A new accuracy measure based on bounded relative error for time series forecasting
Twycross, Jamie; Garibaldi, Jonathan M.
2017-01-01
Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480
A new accuracy measure based on bounded relative error for time series forecasting.
Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M
2017-01-01
Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven Karl
This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.
Measures of model performance based on the log accuracy ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.
Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less
Measures of model performance based on the log accuracy ratio
Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.
2018-01-03
Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less
NASA Astrophysics Data System (ADS)
Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing
2016-09-01
The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.
Alterations in Error-Related Brain Activity and Post-Error Behavior over Time
ERIC Educational Resources Information Center
Themanson, Jason R.; Rosen, Peter J.; Pontifex, Matthew B.; Hillman, Charles H.; McAuley, Edward
2012-01-01
This study examines the relation between the error-related negativity (ERN) and post-error behavior over time in healthy young adults (N = 61). Event-related brain potentials were collected during two sessions of an identical flanker task. Results indicated changes in ERN and post-error accuracy were related across task sessions, with more…
A simulation of GPS and differential GPS sensors
NASA Technical Reports Server (NTRS)
Rankin, James M.
1993-01-01
The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.
Farzandipour, Mehrdad; Sheikhtaheri, Abbas
2009-01-01
To evaluate the accuracy of procedural coding and the factors that influence it, 246 records were randomly selected from four teaching hospitals in Kashan, Iran. “Recodes” were assigned blindly and then compared to the original codes. Furthermore, the coders' professional behaviors were carefully observed during the coding process. Coding errors were classified as major or minor. The relations between coding accuracy and possible effective factors were analyzed by χ2 or Fisher exact tests as well as the odds ratio (OR) and the 95 percent confidence interval for the OR. The results showed that using a tabular index for rechecking codes reduces errors (83 percent vs. 72 percent accuracy). Further, more thorough documentation by the clinician positively affected coding accuracy, though this relation was not significant. Readability of records decreased errors overall (p = .003), including major ones (p = .012). Moreover, records with no abbreviations had fewer major errors (p = .021). In conclusion, not using abbreviations, ensuring more readable documentation, and paying more attention to available information increased coding accuracy and the quality of procedure databases. PMID:19471647
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Pinkuan
2018-04-01
In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.
Instrument Pointing Capabilities: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Blackmore, Lars; Murray, Emmanuell; Scharf, Daniel P.; Aung, Mimi; Bayard, David; Brugarolas, Paul; Hadaegh, Fred; Lee, Allan; Milman, Mark; Sirlin, Sam;
2011-01-01
This paper surveys the instrument pointing capabilities of past, present and future space telescopes and interferometers. As an important aspect of this survey, we present a taxonomy for "apples-to-apples" comparisons of pointing performances. First, pointing errors are defined relative to either an inertial frame or a celestial target. Pointing error can then be further sub-divided into DC, that is, steady state, and AC components. We refer to the magnitude of the DC error relative to the inertial frame as absolute pointing accuracy, and we refer to the magnitude of the DC error relative to a celestial target as relative pointing accuracy. The magnitude of the AC error is referred to as pointing stability. While an AC/DC partition is not new, we leverage previous work by some of the authors to quantitatively clarify and compare varying definitions of jitter and time window averages. With this taxonomy and for sixteen past, present, and future missions, pointing accuracies and stabilities, both required and achieved, are presented. In addition, we describe the attitude control technologies used to and, for future missions, planned to achieve these pointing performances.
Baumstark, Annette; Jendrike, Nina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido
2017-10-01
Self-monitoring of blood glucose (BG) is an essential part of diabetes therapy. Accurate and reliable results from BG monitoring systems (BGMS) are important especially when they are used to calculate insulin doses. This study aimed at assessing system accuracy of BGMS and possibly related insulin dosing errors. System accuracy of six different BGMS (Accu-Chek ® Aviva Nano, Accu-Chek Mobile, Accu-Chek Performa Nano, CONTOUR ® NEXT LINK 2.4, FreeStyle Lite, OneTouch ® Verio ® IQ) was assessed in comparison to a glucose oxidase and a hexokinase method. Study procedures and analysis were based on ISO 15197:2013/EN ISO 15197:2015, clause 6.3. In addition, insulin dosing error was modeled. In the comparison against the glucose oxidase method, five out of six BGMS fulfilled ISO 15197:2013 accuracy criteria. Up to 14.3%/4.3%/0.3% of modeled doses resulted in errors exceeding ±0.5/±1.0/±1.5 U and missing the modeled target by 20 mg/dL/40 mg/dL/60 mg/dL, respectively. Compared against the hexokinase method, five out of six BGMS fulfilled ISO 15197:2013 accuracy criteria. Up to 25.0%/10.5%/3.2% of modeled doses resulted in errors exceeding ±0.5/±1.0/±1.5 U, respectively. Differences in system accuracy were found, even among BGMS that fulfilled the minimum system accuracy criteria of ISO 15197:2013. In the error model, considerable insulin dosing errors resulted for some of the investigated systems. Diabetes patients on insulin therapy should be able to rely on their BGMS' readings; therefore, they require highly accurate BGMS, in particular, when making therapeutic decisions.
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
Hsieh, Shulan; Li, Tzu-Hsien; Tsai, Ling-Ling
2010-04-01
To examine whether monetary incentives attenuate the negative effects of sleep deprivation on cognitive performance in a flanker task that requires higher-level cognitive-control processes, including error monitoring. Twenty-four healthy adults aged 18 to 23 years were randomly divided into 2 subject groups: one received and the other did not receive monetary incentives for performance accuracy. Both subject groups performed a flanker task and underwent electroencephalographic recordings for event-related brain potentials after normal sleep and after 1 night of total sleep deprivation in a within-subject, counterbalanced, repeated-measures study design. Monetary incentives significantly enhanced the response accuracy and reaction time variability under both normal sleep and sleep-deprived conditions, and they reduced the effects of sleep deprivation on the subjective effort level, the amplitude of the error-related negativity (an error-related event-related potential component), and the latency of the P300 (an event-related potential variable related to attention processes). However, monetary incentives could not attenuate the effects of sleep deprivation on any measures of behavior performance, such as the response accuracy, reaction time variability, or posterror accuracy adjustments; nor could they reduce the effects of sleep deprivation on the amplitude of the Pe, another error-related event-related potential component. This study shows that motivation incentives selectively reduce the effects of total sleep deprivation on some brain activities, but they cannot attenuate the effects of sleep deprivation on performance decrements in tasks that require high-level cognitive-control processes. Thus, monetary incentives and sleep deprivation may act through both common and different mechanisms to affect cognitive performance.
Monitoring gait in multiple sclerosis with novel wearable motion sensors.
Moon, Yaejin; McGinnis, Ryan S; Seagers, Kirsten; Motl, Robert W; Sheth, Nirav; Wright, John A; Ghaffari, Roozbeh; Sosnoff, Jacob J
2017-01-01
Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6-2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.
The Sustained Influence of an Error on Future Decision-Making.
Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel
2017-01-01
Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.
Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.
2015-01-01
Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
Working memory capacity and task goals modulate error-related ERPs.
Coleman, James R; Watson, Jason M; Strayer, David L
2018-03-01
The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.
Geolocation and Pointing Accuracy Analysis for the WindSat Sensor
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.; Purdy, William E.; Gaiser, Peter W.; Poe, Gene; Uliana, Enzo A.
2006-01-01
Geolocation and pointing accuracy analyses of the WindSat flight data are presented. The two topics were intertwined in the flight data analysis and will be addressed together. WindSat has no unusual geolocation requirements relative to other sensors, but its beam pointing knowledge accuracy is especially critical to support accurate polarimetric radiometry. Pointing accuracy was improved and verified using geolocation analysis in conjunction with scan bias analysis. nvo methods were needed to properly identify and differentiate between data time tagging and pointing knowledge errors. Matchups comparing coastlines indicated in imagery data with their known geographic locations were used to identify geolocation errors. These coastline matchups showed possible pointing errors with ambiguities as to the true source of the errors. Scan bias analysis of U, the third Stokes parameter, and of vertical and horizontal polarizations provided measurement of pointing offsets resolving ambiguities in the coastline matchup analysis. Several geolocation and pointing bias sources were incfementally eliminated resulting in pointing knowledge and geolocation accuracy that met all design requirements.
Pailing, Patricia E; Segalowitz, Sidney J
2004-01-01
This study examines changes in the error-related negativity (ERN/Ne) related to motivational incentives and personality traits. ERPs were gathered while adults completed a four-choice letter task during four motivational conditions. Monetary incentives for finger and hand accuracy were altered across motivation conditions to either be equal or favor one type of accuracy over the other in a 3:1 ratio. Larger ERN/Ne amplitudes were predicted with increased incentives, with personality moderating this effect. Results were as expected: Individuals higher on conscientiousness displayed smaller motivation-related changes in the ERN/Ne. Similarly, those low on neuroticism had smaller effects, with the effect of Conscientiousness absent after accounting for Neuroticism. These results emphasize an emotional/evaluative function for the ERN/Ne, and suggest that the ability to selectively invest in error monitoring is moderated by underlying personality.
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
Sun, Ting; Xing, Fei; You, Zheng
2013-01-01
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527
Monitoring gait in multiple sclerosis with novel wearable motion sensors
McGinnis, Ryan S.; Seagers, Kirsten; Motl, Robert W.; Sheth, Nirav; Wright, John A.; Ghaffari, Roozbeh; Sosnoff, Jacob J.
2017-01-01
Background Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. Methods A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Results Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). Conclusion BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic. PMID:28178288
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G
2017-07-01
Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.
Metacognition and proofreading: the roles of aging, motivation, and interest.
Hargis, Mary B; Yue, Carole L; Kerr, Tyson; Ikeda, Kenji; Murayama, Kou; Castel, Alan D
2017-03-01
The current study examined younger and older adults' error detection accuracy, prediction calibration, and postdiction calibration on a proofreading task, to determine if age-related differences would be present in this type of common error detection task. Participants were given text passages, and were first asked to predict the percentage of errors they would detect in the passage. They then read the passage and circled errors (which varied in complexity and locality), and made postdictions regarding their performance, before repeating this with another passage and answering a comprehension test of both passages. There were no age-related differences in error detection accuracy, text comprehension, or metacognitive calibration, though participants in both age groups were overconfident overall in their metacognitive judgments. Both groups gave similar ratings of motivation to complete the task. The older adults rated the passages as more interesting than younger adults did, although this level of interest did not appear to influence error-detection performance. The age equivalence in both proofreading ability and calibration suggests that the ability to proofread text passages and the associated metacognitive monitoring used in judging one's own performance are maintained in aging. These age-related similarities persisted when younger adults completed the proofreading tasks on a computer screen, rather than with paper and pencil. The findings provide novel insights regarding the influence that cognitive aging may have on metacognitive accuracy and text processing in an everyday task.
Ruangsetakit, Varee
2015-11-01
To re-examine relative accuracy of intraocular lens (IOL) power calculation of immersion ultrasound biometry (IUB) and partial coherence interferometry (PCI) based on a new approach that limits its interest on the cases in which the IUB's IOL and PCI's IOL assignments disagree. Prospective observational study of 108 eyes that underwent cataract surgeries at Taksin Hospital. Two halves ofthe randomly chosen sample eyes were implanted with the IUB- and PCI-assigned lens. Postoperative refractive errors were measured in the fifth week. More accurate calculation was based on significantly smaller mean absolute errors (MAEs) and root mean squared errors (RMSEs) away from emmetropia. The distributions of the errors were examined to ensure that the higher accuracy was significant clinically as well. The (MAEs, RMSEs) were smaller for PCI of (0.5106 diopter (D), 0.6037D) than for IUB of (0.7000D, 0.8062D). The higher accuracy was principally contributedfrom negative errors, i.e., myopia. The MAEs and RMSEs for (IUB, PCI)'s negative errors were (0.7955D, 0.5185D) and (0.8562D, 0.5853D). Their differences were significant. The 72.34% of PCI errors fell within a clinically accepted range of ± 0.50D, whereas 50% of IUB errors did. PCI's higher accuracy was significant statistically and clinically, meaning that lens implantation based on PCI's assignments could improve postoperative outcomes over those based on IUB's assignments.
Accuracy assessment in the Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Houston, A. G.; Pitts, D. E.; Feiveson, A. H.; Badhwar, G.; Ferguson, M.; Hsu, E.; Potter, J.; Chhikara, R.; Rader, M.; Ahlers, C.
1979-01-01
The Accuracy Assessment System (AAS) of the Large Area Crop Inventory Experiment (LACIE) was responsible for determining the accuracy and reliability of LACIE estimates of wheat production, area, and yield, made at regular intervals throughout the crop season, and for investigating the various LACIE error sources, quantifying these errors, and relating them to their causes. Some results of using the AAS during the three years of LACIE are reviewed. As the program culminated, AAS was able not only to meet the goal of obtaining accurate statistical estimates of sampling and classification accuracy, but also the goal of evaluating component labeling errors. Furthermore, the ground-truth data processing matured from collecting data for one crop (small grains) to collecting, quality-checking, and archiving data for all crops in a LACIE small segment.
Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P
2017-09-01
Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.
Accuracy of measurement of star images on a pixel array
NASA Technical Reports Server (NTRS)
King, I. R.
1983-01-01
Algorithms are developed for predicting the accuracy with which the brightness of a star can be determined from its image on a digital detector array, as a function of the brightness of the background. The assumption is made that a known profile is being fitted by least squares. The two profiles used correspond to ST images and to ground-based observations. The first result is an approximate rule of thumb for equivalent noise area. More rigorous results are then given in tabular form. The size of the pixels, relative to the image size, is taken into account. Astronometric accuracy is also discussed briefly; the error, relative to image size, is very similar to the photometric error relative to brightness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K
2014-06-01
Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less
Absolute vs. relative error characterization of electromagnetic tracking accuracy
NASA Astrophysics Data System (ADS)
Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet
2010-02-01
Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.
Longato, Enrico; Garrido, Maria; Saccardo, Desy; Montesinos Guevara, Camila; Mani, Ali R; Bolognesi, Massimo; Amodio, Piero; Facchinetti, Andrea; Sparacino, Giovanni; Montagnese, Sara
2017-01-01
A popular method to estimate proximal/distal temperature (TPROX and TDIST) consists in calculating a weighted average of nine wireless sensors placed on pre-defined skin locations. Specifically, TPROX is derived from five sensors placed on the infra-clavicular and mid-thigh area (left and right) and abdomen, and TDIST from four sensors located on the hands and feet. In clinical practice, the loss/removal of one or more sensors is a common occurrence, but limited information is available on how this affects the accuracy of temperature estimates. The aim of this study was to determine the accuracy of temperature estimates in relation to number/position of sensors removed. Thirteen healthy subjects wore all nine sensors for 24 hours and reference TPROX and TDIST time-courses were calculated using all sensors. Then, all possible combinations of reduced subsets of sensors were simulated and suitable weights for each sensor calculated. The accuracy of TPROX and TDIST estimates resulting from the reduced subsets of sensors, compared to reference values, was assessed by the mean squared error, the mean absolute error (MAE), the cross-validation error and the 25th and 75th percentiles of the reconstruction error. Tables of the accuracy and sensor weights for all possible combinations of sensors are provided. For instance, in relation to TPROX, a subset of three sensors placed in any combination of three non-homologous areas (abdominal, right or left infra-clavicular, right or left mid-thigh) produced an error of 0.13°C MAE, while the loss/removal of the abdominal sensor resulted in an error of 0.25°C MAE, with the greater impact on the quality of the reconstruction. This information may help researchers/clinicians: i) evaluate the expected goodness of their TPROX and TDIST estimates based on the number of available sensors; ii) select the most appropriate subset of sensors, depending on goals and operational constraints.
Longato, Enrico; Garrido, Maria; Saccardo, Desy; Montesinos Guevara, Camila; Mani, Ali R.; Bolognesi, Massimo; Amodio, Piero; Facchinetti, Andrea; Sparacino, Giovanni
2017-01-01
A popular method to estimate proximal/distal temperature (TPROX and TDIST) consists in calculating a weighted average of nine wireless sensors placed on pre-defined skin locations. Specifically, TPROX is derived from five sensors placed on the infra-clavicular and mid-thigh area (left and right) and abdomen, and TDIST from four sensors located on the hands and feet. In clinical practice, the loss/removal of one or more sensors is a common occurrence, but limited information is available on how this affects the accuracy of temperature estimates. The aim of this study was to determine the accuracy of temperature estimates in relation to number/position of sensors removed. Thirteen healthy subjects wore all nine sensors for 24 hours and reference TPROX and TDIST time-courses were calculated using all sensors. Then, all possible combinations of reduced subsets of sensors were simulated and suitable weights for each sensor calculated. The accuracy of TPROX and TDIST estimates resulting from the reduced subsets of sensors, compared to reference values, was assessed by the mean squared error, the mean absolute error (MAE), the cross-validation error and the 25th and 75th percentiles of the reconstruction error. Tables of the accuracy and sensor weights for all possible combinations of sensors are provided. For instance, in relation to TPROX, a subset of three sensors placed in any combination of three non-homologous areas (abdominal, right or left infra-clavicular, right or left mid-thigh) produced an error of 0.13°C MAE, while the loss/removal of the abdominal sensor resulted in an error of 0.25°C MAE, with the greater impact on the quality of the reconstruction. This information may help researchers/clinicians: i) evaluate the expected goodness of their TPROX and TDIST estimates based on the number of available sensors; ii) select the most appropriate subset of sensors, depending on goals and operational constraints. PMID:28666029
Bedini, José Luis; Wallace, Jane F; Pardo, Scott; Petruschke, Thorsten
2015-10-07
Blood glucose monitoring is an essential component of diabetes management. Inaccurate blood glucose measurements can severely impact patients' health. This study evaluated the performance of 3 blood glucose monitoring systems (BGMS), Contour® Next USB, FreeStyle InsuLinx®, and OneTouch® Verio™ IQ, under routine hospital conditions. Venous blood samples (N = 236) obtained for routine laboratory procedures were collected at a Spanish hospital, and blood glucose (BG) concentrations were measured with each BGMS and with the available reference (hexokinase) method. Accuracy of the 3 BGMS was compared according to ISO 15197:2013 accuracy limit criteria, by mean absolute relative difference (MARD), consensus error grid (CEG) and surveillance error grid (SEG) analyses, and an insulin dosing error model. All BGMS met the accuracy limit criteria defined by ISO 15197:2013. While all measurements of the 3 BGMS were within low-risk zones in both error grid analyses, the Contour Next USB showed significantly smaller MARDs between reference values compared to the other 2 BGMS. Insulin dosing errors were lowest for the Contour Next USB than compared to the other systems. All BGMS fulfilled ISO 15197:2013 accuracy limit criteria and CEG criterion. However, taking together all analyses, differences in performance of potential clinical relevance may be observed. Results showed that Contour Next USB had lowest MARD values across the tested glucose range, as compared with the 2 other BGMS. CEG and SEG analyses as well as calculation of the hypothetical bolus insulin dosing error suggest a high accuracy of the Contour Next USB. © 2015 Diabetes Technology Society.
Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories
NASA Technical Reports Server (NTRS)
Green, S.; Grace, M.; Williams, D.
1999-01-01
The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.
Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics
NASA Astrophysics Data System (ADS)
Xiong, Ling; Luo, Xiao; Liu, Zhenyu; Wang, Xiaokun; Hu, Haixiang; Zhang, Feng; Zheng, Ligong; Zhang, Xuejun
2016-07-01
The swing arm profilometer (SAP) has been playing a very important role in testing large aspheric optics. As one of most significant error sources that affects the test accuracy, misalignment error leads to low-order errors such as aspherical aberrations and coma apart from power. In order to analyze the effect of misalignment errors, the relation between alignment parameters and test results of axisymmetric optics is presented. Analytical solutions of SAP system errors from tested mirror misalignment, arm length L deviation, tilt-angle θ deviation, air-table spin error, and air-table misalignment are derived, respectively; and misalignment tolerance is given to guide surface measurement. In addition, experiments on a 2-m diameter parabolic mirror are demonstrated to verify the model; according to the error budget, we achieve the SAP test for low-order errors except power with accuracy of 0.1 μm root-mean-square.
Radiative flux and forcing parameterization error in aerosol-free clear skies
Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...
2015-07-03
This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less
Examining the accuracy of foodservice in a hospital setting.
Glover, N S; Keane, T M
1984-09-01
Although a great deal of research has been conducted to determine the appropriate diets for the prevention and treatment of various illnesses, there is very little in the literature about research that directly assesses the accuracy of the prescribed diets served to patients in a hospital setting. The present study was designed to evaluate the accuracy of meals served to patients by identifying critical errors and more general errors on trays about to be served. The results indicated that the error rate was greater on weekends and holidays than during the week. Significantly, a correlational analysis revealed that error rate was inversely related to the total number of foodservice supervisors and more specifically to the number of food production supervisors and registered dietitians present. The implications of the results for possible interventions and training are discussed.
Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.
Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming
2017-06-12
Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Altitude Registration of Limb-Scattered Radiation
NASA Technical Reports Server (NTRS)
Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe
2017-01-01
One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.
