Groves Neutral Density Climatology Model and compare the Groves Model with others in the 30-60 km range. The tasking included a request to investigate the merits of comparing accuracy of the Groves Model to rocketsonde data. USAFETAC analysts found the Groves Model to be state of the art for middle-atmospheric climatological models. In reviewing previous comparisons with other models and with space shuttle-derived atmospheric densities, good density vs altitude agreement was found in almost all cases. A simple technique involving comparison of the model with range reference atmospheres was found to be the most economical way to compare the Groves Model with rocketsonde data; an example of this type is provided. The Groves 85 Model is used routinely in USAFETAC's Improved Point Analysis Model (IPAM). To create this model, Dr. Gerald Vann Groves produced tabulations of atmospheric density based on data derived from satellite observations and modified by rocketsonde observations. Neutral Density as presented here refers to the monthly mean density in 10-degree latitude bands as a function of altitude. The Groves 85 Model zonal mean density tabulations are given in their entirety.

  14. Precision Medicine in Cancer Treatment

    Cancer.gov

    Precision medicine helps doctors select cancer treatments that are most likely to help patients based on a genetic understanding of their disease. Learn about the promise of precision medicine and the role it plays in cancer treatment.

  15. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  16. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  17. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    PubMed

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  18. Mathematics for modern precision engineering.

    PubMed

    Scott, Paul J; Forbes, Alistair B

    2012-08-28

    The aim of precision engineering is the accurate control of geometry. For this reason, mathematics has a long association with precision engineering: from the calculation and correction of angular scales used in surveying and astronomical instrumentation to statistical averaging techniques used to increase precision. This study illustrates the enabling role the mathematical sciences are playing in precision engineering: modelling physical processes, instruments and complex geometries, statistical characterization of metrology systems and error compensation.

  19. Consequences of spectrograph illumination for the accuracy of radial-velocimetry

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bouchy, F.; Chazelas, B.; Perruchot, S.; Pepe, F.; Lovis, C.; Hébrard, G.

    2011-07-01

    For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.

  20. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  1. Improving the accuracy of helium and neon measurements in ocean waters

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Roether, W.; Vogel, S.; Sueltenfuss, J.

    2012-04-01

    The helium and neon solubility disequilibria across the ocean-atmosphere interface serve to study the physics of air-sea gas exchange, but the effect is small so that only high-accuracy data give useful results. Weak points are measurement calibration and uncertain solubility equilibrium values in seawater, especially so for the helium isotopes. Calibration: The classical calibration of mass spectrometric helium and neon measurements uses aliquots of atmospheric air, which is convenient but limited in accuracy and long-term stability. Our alternative is to use water samples equilibrated with undisturbed air, so that their mass can be converted into equivalent volumes of air using a solubility function. In this way, the samples allow a precise recalibration of the air aliquots. A bias relative to regular samples is excluded because the equilibrated water is subjected to exactly the same treatment. The equilibration unit has a water capacity of 4.5 liters. The water is circulated over exchange mats, yielding full air-water equilibrium within two hours, and temperature, pressure, and humidity are precisely controlled. In consequence, we achieve solubility equilibrium within ± 0.03%, so that high accuracy and long-term stability of the calibration are guaranteed. The solubility equilibrium values are more uncertain, but a biased value will only introduce a common shift to the data, i.e., it will not affect the internal consistency of the calibration. The new calibration mode will also enable efficient intercalibration between laboratories. Solubility determination and sampling procedures: We shall use the equilibration unit to obtain solubility functions of helium and neon in distilled water and seawater with a projected accuracy of ± 0.2%. One measure to achieve this is to compare the mass spectrometric signals of the water and the air phase directly. In this context, we developed a procedure to sample water into glass ampoules to be flame-sealed. They are filled

  2. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  3. Simulations of pulsating one-dimensional detonations with true fifth order accuracy

    SciTech Connect

    Henrick, Andrew K. . E-mail: ahenrick@nd.edu; Aslam, Tariq D. . E-mail: aslam@lanl.gov; Powers, Joseph M. . E-mail: powers@nd.edu

    2006-03-20

    A novel, highly accurate numerical scheme based on shock-fitting coupled with fifth order spatial and temporal discretizations is applied to a classical unsteady detonation problem to generate solutions with unprecedented accuracy. The one-dimensional reactive Euler equations for a calorically perfect mixture of ideal gases whose reaction is described by single-step irreversible Arrhenius kinetics are solved in a series of calculations in which the activation energy is varied. In contrast with nearly all known simulations of this problem, which converge at a rate no greater than first order as the spatial and temporal grid is refined, the present method is shown to converge at a rate consistent with the fifth order accuracy of the spatial and temporal discretization schemes. This high accuracy enables more precise verification of known results and prediction of heretofore unknown phenomena. To five significant figures, the scheme faithfully recovers the stability boundary, growth rates, and wave-numbers predicted by an independent linear stability theory in the stable and weakly unstable regime. As the activation energy is increased, a series of period-doubling events are predicted, and the system undergoes a transition to chaos. Consistent with general theories of non-linear dynamics, the bifurcation points are seen to converge at a rate for which the Feigenbaum constant is 4.66 {+-} 0.09, in close agreement with the true value of 4.669201... As activation energy is increased further, domains are identified in which the system undergoes a transition from a chaotic state back to one whose limit cycles are characterized by a small number of non-linear oscillatory modes. This result is consistent with behavior of other non-linear dynamical systems, but not typically considered in detonation dynamics. The period and average detonation velocity are calculated for a variety of asymptotically stable limit cycles. The average velocity for such pulsating detonations is

  4. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  5. Precision Astronomy with Imperfect Deep Depletion CCDs

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team

    2014-01-01

    While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.

  6. High Resolution and High Precision-Spectroscopy with HARPS

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Lovis, C.

    Extra-solar planet search at a level of precision below 1 ms-1 sets strong requirements to the quality and stability of the wavelength solution. It also forces us to understand the effects of instrumental stability, on the one hand, and the quality of the wavelength reference, on the other hand, since both will have an impact, although in a different way, on the short- and long-term precision of the instrument. This chapter presents the calibration principles of HARPS, which lead to its extra-ordinary wavelength solution and, as a direct consequence, to its unique radial-velocity precision. In particular it will focus on the improvements of the thorium-lamp calibrations we made during the past three years, but it willl also discuss the present limitations. Finally, we give an outlook on further possible improvements which can be made in view of the extreme precision required by instruments like CODEX@ELT.

  7. A Comparison between the Stabilization Method and the Post-stabilization Method

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-fang; Wu, Xin

    2007-01-01

    A detailed discussion on Baumgarte's stabilization method and Chin's post-stabilization method is carried out together with a numerical comparison. The numerical accuracy can be increased and the numerical stability can be improved by combining the classical numerical method with either of the two stabilization methods. Assuming optimal stabilizing parameter the accuracy is not the same in the two methods and it is not certain which one is the more accurate. While noting the reasons underlying the post-stabilization scheme, it is inadvisable, when applying the latter, to use step lengths greater than are recommended by the original classical integrator with no stabilization.

  8. EVALUATION OF METRIC PRECISION FOR A RIPARIAN FOREST SURVEY

    EPA Science Inventory

    This paper evaluates the performance of a protocol to monitor riparian forests in western Oregon based on the quality of the data obtained from a recent field survey. Precision and accuracy are the criteria used to determine the quality of 19 field metrics. The field survey con...

  9. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  10. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  11. Portable high precision pressure transducer system

    NASA Astrophysics Data System (ADS)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  12. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  13. Precise measurement of planeness.

    PubMed

    Schulz, G; Schwider, J

    1967-06-01

    Interference methods are reviewed-particularly those developed at the German Academy of Sciences in Berlin-with which the deviations of an optically flat surface from the ideal plane can be measured with a high degree of exactness. One aid to achieve this is the relative methods which measure the differences in planeness between two surfaces. These are then used in the absolute methods which determine the absolute planeness of a surface. This absolute determination can be effected in connection with a liquid surface, or (as done by the authors) only by suitable evaluation of relative measurements between unknown plates in various positional combinations. Experimentally, one uses two- or multiple-beam interference fringes of equal thickness(1) or of equal inclination. The fringes are observed visually, scanned, or photographed, and in part several wavelengths or curves of equal density (Aquidensiten) are employed. The survey also brings the following new methods: a relative method, where, with the aid of fringes of superposition, the fringe separation is subdivided equidistantly thus achieving an increase of measuring precision, and an absolute method which determines the deviations of a surface from ideal planeness along arbitrary central sections, without a liquid surface, from four relative interference photographs.