Corenman, Donald S; Strauch, Eric L; Dornan, Grant J; Otterstrom, Eric; Zalepa King, Lisa
2017-09-01
Advancements in surgical navigation technology coupled with 3-dimensional (3D) radiographic data have significantly enhanced the accuracy and efficiency of spinal fusion implant placement. Increased usage of such technology has led to rising concerns regarding maintenance of the sterile field, as makeshift drape systems are fraught with breaches thus presenting increased risk of surgical site infections (SSIs). A clinical need exists for a sterile draping solution with these techniques. Our objective was to quantify expected accuracy error associated with 2MM and 4MM thickness Sterile-Z Patient Drape ® using Medtronic O-Arm ® Surgical Imaging with StealthStation ® S7 ® Navigation System. Camera distance to reference frame was investigated for contribution to accuracy error. A testing jig was placed on the radiolucent table and the Medtronic passive reference frame was attached to jig. The StealthStation ® S7 ® navigation camera was placed at various distances from testing jig and the geometry error of reference frame was captured for three different drape configurations: no drape, 2MM drape and 4MM drape. The O-Arm ® gantry location and StealthStation ® S7 ® camera position was maintained and seven 3D acquisitions for each of drape configurations were measured. Data was analyzed by a two-factor analysis of variance (ANOVA) and Bonferroni comparisons were used to assess the independent effects of camera angle and drape on accuracy error. Median (and maximum) measurement accuracy error was higher for the 2MM than for the 4MM drape for each camera distance. The most extreme error observed (4.6 mm) occurred when using the 2MM and the 'far' camera distance. The 4MM drape was found to induce an accuracy error of 0.11 mm (95% confidence interval, 0.06-0.15; P<0.001) relative to the no drape testing, regardless of camera distance. Medium camera distance produced lower accuracy error than either the close (additional 0.08 mm error; 95% CI, 0-0.15; P=0.035) or far (additional 0.21mm error; 95% CI, 0.13-0.28; P<0.001) camera distances, regardless of whether a drape was used. In comparison to the 'no drape' condition, the accuracy error of 0.11 mm when using a 4MM film drape is minimal and clinically insignificant.
NASA Astrophysics Data System (ADS)
Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang
2018-02-01
This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2013-01-01
Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation. PMID:24260324
The accuracy of self-reported pregnancy-related weight: a systematic review.
Headen, I; Cohen, A K; Mujahid, M; Abrams, B
2017-03-01
Self-reported maternal weight is error-prone, and the context of pregnancy may impact error distributions. This systematic review summarizes error in self-reported weight across pregnancy and assesses implications for bias in associations between pregnancy-related weight and birth outcomes. We searched PubMed and Google Scholar through November 2015 for peer-reviewed articles reporting accuracy of self-reported, pregnancy-related weight at four time points: prepregnancy, delivery, over gestation and postpartum. Included studies compared maternal self-report to anthropometric measurement or medical report of weights. Sixty-two studies met inclusion criteria. We extracted data on magnitude of error and misclassification. We assessed impact of reporting error on bias in associations between pregnancy-related weight and birth outcomes. Women underreported prepregnancy (PPW: -2.94 to -0.29 kg) and delivery weight (DW: -1.28 to 0.07 kg), and over-reported gestational weight gain (GWG: 0.33 to 3 kg). Magnitude of error was small, ranged widely, and varied by prepregnancy weight class and race/ethnicity. Misclassification was moderate (PPW: 0-48.3%; DW: 39.0-49.0%; GWG: 16.7-59.1%), and overestimated some estimates of population prevalence. However, reporting error did not largely bias associations between pregnancy-related weight and birth outcomes. Although measured weight is preferable, self-report is a cost-effective and practical measurement approach. Future researchers should develop bias correction techniques for self-reported pregnancy-related weight. © 2017 World Obesity Federation.
High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610
High accuracy acoustic relative humidity measurement in duct flow with air.
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.
Accuracy control in Monte Carlo radiative calculations
NASA Technical Reports Server (NTRS)
Almazan, P. Planas
1993-01-01
The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.
Alaska national hydrography dataset positional accuracy assessment study
Arundel, Samantha; Yamamoto, Kristina H.; Constance, Eric; Mantey, Kim; Vinyard-Houx, Jeremy
2013-01-01
Initial visual assessments Wide range in the quality of fit between features in NHD and these new image sources. No statistical analysis has been performed to actually quantify accuracy Determining absolute accuracy is cost prohibitive (must collect independent, well defined test points) Quantitative analysis of relative positional error is feasible.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
Geometric Accuracy Analysis of Worlddem in Relation to AW3D30, Srtm and Aster GDEM2
NASA Astrophysics Data System (ADS)
Bayburt, S.; Kurtak, A. B.; Büyüksalih, G.; Jacobsen, K.
2017-05-01
In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10 m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.
Teerawattananon, Kanlaya; Myint, Chaw-Yin; Wongkittirux, Kwanjai; Teerawattananon, Yot; Chinkulkitnivat, Bunyong; Orprayoon, Surapong; Kusakul, Suwat; Tengtrisorn, Supaporn; Jenchitr, Watanee
2014-01-01
As part of the development of a system for the screening of refractive error in Thai children, this study describes the accuracy and feasibility of establishing a program conducted by teachers. To assess the accuracy and feasibility of screening by teachers. A cross-sectional descriptive and analytical study was conducted in 17 schools in four provinces representing four geographic regions in Thailand. A two-staged cluster sampling was employed to compare the detection rate of refractive error among eligible students between trained teachers and health professionals. Serial focus group discussions were held for teachers and parents in order to understand their attitude towards refractive error screening at schools and the potential success factors and barriers. The detection rate of refractive error screening by teachers among pre-primary school children is relatively low (21%) for mild visual impairment but higher for moderate visual impairment (44%). The detection rate for primary school children is high for both levels of visual impairment (52% for mild and 74% for moderate). The focus group discussions reveal that both teachers and parents would benefit from further education regarding refractive errors and that the vast majority of teachers are willing to conduct a school-based screening program. Refractive error screening by health professionals in pre-primary and primary school children is not currently implemented in Thailand due to resource limitations. However, evidence suggests that a refractive error screening program conducted in schools by teachers in the country is reasonable and feasible because the detection and treatment of refractive error in very young generations is important and the screening program can be implemented and conducted with relatively low costs.
Task motivation influences alpha suppression following errors.
Compton, Rebecca J; Bissey, Bryn; Worby-Selim, Sharoda
2014-07-01
The goal of the present research is to examine the influence of motivation on a novel error-related neural marker, error-related alpha suppression (ERAS). Participants completed an attentionally demanding flanker task under conditions that emphasized either speed or accuracy or under conditions that manipulated the monetary value of errors. Conditions in which errors had greater motivational value produced greater ERAS, that is, greater alpha suppression following errors compared to correct trials. A second study found that a manipulation of task difficulty did not affect ERAS. Together, the results confirm that ERAS is both a robust phenomenon and one that is sensitive to motivational factors. Copyright © 2014 Society for Psychophysiological Research.
Altitude registration of limb-scattered radiation
NASA Astrophysics Data System (ADS)
Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe
2017-01-01
One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of ±200 m. Results using ARRM indicate a ˜ 300 to 400 m intra-orbital TH change varying seasonally ±100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of ˜ 200 m over ˜ 5 years with a relative accuracy (a long-term accuracy) of ±100 m outside the polar regions.
Geolocation error tracking of ZY-3 three line cameras
NASA Astrophysics Data System (ADS)
Pan, Hongbo
2017-01-01
The high-accuracy geolocation of high-resolution satellite images (HRSIs) is a key issue for mapping and integrating multi-temporal, multi-sensor images. In this manuscript, we propose a new geometric frame for analysing the geometric error of a stereo HRSI, in which the geolocation error can be divided into three parts: the epipolar direction, cross base direction, and height direction. With this frame, we proved that the height error of three line cameras (TLCs) is independent of nadir images, and that the terrain effect has a limited impact on the geolocation errors. For ZY-3 error sources, the drift error in both the pitch and roll angle and its influence on the geolocation accuracy are analysed. Epipolar and common tie-point constraints are proposed to study the bundle adjustment of HRSIs. Epipolar constraints explain that the relative orientation can reduce the number of compensation parameters in the cross base direction and have a limited impact on the height accuracy. The common tie points adjust the pitch-angle errors to be consistent with each other for TLCs. Therefore, free-net bundle adjustment of a single strip cannot significantly improve the geolocation accuracy. Furthermore, the epipolar and common tie-point constraints cause the error to propagate into the adjacent strip when multiple strips are involved in the bundle adjustment, which results in the same attitude uncertainty throughout the whole block. Two adjacent strips-Orbit 305 and Orbit 381, covering 7 and 12 standard scenes separately-and 308 ground control points (GCPs) were used for the experiments. The experiments validate the aforementioned theory. The planimetric and height root mean square errors were 2.09 and 1.28 m, respectively, when two GCPs were settled at the beginning and end of the block.
Performance of some numerical Laplace inversion methods on American put option formula
NASA Astrophysics Data System (ADS)
Octaviano, I.; Yuniar, A. R.; Anisa, L.; Surjanto, S. D.; Putri, E. R. M.
2018-03-01
Numerical inversion approaches of Laplace transform is used to obtain a semianalytic solution. Some of the mathematical inversion methods such as Durbin-Crump, Widder, and Papoulis can be used to calculate American put options through the optimal exercise price in the Laplace space. The comparison of methods on some simple functions is aimed to know the accuracy and parameters which used in the calculation of American put options. The result obtained is the performance of each method regarding accuracy and computational speed. The Durbin-Crump method has an average error relative of 2.006e-004 with computational speed of 0.04871 seconds, the Widder method has an average error relative of 0.0048 with computational speed of 3.100181 seconds, and the Papoulis method has an average error relative of 9.8558e-004 with computational speed of 0.020793 seconds.
Entropy of space-time outcome in a movement speed-accuracy task.
Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M
2015-12-01
The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance Evaluation of Three Blood Glucose Monitoring Systems Using ISO 15197
Bedini, José Luis; Wallace, Jane F.; Pardo, Scott; Petruschke, Thorsten
2015-01-01
Background: Blood glucose monitoring is an essential component of diabetes management. Inaccurate blood glucose measurements can severely impact patients’ health. This study evaluated the performance of 3 blood glucose monitoring systems (BGMS), Contour® Next USB, FreeStyle InsuLinx®, and OneTouch® Verio™ IQ, under routine hospital conditions. Methods: Venous blood samples (N = 236) obtained for routine laboratory procedures were collected at a Spanish hospital, and blood glucose (BG) concentrations were measured with each BGMS and with the available reference (hexokinase) method. Accuracy of the 3 BGMS was compared according to ISO 15197:2013 accuracy limit criteria, by mean absolute relative difference (MARD), consensus error grid (CEG) and surveillance error grid (SEG) analyses, and an insulin dosing error model. Results: All BGMS met the accuracy limit criteria defined by ISO 15197:2013. While all measurements of the 3 BGMS were within low-risk zones in both error grid analyses, the Contour Next USB showed significantly smaller MARDs between reference values compared to the other 2 BGMS. Insulin dosing errors were lowest for the Contour Next USB than compared to the other systems. Conclusions: All BGMS fulfilled ISO 15197:2013 accuracy limit criteria and CEG criterion. However, taking together all analyses, differences in performance of potential clinical relevance may be observed. Results showed that Contour Next USB had lowest MARD values across the tested glucose range, as compared with the 2 other BGMS. CEG and SEG analyses as well as calculation of the hypothetical bolus insulin dosing error suggest a high accuracy of the Contour Next USB. PMID:26445813
Thorup, Charlotte Brun; Grønkjær, Mette; Dinesen, Birthe Irene
2017-01-01
Background Step counters have been used to observe activity and support physical activity, but there is limited evidence on their accuracy. Objective The purpose was to investigate the step accuracy of the Fitbit Zip (Zip) in healthy adults during treadmill walking and in patients with cardiac disease while hospitalised at home. Methods Twenty healthy adults aged 39±13.79 (mean ±SD) wore four Zips while walking on a treadmill at different speeds (1.7–6.1 km/hour), and 24 patients with cardiac disease (age 67±10.03) wore a Zip for 24 hours during hospitalisation and for 4 weeks thereafter at home. A Shimmer3 device was used as a criterion standard. Results At a treadmill speed of 3.6 km/hour, the relative error (±SD) for the Zips on the upper body was −0.02±0.67 on the right side and −0.09 (0.67) on the left side. For the Zips on the waist, this was 0.08±0.71 for the right side and -0.08 (0.47) on the left side. At a treadmill speed of 3.6 km/hour and higher, the average per cent of relative error was <3%. The 24-hour test for the hospitalised patients showed a relative error of −47.15±24.11 (interclass correlation coefficient (ICC): 0.60), and for the 24-hour test at home, the relative error was −27.51±28.78 (ICC: 0.87). Thus, none of the 24-hour tests had less than the expected 20% error. In time periods of evident walking during the 24 h test, the Zip had an average per cent relative error of <3% at 3.6 km/hour and higher speeds. Conclusions A speed of 3.6 km/hour or higher is required to expect acceptable accuracy in step measurement using a Zip, on a treadmill and in real life. Inaccuracies are directly related to slow speeds, which might be a problem for patients with cardiac disease who walk at a slow pace. PMID:28363918
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
NASA Astrophysics Data System (ADS)
Lee, Eunji; Park, Sang-Young; Shin, Bumjoon; Cho, Sungki; Choi, Eun-Jung; Jo, Junghyun; Park, Jang-Hyun
2017-03-01
The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.
Analysis of deformable image registration accuracy using computational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.
2010-03-15
Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less
NASA Technical Reports Server (NTRS)
Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.
2014-01-01
A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties
Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin
2012-01-01
The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.
NASA Astrophysics Data System (ADS)
Utegulov, B. B.
2018-02-01
In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.
Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties
Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn
2009-01-01
Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494
Modeling of the Mode S tracking system in support of aircraft safety research
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1982-01-01
This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.
Data accuracy assessment using enterprise architecture
NASA Astrophysics Data System (ADS)
Närman, Per; Holm, Hannes; Johnson, Pontus; König, Johan; Chenine, Moustafa; Ekstedt, Mathias
2011-02-01
Errors in business processes result in poor data accuracy. This article proposes an architecture analysis method which utilises ArchiMate and the Probabilistic Relational Model formalism to model and analyse data accuracy. Since the resources available for architecture analysis are usually quite scarce, the method advocates interviews as the primary data collection technique. A case study demonstrates that the method yields correct data accuracy estimates and is more resource-efficient than a competing sampling-based data accuracy estimation method.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
Applying Intelligent Algorithms to Automate the Identification of Error Factors.
Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han
2018-05-03
Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.
NASA Technical Reports Server (NTRS)
Thurman, Sam W.; Estefan, Jeffrey A.
1991-01-01
Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.
Ranging error analysis of single photon satellite laser altimetry under different terrain conditions
NASA Astrophysics Data System (ADS)
Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong
2018-02-01
Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.
USDA-ARS?s Scientific Manuscript database
Error in rater estimates of plant disease severity occur, and standard area diagrams (SADs) help improve accuracy and reliability. The effects of diagram number in a SAD set on accuracy and reliability is unknown. The objective of this study was to compare estimates of pecan scab severity made witho...
NASA Technical Reports Server (NTRS)
Jekeli, C.
1979-01-01
Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of themore » absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.« less
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Kovatchev, Boris P; Patek, Stephen D; Ortiz, Edward Andrew; Breton, Marc D
2015-03-01
The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes. A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to "replay" real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3-22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows. In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively. Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes.
Assessing Sensor Accuracy for Non-Adjunct Use of Continuous Glucose Monitoring
Patek, Stephen D.; Ortiz, Edward Andrew; Breton, Marc D.
2015-01-01
Abstract Background: The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes. Materials and Methods: A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to “replay” real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3–22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows. Results: In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively. Conclusions: Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes. PMID:25436913
Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li
2018-05-14
Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.
Seli, Paul; Cheyne, James Allan; Smilek, Daniel
2012-03-01
In two studies of a GO-NOGO task assessing sustained attention, we examined the effects of (1) altering speed-accuracy trade-offs through instructions (emphasizing both speed and accuracy or accuracy only) and (2) auditory alerts distributed throughout the task. Instructions emphasizing accuracy reduced errors and changed the distribution of GO trial RTs. Additionally, correlations between errors and increasing RTs produced a U-function; excessively fast and slow RTs accounted for much of the variance of errors. Contrary to previous reports, alerts increased errors and RT variability. The results suggest that (1) standard instructions for sustained attention tasks, emphasizing speed and accuracy equally, produce errors arising from attempts to conform to the misleading requirement for speed, which become conflated with attention-lapse produced errors and (2) auditory alerts have complex, and sometimes deleterious, effects on attention. We argue that instructions emphasizing accuracy provide a more precise assessment of attention lapses in sustained attention tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Compensation for positioning error of industrial robot for flexible vision measuring system
NASA Astrophysics Data System (ADS)
Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui
2013-01-01
Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.
High-speed photogrammetry system for measuring the kinematics of insect wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Iain D.; Lawson, Nicholas J.; Harvey, Andrew R.
2006-06-10
We describe and characterize an experimental system to perform shape measurements on deformable objects using high-speed close-range photogrammetry. The eventual application is to extract the kinematics of several marked points on an insect wing during tethered and hovering flight. We investigate the performance of the system with a small number of views and determine an empirical relation between the mean pixel error of the optimization routine and the position error. Velocity and acceleration are calculated by numerical differencing, and their relation to the position errors is verified. For a field of view of {approx}40mmx40 mm, a rms accuracy of 30more » {mu}m in position, 150 mm/s in velocity, and 750 m/s2 in acceleration at 5000 frames/s is achieved. This accuracy is sufficient to measure the kinematics of hoverfly flight.« less
Maltreated children's memory: accuracy, suggestibility, and psychopathology.
Eisen, Mitchell L; Goodman, Gail S; Qin, Jianjian; Davis, Suzanne; Crayton, John
2007-11-01
Memory, suggestibility, stress arousal, and trauma-related psychopathology were examined in 328 3- to 16-year-olds involved in forensic investigations of abuse and neglect. Children's memory and suggestibility were assessed for a medical examination and venipuncture. Being older and scoring higher in cognitive functioning were related to fewer inaccuracies. In addition, cortisol level and trauma symptoms in children who reported more dissociative tendencies were associated with increased memory error, whereas cortisol level and trauma symptoms were not associated with increased error for children who reported fewer dissociative tendencies. Sexual and/or physical abuse predicted greater accuracy. The study contributes important new information to scientific understanding of maltreatment, psychopathology, and eyewitness memory in children. (c) 2007 APA.
NASA Astrophysics Data System (ADS)
Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto
2017-12-01
Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.
NASA Astrophysics Data System (ADS)
Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin
2014-12-01
Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.
Evaluation and attribution of OCO-2 XCO2 uncertainties
NASA Astrophysics Data System (ADS)
Worden, John R.; Doran, Gary; Kulawik, Susan; Eldering, Annmarie; Crisp, David; Frankenberg, Christian; O'Dell, Chris; Bowman, Kevin
2017-07-01
Evaluating and attributing uncertainties in total column atmospheric CO2 measurements (XCO2) from the OCO-2 instrument is critical for testing hypotheses related to the underlying processes controlling XCO2 and for developing quality flags needed to choose those measurements that are usable for carbon cycle science.Here we test the reported uncertainties of version 7 OCO-2 XCO2 measurements by examining variations of the XCO2 measurements and their calculated uncertainties within small regions (˜ 100 km × 10.5 km) in which natural CO2 variability is expected to be small relative to variations imparted by noise or interferences. Over 39 000 of these small neighborhoods
comprised of approximately 190 observations per neighborhood are used for this analysis. We find that a typical ocean measurement has a precision and accuracy of 0.35 and 0.24 ppm respectively for calculated precisions larger than ˜ 0.25 ppm. These values are approximately consistent with the calculated errors of 0.33 and 0.14 ppm for the noise and interference error, assuming that the accuracy is bounded by the calculated interference error. The actual precision for ocean data becomes worse as the signal-to-noise increases or the calculated precision decreases below 0.25 ppm for reasons that are not well understood. A typical land measurement, both nadir and glint, is found to have a precision and accuracy of approximately 0.75 and 0.65 ppm respectively as compared to the calculated precision and accuracy of approximately 0.36 and 0.2 ppm. The differences in accuracy between ocean and land suggests that the accuracy of XCO2 data is likely related to interferences such as aerosols or surface albedo as they vary less over ocean than land. The accuracy as derived here is also likely a lower bound as it does not account for possible systematic biases between the regions used in this analysis.
Relative Navigation of Formation-Flying Satellites
NASA Technical Reports Server (NTRS)
Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl
2002-01-01
This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.
2011-01-01
Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1991-01-01
This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions, however, appears likely to reduce this figure substantially. Plans and recommendations for response to these findings are presented.
Partial compensation interferometry measurement system for parameter errors of conicoid surface
NASA Astrophysics Data System (ADS)
Hao, Qun; Li, Tengfei; Hu, Yao; Wang, Shaopu; Ning, Yan; Chen, Zhuo
2018-06-01
Surface parameters, such as vertex radius of curvature and conic constant, are used to describe the shape of an aspheric surface. Surface parameter errors (SPEs) are deviations affecting the optical characteristics of an aspheric surface. Precise measurement of SPEs is critical in the evaluation of optical surfaces. In this paper, a partial compensation interferometry measurement system for SPE of a conicoid surface is proposed based on the theory of slope asphericity and the best compensation distance. The system is developed to measure the SPE-caused best compensation distance change and SPE-caused surface shape change and then calculate the SPEs with the iteration algorithm for accuracy improvement. Experimental results indicate that the average relative measurement accuracy of the proposed system could be better than 0.02% for the vertex radius of curvature error and 2% for the conic constant error.
Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy
USDA-ARS?s Scientific Manuscript database
A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
Albin, Thomas J
2013-01-01
Designers and ergonomists occasionally must produce anthropometric models of workstations with only summary percentile data available regarding the intended users. Until now the only option available was adding or subtracting percentiles of the anthropometric elements, e.g. heights and widths, used in the model, despite the known resultant errors in the estimate of the percent of users accommodated. This paper introduces a new method, the Median Correlation Method (MCM) that reduces the error. Compare the relative accuracy of MCM to combining percentiles for anthropometric models comprised of all possible pairs of five anthropometric elements. Describe the mathematical basis of the greater accuracy of MCM. MCM is described. 95th percentile accommodation percentiles are calculated for the sums and differences of all combinations of five anthropometric elements by combining percentiles and using MCM. The resulting estimates are compared with empirical values of the 95th percentiles, and the relative errors are reported. The MCM method is shown to be significantly more accurate than adding percentiles. MCM is demonstrated to have a mathematical advantage estimating accommodation relative to adding or subtracting percentiles. The MCM method should be used in preference to adding or subtracting percentiles when limited data prevent more sophisticated anthropometric models.
Benau, Erik M; Moelter, Stephen T
2016-09-01
The Error-Related Negativity (ERN) and Correct-Response Negativity (CRN) are brief event-related potential (ERP) components-elicited after the commission of a response-associated with motivation, emotion, and affect. The Error Positivity (Pe) typically appears after the ERN, and corresponds to awareness of having committed an error. Although motivation has long been established as an important factor in the expression and morphology of the ERN, physiological state has rarely been explored as a variable in these investigations. In the present study, we investigated whether self-reported physiological state (SRPS; wakefulness, hunger, or thirst) corresponds with ERN amplitude and type of lexical stimuli. Participants completed a SRPS questionnaire and then completed a speeded Lexical Decision Task with words and pseudowords that were either food-related or neutral. Though similar in frequency and length, food-related stimuli elicited increased accuracy, faster errors, and generated a larger ERN and smaller CRN than neutral words. Self-reported thirst correlated with improved accuracy and smaller ERN and CRN amplitudes. The Pe and Pc (correct positivity) were not impacted by physiological state or by stimulus content. The results indicate that physiological state and manipulations of lexical content may serve as important avenues for future research. Future studies that apply more sensitive measures of physiological and motivational state (e.g., biomarkers for satiety) or direct manipulations of satiety may be a useful technique for future research into response monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
Research on the error model of airborne celestial/inertial integrated navigation system
NASA Astrophysics Data System (ADS)
Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang
2015-02-01
Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.
Relative navigation for spacecraft formation flying
NASA Technical Reports Server (NTRS)
Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.
1998-01-01
The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.
Relative Navigation for Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.
1998-01-01
The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2015-01-01
Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their full potential in capturing clinical outcomes. PMID:25811838
Multimodel ensembles of wheat growth: many models are better than one.
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost
2015-02-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.
Multimodel Ensembles of Wheat Growth: More Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Multimodel Ensembles of Wheat Growth: Many Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
NASA Astrophysics Data System (ADS)
Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.
Effects of Listening Conditions, Error Types, and Ensemble Textures on Error Detection Skills
ERIC Educational Resources Information Center
Waggoner, Dori T.
2011-01-01
This study was designed with three main purposes: (a) to investigate the effects of two listening conditions on error detection accuracy, (b) to compare error detection responses for rhythm errors and pitch errors, and (c) to examine the influences of texture on error detection accuracy. Undergraduate music education students (N = 18) listened to…
Space-Borne Laser Altimeter Geolocation Error Analysis
NASA Astrophysics Data System (ADS)
Wang, Y.; Fang, J.; Ai, Y.
2018-05-01
This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.
Numerical modeling of the divided bar measurements
NASA Astrophysics Data System (ADS)
LEE, Y.; Keehm, Y.
2011-12-01
The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.
The computer speed of SMVGEAR II was improved markedly on scalar and vector machines with relatively little loss in accuracy. The improvement was due to a method of frequently recalculating the absolute error tolerance instead of keeping it constant for a given set of chemistry. ...
A open loop guidance architecture for navigationally robust on-orbit docking
NASA Technical Reports Server (NTRS)
Chern, Hung-Sheng
1995-01-01
The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.
Evaluation of Light Detection and Ranging (LIDAR) for measuring river corridor topography
Bowen, Z.H.; Waltermire, R.G.
2002-01-01
LIDAR is relatively new in the commercial market for remote sensing of topography and it is difficult to find objective reporting on the accuracy of LIDAR measurements in an applied context. Accuracy specifications for LIDAR data in published evaluations range from 1 to 2 m root mean square error (RMSEx,y) and 15 to 20 cm RMSEz. Most of these estimates are based on measurements over relatively flat, homogeneous terrain. This study evaluated the accuracy of one LIDAR data set over a range of terrain types in a western river corridor. Elevation errors based on measurements over all terrain types were larger (RMSEz equals 43 cm) than values typically reported. This result is largely attributable to horizontal positioning limitations (1 to 2 m RMSEx,y) in areas with variable terrain and large topographic relief. Cross-sectional profiles indicated algorithms that were effective for removing vegetation in relatively flat terrain were less effective near the active channel where dense vegetation was found in a narrow band along a low terrace. LIDAR provides relatively accurate data at densities (50,000 to 100,000 points per km2) not feasible with other survey technologies. Other options for projects requiring higher accuracy include low-altitude aerial photography and intensive ground surveying.
Rhodes, Matthew G; Tauber, Sarah K
2011-11-01
The current study examined the degree to which predictions of memory performance made immediately or at a delay are sensitive to confidently held memory illusions. Participants studied unrelated pairs of words and made judgements of learning (JOLs) for each item, either immediately or after a delay. Half of the unrelated pairs (deceptive items; e.g., nurse-dollar) had a semantically related competitor (e.g., doctor) that was easily accessible when given a test cue (e.g., nurse-do_ _ _r) and half had no semantically related competitor (control items; e.g., subject-dollar). Following the study phase, participants were administered a cued recall test. Results from Experiment 1 showed that memory performance was less accurate for deceptive compared with control items. In addition, delaying judgement improved the relative accuracy of JOLs for control items but not for deceptive items. Subsequent experiments explored the degree to which the relative accuracy of delayed JOLs for deceptive items improved as a result of a warning to ensure that retrieved memories were accurate (Experiment 2) and corrective feedback regarding the veracity of information retrieved prior to making a JOL (Experiment 3). In all, these data suggest that delayed JOLs may be largely insensitive to memory errors unless participants are provided with feedback regarding memory accuracy.
Neural evidence for enhanced error detection in major depressive disorder.
Chiu, Pearl H; Deldin, Patricia J
2007-04-01
Anomalies in error processing have been implicated in the etiology and maintenance of major depressive disorder. In particular, depressed individuals exhibit heightened sensitivity to error-related information and negative environmental cues, along with reduced responsivity to positive reinforcers. The authors examined the neural activation associated with error processing in individuals diagnosed with and without major depression and the sensitivity of these processes to modulation by monetary task contingencies. The error-related negativity and error-related positivity components of the event-related potential were used to characterize error monitoring in individuals with major depressive disorder and the degree to which these processes are sensitive to modulation by monetary reinforcement. Nondepressed comparison subjects (N=17) and depressed individuals (N=18) performed a flanker task under two external motivation conditions (i.e., monetary reward for correct responses and monetary loss for incorrect responses) and a nonmonetary condition. After each response, accuracy feedback was provided. The error-related negativity component assessed the degree of anomaly in initial error detection, and the error positivity component indexed recognition of errors. Across all conditions, the depressed participants exhibited greater amplitude of the error-related negativity component, relative to the comparison subjects, and equivalent error positivity amplitude. In addition, the two groups showed differential modulation by task incentives in both components. These data implicate exaggerated early error-detection processes in the etiology and maintenance of major depressive disorder. Such processes may then recruit excessive neural and cognitive resources that manifest as symptoms of depression.
Accuracy Assessment and Correction of Vaisala RS92 Radiosonde Water Vapor Measurements
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Miloshevich, Larry M.; Vomel, Holger; Leblanc, Thierry
2008-01-01
Relative humidity (RH) measurements from Vaisala RS92 radiosondes are widely used in both research and operational applications, although the measurement accuracy is not well characterized as a function of its known dependences on height, RH, and time of day (or solar altitude angle). This study characterizes RS92 mean bias error as a function of its dependences by comparing simultaneous measurements from RS92 radiosondes and from three reference instruments of known accuracy. The cryogenic frostpoint hygrometer (CFH) gives the RS92 accuracy above the 700 mb level; the ARM microwave radiometer gives the RS92 accuracy in the lower troposphere; and the ARM SurTHref system gives the RS92 accuracy at the surface using 6 RH probes with NIST-traceable calibrations. These RS92 assessments are combined using the principle of Consensus Referencing to yield a detailed estimate of RS92 accuracy from the surface to the lowermost stratosphere. An empirical bias correction is derived to remove the mean bias error, yielding corrected RS92 measurements whose mean accuracy is estimated to be +/-3% of the measured RH value for nighttime soundings and +/-4% for daytime soundings, plus an RH offset uncertainty of +/-0.5%RH that is significant for dry conditions. The accuracy of individual RS92 soundings is further characterized by the 1-sigma "production variability," estimated to be +/-1.5% of the measured RH value. The daytime bias correction should not be applied to cloudy daytime soundings, because clouds affect the solar radiation error in a complicated and uncharacterized way.
USDA-ARS?s Scientific Manuscript database
A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...
Figueira, Bruno; Gonçalves, Bruno; Folgado, Hugo; Masiulis, Nerijus; Calleja-González, Julio; Sampaio, Jaime
2018-06-14
The present study aims to identify the accuracy of the NBN23 ® system, an indoor tracking system based on radio-frequency and standard Bluetooth Low Energy channels. Twelve capture tags were attached to a custom cart with fixed distances of 0.5, 1.0, 1.5, and 1.8 m. The cart was pushed along a predetermined course following the lines of a standard dimensions Basketball court. The course was performed at low speed (<10.0 km/h), medium speed (>10.0 km/h and <20.0 km/h) and high speed (>20.0 km/h). Root mean square error (RMSE) and percentage of variance accounted for (%VAF) were used as accuracy measures. The obtained data showed acceptable accuracy results for both RMSE and %VAF, despite the expected degree of error in position measurement at higher speeds. The RMSE for all the distances and velocities presented an average absolute error of 0.30 ± 0.13 cm with 90.61 ± 8.34 of %VAF, in line with most available systems, and considered acceptable for indoor sports. The processing of data with filter correction seemed to reduce the noise and promote a lower relative error, increasing the %VAF for each measured distance. Research using positional-derived variables in Basketball is still very scarce; thus, this independent test of the NBN23 ® tracking system provides accuracy details and opens up opportunities to develop new performance indicators that help to optimize training adaptations and performance.
Entropy of Movement Outcome in Space-Time.
Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M
2015-07-01
Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.
2013-01-01
Background Cardiovascular magnetic resonance (CMR) T1 mapping indices, such as T1 time and partition coefficient (λ), have shown potential to assess diffuse myocardial fibrosis. The purpose of this study was to investigate how scanner and field strength variation affect the accuracy and precision/reproducibility of T1 mapping indices. Methods CMR studies were performed on two 1.5T and three 3T scanners. Eight phantoms were made to mimic the T1/T2 of pre- and post-contrast myocardium and blood at 1.5T and 3T. T1 mapping using MOLLI was performed with simulated heart rate of 40-100 bpm. Inversion recovery spin echo (IR-SE) was the reference standard for T1 determination. Accuracy was defined as the percent error between MOLLI and IR-SE, and scan/re-scan reproducibility was defined as the relative percent mean difference between repeat MOLLI scans. Partition coefficient was estimated by ΔR1myocardium phantom/ΔR1blood phantom. Generalized linear mixed model was used to compare the accuracy and precision/reproducibility of T1 and λ across field strength, scanners, and protocols. Results Field strength significantly affected MOLLI T1 accuracy (6.3% error for 1.5T vs. 10.8% error for 3T, p<0.001) but not λ accuracy (8.8% error for 1.5T vs. 8.0% error for 3T, p=0.11). Partition coefficients of MOLLI were not different between two 1.5T scanners (47.2% vs. 47.9%, p=0.13), and showed only slight variation across three 3T scanners (49.2% vs. 49.8% vs. 49.9%, p=0.016). Partition coefficient also had significantly lower percent error for precision (better scan/re-scan reproducibility) than measurement of individual T1 values (3.6% for λ vs. 4.3%-4.8% for T1 values, approximately, for pre/post blood and myocardium values). Conclusion Based on phantom studies, T1 errors using MOLLI ranged from 6-14% across various MR scanners while errors for partition coefficient were less (6-10%). Compared with absolute T1 times, partition coefficient showed less variability across platforms and field strengths as well as higher precision. PMID:23890156
Haghighi, Mohammad Hosein Hayavi; Dehghani, Mohammad; Teshnizi, Saeid Hoseini; Mahmoodi, Hamid
2014-01-01
Accurate cause of death coding leads to organised and usable death information but there are some factors that influence documentation on death certificates and therefore affect the coding. We reviewed the role of documentation errors on the accuracy of death coding at Shahid Mohammadi Hospital (SMH), Bandar Abbas, Iran. We studied the death certificates of all deceased patients in SMH from October 2010 to March 2011. Researchers determined and coded the underlying cause of death on the death certificates according to the guidelines issued by the World Health Organization in Volume 2 of the International Statistical Classification of Diseases and Health Related Problems-10th revision (ICD-10). Necessary ICD coding rules (such as the General Principle, Rules 1-3, the modification rules and other instructions about death coding) were applied to select the underlying cause of death on each certificate. Demographic details and documentation errors were then extracted. Data were analysed with descriptive statistics and chi square tests. The accuracy rate of causes of death coding was 51.7%, demonstrating a statistically significant relationship (p=.001) with major errors but not such a relationship with minor errors. Factors that result in poor quality of Cause of Death coding in SMH are lack of coder training, documentation errors and the undesirable structure of death certificates.
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes
NASA Astrophysics Data System (ADS)
Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.
2017-11-01
Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marous, L; Muryn, J; Liptak, C
2016-06-15
Purpose: Monte Carlo simulation is a frequently used technique for assessing patient dose in CT. The accuracy of a Monte Carlo program is often validated using the standard CT dose index (CTDI) phantoms by comparing simulated and measured CTDI{sub 100}. To achieve good agreement, many input parameters in the simulation (e.g., energy spectrum and effective beam width) need to be determined. However, not all the parameters have equal importance. Our aim was to assess the relative importance of the various factors that influence the accuracy of simulated CTDI{sub 100}. Methods: A Monte Carlo program previously validated for a clinical CTmore » system was used to simulate CTDI{sub 100}. For the standard CTDI phantoms (32 and 16 cm in diameter), CTDI{sub 100} values from central and four peripheral locations at 70 and 120 kVp were first simulated using a set of reference input parameter values (treated as the truth). To emulate the situation in which the input parameter values used by the researcher may deviate from the truth, additional simulations were performed in which intentional errors were introduced into the input parameters, the effects of which on simulated CTDI{sub 100} were analyzed. Results: At 38.4-mm collimation, errors in effective beam width up to 5.0 mm showed negligible effects on simulated CTDI{sub 100} (<1.0%). Likewise, errors in acrylic density of up to 0.01 g/cm{sup 3} resulted in small CTDI{sub 100} errors (<2.5%). In contrast, errors in spectral HVL produced more significant effects: slight deviations (±0.2 mm Al) produced errors up to 4.4%, whereas more extreme deviations (±1.4 mm Al) produced errors as high as 25.9%. Lastly, ignoring the CT table introduced errors up to 13.9%. Conclusion: Monte Carlo simulated CTDI{sub 100} is insensitive to errors in effective beam width and acrylic density. However, they are sensitive to errors in spectral HVL. To obtain accurate results, the CT table should not be ignored. This work was supported by a Faculty Research and Development Award from Cleveland State University.« less
Speech errors of amnesic H.M.: unlike everyday slips-of-the-tongue.
MacKay, Donald G; James, Lori E; Hadley, Christopher B; Fogler, Kethera A
2011-03-01
Three language production studies indicate that amnesic H.M. produces speech errors unlike everyday slips-of-the-tongue. Study 1 was a naturalistic task: H.M. and six controls closely matched for age, education, background and IQ described what makes captioned cartoons funny. Nine judges rated the descriptions blind to speaker identity and gave reliably more negative ratings for coherence, vagueness, comprehensibility, grammaticality, and adequacy of humor-description for H.M. than the controls. Study 2 examined "major errors", a novel type of speech error that is uncorrected and reduces the coherence, grammaticality, accuracy and/or comprehensibility of an utterance. The results indicated that H.M. produced seven types of major errors reliably more often than controls: substitutions, omissions, additions, transpositions, reading errors, free associations, and accuracy errors. These results contradict recent claims that H.M. retains unconscious or implicit language abilities and produces spoken discourse that is "sophisticated," "intact" and "without major errors." Study 3 examined whether three classical types of errors (omissions, additions, and substitutions of words and phrases) differed for H.M. versus controls in basic nature and relative frequency by error type. The results indicated that omissions, and especially multi-word omissions, were relatively more common for H.M. than the controls; and substitutions violated the syntactic class regularity (whereby, e.g., nouns substitute with nouns but not verbs) relatively more often for H.M. than the controls. These results suggest that H.M.'s medial temporal lobe damage impaired his ability to rapidly form new connections between units in the cortex, a process necessary to form complete and coherent internal representations for novel sentence-level plans. In short, different brain mechanisms underlie H.M.'s major errors (which reflect incomplete and incoherent sentence-level plans) versus everyday slips-of-the tongue (which reflect errors in activating pre-planned units in fully intact sentence-level plans). Implications of the results of Studies 1-3 are discussed for systems theory, binding theory and relational memory theories. Copyright © 2010 Elsevier Srl. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Li-wei; Ye, Xin; Fang, Wei; He, Zhen-lei; Yi, Xiao-long; Wang, Yu-peng
2017-11-01
Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.
Williams, Camille K.; Tremblay, Luc; Carnahan, Heather
2016-01-01
Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937
Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.
2014-01-01
Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.
A Solar Position Sensor Based on Image Vision.
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José
2017-07-29
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.
A Solar Position Sensor Based on Image Vision
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Rosales, Pedro; Suastegui, José
2017-01-01
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors’ evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays’ direction as well as the tilt and sensor position. The sensor’s characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors. PMID:28758935
Decreasing Errors in Reading-Related Matching to Sample Using a Delayed-Sample Procedure
ERIC Educational Resources Information Center
Doughty, Adam H.; Saunders, Kathryn J.
2009-01-01
Two men with intellectual disabilities initially demonstrated intermediate accuracy in two-choice matching-to-sample (MTS) procedures. A printed-letter identity MTS procedure was used with 1 participant, and a spoken-to-printed-word MTS procedure was used with the other participant. Errors decreased substantially under a delayed-sample procedure,…
Miniaev, M V; Voronchikhina, L I
2007-01-01
A model of oxygen intake by aerobic bio-objects in liquid incubating media was applied to investigate the influence air-media interface area on accuracy of measuring the oxygen intake and error value. It was shown that intrusion of air oxygen increases the relative error to 24% in open polarographic cells and to 13% in cells with a reduced interface area. Results of modeling passive media oxygenation laid a basis for proposing a method to reduce relative error by 66% for open cells and by 15% for cells with a reduced interface area.
NASA Astrophysics Data System (ADS)
Li, Li; Li, Zhengqiang; Li, Kaitao; Sun, Bin; Wu, Yanke; Xu, Hua; Xie, Yisong; Goloub, Philippe; Wendisch, Manfred
2018-04-01
In this study errors of the relative orientations of polarizers in the Cimel polarized sun-sky radiometers are measured and introduced into the Mueller matrix of the instrument. The linearly polarized light with different polarization directions from 0° to 180° (or 360°) is generated by using a rotating linear polarizer in front of an integrating sphere. Through measuring the referential linearly polarized light, the errors of relative orientations of polarizers are determined. The efficiencies of the polarizers are obtained simultaneously. By taking the error of relative orientation into consideration in the Mueller matrix, the accuracies of the calculated Stokes parameters, the degree of linear polarization, and the angle of polarization are remarkably improved. The method may also apply to other polarization instruments of similar types.
Error analysis and correction in wavefront reconstruction from the transport-of-intensity equation
Barbero, Sergio; Thibos, Larry N.
2007-01-01
Wavefront reconstruction from the transport-of-intensity equation (TIE) is a well-posed inverse problem given smooth signals and appropriate boundary conditions. However, in practice experimental errors lead to an ill-condition problem. A quantitative analysis of the effects of experimental errors is presented in simulations and experimental tests. The relative importance of numerical, misalignment, quantization, and photodetection errors are shown. It is proved that reduction of photodetection noise by wavelet filtering significantly improves the accuracy of wavefront reconstruction from simulated and experimental data. PMID:20052302
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
Machine tools error characterization and compensation by on-line measurement of artifact
NASA Astrophysics Data System (ADS)
Wahid Khan, Abdul; Chen, Wuyi; Wu, Lili
2009-11-01
Most manufacturing machine tools are utilized for mass production or batch production with high accuracy at a deterministic manufacturing principle. Volumetric accuracy of machine tools depends on the positional accuracy of the cutting tool, probe or end effector related to the workpiece in the workspace volume. In this research paper, a methodology is presented for volumetric calibration of machine tools by on-line measurement of an artifact or an object of a similar type. The machine tool geometric error characterization was carried out through a standard or an artifact, having similar geometry to the mass production or batch production product. The artifact was measured at an arbitrary position in the volumetric workspace with a calibrated Renishaw touch trigger probe system. Positional errors were stored into a computer for compensation purpose, to further run the manufacturing batch through compensated codes. This methodology was found quite effective to manufacture high precision components with more dimensional accuracy and reliability. Calibration by on-line measurement gives the advantage to improve the manufacturing process by use of deterministic manufacturing principle and found efficient and economical but limited to the workspace or envelop surface of the measured artifact's geometry or the profile.