  14. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  15. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  16. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  17. Improving the precision of astrometry for space debris

    SciTech Connect

    Sun, Rongyu; Zhao, Changyin; Zhang, Xiaoxiang

    2014-03-01

    The data reduction method for optical space debris observations has many similarities with the one adopted for surveying near-Earth objects; however, due to several specific issues, the image degradation is particularly critical, which makes it difficult to obtain precise astrometry. An automatic image reconstruction method was developed to improve the astrometry precision for space debris, based on the mathematical morphology operator. Variable structural elements along multiple directions are adopted for image transformation, and then all the resultant images are stacked to obtain a final result. To investigate its efficiency, trial observations are made with Global Positioning System satellites and the astrometry accuracy improvement is obtained by comparison with the reference positions. The results of our experiments indicate that the influence of degradation in astrometric CCD images is reduced, and the position accuracy of both objects and stellar stars is improved distinctly. Our technique will contribute significantly to optical data reduction and high-order precision astrometry for space debris.

  18. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  19. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  20. [Precision nutrition in the era of precision medicine].

    PubMed

    Chen, P Z; Wang, H

    2016-12-06

    Precision medicine has been increasingly incorporated into clinical practice and is enabling a new era for disease prevention and treatment. As an important constituent of precision medicine, precision nutrition has also been drawing more attention during physical examinations. The main aim of precision nutrition is to provide safe and efficient intervention methods for disease treatment and management, through fully considering the genetics, lifestyle (dietary, exercise and lifestyle choices), metabolic status, gut microbiota and physiological status (nutrient level and disease status) of individuals. Three major components should be considered in precision nutrition, including individual criteria for sufficient nutritional status, biomarker monitoring or techniques for nutrient detection and the applicable therapeutic or intervention methods. It was suggested that, in clinical practice, many inherited and chronic metabolic diseases might be prevented or managed through precision nutritional intervention. For generally healthy populations, because lifestyles, dietary factors, genetic factors and environmental exposures vary among individuals, precision nutrition is warranted to improve their physical activity and reduce disease risks. In summary, research and practice is leading toward precision nutrition becoming an integral constituent of clinical nutrition and disease prevention in the era of precision medicine.

  1. QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.

    2013-06-01

    With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.

  2. Design of high-precision ranging system for laser fuze

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Zhang, He; Xu, Xiaobin

    2016-10-01

    According to the problem of the high-precision ranging in the circumferential scanning probe laser proximity fuze, a new type of pulsed laser ranging system has been designed. The laser transmitting module, laser receiving module and ranging processing module have been designed respectively. The factors affecting the ranging accuracy are discussed. And the method of improving the ranging accuracy is studied. The high-precision ranging system adopts the general high performance microprocessor C8051FXXX as the core. And the time interval measurement chip TDC-GP21 was used to implement the system. A PCB circuit board was processed to carry on the experiment. The results of the experiment prove that a centimeter level accuracy ranging system has been achieved. The works can offer reference for ranging system design of the circumferential scanning probe laser proximity fuze.

  3. Precise system stabilization at SLC using dither techniques

    SciTech Connect

    Ross, M.C.; Hendrickson, L.; Himel, T.; Miller, E.

    1993-04-01

    A data acquisition method has been developed at the SLAC Linear Collider (SLC) that provides accurate beam parameter information using sub-tolerance excitation and synchronized detection. This is being applied to several SLC sub-systems to provide high speed feedback on beam parameters such as linac output energy spread. The method has significantly improved control of the linac energy spread. The linac average phase offset ({phi}), used to compensate the effects of longitudinal wakefields, is adjusted {plus_minus}1 control bit (about 0.18{degree} S-band or 20% of tolerance), in a continuous fashion. Properly coordinated beam energy measurements provide a measure of the derivative of the accelerating voltage (dE/d{phi}). The position of the beam on the RF wave can thus be determined to {plus_minus} 0.3{degree} in about 5 seconds. The dithering does not contribute significantly to the energy jitter of the SLC and therefore does not adversely affect routine operation. Future applications include control of the interaction region beam size and orientation.

  4. Precision respiratory medicine and the microbiome.

    PubMed

    Rogers, Geraint B; Wesselingh, Steve

    2016-01-01

    A decade of rapid technological advances has provided an exciting opportunity to incorporate information relating to a range of potentially important disease determinants in the clinical decision-making process. Access to highly detailed data will enable respiratory medicine to evolve from one-size-fits-all models of care, which are associated with variable clinical effectiveness and high rates of side-effects, to precision approaches, where treatment is tailored to individual patients. The human microbiome has increasingly been recognised as playing an important part in determining disease course and response to treatment. Its inclusion in precision models of respiratory medicine, therefore, is essential. Analysis of the microbiome provides an opportunity to develop novel prognostic markers for airways disease, improve definition of clinical phenotypes, develop additional guidance to aid treatment selection, and increase the accuracy of indicators of treatment effect. In this Review we propose that collaboration between researchers and clinicians is needed if respiratory medicine is to replicate the successes of precision medicine seen in other clinical specialties.

  5. Personalized Proteomics: The Future of Precision Medicine.

    PubMed

    Duarte, Trevor T; Spencer, Charles T

    2016-01-01

    Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient's response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient's condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.

  6. Personalized Proteomics: The Future of Precision Medicine

    PubMed Central

    Duarte, Trevor T.; Spencer, Charles T.

    2016-01-01

    Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate. PMID:27882306

  7. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  8. Interferometric measurement of dimensional and thermal stability of joints

    NASA Astrophysics Data System (ADS)

    Lorenz, Hagen; Schödel, René

    2014-08-01

    In this work we demonstrate how absolute length measurements by interferometry, as used for regular gauge block calibration, can be applied to measure the dimensional drift behavior of connections joined by gluing or screwing and how these joining techniques are influenced by thermal treatment. While it is common to investigate the intrinsic stability of material samples by repeated length measurements, there exist growing demands in precision engineering to characterize the stability of assemblies, i.e. of joined material pieces. In order to enable investigation of joining techniques representative joints were fabricated by a number of methods as wringing, screwing and gluing. By using gauge block shaped samples as joining parts parallelism and flatness could be achieved which is needed for interferometric length measurements. The stability of the joints has been investigated longitudinally and laterally to the connection interface, and also mutual tilting of the parts was detected by analysis of the phase topographies. With the use of sample joints, the behavior of connection elements used in ultrahigh-precision instruments can now be examined on an accuracy level of about one nanometer. Results of approximately one year of observation show that screwed joints do not exhibit a significant change of length or orientation. They also did not show response to temperature variations of +/-10°C, which is different for adhesive joints where dimensional changes of up to 100 nm were observed.

  9. Building ultra-precision laser interferometers for space applications

    NASA Astrophysics Data System (ADS)

    Robertson, David; Fitzsimons, Ewan; Killow, Christian; Perreur-Lloyd, Michael; Ward, Henry

    Laser interferometry for space applications typically requires both great precision of optical component placing and alignment and high long-term stability. Construction therefore requires both precision measurement and a jointing technique that allows extremely fine initial adjust-ment and which provides high ultimate strength. We present techniques that allow us to measure mm scale optical beams to better than 10 microns and 20 microrad. These measurements are then combined with precision alignment and hydroxy-catalysis bonding of optical components. The results of applying these techniques to the construction of the four interferometers on each of the LISA Pathfinder optical benches are discussed.

  10. Stability of steviol glycosides in several food matrices.

    PubMed

    Jooken, Etienne; Amery, Ruis; Struyf, Tom; Duquenne, Barbara; Geuns, Jan; Meesschaert, Boudewijn

    2012-10-24

    As steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples. Proteins were precipitated by the addition of acetonitrile and also removed by centrifugation. Samples of jam were extracted with water. Dry biscuits were extracted with ethanol. The resulting samples were concentrated with solid-phase extraction and analyzed by high-performance liquid chromatography on a C18 stationary phase and a gradient of acetonitrile/aqueous 25 mM phosphoric acid. The accuracy was checked using a standard addition on some samples. For assessing the stability of the steviol glycosides, samples were stored in conditions relevant to each food matrix and analyzed periodically. The results indicate that steviol glycosides can be analyzed with good precision and accuracy in these food categories. The recovery was between 96 and 103%. The method was also validated by standard addition, which showed excellent agreement with the external calibration curve. No sign of decomposition of steviol glycosides was found in any of the samples.