Hobi, Martina L.; Ginzler, Christian
2012-01-01
Digital surface models (DSMs) are widely used in forest science to model the forest canopy. Stereo pairs of very high resolution satellite and digital aerial images are relatively new and their absolute accuracy for DSM generation is largely unknown. For an assessment of these input data two DSMs based on a WorldView-2 stereo pair and a ADS80 DSM were generated with photogrammetric instruments. Rational polynomial coefficients (RPCs) are defining the orientation of the WorldView-2 satellite images, which can be enhanced with ground control points (GCPs). Thus two WorldView-2 DSMs were distinguished: a WorldView-2 RPCs-only DSM and a WorldView-2 GCP-enhanced RPCs DSM. The accuracy of the three DSMs was estimated with GPS measurements, manual stereo-measurements, and airborne laser scanning data (ALS). With GCP-enhanced RPCs the WorldView-2 image orientation could be optimised to a root mean square error (RMSE) of 0.56 m in planimetry and 0.32 m in height. This improvement in orientation allowed for a vertical median error of −0.24 m for the WorldView-2 GCP-enhanced RPCs DSM in flat terrain. Overall, the DSM based on ADS80 images showed the highest accuracy of the three models with a median error of 0.08 m over bare ground. As the accuracy of a DSM varies with land cover three classes were distinguished: herb and grass, forests, and artificial areas. The study suggested the ADS80 DSM to best model actual surface height in all three land cover classes, with median errors <1.1 m. The WorldView-2 GCP-enhanced RPCs model achieved good accuracy, too, with median errors of −0.43 m for the herb and grass vegetation and −0.26 m for artificial areas. Forested areas emerged as the most difficult land cover type for height modelling; still, with median errors of −1.85 m for the WorldView-2 GCP-enhanced RPCs model and −1.12 m for the ADS80 model, the input data sets evaluated here are quite promising for forest canopy modelling. PMID:22778645
Hobi, Martina L; Ginzler, Christian
2012-01-01
Digital surface models (DSMs) are widely used in forest science to model the forest canopy. Stereo pairs of very high resolution satellite and digital aerial images are relatively new and their absolute accuracy for DSM generation is largely unknown. For an assessment of these input data two DSMs based on a WorldView-2 stereo pair and a ADS80 DSM were generated with photogrammetric instruments. Rational polynomial coefficients (RPCs) are defining the orientation of the WorldView-2 satellite images, which can be enhanced with ground control points (GCPs). Thus two WorldView-2 DSMs were distinguished: a WorldView-2 RPCs-only DSM and a WorldView-2 GCP-enhanced RPCs DSM. The accuracy of the three DSMs was estimated with GPS measurements, manual stereo-measurements, and airborne laser scanning data (ALS). With GCP-enhanced RPCs the WorldView-2 image orientation could be optimised to a root mean square error (RMSE) of 0.56 m in planimetry and 0.32 m in height. This improvement in orientation allowed for a vertical median error of -0.24 m for the WorldView-2 GCP-enhanced RPCs DSM in flat terrain. Overall, the DSM based on ADS80 images showed the highest accuracy of the three models with a median error of 0.08 m over bare ground. As the accuracy of a DSM varies with land cover three classes were distinguished: herb and grass, forests, and artificial areas. The study suggested the ADS80 DSM to best model actual surface height in all three land cover classes, with median errors <1.1 m. The WorldView-2 GCP-enhanced RPCs model achieved good accuracy, too, with median errors of -0.43 m for the herb and grass vegetation and -0.26 m for artificial areas. Forested areas emerged as the most difficult land cover type for height modelling; still, with median errors of -1.85 m for the WorldView-2 GCP-enhanced RPCs model and -1.12 m for the ADS80 model, the input data sets evaluated here are quite promising for forest canopy modelling.
NASA Astrophysics Data System (ADS)
Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori
This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.
Fixed-interval matching-to-sample: intermatching time and intermatching error runs1
Nelson, Thomas D.
1978-01-01
Four pigeons were trained on a matching-to-sample task in which reinforcers followed either the first matching response (fixed interval) or the fifth matching response (tandem fixed-interval fixed-ratio) that occurred 80 seconds or longer after the last reinforcement. Relative frequency distributions of the matching-to-sample responses that concluded intermatching times and runs of mismatches (intermatching error runs) were computed for the final matching responses directly followed by grain access and also for the three matching responses immediately preceding the final match. Comparison of these two distributions showed that the fixed-interval schedule arranged for the preferential reinforcement of matches concluding relatively extended intermatching times and runs of mismatches. Differences in matching accuracy and rate during the fixed interval, compared to the tandem fixed-interval fixed-ratio, suggested that reinforcers following matches concluding various intermatching times and runs of mismatches influenced the rate and accuracy of the last few matches before grain access, but did not control rate and accuracy throughout the entire fixed-interval period. PMID:16812032
Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou
2015-09-21
Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.
Gildersleeve-Neumann, Christina E; Kester, Ellen S; Davis, Barbara L; Peña, Elizabeth D
2008-07-01
English speech acquisition by typically developing 3- to 4-year-old children with monolingual English was compared to English speech acquisition by typically developing 3- to 4-year-old children with bilingual English-Spanish backgrounds. We predicted that exposure to Spanish would not affect the English phonetic inventory but would increase error frequency and type in bilingual children. Single-word speech samples were collected from 33 children. Phonetically transcribed samples for the 3 groups (monolingual English children, English-Spanish bilingual children who were predominantly exposed to English, and English-Spanish bilingual children with relatively equal exposure to English and Spanish) were compared at 2 time points and for change over time for phonetic inventory, phoneme accuracy, and error pattern frequencies. Children demonstrated similar phonetic inventories. Some bilingual children produced Spanish phonemes in their English and produced few consonant cluster sequences. Bilingual children with relatively equal exposure to English and Spanish averaged more errors than did bilingual children who were predominantly exposed to English. Both bilingual groups showed higher error rates than English-only children overall, particularly for syllable-level error patterns. All language groups decreased in some error patterns, although the ones that decreased were not always the same across language groups. Some group differences of error patterns and accuracy were significant. Vowel error rates did not differ by language group. Exposure to English and Spanish may result in a higher English error rate in typically developing bilinguals, including the application of Spanish phonological properties to English. Slightly higher error rates are likely typical for bilingual preschool-aged children. Change over time at these time points for all 3 groups was similar, suggesting that all will reach an adult-like system in English with exposure and practice.
Accuracy of outpatient service data for activity-based funding in New South Wales, Australia.
Munyisia, Esther N; Reid, David; Yu, Ping
2017-05-01
Despite increasing research on activity-based funding (ABF), there is no empirical evidence on the accuracy of outpatient service data for payment. This study aimed to identify data entry errors affecting ABF in two drug and alcohol outpatient clinic services in Australia. An audit was carried out on healthcare workers' (doctors, nurses, psychologists, social workers, counsellors, and aboriginal health education officers) data entry errors in an outpatient electronic documentation system. Of the 6919 data entries in the electronic documentation system, 7.5% (518) had errors, 68.7% of the errors were related to a wrong primary activity, 14.5% were due to a wrong activity category, 14.5% were as a result of a wrong combination of primary activity and modality of care, 1.9% were due to inaccurate information on a client's presence during service delivery and 0.4% were related to a wrong modality of care. Data entry errors may affect the amount of funding received by a healthcare organisation, which in turn may affect the quality of treatment provided to clients due to the possibility of underfunding the organisation. To reduce errors or achieve an error-free environment, there is a need to improve the naming convention of data elements, their descriptions and alignment with the national standard classification of outpatient services. It is also important to support healthcare workers in their data entry by embedding safeguards in the electronic documentation system such as flags for inaccurate data elements.
NASA Astrophysics Data System (ADS)
Wang, Biao; Yu, Xiaofen; Li, Qinzhao; Zheng, Yu
2008-10-01
The paper aiming at the influence factor of round grating dividing error, rolling-wheel produce eccentricity and surface shape errors provides an amendment method based on rolling-wheel to get the composite error model which includes all influence factors above, and then corrects the non-circle measurement angle error of the rolling-wheel. We make soft simulation verification and have experiment; the result indicates that the composite error amendment method can improve the diameter measurement accuracy with rolling-wheel theory. It has wide application prospect for the measurement accuracy higher than 5 μm/m.
Accuracy analysis and design of A3 parallel spindle head
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan
2016-03-01
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
Jiang, Jie; Yu, Wenbo; Zhang, Guangjun
2017-01-01
Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179
The influence of orbit selection on the accuracy of the Stanford Relativity gyroscope experiment
NASA Technical Reports Server (NTRS)
Vassar, R.; Everitt, C. W. F.; Vanpatten, R. A.; Breakwell, J. V.
1980-01-01
This paper discusses an error analysis for the Stanford Relativity experiment, designed to measure the precession of a gyroscope's spin-axis predicted by general relativity. Measurements will be made of the spin-axis orientations of 4 superconducting spherical gyroscopes carried by an earth-satellite. Two relativistic precessions are predicted: a 'geodetic' precession associated with the satellite's orbital motion and a 'motional' precession due to the earth's rotation. Using a Kalman filter covariance analysis with a realistic error model we have computed the error in determining the relativistic precession rates. Studies show that a slightly off-polar orbit is better than a polar orbit for determining the 'motional' drift.
[A new method of processing quantitative PCR data].
Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun
2003-05-01
Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.
Stress and emotional valence effects on children's versus adolescents' true and false memory.
Quas, Jodi A; Rush, Elizabeth B; Yim, Ilona S; Edelstein, Robin S; Otgaar, Henry; Smeets, Tom
2016-01-01
Despite considerable interest in understanding how stress influences memory accuracy and errors, particularly in children, methodological limitations have made it difficult to examine the effects of stress independent of the effects of the emotional valence of to-be-remembered information in developmental populations. In this study, we manipulated stress levels in 7-8- and 12-14-year-olds and then exposed them to negative, neutral, and positive word lists. Shortly afterward, we tested their recognition memory for the words and false memory for non-presented but related words. Adolescents in the high-stress condition were more accurate than those in the low-stress condition, while children's accuracy did not differ across stress conditions. Also, among adolescents, accuracy and errors were higher for the negative than positive words, while in children, word valence was unrelated to accuracy. Finally, increases in children's and adolescents' cortisol responses, especially in the high-stress condition, were related to greater accuracy but not false memories and only for positive emotional words. Findings suggest that stress at encoding, as well as the emotional content of to-be-remembered information, may influence memory in different ways across development, highlighting the need for greater complexity in existing models of true and false memory formation.
Survey methods for assessing land cover map accuracy
Nusser, S.M.; Klaas, E.E.
2003-01-01
The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of GAP land cover maps. We focused not only on appropriate sample designs and estimation approaches, but on aspects of the data collection process, such as gaining cooperation of land owners and using pixel clusters as an observation unit. The approach was tested in a pilot study to assess the accuracy of Iowa GAP land cover maps. A stratified two-stage cluster sampling design addressed sample size requirements for land covers and the need for geographic spread while minimizing operational effort. Recruitment methods used for private land owners yielded high response rates, minimizing a source of nonresponse error. Collecting data for a 9-pixel cluster centered on the sampled pixel was simple to implement, and provided better information on rarer vegetation classes as well as substantial gains in precision relative to observing data at a single-pixel.
Drizinsky, Jessica; Zülch, Joachim; Gibbons, Henning; Stahl, Jutta
2016-10-01
Error detection is required in order to correct or avoid imperfect behavior. Although error detection is beneficial for some people, for others it might be disturbing. We investigated Gaudreau and Thompson's (Personality and Individual Differences, 48, 532-537, 2010) model, which combines personal standards perfectionism (PSP) and evaluative concerns perfectionism (ECP). In our electrophysiological study, 43 participants performed a combination of a modified Simon task, an error awareness paradigm, and a masking task with a variation of stimulus onset asynchrony (SOA; 33, 67, and 100 ms). Interestingly, relative to low-ECP participants, high-ECP participants showed a better post-error accuracy (despite a worse classification accuracy) in the high-visibility SOA 100 condition than in the two low-visibility conditions (SOA 33 and SOA 67). Regarding the electrophysiological results, first, we found a positive correlation between ECP and the amplitude of the error positivity (Pe) under conditions of low stimulus visibility. Second, under the condition of high stimulus visibility, we observed a higher Pe amplitude for high-ECP-low-PSP participants than for high-ECP-high-PSP participants. These findings are discussed within the framework of the error-processing avoidance hypothesis of perfectionism (Stahl, Acharki, Kresimon, Völler, & Gibbons, International Journal of Psychophysiology, 97, 153-162, 2015).
Porter, Teresita M.; Golding, G. Brian
2012-01-01
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
Tsai, Christopher C; Tsai, Sarai H; Zeng-Treitler, Qing; Liang, Bryan A
2007-10-11
The quality of user-generated health information on consumer health social networking websites has not been studied. We collected a set of postings related to Diabetes Mellitus Type I from three such sites and classified them based on accuracy, error type, and clinical significance of error. We found 48% of postings contained medical content, and 54% of these were either incomplete or contained errors. About 85% of the incomplete and erroneous messages were potentially clinically significant.
NASA Astrophysics Data System (ADS)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; ...
2017-10-24
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Reaching nearby sources: comparison between real and virtual sound and visual targets
Parseihian, Gaëtan; Jouffrais, Christophe; Katz, Brian F. G.
2014-01-01
Sound localization studies over the past century have predominantly been concerned with directional accuracy for far-field sources. Few studies have examined the condition of near-field sources and distance perception. The current study concerns localization and pointing accuracy by examining source positions in the peripersonal space, specifically those associated with a typical tabletop surface. Accuracy is studied with respect to the reporting hand (dominant or secondary) for auditory sources. Results show no effect on the reporting hand with azimuthal errors increasing equally for the most extreme source positions. Distance errors show a consistent compression toward the center of the reporting area. A second evaluation is carried out comparing auditory and visual stimuli to examine any bias in reporting protocol or biomechanical difficulties. No common bias error was observed between auditory and visual stimuli indicating that reporting errors were not due to biomechanical limitations in the pointing task. A final evaluation compares real auditory sources and anechoic condition virtual sources created using binaural rendering. Results showed increased azimuthal errors, with virtual source positions being consistently overestimated to more lateral positions, while no significant distance perception was observed, indicating a deficiency in the binaural rendering condition relative to the real stimuli situation. Various potential reasons for this discrepancy are discussed with several proposals for improving distance perception in peripersonal virtual environments. PMID:25228855
A novel validation and calibration method for motion capture systems based on micro-triangulation.
Nagymáté, Gergely; Tuchband, Tamás; Kiss, Rita M
2018-06-06
Motion capture systems are widely used to measure human kinematics. Nevertheless, users must consider system errors when evaluating their results. Most validation techniques for these systems are based on relative distance and displacement measurements. In contrast, our study aimed to analyse the absolute volume accuracy of optical motion capture systems by means of engineering surveying reference measurement of the marker coordinates (uncertainty: 0.75 mm). The method is exemplified on an 18 camera OptiTrack Flex13 motion capture system. The absolute accuracy was defined by the root mean square error (RMSE) between the coordinates measured by the camera system and by engineering surveying (micro-triangulation). The original RMSE of 1.82 mm due to scaling error was managed to be reduced to 0.77 mm while the correlation of errors to their distance from the origin reduced from 0.855 to 0.209. A simply feasible but less accurate absolute accuracy compensation method using tape measure on large distances was also tested, which resulted in similar scaling compensation compared to the surveying method or direct wand size compensation by a high precision 3D scanner. The presented validation methods can be less precise in some respects as compared to previous techniques, but they address an error type, which has not been and cannot be studied with the previous validation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Requirements for Coregistration Accuracy in On-Scalp MEG.
Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2018-06-22
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
Use of scan overlap redundancy to enhance multispectral aircraft scanner data
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Keat, J.
1973-01-01
Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.
Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)
NASA Astrophysics Data System (ADS)
Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.
2018-04-01
Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.
The development of performance-monitoring function in the posterior medial frontal cortex
Fitzgerald, Kate Dimond; Perkins, Suzanne C.; Angstadt, Mike; Johnson, Timothy; Stern, Emily R.; Welsh, Robert C.; Taylor, Stephan F.
2009-01-01
Background Despite its critical role in performance-monitoring, the development of posterior medial prefrontal cortex (pMFC) in goal-directed behaviors remains poorly understood. Performance monitoring depends on distinct, but related functions that may differentially activate the pMFC, such as monitoring response conflict and detecting errors. Developmental differences in conflict- and error-related activations, coupled with age-related changes in behavioral performance, may confound attempts to map the maturation of pMFC functions. To characterize the development of pMFC-based performance monitoring functions, we segregated interference and error-processing, while statistically controlling for performance. Methods Twenty-one adults and 23 youth performed an event-related version of the Multi-Source Interference Task during functional magnetic resonance imaging (fMRI). Linear modeling of interference and error contrast estimates derived from the pMFC were regressed on age, while covarying for performance. Results Interference- and error-processing were associated with robust activation of the pMFC in both youth and adults. Among youth, interference- and error-related activation of the pMFC increased with age, independent of performance. Greater accuracy associated with greater pMFC activity during error commission in both groups. Discussion Increasing pMFC response to interference and errors occurs with age, likely contributing to the improvement of performance monitoring capacity during development. PMID:19913101
Counting OCR errors in typeset text
NASA Astrophysics Data System (ADS)
Sandberg, Jonathan S.
1995-03-01
Frequently object recognition accuracy is a key component in the performance analysis of pattern matching systems. In the past three years, the results of numerous excellent and rigorous studies of OCR system typeset-character accuracy (henceforth OCR accuracy) have been published, encouraging performance comparisons between a variety of OCR products and technologies. These published figures are important; OCR vendor advertisements in the popular trade magazines lead readers to believe that published OCR accuracy figures effect market share in the lucrative OCR market. Curiously, a detailed review of many of these OCR error occurrence counting results reveals that they are not reproducible as published and they are not strictly comparable due to larger variances in the counts than would be expected by the sampling variance. Naturally, since OCR accuracy is based on a ratio of the number of OCR errors over the size of the text searched for errors, imprecise OCR error accounting leads to similar imprecision in OCR accuracy. Some published papers use informal, non-automatic, or intuitively correct OCR error accounting. Still other published results present OCR error accounting methods based on string matching algorithms such as dynamic programming using Levenshtein (edit) distance but omit critical implementation details (such as the existence of suspect markers in the OCR generated output or the weights used in the dynamic programming minimization procedure). The problem with not specifically revealing the accounting method is that the number of errors found by different methods are significantly different. This paper identifies the basic accounting methods used to measure OCR errors in typeset text and offers an evaluation and comparison of the various accounting methods.
The Accuracy Benefit of Multiple Amperometric Glucose Sensors in People With Type 1 Diabetes
Castle, Jessica R.; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W. Kenneth
2012-01-01
OBJECTIVE To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. RESEARCH DESIGN AND METHODS Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. RESULTS The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. CONCLUSIONS Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device. PMID:22357189
The accuracy benefit of multiple amperometric glucose sensors in people with type 1 diabetes.
Castle, Jessica R; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W Kenneth
2012-04-01
To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device.
Relation of sound intensity and accuracy of localization.
Farrimond, T
1989-08-01
Tests were carried out on 17 subjects to determine the accuracy of monaural sound localization when the head is not free to turn toward the sound source. Maximum accuracy of localization for a constant-volume sound source coincided with the position for maximum perceived intensity of the sound in the front quadrant. There was a tendency for sounds to be perceived more often as coming from a position directly toward the ear. That is, for sounds in the front quadrant, errors of localization tended to be predominantly clockwise (i.e., biased toward a line directly facing the ear). Errors for sounds occurring in the rear quadrant tended to be anticlockwise. The pinna's differential effect on sound intensity between front and rear quadrants would assist in identifying the direction of movement of objects, for example an insect, passing the ear.
Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.
Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang
2016-06-22
An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.
Freckmann, Guido; Jendrike, Nina; Baumstark, Annette; Pleus, Stefan; Liebing, Christina; Haug, Cornelia
2018-04-01
The international standard ISO 15197:2013 requires a user performance evaluation to assess if intended users are able to obtain accurate blood glucose measurement results with a self-monitoring of blood glucose (SMBG) system. In this study, user performance was evaluated for four SMBG systems on the basis of ISO 15197:2013, and possibly related insulin dosing errors were calculated. Additionally, accuracy was assessed in the hands of study personnel. Accu-Chek ® Performa Connect (A), Contour ® plus ONE (B), FreeStyle Optium Neo (C), and OneTouch Select ® Plus (D) were evaluated with one test strip lot. After familiarization with the systems, subjects collected a capillary blood sample and performed an SMBG measurement. Study personnel observed the subjects' measurement technique. Then, study personnel performed SMBG measurements and comparison measurements. Number and percentage of SMBG measurements within ± 15 mg/dl and ± 15% of the comparison measurements at glucose concentrations < 100 and ≥ 100 mg/dl, respectively, were calculated. In addition, insulin dosing errors were modelled. In the hands of lay-users three systems fulfilled ISO 15197:2013 accuracy criteria with the investigated test strip lot showing 96% (A), 100% (B), and 98% (C) of results within the defined limits. All systems fulfilled minimum accuracy criteria in the hands of study personnel [99% (A), 100% (B), 99.5% (C), 96% (D)]. Measurements with all four systems were within zones of the consensus error grid and surveillance error grid associated with no or minimal risk. Regarding calculated insulin dosing errors, all 99% ranges were between dosing errors of - 2.7 and + 1.4 units for measurements in the hands of lay-users and between - 2.5 and + 1.4 units for study personnel. Frequent lay-user errors were not checking the test strips' expiry date and applying blood incorrectly. Data obtained in this study show that not all available SMBG systems complied with ISO 15197:2013 accuracy criteria when measurements were performed by lay-users. The study was registered at ClinicalTrials.gov (NCT02916576). Ascensia Diabetes Care Deutschland GmbH.
Error Modeling of Multibaseline Optical Truss: Part 1: Modeling of System Level Performance
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Korechoff, R. E.; Zhang, L. D.
2004-01-01
Global astrometry is the measurement of stellar positions and motions. These are typically characterized by five parameters, including two position parameters, two proper motion parameters, and parallax. The Space Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement over the most precise current star catalogues. Narrow angle astrometry will be performed to a 1uas accuracy. A wealth of scientific information will be obtained from these accurate measurements encompassing many aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors that can potentially degrade performance. Many of these errors are systematic in that they are relatively static and repeatable with respect to the time frame and direction of the observation. This paper and its companion define the modeling of the, contributing factors to these errors and the analysis of how they impact SIM's ability to perform astrometric science.
Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1998-01-01
Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.
Metering error quantification under voltage and current waveform distortion
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1975-01-01
A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.