  11. Accuracy Evaluation of Electron-Probe Microanalysis as Applied to Semiconductors and Silicates

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2003-01-01

    An evaluation of precision and accuracy will be presented for representative semiconductor and silicate compositions. The accuracy of electron-probe analysis depends on high precision measurements and instrumental calibration, as well as correction algorithms and fundamental parameter data sets. A critical assessment of correction algorithms and mass absorption coefficient data sets can be made using the alpha factor technique. Alpha factor analysis can be used to identify systematic errors in data sets and also of microprobe standards used for calibration.

  12. Apparatus Makes Precisely Saturated Solutions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1989-01-01

    Simple laboratory apparatus establishes equilibrium conditions of temperature and concentration in solutions for use in precise measurements of saturation conditions. With equipment typical measurement of saturation concentration of protein in solution established and measured within about 24 hours. Precisely saturated solution made by passing solvent or solution slowly along column packed with solute at precisely controlled temperature. If necessary, flow stopped for experimentally determined interval to allow equilibrium to be established in column.

  13. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  14. Centroid precision and orientation precision of planar localization microscopy.

    PubMed

    McGray, C; Copeland, C R; Stavis, S M; Geist, J

    2016-09-01

    The concept of localization precision, which is essential to localization microscopy, is formally extended from optical point sources to microscopic rigid bodies. Measurement functions are presented to calculate the planar pose and motion of microscopic rigid bodies from localization microscopy data. Physical lower bounds on the associated uncertainties - termed centroid precision and orientation precision - are derived analytically in terms of the characteristics of the optical measurement system and validated numerically by Monte Carlo simulations. The practical utility of these expressions is demonstrated experimentally by an analysis of the motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts due to the generality of the expressions and the widespread interest in localization microscopy for super-resolution imaging and particle tracking.

  15. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  16. Basic principles of stability.

    PubMed

    Egan, William; Schofield, Timothy

    2009-11-01

    An understanding of the principles of degradation, as well as the statistical tools for measuring product stability, is essential to management of product quality. Key to this is management of vaccine potency. Vaccine shelf life is best managed through determination of a minimum potency release requirement, which helps assure adequate potency throughout expiry. Use of statistical tools such a least squares regression analysis should be employed to model potency decay. The use of such tools provides incentive to properly design vaccine stability studies, while holding stability measurements to specification presents a disincentive for collecting valuable data. The laws of kinetics such as Arrhenius behavior help practitioners design effective accelerated stability programs, which can be utilized to manage stability after a process change. Design of stability studies should be carefully considered, with an eye to minimizing the variability of the stability parameter. In the case of measuring the degradation rate, testing at the beginning and the end of the study improves the precision of this estimate. Additional design considerations such as bracketing and matrixing improve the efficiency of stability evaluation of vaccines.

  17. Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method.

    PubMed

    Hapfelmeier, Alexander; Cecconi, Maurizio; Saugel, Bernd

    2016-04-01

    Cardiac output (CO) plays a crucial role in the hemodynamic management of critically ill patients treated in the intensive care unit and in surgical patients undergoing major surgery. In the field of cardiovascular dynamics, innovative techniques for CO determination are increasingly available. Therefore, the number of studies comparing these techniques with a reference, such as pulmonary artery thermodilution, is rapidly growing. There are mainly two outcomes of such method comparison studies: (1) the accuracy of agreement and (2) the precision of agreement. The precision of agreement depends on the precision of each method, i.e., the precision that the studied and the reference technique are able to achieve. We call this "precision of method". A decomposition of variance shows that method agreement does not only depend on the precision of method but also on another important source of variability, i.e., the method's general variability about the true values. Ignorance of that fact leads to falsified conclusions about the precision of method of the studied technique. In CO studies, serial measurements are frequently confused with repeated measurements. But as the actual CO of a subject changes from assessment to assessment, there is no real repetition of a measurement. This situation equals a scenario in which single measurements are given for multiple true values per subject. In such a case it is not possible to assess the precision of method.

  18. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  19. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  20. High-precision thermal and electrical characterization of thermoelectric modules

    SciTech Connect

    Kolodner, Paul

    2014-05-15

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.