Secondary adaptation of memory-guided saccades
Srimal, Riju; Curtis, Clayton E.
2011-01-01
Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy. PMID:20803135
The control of translational accuracy is a determinant of healthy ageing in yeast
Leadsham, Jane E.; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S.; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F.; Gourlay, Campbell W.
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. PMID:28100667
The control of translational accuracy is a determinant of healthy ageing in yeast.
von der Haar, Tobias; Leadsham, Jane E; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F; Gourlay, Campbell W
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. © 2017 The Authors.
Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai
2017-10-01
Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
Huang, Yu-Ting; Georgiev, Dejan; Foltynie, Tom; Limousin, Patricia; Speekenbrink, Maarten; Jahanshahi, Marjan
2015-08-01
When choosing between two options, sufficient accumulation of information is required to favor one of the options over the other, before a decision is finally reached. To establish the effect of dopaminergic medication on the rate of accumulation of information, decision thresholds and speed-accuracy trade-offs, we tested 14 patients with Parkinson's disease (PD) on and off dopaminergic medication and 14 age-matched healthy controls on two versions of the moving-dots task. One version manipulated the level of task difficulty and hence effort required for decision-making and the other the urgency, requiring decision-making under speed vs. accuracy instructions. The drift diffusion model was fitted to the behavioral data. As expected, the reaction time data revealed an effect of task difficulty, such that the easier the perceptual decision-making task was, the faster the participants responded. PD patients not only made significantly more errors compared to healthy controls, but interestingly they also made significantly more errors ON than OFF medication. The drift diffusion model indicated that PD patients had lower drift rates when tested ON compared to OFF medication, indicating that dopamine levels influenced the quality of information derived from sensory information. On the speed-accuracy task, dopaminergic medication did not directly influence reaction times or error rates. PD patients OFF medication had slower RTs and made more errors with speed than accuracy instructions compared to the controls, whereas such differences were not observed ON medication. PD patients had lower drift rates and higher response thresholds than the healthy controls both with speed and accuracy instructions and ON and OFF medication. For the patients, only non-decision time was higher OFF than ON medication and higher with accuracy than speed instructions. The present results demonstrate that when task difficulty is manipulated, dopaminergic medication impairs perceptual decision-making and renders it more errorful in PD relative to when patients are tested OFF medication. In contrast, for the speed/accuracy task, being ON medication improved performance by eliminating the significantly higher errors and slower RTs observed for patients OFF medication compared to the HC group. There was no evidence of dopaminergic medication inducing impulsive decisions when patients were acting under speed pressure. For the speed-accuracy instructions, the sole effect of dopaminergic medication was on non-decision time, which suggests that medication primarily affected processes tightly coupled with the motor symptoms of PD. Interestingly, the current results suggest opposite effects of dopaminergic medication on the levels of difficulty and speed-accuracy versions of the moving dots task, possibly reflecting the differential effect of dopamine on modulating drift rate (levels of difficulty task) and non-decision time (speed-accuracy task) in the process of perceptual decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Measurement of upper extremity orientation by video stereometry system.
Peterson, B; Palmerud, G
1996-03-01
In the attempt to gain a broader understanding of the causal relationships behind work-related symptoms of pain in the human shoulder, monitoring of arm position is crucial. Different methods have been used with varying accuracy. A video-based stereometry system, using infra-red light and reflecting markers for motion analysis, has been introduced for measurements in the fields of ergonomics, biomechanics and sports medicine. The purpose of this study is to investigate the sources of error in using this system for posture registration of the upper limb. Measurements are performed on a calibration fixture, on a mechanical model of the upper limb and on a subject with an exoskeleton. Particular, attention is given to inconsistencies and relative errors due to the finite geometrical precision with which the markers are positioned in the calibration fixture and on the studied objects, the limited capability to align the objects relative to the coordinate system of the calibration fixture and the errors connected to angular measurements using protractors etc. It is concluded that the system makes a valuable addition to existing instruments for non-contact posture measurement, and produces position data with an adequate accuracy in normal handling.
Cognitive control under contingencies in anxious and depressed adolescents: an antisaccade task.
Jazbec, Sandra; McClure, Erin; Hardin, Michael; Pine, Daniel S; Ernst, Monique
2005-10-15
Emotion-related perturbations in cognitive control characterize adult mood and anxiety disorders. Fewer data are available to confirm such deficits in youth. Studies of cognitive control and error processing can provide an ideal template to examine these perturbations. Antisaccade paradigms are particularly well suited for this endeavor because they provide exquisite behavioral measures of modulation of response errors. A new monetary reward antisaccade task was used with 28 healthy, 11 anxious, and 12 depressed adolescents. Performance accuracy, saccade latency, and peak velocity of incorrect responses were analyzed. Performance accuracy across all groups was improved by incentives (obtain reward, avoid punishment). However, modulation of saccade errors by incentives differed by groups. In incentive trials relative to neutral trials, inhibitory efficiency (saccade latency) was enhanced in healthy, unaffected in depressed, and diminished in anxious adolescents. Modulation of errant actions (saccade peak velocity) was improved in the healthy group and unchanged in both the anxious and depressed groups. These findings provide grounds for testing hypotheses related to the impact of motivation deficits and emotional interference on directed action in adolescents with mood and anxiety disorders. Furthermore, neural mechanisms can now be examined by using this task paired with functional neuroimaging.
NASA Astrophysics Data System (ADS)
Breytenbach, A.
2016-10-01
Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite and data detected from the Tandem-X InSAR satellite configuration were fundamental in the construction of seamless DSM products at different postings, namely 2 m, 4 m and 12 m. The three DSMs were sampled against independent control points originating from validated airborne LiDAR data. The reference surfaces were derived from the same dense point cloud at grid resolutions corresponding to those of the samples. The absolute and relative positional accuracies were computed using well-known DEM error metrics and accuracy statistics. Overall vertical accuracies were also assessed and compared across seven slope classes and nine primary land cover classes. Although all three DSMs displayed significantly more vertical errors where solid waterbodies, dense natural and/or alien woody vegetation and, in a lesser degree, urban residential areas with significant canopy cover were encountered, all three surpassed their expected positional accuracies overall.
[Design and accuracy analysis of upper slicing system of MSCT].
Jiang, Rongjian
2013-05-01
The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.
Jones, J.W.; Jarnagin, T.
2009-01-01
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-01-01
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%. PMID:28273845
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-03-04
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.
Global and regional kinematics with GPS
NASA Technical Reports Server (NTRS)
King, Robert W.
1994-01-01
The inherent precision of the doubly differenced phase measurement and the low cost of instrumentation made GPS the space geodetic technique of choice for regional surveys as soon as the constellation reached acceptable geometry in the area of interest: 1985 in western North America, the early 1990's in most of the world. Instrument and site-related errors for horizontal positioning are usually less than 3 mm, so that the dominant source of error is uncertainty in the reference frame defined by the satellites orbits and the tracking stations used to determine them. Prior to about 1992, when the tracking network for most experiments was globally sparse, the number of fiducial sites or the level at which they could be tied to an SLR or VLBI reference frame usually, set the accuracy limit. Recently, with a global network of over 30 stations, the limit is set more often by deficiencies in models for non-gravitational forces acting on the satellites. For regional networks in the northern hemisphere, reference frame errors are currently about 3 parts per billion (ppb) in horizontal position, allowing centimeter-level accuracies over intercontinental distances and less than 1 mm for a 100 km baseline. The accuracy of GPS measurements for monitoring height variations is generally 2-3 times worse than for horizontal motions. As for VLBI, the primary source of error is unmodeled fluctuations in atmospheric water vapor, but both reference frame uncertainties and some instrument errors are more serious for vertical than horizontal measurements. Under good conditions, daily repeatabilities at the level of 10 mm rms were achieved. This paper will summarize the current accuracy of GPS measurements and their implication for the use of SLR to study regional kinematics.
SU-E-J-117: Verification Method for the Detection Accuracy of Automatic Winston Lutz Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, A; Chan, K; Fee, F
2014-06-01
Purpose: Winston Lutz test (WLT) has been a standard QA procedure performed prior to SRS treatment, to verify the mechanical iso-center setup accuracy upon different Gantry/Couch movements. Several detection algorithms exist,for analyzing the ball-radiation field alignment automatically. However, the accuracy of these algorithms have not been fully addressed. Here, we reveal the possible errors arise from each step in WLT, and verify the software detection accuracy with the Rectilinear Phantom Pointer (RLPP), a tool commonly used for aligning treatment plan coordinate with mechanical iso-center. Methods: WLT was performed with the radio-opaque ball mounted on a MIS and irradiated onto EDR2more » films. The films were scanned and processed with an in-house Matlab program for automatic iso-center detection. Tests were also performed to identify the errors arise from setup, film development and scanning process. The radioopaque ball was then mounted onto the RLPP, and offset laterally and longitudinally in 7 known positions ( 0, ±0.2, ±0.5, ±0.8 mm) manually for irradiations. The gantry and couch was set to zero degree for all irradiation. The same scanned images were processed repeatedly to check the repeatability of the software. Results: Miminal discrepancies (mean=0.05mm) were detected with 2 films overlapped and irradiated but developed separately. This reveals the error arise from film processor and scanner alone. Maximum setup errors were found to be around 0.2mm, by analyzing data collected from 10 irradiations over 2 months. For the known shift introduced using the RLPP, the results agree with the manual offset, and fit linearly (R{sup 2}>0.99) when plotted relative to the first ball with zero shift. Conclusion: We systematically reveal the possible errors arise from each step in WLT, and introduce a simple method to verify the detection accuracy of our in-house software using a clinically available tool.« less
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
Comparing diagnostic tests on benefit-risk.
Pennello, Gene; Pantoja-Galicia, Norberto; Evans, Scott
2016-01-01
Comparing diagnostic tests on accuracy alone can be inconclusive. For example, a test may have better sensitivity than another test yet worse specificity. Comparing tests on benefit risk may be more conclusive because clinical consequences of diagnostic error are considered. For benefit-risk evaluation, we propose diagnostic yield, the expected distribution of subjects with true positive, false positive, true negative, and false negative test results in a hypothetical population. We construct a table of diagnostic yield that includes the number of false positive subjects experiencing adverse consequences from unnecessary work-up. We then develop a decision theory for evaluating tests. The theory provides additional interpretation to quantities in the diagnostic yield table. It also indicates that the expected utility of a test relative to a perfect test is a weighted accuracy measure, the average of sensitivity and specificity weighted for prevalence and relative importance of false positive and false negative testing errors, also interpretable as the cost-benefit ratio of treating non-diseased and diseased subjects. We propose plots of diagnostic yield, weighted accuracy, and relative net benefit of tests as functions of prevalence or cost-benefit ratio. Concepts are illustrated with hypothetical screening tests for colorectal cancer with test positive subjects being referred to colonoscopy.
Performance Metrics for Soil Moisture Retrievals and Applications Requirements
USDA-ARS?s Scientific Manuscript database
Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals and true fields. These metrics are generally related; nevertheless each has advantages and disadvantages. In this study we explore the relat...
Stereoscopic distance perception
NASA Technical Reports Server (NTRS)
Foley, John M.
1989-01-01
Limited cue, open-loop tasks in which a human observer indicates distances or relations among distances are discussed. By open-loop tasks, it is meant tasks in which the observer gets no feedback as to the accuracy of the responses. What happens when cues are added and when the loop is closed are considered. The implications of this research for the effectiveness of visual displays is discussed. Errors in visual distance tasks do not necessarily mean that the percept is in error. The error could arise in transformations that intervene between the percept and the response. It is argued that the percept is in error. It is also argued that there exist post-perceptual transformations that may contribute to the error or be modified by feedback to correct for the error.
Neutron-Star Radius from a Population of Binary Neutron Star Mergers.
Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro
2018-01-19
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J
2014-08-25
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.
EUV local CDU healing performance and modeling capability towards 5nm node
NASA Astrophysics Data System (ADS)
Jee, Tae Kwon; Timoshkov, Vadim; Choi, Peter; Rio, David; Tsai, Yu-Cheng; Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Schoofs, Stijn
2017-10-01
Both local variability and optical proximity correction (OPC) errors are big contributors to the edge placement error (EPE) budget which is closely related to the device yield. The post-litho contact hole healing will be demonstrated to meet after-etch local variability specifications using a low dose, 30mJ/cm2 dose-to-size, positive tone developed (PTD) resist with relevant throughput in high volume manufacturing (HVM). The total local variability of the node 5nm (N5) contact holes will be characterized in terms of local CD uniformity (LCDU), local placement error (LPE), and contact edge roughness (CER) using a statistical methodology. The CD healing process has complex etch proximity effects, so the OPC prediction accuracy is challenging to meet EPE requirements for the N5. Thus, the prediction accuracy of an after-etch model will be investigated and discussed using ASML Tachyon OPC model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Ke; Li Yanqiu; Wang Hai
Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less
[Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].
Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie
2013-11-01
In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.
Impact of geophysical model error for recovering temporal gravity field model
NASA Astrophysics Data System (ADS)
Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang
2016-07-01
The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.
NASA Astrophysics Data System (ADS)
Fedonin, O. N.; Petreshin, D. I.; Ageenko, A. V.
2018-03-01
In the article, the issue of increasing a CNC lathe accuracy by compensating for the static and dynamic errors of the machine is investigated. An algorithm and a diagnostic system for a CNC machine tool are considered, which allows determining the errors of the machine for their compensation. The results of experimental studies on diagnosing and improving the accuracy of a CNC lathe are presented.
Optimization of pencil beam f-theta lens for high-accuracy metrology
NASA Astrophysics Data System (ADS)
Peng, Chuanqian; He, Yumei; Wang, Jie
2018-01-01
Pencil beam deflectometric profilers are common instruments for high-accuracy surface slope metrology of x-ray mirrors in synchrotron facilities. An f-theta optical system is a key optical component of the deflectometric profilers and is used to perform the linear angle-to-position conversion. Traditional optimization procedures of the f-theta systems are not directly related to the angle-to-position conversion relation and are performed with stops of large size and a fixed working distance, which means they may not be suitable for the design of f-theta systems working with a small-sized pencil beam within a working distance range for ultra-high-accuracy metrology. If an f-theta system is not well-designed, aberrations of the f-theta system will introduce many systematic errors into the measurement. A least-squares' fitting procedure was used to optimize the configuration parameters of an f-theta system. Simulations using ZEMAX software showed that the optimized f-theta system significantly suppressed the angle-to-position conversion errors caused by aberrations. Any pencil-beam f-theta optical system can be optimized with the help of this optimization method.
Scout trajectory error propagation computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1982-01-01
Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.
Sidick, Erkin
2013-09-10
An adaptive periodic-correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high accuracy even when the subimages in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift estimate error of the APC algorithm has a component that depends on the content of the extended scene. In this paper, we assess the amount of that error and propose a method to minimize it.
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
Adaptive Periodic-Correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high-accuracy even when the sub-images in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift-estimate error of the APC algorithm has a component that depends on the content of extended-scene. In this paper we assess the amount of that error and propose a method to minimize it.
NASA Astrophysics Data System (ADS)
Kakkos, I.; Gkiatis, K.; Bromis, K.; Asvestas, P. A.; Karanasiou, I. S.; Ventouras, E. M.; Matsopoulos, G. K.
2017-11-01
The detection of an error is the cognitive evaluation of an action outcome that is considered undesired or mismatches an expected response. Brain activity during monitoring of correct and incorrect responses elicits Event Related Potentials (ERPs) revealing complex cerebral responses to deviant sensory stimuli. Development of accurate error detection systems is of great importance both concerning practical applications and in investigating the complex neural mechanisms of decision making. In this study, data are used from an audio identification experiment that was implemented with two levels of complexity in order to investigate neurophysiological error processing mechanisms in actors and observers. To examine and analyse the variations of the processing of erroneous sensory information for each level of complexity we employ Support Vector Machines (SVM) classifiers with various learning methods and kernels using characteristic ERP time-windowed features. For dimensionality reduction and to remove redundant features we implement a feature selection framework based on Sequential Forward Selection (SFS). The proposed method provided high accuracy in identifying correct and incorrect responses both for actors and for observers with mean accuracy of 93% and 91% respectively. Additionally, computational time was reduced and the effects of the nesting problem usually occurring in SFS of large feature sets were alleviated.
Accuracy evaluation of 3D lidar data from small UAV
NASA Astrophysics Data System (ADS)
Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav
2015-10-01
A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.
Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.
Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael
2015-08-01
In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.
Effects of a cochlear implant simulation on immediate memory in normal-hearing adults
Burkholder, Rose A.; Pisoni, David B.; Svirsky, Mario A.
2012-01-01
This study assessed the effects of stimulus misidentification and memory processing errors on immediate memory span in 25 normal-hearing adults exposed to degraded auditory input simulating signals provided by a cochlear implant. The identification accuracy of degraded digits in isolation was measured before digit span testing. Forward and backward digit spans were shorter when digits were degraded than when they were normal. Participants’ normal digit spans and their accuracy in identifying isolated digits were used to predict digit spans in the degraded speech condition. The observed digit spans in degraded conditions did not differ significantly from predicted digit spans. This suggests that the decrease in memory span is related primarily to misidentification of digits rather than memory processing errors related to cognitive load. These findings provide complementary information to earlier research on auditory memory span of listeners exposed to degraded speech either experimentally or as a consequence of a hearing-impairment. PMID:16317807
Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures
2016-06-01
inventory management improvement plan, mean of absolute scaled error, lead time adjusted squared error, forecast accuracy, benchmarking, naïve method...Manager JASA Journal of the American Statistical Association LASE Lead-time Adjusted Squared Error LCI Life Cycle Indicator MA Moving Average MAE...Mean Squared Error xvi NAVSUP Naval Supply Systems Command NDAA National Defense Authorization Act NIIN National Individual Identification Number
NASA Astrophysics Data System (ADS)
Goh, Shu Ting
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
NASA Technical Reports Server (NTRS)
Kanning, G.; Cicolani, L. S.; Schmidt, S. F.
1983-01-01
Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.
Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform
2001-10-25
adrenalin) or vasodilating (Nipride or Nitromex) medicines. Also painkillers and anesthetics (Oxanest, Diprivan, Fentanyl and Rapifen) may have affected...the measurements. It is hard to distinguish the effects of medication and assess their relation to blood pressure errors and pulse shapes...CONCLUSION During this study, 51 cardiac operated patients were measured to define the effects of arterial stiffening on the accuracy of the
Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan; Liu, Jingjing
2018-01-18
Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33-100%, and ELM, with an accuracy rate of 98.01-100%. For level assessment, the R² related to the training set was above 0.97 and the R² related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016-0.3494, lower than the error of 0.5-1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level.
Precision time distribution within a deep space communications complex
NASA Technical Reports Server (NTRS)
Curtright, J. B.
1972-01-01
The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.
Hoos, Anne B.; Patel, Anant R.
1996-01-01
Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.
Effects of energy chirp on bunch length measurement in linear accelerator beams
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
NASA Astrophysics Data System (ADS)
Zhang, Min; Wang, Wen; Xiang, Kui; Lu, Keqing; Fan, Zongwei
2015-02-01
This paper describes a novel cylindrical capacitive sensor (CCS) to measure the spindle five degree-of-freedom (DOF) motion errors. The operating principle and mathematical models of the CCS are presented. Using Ansoft Maxwell software to calculate the different capacitances in different configurations, structural parameters of end face electrode are then investigated. Radial, axial and tilt motions are also simulated by making comparisons with the given displacements and the simulation values respectively. It could be found that the proposed CCS has a high accuracy for measuring radial motion error when the average eccentricity is about 15 μm. Besides, the maximum relative error of axial displacement is 1.3% when the axial motion is within [0.7, 1.3] mm, and the maximum relative error of the tilt displacement is 1.6% as rotor tilts around a single axis within [-0.6, 0.6]°. Finally, the feasibility of the CCS for measuring five DOF motion errors is verified through simulation and analysis.
NASA Astrophysics Data System (ADS)
Wang, X.; Xu, L.
2018-04-01
One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational land imager (OLI) images of one test site. We assess the method's performance by calculating the following accuracy metrics: Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the new method can improve target detection accuracy under complex and changeable environments.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment
NASA Technical Reports Server (NTRS)
Conrad, Patrick R.; Naasz, Bo J.
2007-01-01
The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.
Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.; Van Meter, James R.
2005-01-01
A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.
NASA Astrophysics Data System (ADS)
Situmorang, B. H.; Setiawan, M. P.; Tosida, E. T.
2017-01-01
Refractive errors are abnormalities of the refraction of light so that the shadows do not focus precisely on the retina resulting in blurred vision [1]. Refractive errors causing the patient should wear glasses or contact lenses in order eyesight returned to normal. The use of glasses or contact lenses in a person will be different from others, it is influenced by patient age, the amount of tear production, vision prescription, and astigmatic. Because the eye is one organ of the human body is very important to see, then the accuracy in determining glasses or contact lenses which will be used is required. This research aims to develop a decision support system that can produce output on the right contact lenses for refractive errors patients with a value of 100% accuracy. Iterative Dichotomize Three (ID3) classification methods will generate gain and entropy values of attributes that include code sample data, age of the patient, astigmatic, the ratio of tear production, vision prescription, and classes that will affect the outcome of the decision tree. The eye specialist test result for the training data obtained the accuracy rate of 96.7% and an error rate of 3.3%, the result test using confusion matrix obtained the accuracy rate of 96.1% and an error rate of 3.1%; for the data testing obtained accuracy rate of 100% and an error rate of 0.
Christiansen, Mark P; Klaff, Leslie J; Brazg, Ronald; Chang, Anna R; Levy, Carol J; Lam, David; Denham, Douglas S; Atiee, George; Bode, Bruce W; Walters, Steven J; Kelley, Lynne; Bailey, Timothy S
2018-03-01
Persistent use of real-time continuous glucose monitoring (CGM) improves diabetes control in individuals with type 1 diabetes (T1D) and type 2 diabetes (T2D). PRECISE II was a nonrandomized, blinded, prospective, single-arm, multicenter study that evaluated the accuracy and safety of the implantable Eversense CGM system among adult participants with T1D and T2D (NCT02647905). The primary endpoint was the mean absolute relative difference (MARD) between paired Eversense and Yellow Springs Instrument (YSI) reference measurements through 90 days postinsertion for reference glucose values from 40 to 400 mg/dL. Additional endpoints included Clarke Error Grid analysis and sensor longevity. The primary safety endpoint was the incidence of device-related or sensor insertion/removal procedure-related serious adverse events (SAEs) through 90 days postinsertion. Ninety participants received the CGM system. The overall MARD value against reference glucose values was 8.8% (95% confidence interval: 8.1%-9.3%), which was significantly lower than the prespecified 20% performance goal for accuracy (P < 0.0001). Ninety-three percent of CGM values were within 20/20% of reference values over the total glucose range of 40-400 mg/dL. Clarke Error Grid analysis showed 99.3% of samples in the clinically acceptable error zones A (92.8%) and B (6.5%). Ninety-one percent of sensors were functional through day 90. One related SAE (1.1%) occurred during the study for removal of a sensor. The PRECISE II trial demonstrated that the Eversense CGM system provided accurate glucose readings through the intended 90-day sensor life with a favorable safety profile.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes.
Investigation of Error Patterns in Geographical Databases
NASA Technical Reports Server (NTRS)
Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)
2002-01-01
The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.
NASA Astrophysics Data System (ADS)
Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.
2018-04-01
Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.
A novel optical fiber displacement sensor of wider measurement range based on neural network
NASA Astrophysics Data System (ADS)
Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian
2006-02-01
By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.
Taking error into account when fitting models using Approximate Bayesian Computation.
van der Vaart, Elske; Prangle, Dennis; Sibly, Richard M
2018-03-01
Stochastic computer simulations are often the only practical way of answering questions relating to ecological management. However, due to their complexity, such models are difficult to calibrate and evaluate. Approximate Bayesian Computation (ABC) offers an increasingly popular approach to this problem, widely applied across a variety of fields. However, ensuring the accuracy of ABC's estimates has been difficult. Here, we obtain more accurate estimates by incorporating estimation of error into the ABC protocol. We show how this can be done where the data consist of repeated measures of the same quantity and errors may be assumed to be normally distributed and independent. We then derive the correct acceptance probabilities for a probabilistic ABC algorithm, and update the coverage test with which accuracy is assessed. We apply this method, which we call error-calibrated ABC, to a toy example and a realistic 14-parameter simulation model of earthworms that is used in environmental risk assessment. A comparison with exact methods and the diagnostic coverage test show that our approach improves estimation of parameter values and their credible intervals for both models. © 2017 by the Ecological Society of America.
Baxter, Suzanne Domel; Smith, Albert F; Hardin, James W; Nichols, Michele D
2007-04-01
Validation study data are used to illustrate that conclusions about children's reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information-conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Children were observed eating school meals on 1 day (n=12), or 2 (n=13) or 3 (n=79) nonconsecutive days separated by >or=25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (ie, protein, carbohydrate, and fat), and compared. For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), and inflation ratios (error measures). Mixed-model analyses. Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (all four P values >0.61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (all four P values <0.04), indicating that reporting accuracy improved over time; inflation ratios decreased, although not significantly, over interviews, also suggesting that reporting accuracy improved over time. Correspondence rates were lower than report rates, indicating that reporting accuracy was worse than implied by conventional measures. When analyzed using the reporting-error-sensitive approach, children's dietary reporting accuracy for energy and macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. The reporting-error-sensitive approach is recommended when analyzing data from validation studies of dietary reporting accuracy for energy and macronutrients.
Baxter, Suzanne Domel; Smith, Albert F.; Hardin, James W.; Nichols, Michele D.
2008-01-01
Objective Validation-study data are used to illustrate that conclusions about children’s reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information—conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Subjects and design Children were observed eating school meals on one day (n = 12), or two (n = 13) or three (n = 79) nonconsecutive days separated by ≥25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (protein, carbohydrate, fat), and compared. Main outcome measures For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), inflation ratios (error measures). Statistical analyses Mixed-model analyses. Results Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (Ps > .61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (Ps < .04), indicating that reporting accuracy improved over time; inflation ratios decreased, although not significantly, over interviews, also suggesting that reporting accuracy improved over time. Correspondence rates were lower than report rates, indicating that reporting accuracy was worse than implied by conventional measures. Conclusions When analyzed using the reporting-error-sensitive approach, children’s dietary reporting accuracy for energy and macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. Applications The reporting-error-sensitive approach is recommended when analyzing data from validation studies of dietary reporting accuracy for energy and macronutrients. PMID:17383265
NASA Technical Reports Server (NTRS)
Edwards, C. D., Jr.; Border, J. S.
1992-01-01
In Part 1 of this two-part article, an error budget is presented for Earth-based delta differential one-way range (delta DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of better than 5 nrad should be possible for a pair of spacecraft with 8.4-GHz downlinks, incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate 32-GHz downlinks with DOR tone spacing on the order of 250 MHz; these accuracies will be available for the last few weeks or months of planetary approach for typical Earth-Mars trajectories. Operational advantages of this data type are discussed, and ground system requirements needed to enable spacecraft-spacecraft delta DOR observations are outlined. This tracking technique could be demonstrated during the final approach phase of the Mars '94 mission, using Mars Observer as the in-orbit reference spacecraft, if the Russian spacecraft includes an 8.4-GHz downlink incorporating DOR tones. Part 2 of this article will present an analysis of predicted targeting accuracy for this scenario.
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off
Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.
2015-01-01
Fitts’ Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts’ Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability) to typically developing children. The results show a strong effect of the cost of error on the Fitts’ Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk. PMID:26447874
Simulating Memory Impairment for Child Sexual Abuse.
Newton, Jeremy W; Hobbs, Sue D
2015-08-01
The current study investigated effects of simulated memory impairment on recall of child sexual abuse (CSA) information. A total of 144 adults were tested for memory of a written CSA scenario in which they role-played as the victim. There were four experimental groups and two testing sessions. During Session 1, participants read a CSA story and recalled it truthfully (Genuine group), omitted CSA information (Omission group), exaggerated CSA information (Commission group), or did not recall the story at all (No Rehearsal group). One week later, at Session 2, all participants were told to recount the scenario truthfully, and their memory was then tested using free recall and cued recall questions. The Session 1 manipulation affected memory accuracy during Session 2. Specifically, compared with the Genuine group's performance, the Omission, Commission, or No Rehearsal groups' performance was characterized by increased omission and commission errors and decreased reporting of correct details. Victim blame ratings (i.e., victim responsibility and provocativeness) and participant gender predicted increased error and decreased accuracy, whereas perpetrator blame ratings predicted decreased error and increased accuracy. Findings are discussed in relation to factors that may affect memory for CSA information. Copyright © 2015 John Wiley & Sons, Ltd.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, M.; Bowman, B.; Branson, J.
The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Carpenter, Russell; Volle, Michael; Lee, Taesul; Long, Anne
2007-01-01
The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions.
NASA Technical Reports Server (NTRS)
Jekeli, C.
1980-01-01
Errors in the outer zone contribution to oceanic undulation differences computed from a finite set of potential coefficients based on satellite measurements of gravity anomalies and gravity disturbances are analyzed. Equations are derived for the truncation errors resulting from the lack of high-degree coefficients and the commission errors arising from errors in the available lower-degree coefficients, and it is assumed that the inner zone (spherical cap) is sufficiently covered by surface gravity measurements in conjunction with altimetry or by gravity anomaly data. Numerical computations of error for various observational conditions reveal undulation difference errors ranging from 13 to 15 cm and from 6 to 36 cm in the cases of gravity anomaly and gravity disturbance data, respectively for a cap radius of 10 deg and mean anomalies accurate to 10 mgal, with a reduction of errors in both cases to less than 10 cm as mean anomaly accuracy is increased to 1 mgal. In the absence of a spherical cap, both cases yield error estimates of 68 cm for an accuracy of 1 mgal and between 93 and 160 cm for the lesser accuracy, which can be reduced to about 110 cm by the introduction of a perfect 30-deg reference field.
Mennill, Daniel J.; Burt, John M.; Fristrup, Kurt M.; Vehrencamp, Sandra L.
2008-01-01
A field test was conducted on the accuracy of an eight-microphone acoustic location system designed to triangulate the position of duetting rufous-and-white wrens (Thryothorus rufalbus) in Costa Rica’s humid evergreen forest. Eight microphones were set up in the breeding territories of twenty pairs of wrens, with an average inter-microphone distance of 75.2±2.6 m. The array of microphones was used to record antiphonal duets broadcast through stereo loudspeakers. The positions of the loudspeakers were then estimated by evaluating the delay with which the eight microphones recorded the broadcast sounds. Position estimates were compared to coordinates surveyed with a global-positioning system (GPS). The acoustic location system estimated the position of loudspeakers with an error of 2.82±0.26 m and calculated the distance between the “male” and “female” loudspeakers with an error of 2.12±0.42 m. Given the large range of distances between duetting birds, this relatively low level of error demonstrates that the acoustic location system is a useful tool for studying avian duets. Location error was influenced partly by the difficulties inherent in collecting high accuracy GPS coordinates of microphone positions underneath a lush tropical canopy, and partly by the complicating influence of irregular topography and thick vegetation on sound transmission. PMID:16708941
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement
Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian
2013-01-01
Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990
Accuracy study of a robotic system for MRI-guided prostate needle placement.
Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian
2013-09-01
Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.
A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.
Liu, Shuo; Zhang, Lei; Li, Jian
2016-11-24
The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.
Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains
NASA Technical Reports Server (NTRS)
Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang
2013-01-01
Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.
Pointing error analysis of Risley-prism-based beam steering system.
Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng
2014-09-01
Based on the vector form Snell's law, ray tracing is performed to quantify the pointing errors of Risley-prism-based beam steering systems, induced by component errors, prism orientation errors, and assembly errors. Case examples are given to elucidate the pointing error distributions in the field of regard and evaluate the allowances of the error sources for a given pointing accuracy. It is found that the assembly errors of the second prism will result in more remarkable pointing errors in contrast with the first one. The pointing errors induced by prism tilt depend on the tilt direction. The allowances of bearing tilt and prism tilt are almost identical if the same pointing accuracy is planned. All conclusions can provide a theoretical foundation for practical works.
Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J
2018-01-01
Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
Analysis on the dynamic error for optoelectronic scanning coordinate measurement network
NASA Astrophysics Data System (ADS)
Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie
2018-01-01
Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Statistical Sensor Fusion of a 9-DOF Mems Imu for Indoor Navigation
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
Sensor fusion of a MEMS IMU with a magnetometer is a popular system design, because such 9-DoF (degrees of freedom) systems are capable of achieving drift-free 3D orientation tracking. However, these systems are often vulnerable to ambient magnetic distortions and lack useful position information; in the absence of external position aiding (e.g. satellite/ultra-wideband positioning systems) the dead-reckoned position accuracy from a 9-DoF MEMS IMU deteriorates rapidly due to unmodelled errors. Positioning information is valuable in many satellite-denied geomatics applications (e.g. indoor navigation, location-based services, etc.). This paper proposes an improved 9-DoF IMU indoor pose tracking method using batch optimization. By adopting a robust in-situ user self-calibration approach to model the systematic errors of the accelerometer, gyroscope, and magnetometer simultaneously in a tightly-coupled post-processed least-squares framework, the accuracy of the estimated trajectory from a 9-DoF MEMS IMU can be improved. Through a combination of relative magnetic measurement updates and a robust weight function, the method is able to tolerate a high level of magnetic distortions. The proposed auto-calibration method was tested in-use under various heterogeneous magnetic field conditions to mimic a person walking with the sensor in their pocket, a person checking their phone, and a person walking with a smartwatch. In these experiments, the presented algorithm improved the in-situ dead-reckoning orientation accuracy by 79.8-89.5 % and the dead-reckoned positioning accuracy by 72.9-92.8 %, thus reducing the relative positioning error from metre-level to decimetre-level after ten seconds of integration, without making assumptions about the user's dynamics.
Accuracy of unmodified Stokes' integration in the R-C-R procedure for geoid computation
NASA Astrophysics Data System (ADS)
Ismail, Zahra; Jamet, Olivier
2015-06-01
Geoid determinations by the Remove-Compute-Restore (R-C-R) technique involves the application of Stokes' integral on reduced gravity anomalies. Numerical Stokes' integration produces an error depending on the choice of the integration radius, grid resolution and Stokes' kernel function. In this work, we aim to evaluate the accuracy of Stokes' integral through a study on synthetic gravitational signals derived from EGM2008 on three different landscape areas with respect to the size of the integration domain and the resolution of the anomaly grid. The influence of the integration radius was studied earlier by several authors. Using real data, they found that the choice of relatively small radii (less than 1°) enables to reach an optimal accuracy. We observe a general behaviour coherent with these earlier studies. On the other hand, we notice that increasing the integration radius up to 2° or 2.5° might bring significantly better results. We note that, unlike the smallest radius corresponding to a local minimum of the error curve, the optimal radius in the range 0° to 6° depends on the terrain characteristics. We also find that the high frequencies, from degree 600, improve continuously with the integration radius in both semi-mountainous and mountain areas. Finally, we note that the relative error of the computed geoid heights depends weakly on the anomaly spherical harmonic degree in the range from degree 200 to 2000. It remains greater than 10 % for any integration radii up to 6°. This result tends to prove that a one centimetre accuracy cannot be reached in semi-mountainous and mountainous regions with the unmodified Stokes' kernel.
NASA Astrophysics Data System (ADS)
Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua
2017-08-01
Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.
Validation on MERSI/FY-3A precipitable water vapor product
NASA Astrophysics Data System (ADS)
Gong, Shaoqi; Fiifi Hagan, Daniel; Lu, Jing; Wang, Guojie
2018-01-01
The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was -0.8 to -12.7 mm, the root mean square error (RMSE) was 2.2-17.0 mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.
Kim, Hyungjin; Lee, Sang Min; Lee, Hyun-Ju; Goo, Jin Mo
2013-01-01
Objective To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. Materials and Methods In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. Results The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. Conclusion LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs. PMID:23901328
Analytical Evaluation of a Method of Midcourse Guidance for Rendezvous with Earth Satellites
NASA Technical Reports Server (NTRS)
Eggleston, John M.; Dunning, Robert S.
1961-01-01
A digital-computer simulation was made of the midcourse or ascent phase of a rendezvous between a ferry vehicle and a space station. The simulation involved a closed-loop guidance system in which both the relative position and relative velocity between ferry and station are measured (by simulated radar) and the relative-velocity corrections required to null the miss distance are computed and applied. The results are used to study the effectiveness of a particular set of guidance equations and to study the effects of errors in the launch conditions and errors in the navigation data. A number of trajectories were investigated over a variety of initial conditions for cases in which the space station was in a circular orbit and also in an elliptic orbit. Trajectories are described in terms of a rotating coordinate system fixed in the station. As a result of this study the following conclusions are drawn. Successful rendezvous can be achieved even with launch conditions which are substantially less accurate than those obtained with present-day techniques. The average total-velocity correction required during the midcourse phase is directly proportional to the radar accuracy but the miss distance is not. Errors in the time of booster burnout or in the position of the ferry at booster burnout are less important than errors in the ferry velocity at booster burnout. The use of dead bands to account for errors in the navigational (radar) equipment appears to depend upon a compromise between the magnitude of the velocity corrections to be made and the allowable miss distance at the termination of the midcourse phase of the rendezvous. When approximate guidance equations are used, there are limits on their accuracy which are dependent on the angular distance about the earth to the expected point of rendezvous.
Accurate Realization of GPS Vertical Global Reference Frame
NASA Technical Reports Server (NTRS)
Elosegui, Pedro
2004-01-01
The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.
Adverse effects in dual-feed interferometry
NASA Astrophysics Data System (ADS)
Colavita, M. Mark
2009-11-01
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Kim, Gayoung; Im, Jungho
2017-04-01
Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.
The current and ideal state of anatomic pathology patient safety.
Raab, Stephen Spencer
2014-01-01
An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.
Jeyasingh, Suganthi; Veluchamy, Malathi
2017-05-01
Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License
Lievaart, Marien; van der Veen, Frederik M; Huijding, Jorg; Naeije, Lilian; Hovens, Johannes E; Franken, Ingmar H A
2016-01-01
Effortful control is considered to be an important factor in explaining individual differences in trait anger. In the current study, we sought to investigate the relation between anger-primed effortful control (i.e., inhibitory control and error-processing) and trait anger using an affective Go/NoGo task. Individuals low (LTA; n=45) and high (HTA; n=49) on trait anger were selected for this study. Behavioral performance (accuracy) and Event-Related Potentials (ERPs; i.e., N2, P3, ERN, Pe) were compared between both groups. Contrary to our predictions, we found no group differences regarding inhibitory control. That is, HTA and LTA individuals made comparable numbers of commission errors on NoGo trials and no significant differences were found on the N2 and P3 amplitudes. With respect to error-processing, we found reduced Pe amplitudes following errors in HTA individuals as compared to LTA individuals, whereas the ERN amplitudes were comparable for both groups. These results indicate that high trait anger individuals show deficits in later stages of error-processing, which may explain the continuation of impulsive behaviors in HTA individuals despite their negative consequences. Copyright © 2015 Elsevier B.V. All rights reserved.
Local indicators of geocoding accuracy (LIGA): theory and application
Jacquez, Geoffrey M; Rommel, Robert
2009-01-01
Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795
Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications
NASA Astrophysics Data System (ADS)
Chen, Wen; Yu, Chao; Cai, Miaomiao
2017-04-01
GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-01-01
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-08-16
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions-laboratory, in the field off-line and during on-site operation-were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven
The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less
Error analysis and experiments of attitude measurement using laser gyroscope
NASA Astrophysics Data System (ADS)
Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao
2018-03-01
The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.
Reducing errors benefits the field-based learning of a fundamental movement skill in children.
Capio, C M; Poolton, J M; Sit, C H P; Holmstrom, M; Masters, R S W
2013-03-01
Proficient fundamental movement skills (FMS) are believed to form the basis of more complex movement patterns in sports. This study examined the development of the FMS of overhand throwing in children through either an error-reduced (ER) or error-strewn (ES) training program. Students (n = 216), aged 8-12 years (M = 9.16, SD = 0.96), practiced overhand throwing in either a program that reduced errors during practice (ER) or one that was ES. ER program reduced errors by incrementally raising the task difficulty, while the ES program had an incremental lowering of task difficulty. Process-oriented assessment of throwing movement form (Test of Gross Motor Development-2) and product-oriented assessment of throwing accuracy (absolute error) were performed. Changes in performance were examined among children in the upper and lower quartiles of the pretest throwing accuracy scores. ER training participants showed greater gains in movement form and accuracy, and performed throwing more effectively with a concurrent secondary cognitive task. Movement form improved among girls, while throwing accuracy improved among children with low ability. Reduced performance errors in FMS training resulted in greater learning than a program that did not restrict errors. Reduced cognitive processing costs (effective dual-task performance) associated with such approach suggest its potential benefits for children with developmental conditions. © 2011 John Wiley & Sons A/S.
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
Characteristics of advanced hydrogen maser frequency standards
NASA Technical Reports Server (NTRS)
Peters, H. E.
1973-01-01
Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard.
Deep space target location with Hubble Space Telescope (HST) and Hipparcos data
NASA Technical Reports Server (NTRS)
Null, George W.
1988-01-01
Interplanetary spacecraft navigation requires accurate a priori knowledge of target positions. A concept is presented for attaining improved target ephemeris accuracy using two future Earth-orbiting optical observatories, the European Space Agency (ESA) Hipparcos observatory and the Nasa Hubble Space Telescope (HST). Assuming nominal observatory performance, the Hipparcos data reduction will provide an accurate global star catalog, and HST will provide a capability for accurate angular measurements of stars and solar system bodies. The target location concept employs HST to observe solar system bodies relative to Hipparcos catalog stars and to determine the orientation (frame tie) of these stars to compact extragalactic radio sources. The target location process is described, the major error sources discussed, the potential target ephemeris error predicted, and mission applications identified. Preliminary results indicate that ephemeris accuracy comparable to the errors in individual Hipparcos catalog stars may be possible with a more extensive HST observing program. Possible future ground and spacebased replacements for Hipparcos and HST astrometric capabilities are also discussed.
Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.
2014-01-01
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546
Development and accuracy of a multipoint method for measuring visibility.
Tai, Hongda; Zhuang, Zibo; Sun, Dongsong
2017-10-01
Accurate measurements of visibility are of great importance in many fields. This paper reports a multipoint visibility measurement (MVM) method to measure and calculate the atmospheric transmittance, extinction coefficient, and meteorological optical range (MOR). The relative errors of atmospheric transmittance and MOR measured by the MVM method and traditional transmissometer method are analyzed and compared. Experiments were conducted indoors, and the data were simultaneously processed. The results revealed that the MVM can effectively improve the accuracy under different visibility conditions. The greatest improvement of accuracy was 27%. The MVM can be used to calibrate and evaluate visibility meters.
Rocket observations of electron density in the nighttime E region using Faraday rotation
NASA Technical Reports Server (NTRS)
Smith, L. G.; Gilchrist, B. E.
1984-01-01
A rocket radio propagation experiment is described in which the electron density profile of the nighttime E region is obtained with an accuracy of 100 per cu cm. The factors limiting the accuracy of the experiment are found to be related to atmospheric and receiver noise and to the use of a magnetometer to determine the spin rate of the rocket. The Fourier analysis used for the frequency measurement may also contribute error under conditions of steep electron density gradients. The accuracy being achieved appears to be adequate for present applications of the experiment.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Correlation methods in optical metrology with state-of-the-art x-ray mirrors
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.
2018-01-01
The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.
The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control
ERIC Educational Resources Information Center
Page, A.; Moreno, R.; Candelas, P.; Belmar, F.
2008-01-01
In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…
ERIC Educational Resources Information Center
Preston, Jonathan L.; Edwards, Mary Louise
2009-01-01
Children with residual speech sound errors are often underserved clinically, yet there has been a lack of recent research elucidating the specific deficits in this population. Adolescents aged 10-14 with residual speech sound errors (RE) that included rhotics were compared to normally speaking peers on tasks assessing speed and accuracy of speech…
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Yan, H; Jia, X
2014-06-01
Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated bymore » Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.« less
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Keller, Christoph A.
2016-05-01
Chemistry-transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemistry-transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to operator duration. Subsequently, we compare the species simulated with operator durations from 10 to 60 min as typically used by global chemistry-transport models, and identify the operator durations that optimize both computational expense and simulation accuracy. We find that longer continuous transport operator duration increases concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production with longer transport operator duration. Longer chemical operator duration decreases sulfate and ammonium but increases nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by up to a factor of 5 from fine (5 min) to coarse (60 min) operator duration. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, secondary inorganic aerosols, ozone and carbon monoxide with a finer temporal or spatial resolution taken as "truth". Relative simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) operator duration. Chemical operator duration twice that of the transport operator duration offers more simulation accuracy per unit computation. However, the relative simulation error from coarser spatial resolution generally exceeds that from longer operator duration; e.g., degrading from 2° × 2.5° to 4° × 5° increases error by an order of magnitude. We recommend prioritizing fine spatial resolution before considering different operator durations in offline chemistry-transport models. We encourage chemistry-transport model users to specify in publications the durations of operators due to their effects on simulation accuracy.
Mapping of sea ice and measurement of its drift using aircraft synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Leberl, F.; Bryan, M. L.; Elachi, C.; Farr, T.; Campbell, W.
1979-01-01
Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about + or - 2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than + or - 0.2 km.
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Deng, Zhongliang
2018-01-01
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan
2018-01-01
Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33–100%, and ELM, with an accuracy rate of 98.01–100%. For level assessment, the R2 related to the training set was above 0.97 and the R2 related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016–0.3494, lower than the error of 0.5–1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level. PMID:29346328
Determination of GPS orbits to submeter accuracy
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.
1988-01-01
Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.
NASA Technical Reports Server (NTRS)
Haines, B.; Christensen, E.; Guinn, J.; Norman, R.; Marshall, J.
1995-01-01
Satellite altimetry must measure variations in ocean topography with cm-level accuracy. The TOPEX/Poseidon mission is designed to do this by measuring the radial component of the orbit with an accuracy of 13 cm or better RMS. Recent advances, however, have improved this accuracy by about an order of magnitude.
Accuracy of references and quotations in veterinary journals.
Hinchcliff, K W; Bruce, N J; Powers, J D; Kipp, M L
1993-02-01
The accuracy of references and quotations used to substantiate statements of fact in articles published in 6 frequently cited veterinary journals was examined. Three hundred references were randomly selected, and the accuracy of each citation was examined. A subset of 100 references was examined for quotational accuracy; ie, the accuracy with which authors represented the work or assertions of the author being cited. Of the 300 references selected, 295 were located, and 125 major errors were found in 88 (29.8%) of them. Sixty-seven (53.6%) major errors were found involving authors, 12 (9.6%) involved the article title, 14 (11.2%) involved the book or journal title, and 32 (25.6%) involved the volume number, date, or page numbers. Sixty-eight minor errors were detected. The accuracy of 111 quotations from 95 citations in 65 articles was examined. Nine quotations were technical and not classified, 86 (84.3%) were classified as correct, 2 (1.9%) contained minor misquotations, and 14 (13.7%) contained major misquotations. We concluded that misquotations and errors in citations occur frequently in veterinary journals, but at a rate similar to that reported for other biomedical journals.
Monteiro, Sandra; Norman, Geoff; Sherbino, Jonathan
2018-06-01
There is general consensus that clinical reasoning involves 2 stages: a rapid stage where 1 or more diagnostic hypotheses are advanced and a slower stage where these hypotheses are tested or confirmed. The rapid hypothesis generation stage is considered inaccessible for analysis or observation. Consequently, recent research on clinical reasoning has focused specifically on improving the accuracy of the slower, hypothesis confirmation stage. Three perspectives have developed in this line of research, and each proposes different error reduction strategies for clinical reasoning. This paper considers these 3 perspectives and examines the underlying assumptions. Additionally, this paper reviews the evidence, or lack of, behind each class of error reduction strategies. The first perspective takes an epidemiological stance, appealing to the benefits of incorporating population data and evidence-based medicine in every day clinical reasoning. The second builds on the heuristic and bias research programme, appealing to a special class of dual process reasoning models that theorizes a rapid error prone cognitive process for problem solving with a slower more logical cognitive process capable of correcting those errors. Finally, the third perspective borrows from an exemplar model of categorization that explicitly relates clinical knowledge and experience to diagnostic accuracy. © 2018 John Wiley & Sons, Ltd.
Insight solutions are correct more often than analytic solutions
Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark
2016-01-01
How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960
A real-time freehand ultrasound calibration system with automatic accuracy feedback and control.
Chen, Thomas Kuiran; Thurston, Adrian D; Ellis, Randy E; Abolmaesumi, Purang
2009-01-01
This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.
NASA Astrophysics Data System (ADS)
Bonforte, A.; Casu, F.; de Martino, P.; Guglielmino, F.; Lanari, R.; Manzo, M.; Obrizzo, F.; Puglisi, G.; Sansosti, E.; Tammaro, U.
2009-04-01
Differential Synthetic Aperture Radar Interferometry (DInSAR) is a methodology able to measure ground deformation rates and time series of relatively large areas. Several different approaches have been developed over the past few years: they all have in common the capability to measure deformations on a relatively wide area (say 100 km by 100 km) with a high density of the measuring points. For these reasons, DInSAR represents a very useful tool for investigating geophysical phenomena, with particular reference to volcanic areas. As for any measuring technique, the knowledge of the attainable accuracy is of fundamental importance. In the case of DInSAR technology, we have several error sources, such as orbital inaccuracies, phase unwrapping errors, atmospheric artifacts, effects related to the reference point selection, thus making very difficult to define a theoretical error model. A practical way to obtain assess the accuracy is to compare DInSAR results with independent measurements, such as GPS or levelling. Here we present an in-deep comparison between the deformation measurement obtained by exploiting the DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm and by continuous GPS stations. The selected volcanic test-sites are Etna, Vesuvio and Campi Flegrei, in Italy. From continuous GPS data, solutions are computed at the same days SAR data are acquired for direct comparison. Moreover, three dimensional GPS displacement vectors are projected along the radar line of sight of both ascending and descending acquisition orbits. GPS data are then compared with the coherent DInSAR pixels closest to the GPS station. Relevant statistics of the differences between the two measurements are computed and correlated to some scene parameter that may affect DInSAR accuracy (altitude, terrain slope, etc.).
McQueen, Robert Brett; Breton, Marc D; Craig, Joyce; Holmes, Hayden; Whittington, Melanie D; Ott, Markus A; Campbell, Jonathan D
2018-04-01
The objective was to model clinical and economic outcomes of self-monitoring blood glucose (SMBG) devices with varying error ranges and strip prices for type 1 and insulin-treated type 2 diabetes patients in England. We programmed a simulation model that included separate risk and complication estimates by type of diabetes and evidence from in silico modeling validated by the Food and Drug Administration. Changes in SMBG error were associated with changes in hemoglobin A1c (HbA1c) and separately, changes in hypoglycemia. Markov cohort simulation estimated clinical and economic outcomes. A SMBG device with 8.4% error and strip price of £0.30 (exceeding accuracy requirements by International Organization for Standardization [ISO] 15197:2013/EN ISO 15197:2015) was compared to a device with 15% error (accuracy meeting ISO 15197:2013/EN ISO 15197:2015) and price of £0.20. Outcomes were lifetime costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs). With SMBG errors associated with changes in HbA1c only, the ICER was £3064 per QALY in type 1 diabetes and £264 668 per QALY in insulin-treated type 2 diabetes for an SMBG device with 8.4% versus 15% error. With SMBG errors associated with hypoglycemic events only, the device exceeding accuracy requirements was cost-saving and more effective in insulin-treated type 1 and type 2 diabetes. Investment in devices with higher strip prices but improved accuracy (less error) appears to be an efficient strategy for insulin-treated diabetes patients at high risk of severe hypoglycemia.
Methods for accurate estimation of net discharge in a tidal channel
Simpson, M.R.; Bland, R.
2000-01-01
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second, or less than 0.5% of a typical peak tidal discharge rate of 750 cubic meters per second.
Cadastral Database Positional Accuracy Improvement
NASA Astrophysics Data System (ADS)
Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.
2017-10-01
Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.
Acquiring Research-grade ALSM Data in the Commercial Marketplace
NASA Astrophysics Data System (ADS)
Haugerud, R. A.; Harding, D. J.; Latypov, D.; Martinez, D.; Routh, S.; Ziegler, J.
2003-12-01
The Puget Sound Lidar Consortium, working with TerraPoint, LLC, has procured a large volume of ALSM (topographic lidar) data for scientific research. Research-grade ALSM data can be characterized by their completeness, density, and accuracy. Complete data include-at a minimum-X, Y, Z, time, and classification (ground, vegetation, structure, blunder) for each laser reflection. Off-nadir angle and return number for multiple returns are also useful. We began with a pulse density of 1/sq m, and after limited experiments still find this density satisfactory in the dense second-growth forests of western Washington. Lower pulse densities would have produced unacceptably limited sampling in forested areas and aliased some topographic features. Higher pulse densities do not produce markedly better topographic models, in part because of limitations of reproducibility between the overlapping survey swaths used to achieve higher density. Our experience in a variety of forest types demonstrates that the fraction of pulses that produce ground returns varies with vegetation cover, laser beam divergence, laser power, and detector sensitivity, but have not quantified this relationship. The most significant operational limits on vertical accuracy of ALSM appear to be instrument calibration and the accuracy with which returns are classified as ground or vegetation. TerraPoint has recently implemented in-situ calibration using overlapping swaths (Latypov and Zosse, 2002, see http://www.terrapoint.com/News_damirACSM_ASPRS2002.html). On the consumer side, we routinely perform a similar overlap analysis to produce maps of relative Z error between swaths; we find that in bare, low-slope regions the in-situ calibration has reduced this internal Z error to 6-10 cm RMSE. Comparison with independent ground control points commonly illuminates inconsistencies in how GPS heights have been reduced to orthometric heights. Once these inconsistencies are resolved, it appears that the internal errors are the bulk of the error of the survey. The error maps suggest that with in-situ calibration, minor time-varying errors with a period of circa 1 sec are the largest remaining source of survey error. For forested terrain, limited ground penetration and errors in return classification can severely limit the accuracy of resulting topographic models. Initial work by Haugerud and Harding demonstrated the feasibility of fully-automatic return classification; however, TerraPoint has found that better results can be obtained more effectively with 3rd-party classification software that allows a mix of automated routines and human intervention. Our relationship has been evolving since early 2000. Important aspects of this relationship include close communication between data producer and consumer, a willingness to learn from each other, significant technical expertise and resources on the consumer side, and continued refinement of achievable, quantitative performance and accuracy specifications. Most recently we have instituted a slope-dependent Z accuracy specification that TerraPoint first developed as a heuristic for surveying mountainous terrain in Switzerland. We are now working on quantifying the internal consistency of topographic models in forested areas, using a variant of overlap analysis, and standards for the spatial distribution of internal errors.
Measurement configuration optimization for dynamic metrology using Stokes polarimetry
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan
2018-05-01
As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.
Errors of five-day mean surface wind and temperature conditions due to inadequate sampling
NASA Technical Reports Server (NTRS)
Legler, David M.
1991-01-01
Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.
Wu, C; de Jong, J R; Gratama van Andel, H A; van der Have, F; Vastenhouw, B; Laverman, P; Boerman, O C; Dierckx, R A J O; Beekman, F J
2011-09-21
Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In (125)I, (201)Tl, (99m)Tc and (111)In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for (125)I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for (125)I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.
Short-arc orbit determination using coherent X-band ranging data
NASA Technical Reports Server (NTRS)
Thurman, S. W.; Mcelrath, T. P.; Pollmeier, V. M.
1992-01-01
The use of X-band frequencies in ground-spacecraft and spacecraft-ground telecommunication links for current and future robotic interplanetary missions makes it possible to perform ranging measurements of greater accuracy than previously obtained. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. The application of high-accuracy S/X-band and X-band ranging to orbit determination with relatively short data arcs is investigated in planetary approach and encounter scenarios. Actual trajectory solutions for the Ulysses spacecraft constructed from S/X-band ranging and Doppler data are presented; error covariance calculations are used to predict the performance of X-band ranging and Doppler data. The Ulysses trajectory solutions indicate that the aim point for the spacecraft's February 1992 Jupiter encounter was predicted to a geocentric accuracy of 0.20 to 0.23/microrad. Explicit modeling of range bias parameters for each station pass is shown to largely remove systematic ground system calibration errors and transmission media effects from the Ulysses range measurements, which would otherwise corrupt the angle finding capabilities of the data. The Ulysses solutions were found to be reasonably consistent with the theoretical results, which suggest that angular accuracies of 0.08 to 0.1/microrad are achievable with X-band ranging.
Overconfidence across the psychosis continuum: a calibration approach.
Balzan, Ryan P; Woodward, Todd S; Delfabbro, Paul; Moritz, Steffen
2016-11-01
An 'overconfidence in errors' bias has been consistently observed in people with schizophrenia relative to healthy controls, however, the bias is seldom found to be associated with delusional ideation. Using a more precise confidence-accuracy calibration measure of overconfidence, the present study aimed to explore whether the overconfidence bias is greater in people with higher delusional ideation. A sample of 25 participants with schizophrenia and 50 non-clinical controls (25 high- and 25 low-delusion-prone) completed 30 difficult trivia questions (accuracy <75%); 15 'half-scale' items required participants to indicate their level of confidence for accuracy, and the remaining 'confidence-range' items asked participants to provide lower/upper bounds in which they were 80% confident the true answer lay within. There was a trend towards higher overconfidence for half-scale items in the schizophrenia and high-delusion-prone groups, which reached statistical significance for confidence-range items. However, accuracy was particularly low in the two delusional groups and a significant negative correlation between clinical delusional scores and overconfidence was observed for half-scale items within the schizophrenia group. Evidence in support of an association between overconfidence and delusional ideation was therefore mixed. Inflated confidence-accuracy miscalibration for the two delusional groups may be better explained by their greater unawareness of their underperformance, rather than representing genuinely inflated overconfidence in errors.
Optical truss and retroreflector modeling for picometer laser metrology
NASA Astrophysics Data System (ADS)
Hines, Braden E.
1993-09-01
Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.
Spacecraft-spacecraft very long baseline interferometry for planetary approach navigation
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Folkner, William M.; Border, James S.; Wood, Lincoln J.
1991-01-01
The study presents an error budget for Delta differential one-way range (Delta-DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of about 5 nrad should be possible for a pair of X-band spacecraft incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate Ka-band downlinks with DOR tone spacings of order 250 MHz. Operational advantages of this data type are discussed, and ground system requirements needed to enable S/C-S/C Delta-DOR observations are outlined. A covariance analysis is presented to examine the potential navigation improvement for this scenario. The results show factors of 2-3 improvement in spacecraft targeting over conventional Doppler, range, and quasar-relative VLBI, along with reduced sensitivity to ephemeris uncertainty and other systematic errors.
Ernst, Dominique; Köhler, Jürgen
2013-01-21
We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2015-06-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.
Scene Text Recognition using Similarity and a Lexicon with Sparse Belief Propagation
Weinman, Jerod J.; Learned-Miller, Erik; Hanson, Allen R.
2010-01-01
Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and store fronts. Relative to document recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model, helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hoc. We introduce a probabilistic model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model, we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of signs in outdoor scenes, incorporating similarity reduces character recognition error by 19%, the lexicon reduces word recognition error by 35%, and sparse belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no loss in accuracy. PMID:19696446
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-08-14
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-01-01
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203
Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.
2011-01-01
For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562
Uy, Raymonde Charles; Sarmiento, Raymond Francis; Gavino, Alex; Fontelo, Paul
2014-01-01
Clinical decision-making involves the interplay between cognitive processes and physicians' perceptions of confidence in the context of their information-seeking behavior. The objectives of the study are: to examine how these concepts interact, to determine whether physician confidence, defined in relation to information need, affects clinical decision-making, and if information access improves decision accuracy. We analyzed previously collected data about resident physicians' perceptions of information need from a study comparing abstracts and full-text articles in clinical decision accuracy. We found that there is a significant relation between confidence and accuracy (φ=0.164, p<0.01). We also found various differences in the alignment of confidence and accuracy, demonstrating the concepts of underconfidence and overconfidence across years of clinical experience. Access to online literature also has a significant effect on accuracy (p<0.001). These results highlight possible CDSS strategies to reduce medical errors.
Spencer, Bruce D
2012-06-01
Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao
2016-10-01
Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.
Backward-gazing method for measuring solar concentrators shape errors.
Coquand, Mathieu; Henault, François; Caliot, Cyril
2017-03-01
This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.
NASA Astrophysics Data System (ADS)
Duan, Wansuo; Zhao, Peng
2017-04-01
Within the Zebiak-Cane model, the nonlinear forcing singular vector (NFSV) approach is used to investigate the role of model errors in the "Spring Predictability Barrier" (SPB) phenomenon within ENSO predictions. NFSV-related errors have the largest negative effect on the uncertainties of El Niño predictions. NFSV errors can be classified into two types: the first is characterized by a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite the first type. The first type of error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in the spring and/or summer seasons; hence, these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate a SPB for El Niño events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.
Quasi-eccentricity error modeling and compensation in vision metrology
NASA Astrophysics Data System (ADS)
Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin
2018-04-01
Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.
Chen, Chien P; Braunstein, Steve; Mourad, Michelle; Hsu, I-Chow J; Haas-Kogan, Daphne; Roach, Mack; Fogh, Shannon E
2015-01-01
Accurate International Classification of Diseases (ICD) diagnosis coding is critical for patient care, billing purposes, and research endeavors. In this single-institution study, we evaluated our baseline ICD-9 (9th revision) diagnosis coding accuracy, identified the most common errors contributing to inaccurate coding, and implemented a multimodality strategy to improve radiation oncology coding. We prospectively studied ICD-9 coding accuracy in our radiation therapy--specific electronic medical record system. Baseline ICD-9 coding accuracy was obtained from chart review targeting ICD-9 coding accuracy of all patients treated at our institution between March and June of 2010. To improve performance an educational session highlighted common coding errors, and a user-friendly software tool, RadOnc ICD Search, version 1.0, for coding radiation oncology specific diagnoses was implemented. We then prospectively analyzed ICD-9 coding accuracy for all patients treated from July 2010 to June 2011, with the goal of maintaining 80% or higher coding accuracy. Data on coding accuracy were analyzed and fed back monthly to individual providers. Baseline coding accuracy for physicians was 463 of 661 (70%) cases. Only 46% of physicians had coding accuracy above 80%. The most common errors involved metastatic cases, whereby primary or secondary site ICD-9 codes were either incorrect or missing, and special procedures such as stereotactic radiosurgery cases. After implementing our project, overall coding accuracy rose to 92% (range, 86%-96%). The median accuracy for all physicians was 93% (range, 77%-100%) with only 1 attending having accuracy below 80%. Incorrect primary and secondary ICD-9 codes in metastatic cases showed the most significant improvement (10% vs 2% after intervention). Identifying common coding errors and implementing both education and systems changes led to significantly improved coding accuracy. This quality assurance project highlights the potential problem of ICD-9 coding accuracy by physicians and offers an approach to effectively address this shortcoming. Copyright © 2015. Published by Elsevier Inc.
Measuring diagnoses: ICD code accuracy.
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-10-01
To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.
Haliasos, N; Rezajooi, K; O'neill, K S; Van Dellen, J; Hudovsky, Anita; Nouraei, Sar
2010-04-01
Clinical coding is the translation of documented clinical activities during an admission to a codified language. Healthcare Resource Groupings (HRGs) are derived from coding data and are used to calculate payment to hospitals in England, Wales and Scotland and to conduct national audit and benchmarking exercises. Coding is an error-prone process and an understanding of its accuracy within neurosurgery is critical for financial, organizational and clinical governance purposes. We undertook a multidisciplinary audit of neurosurgical clinical coding accuracy. Neurosurgeons trained in coding assessed the accuracy of 386 patient episodes. Where clinicians felt a coding error was present, the case was discussed with an experienced clinical coder. Concordance between the initial coder-only clinical coding and the final clinician-coder multidisciplinary coding was assessed. At least one coding error occurred in 71/386 patients (18.4%). There were 36 diagnosis and 93 procedure errors and in 40 cases, the initial HRG changed (10.4%). Financially, this translated to pound111 revenue-loss per patient episode and projected to pound171,452 of annual loss to the department. 85% of all coding errors were due to accumulation of coding changes that occurred only once in the whole data set. Neurosurgical clinical coding is error-prone. This is financially disadvantageous and with the coding data being the source of comparisons within and between departments, coding inaccuracies paint a distorted picture of departmental activity and subspecialism in audit and benchmarking. Clinical engagement improves accuracy and is encouraged within a clinical governance framework.
A holistic calibration method with iterative distortion compensation for stereo deflectometry
NASA Astrophysics Data System (ADS)
Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian
2018-07-01
This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
Weis, Jared A.; Flint, Katelyn M.; Sanchez, Violeta; Yankeelov, Thomas E.; Miga, Michael I.
2015-01-01
Abstract. Cancer progression has been linked to mechanics. Therefore, there has been recent interest in developing noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical properties. We have developed one such method, modality independent elastography (MIE), that estimates the relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error was <12%. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide guidance on the degree of change needed in order to declare biological changes rather than experimental error in future therapeutic studies. PMID:26158120
NASA Technical Reports Server (NTRS)
Leberl, F. W.
1979-01-01
The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.
Bravo, G; Bragança, S; Arezes, P M; Molenbroek, J F M; Castellucci, H I
2018-05-22
Despite offering many benefits, direct manual anthropometric measurement method can be problematic due to their vulnerability to measurement errors. The purpose of this literature review was to determine, whether or not the currently published anthropometric studies of school children, related to ergonomics, mentioned or evaluated the variables precision, reliability or accuracy in the direct manual measurement method. Two bibliographic databases, and the bibliographic references of all the selected papers were used for finding relevant published papers in the fields considered in this study. Forty-six (46) studies met the criteria previously defined for this literature review. However, only ten (10) studies mentioned at least one of the analyzed variables, and none has evaluated all of them. Only reliability was assessed by three papers. Moreover, in what regards the factors that affect precision, reliability and accuracy, the reviewed papers presented large differences. This was particularly clear in the instruments used for the measurements, which were not consistent throughout the studies. Additionally, it was also clear that there was a lack of information regarding the evaluators' training and procedures for anthropometric data collection, which are assumed to be the most important issues that affect precision, reliability and accuracy. Based on the review of the literature, it was possible to conclude that the considered anthropometric studies had not focused their attention to the analysis of precision, reliability and accuracy of the manual measurement methods. Hence, and with the aim of avoiding measurement errors and misleading data, anthropometric studies should put more efforts and care on testing measurement error and defining the procedures used to collect anthropometric data.
[Comparison of three stand-level biomass estimation methods].
Dong, Li Hu; Li, Feng Ri
2016-12-01
At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030
Improved memory for error feedback.
Van der Borght, Liesbet; Schouppe, Nathalie; Notebaert, Wim
2016-11-01
Surprising feedback in a general knowledge test leads to an improvement in memory for both the surface features and the content of the feedback (Psychon Bull Rev 16:88-92, 2009). Based on the idea that in cognitive tasks, error is surprising (the orienting account, Cognition 111:275-279, 2009), we tested whether error feedback would be better remembered than correct feedback. Colored words were presented as feedback signals in a flanker task, where the color indicated the accuracy. Subsequently, these words were again presented during a recognition task (Experiment 1) or a lexical decision task (Experiments 2 and 3). In all experiments, memory was improved for words seen as error feedback. These results are compared to the attentional boost effect (J Exp Psychol Learn Mem Cogn 39:1223-12231, 2013) and related to the orienting account for post-error slowing (Cognition 111:275-279, 2009).
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.
Ziaeian, Boback; Araujo, Katy L B; Van Ness, Peter H; Horwitz, Leora I
2012-11-01
Adverse drug events after hospital discharge are common and often serious. These events may result from provider errors or patient misunderstanding. To determine the prevalence of medication reconciliation errors and patient misunderstanding of discharge medications. Prospective cohort study Patients over 64 years of age admitted with heart failure, acute coronary syndrome or pneumonia and discharged to home. We assessed medication reconciliation accuracy by comparing admission to discharge medication lists and reviewing charts to resolve discrepancies. Medication reconciliation changes that did not appear intentional were classified as suspected provider errors. We assessed patient understanding of intended medication changes through post-discharge interviews. Understanding was scored as full, partial or absent. We tested the association of relevance of the medication to the primary diagnosis with medication accuracy and with patient understanding, accounting for patient demographics, medical team and primary diagnosis. A total of 377 patients were enrolled in the study. A total of 565/2534 (22.3 %) of admission medications were redosed or stopped at discharge. Of these, 137 (24.2 %) were classified as suspected provider errors. Excluding suspected errors, patients had no understanding of 142/205 (69.3 %) of redosed medications, 182/223 (81.6 %) of stopped medications, and 493 (62.0 %) of new medications. Altogether, 307 patients (81.4 %) either experienced a provider error, or had no understanding of at least one intended medication change. Providers were significantly more likely to make an error on a medication unrelated to the primary diagnosis than on a medication related to the primary diagnosis (odds ratio (OR) 4.56, 95 % confidence interval (CI) 2.65, 7.85, p<0.001). Patients were also significantly more likely to misunderstand medication changes unrelated to the primary diagnosis (OR 2.45, 95 % CI 1.68, 3.55), p<0.001). Medication reconciliation and patient understanding are inadequate in older patients post-discharge. Errors and misunderstandings are particularly common in medications unrelated to the primary diagnosis. Efforts to improve medication reconciliation and patient understanding should not be disease-specific, but should be focused on the whole patient.
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
Effects of noise on the performance of a memory decision response task
NASA Technical Reports Server (NTRS)
Lawton, B. W.
1972-01-01
An investigation has been made to determine the effects of noise on human performance. Fourteen subjects performed a memory-decision-response task in relative quiet and while listening to tape recorded noises. Analysis of the data obtained indicates that performance was degraded in the presence of noise. Significant increases in problem solution times were found for impulsive noise conditions as compared with times found for the no-noise condition. Performance accuracy was also degraded. Significantly more error responses occurred at higher noise levels; a direct or positive relation was found between error responses and noise level experienced by the subjects.
León-Reina, L; García-Maté, M; Álvarez-Pinazo, G; Santacruz, I; Vallcorba, O; De la Torre, A G; Aranda, M A G
2016-06-01
This study reports 78 Rietveld quantitative phase analyses using Cu K α 1 , Mo K α 1 and synchrotron radiations. Synchrotron powder diffraction has been used to validate the most challenging analyses. From the results for three series with increasing contents of an analyte (an inorganic crystalline phase, an organic crystalline phase and a glass), it is inferred that Rietveld analyses from high-energy Mo K α 1 radiation have slightly better accuracies than those obtained from Cu K α 1 radiation. This behaviour has been established from the results of the calibration graphics obtained through the spiking method and also from Kullback-Leibler distance statistic studies. This outcome is explained, in spite of the lower diffraction power for Mo radiation when compared to Cu radiation, as arising because of the larger volume tested with Mo and also because higher energy allows one to record patterns with fewer systematic errors. The limit of detection (LoD) and limit of quantification (LoQ) have also been established for the studied series. For similar recording times, the LoDs in Cu patterns, ∼0.2 wt%, are slightly lower than those derived from Mo patterns, ∼0.3 wt%. The LoQ for a well crystallized inorganic phase using laboratory powder diffraction was established to be close to 0.10 wt% in stable fits with good precision. However, the accuracy of these analyses was poor with relative errors near to 100%. Only contents higher than 1.0 wt% yielded analyses with relative errors lower than 20%.
NASA Astrophysics Data System (ADS)
Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees
2017-03-01
X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.
Sairanen, V; Kuusela, L; Sipilä, O; Savolainen, S; Vanhatalo, S
2017-02-15
Diffusion Tensor Imaging (DTI) is commonly challenged by subject motion during data acquisition, which often leads to corrupted image data. Currently used procedure in DTI analysis is to correct or completely reject such data before tensor estimations, however assessing the reliability and accuracy of the estimated tensor in such situations has evaded previous studies. This work aims to define the loss of data accuracy with increasing image rejections, and to define a robust method for assessing reliability of the result at voxel level. We carried out simulations of every possible sub-scheme (N=1,073,567,387) of Jones30 gradient scheme, followed by confirming the idea with MRI data from four newborn and three adult subjects. We assessed the relative error of the most commonly used tensor estimates for DTI and tractography studies, fractional anisotropy (FA) and the major orientation vector (V1), respectively. The error was estimated using two measures, the widely used electric potential (EP) criteria as well as the rotationally variant condition number (CN). Our results show that CN and EP are comparable in situations with very few rejections, but CN becomes clearly more sensitive to depicting errors when more gradient vectors and images were rejected. The error in FA and V1 was also found depend on the actual FA level in the given voxel; low actual FA levels were related to high relative errors in the FA and V1 estimates. Finally, the results were confirmed with clinical MRI data. This showed that the errors after rejections are, indeed, inhomogeneous across brain regions. The FA and V1 errors become progressively larger when moving from the thick white matter bundles towards more superficial subcortical structures. Our findings suggest that i) CN is a useful estimator of data reliability at voxel level, and ii) DTI preprocessing with data rejections leads to major challenges when assessing brain tissue with lower FA levels, such as all newborn brain, as well as the adult superficial, subcortical areas commonly traced in precise connectivity analyses between cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Sullivan, Douglas
This pilot scale study evaluated the counting accuracy of two people counting systems that could be used in demand controlled ventilation systems to provide control signals for modulating outdoor air ventilation rates. The evaluations included controlled challenges of the people counting systems using pre-planned movements of occupants through doorways and evaluations of counting accuracies when naive occupants (i.e., occupants unaware of the counting systems) passed through the entrance doors of the building or room. The two people counting systems had high counting accuracy accuracies, with errors typically less than 10percent, for typical non-demanding counting events. However, counting errors were highmore » in some highly challenging situations, such as multiple people passing simultaneously through a door. Counting errors, for at least one system, can be very high if people stand in the field of view of the sensor. Both counting system have limitations and would need to be used only at appropriate sites and where the demanding situations that led to counting errors were rare.« less
Millisecond accuracy video display using OpenGL under Linux.
Stewart, Neil
2006-02-01
To measure people's reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time.
On the timing problem in optical PPM communications.
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.
1971-01-01
Investigation of the effects of imperfect timing in a direct-detection (noncoherent) optical system using pulse-position-modulation bits. Special emphasis is placed on specification of timing accuracy, and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors, from which average error probabilities can be computed for specific synchronization methods. Of significant importance is shown to be the presence of a residual, or irreducible error probability, due entirely to the timing system, that cannot be overcome by the data channel.
Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.
Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris
2014-08-01
The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.
Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian
2017-01-01
The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Model parameter-related optimal perturbations and their contributions to El Niño prediction errors
NASA Astrophysics Data System (ADS)
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-04-01
Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis. PMID:22737027
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
Error analysis and correction of lever-type stylus profilometer based on Nelder-Mead Simplex method
NASA Astrophysics Data System (ADS)
Hu, Chunbing; Chang, Suping; Li, Bo; Wang, Junwei; Zhang, Zhongyu
2017-10-01
Due to the high measurement accuracy and wide range of applications, lever-type stylus profilometry is commonly used in industrial research areas. However, the error caused by the lever structure has a great influence on the profile measurement, thus this paper analyzes the error of high-precision large-range lever-type stylus profilometry. The errors are corrected by the Nelder-Mead Simplex method, and the results are verified by the spherical surface calibration. It can be seen that this method can effectively reduce the measurement error and improve the accuracy of the stylus profilometry in large-scale measurement.
Context Specificity of Post-Error and Post-Conflict Cognitive Control Adjustments
Forster, Sarah E.; Cho, Raymond Y.
2014-01-01
There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, control-related performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. PMID:24603900
Validation of China-wide interpolated daily climate variables from 1960 to 2011
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang
2015-02-01
Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.
Evaluating causes of error in landmark-based data collection using scanners
Shearer, Brian M.; Cooke, Siobhán B.; Halenar, Lauren B.; Reber, Samantha L.; Plummer, Jeannette E.; Delson, Eric
2017-01-01
In this study, we assess the precision, accuracy, and repeatability of craniodental landmarks (Types I, II, and III, plus curves of semilandmarks) on a single macaque cranium digitally reconstructed with three different surface scanners and a microCT scanner. Nine researchers with varying degrees of osteological and geometric morphometric knowledge landmarked ten iterations of each scan (40 total) to test the effects of scan quality, researcher experience, and landmark type on levels of intra- and interobserver error. Two researchers additionally landmarked ten specimens from seven different macaque species using the same landmark protocol to test the effects of the previously listed variables relative to species-level morphological differences (i.e., observer variance versus real biological variance). Error rates within and among researchers by scan type were calculated to determine whether or not data collected by different individuals or on different digitally rendered crania are consistent enough to be used in a single dataset. Results indicate that scan type does not impact rate of intra- or interobserver error. Interobserver error is far greater than intraobserver error among all individuals, and is similar in variance to that found among different macaque species. Additionally, experience with osteology and morphometrics both positively contribute to precision in multiple landmarking sessions, even where less experienced researchers have been trained in point acquisition. Individual training increases precision (although not necessarily accuracy), and is highly recommended in any situation where multiple researchers will be collecting data for a single project. PMID:29099867
Characterizing Accuracy and Precision of Glucose Sensors and Meters
2014-01-01
There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when characterizing and comparing the precision and accuracy of glucose sensors and meters. PMID:25037194
NASA Astrophysics Data System (ADS)
Dash, Jatindra K.; Kale, Mandar; Mukhopadhyay, Sudipta; Khandelwal, Niranjan; Prabhakar, Nidhi; Garg, Mandeep; Kalra, Naveen
2017-03-01
In this paper, we investigate the effect of the error criteria used during a training phase of the artificial neural network (ANN) on the accuracy of the classifier for classification of lung tissues affected with Interstitial Lung Diseases (ILD). Mean square error (MSE) and the cross-entropy (CE) criteria are chosen being most popular choice in state-of-the-art implementations. The classification experiment performed on the six interstitial lung disease (ILD) patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Micronodules, Fibrosis and Healthy from MedGIFT database. The texture features from an arbitrary region of interest (AROI) are extracted using Gabor filter. Two different neural networks are trained with the scaled conjugate gradient back propagation algorithm with MSE and CE error criteria function respectively for weight updation. Performance is evaluated in terms of average accuracy of these classifiers using 4 fold cross-validation. Each network is trained for five times for each fold with randomly initialized weight vectors and accuracies are computed. Significant improvement in classification accuracy is observed when ANN is trained by using CE (67.27%) as error function compared to MSE (63.60%). Moreover, standard deviation of the classification accuracy for the network trained with CE (6.69) error criteria is found less as compared to network trained with MSE (10.32) criteria.
Non-linear dynamic compensation system
NASA Technical Reports Server (NTRS)
Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)
1992-01-01
A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.
Error mechanism analyses of an ultra-precision stage for high speed scan motion over a large stroke
NASA Astrophysics Data System (ADS)
Wang, Shaokai; Tan, Jiubin; Cui, Jiwen
2015-02-01
Reticle Stage (RS) is designed to complete scan motion with high speed in nanometer-scale over a large stroke. Comparing with the allowable scan accuracy of a few nanometers, errors caused by any internal or external disturbances are critical and must not be ignored. In this paper, RS is firstly introduced in aspects of mechanical structure, forms of motion, and controlling method. Based on that, mechanisms of disturbances transferred to final servo-related error in scan direction are analyzed, including feedforward error, coupling between the large stroke stage (LS) and the short stroke stage (SS), and movement of measurement reference. Especially, different forms of coupling between SS and LS are discussed in detail. After theoretical analysis above, the contributions of these disturbances to final error are simulated numerically. The residual positioning error caused by feedforward error in acceleration process is about 2 nm after settling time, the coupling between SS and LS about 2.19 nm, and the movements of MF about 0.6 nm.
Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis
NASA Astrophysics Data System (ADS)
Zolkos, S. G.; Goetz, S. J.; Dubayah, R.
2012-12-01
Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.
NASA Astrophysics Data System (ADS)
Avanesov, G. A.; Bessonov, R. V.; Kurkina, A. N.; Nikitin, A. V.; Sazonov, V. V.
2018-01-01
The BOKZ-M60 star sensor (Unit for Measuring Star Coordinates) is intended for determining the parameters of the orientation of the axes of the intrinsic coordinate system relative to the axes of the inertial system by observations of the regions of the stellar sky. It is convenient to characterize an error of the single determination of the orientation of the intrinsic coordinate system of the sensor by the vector of an infinitesimal turn of this system relative to its found position. Full-scale ground-based tests have shown that, for a resting sensor the root-mean-square values of the components of this vector along the axes of the intrinsic coordinate system lying in the plane of the sensor CCD matrix are less than 2″ and the component along the axis perpendicular to the matrix plane is characterized by the root-mean-square value of 15″. The joint processing of one-stage readings of several sensors installed on the same platform allows us to improve the indicated accuracy characteristics. In this paper, estimates of the accuracy of systems from BOKZ-M60 with two and four sensors performed from measurements carried out during the normal operation of these sensors on the Resurs-P satellite are given. Processing the measurements of the sensor system allowed us to increase the accuracy of determining the each of their orientations and to study random and systematic errors in these measurements.
Assessing primary care data quality.
Lim, Yvonne Mei Fong; Yusof, Maryati; Sivasampu, Sheamini
2018-04-16
Purpose The purpose of this paper is to assess National Medical Care Survey data quality. Design/methodology/approach Data completeness and representativeness were computed for all observations while other data quality measures were assessed using a 10 per cent sample from the National Medical Care Survey database; i.e., 12,569 primary care records from 189 public and private practices were included in the analysis. Findings Data field completion ranged from 69 to 100 per cent. Error rates for data transfer from paper to web-based application varied between 0.5 and 6.1 per cent. Error rates arising from diagnosis and clinical process coding were higher than medication coding. Data fields that involved free text entry were more prone to errors than those involving selection from menus. The authors found that completeness, accuracy, coding reliability and representativeness were generally good, while data timeliness needs to be improved. Research limitations/implications Only data entered into a web-based application were examined. Data omissions and errors in the original questionnaires were not covered. Practical implications Results from this study provided informative and practicable approaches to improve primary health care data completeness and accuracy especially in developing nations where resources are limited. Originality/value Primary care data quality studies in developing nations are limited. Understanding errors and missing data enables researchers and health service administrators to prevent quality-related problems in primary care data.
NASA Astrophysics Data System (ADS)
Lee, Minho; Cho, Nahm-Gyoo
2013-09-01
A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.
Design considerations for case series models with exposure onset measurement error.
Mohammed, Sandra M; Dalrymple, Lorien S; Sentürk, Damla; Nguyen, Danh V
2013-02-28
The case series model allows for estimation of the relative incidence of events, such as cardiovascular events, within a pre-specified time window after an exposure, such as an infection. The method requires only cases (individuals with events) and controls for all fixed/time-invariant confounders. The measurement error case series model extends the original case series model to handle imperfect data, where the timing of an infection (exposure) is not known precisely. In this work, we propose a method for power/sample size determination for the measurement error case series model. Extensive simulation studies are used to assess the accuracy of the proposed sample size formulas. We also examine the magnitude of the relative loss of power due to exposure onset measurement error, compared with the ideal situation where the time of exposure is measured precisely. To facilitate the design of case series studies, we provide publicly available web-based tools for determining power/sample size for both the measurement error case series model as well as the standard case series model. Copyright © 2012 John Wiley & Sons, Ltd.
Mnemonic strategies in older people: a comparison of errorless and errorful learning.
Kessels, Roy P C; de Haan, Edward H F
2003-09-01
To compare the efficacy of errorless and errorful learning on memory performance in older people and young adults. Face-name association learning was examined in 18 older people and 16 young controls. Subjects were either prompted to guess the correct name during the presentation of photographs of unknown faces (errorful learning) or were instructed to study the face without guessing (errorless learning). The correct name was given after the presentation of each face in both task conditions. Uncued testing followed immediately after the two study phases and after a 10-minute delay. Older subjects had an overall lower memory performance and flatter learning curves compared to the young adults, regardless of task conditions. Also, errorless learning resulted in a higher accuracy than errorful learning, to an equal amount in both groups. Older people have difficulty in the encoding stages of face-name association learning, whereas retrieval is relatively unaffected. In addition, the prevention of errors occurring during learning results in a better memory performance, and is perhaps an effective strategy for coping with age-related memory decrement.
Evaluating the accuracy and large inaccuracy of two continuous glucose monitoring systems.
Leelarathna, Lalantha; Nodale, Marianna; Allen, Janet M; Elleri, Daniela; Kumareswaran, Kavita; Haidar, Ahmad; Caldwell, Karen; Wilinska, Malgorzata E; Acerini, Carlo L; Evans, Mark L; Murphy, Helen R; Dunger, David B; Hovorka, Roman
2013-02-01
This study evaluated the accuracy and large inaccuracy of the Freestyle Navigator (FSN) (Abbott Diabetes Care, Alameda, CA) and Dexcom SEVEN PLUS (DSP) (Dexcom, Inc., San Diego, CA) continuous glucose monitoring (CGM) systems during closed-loop studies. Paired CGM and plasma glucose values (7,182 data pairs) were collected, every 15-60 min, from 32 adults (36.2±9.3 years) and 20 adolescents (15.3±1.5 years) with type 1 diabetes who participated in closed-loop studies. Levels 1, 2, and 3 of large sensor error with increasing severity were defined according to absolute relative deviation greater than or equal to ±40%, ±50%, and ±60% at a reference glucose level of ≥6 mmol/L or absolute deviation greater than or equal to ±2.4 mmol/L,±3.0 mmol/L, and ±3.6 mmol/L at a reference glucose level of <6 mmol/L. Median absolute relative deviation was 9.9% for FSN and 12.6% for DSP. Proportions of data points in Zones A and B of Clarke error grid analysis were similar (96.4% for FSN vs. 97.8% for DSP). Large sensor over-reading, which increases risk of insulin over-delivery and hypoglycemia, occurred two- to threefold more frequently with DSP than FSN (once every 2.5, 4.6, and 10.7 days of FSN use vs. 1.2, 2.0, and 3.7 days of DSP use for Level 1-3 errors, respectively). At levels 2 and 3, large sensor errors lasting 1 h or longer were absent with FSN but persisted with DSP. FSN and DSP differ substantially in the frequency and duration of large inaccuracy despite only modest differences in conventional measures of numerical and clinical accuracy. Further evaluations are required to confirm that FSN is more suitable for integration into closed-loop delivery systems.
Measuring Diagnoses: ICD Code Accuracy
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-01-01
Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999
Towards the 1 mm/y stability of the radial orbit error at regional scales
NASA Astrophysics Data System (ADS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2014-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS,SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Error analysis of mechanical system and wavelength calibration of monochromator
NASA Astrophysics Data System (ADS)
Zhang, Fudong; Chen, Chen; Liu, Jie; Wang, Zhihong
2018-02-01
This study focuses on improving the accuracy of a grating monochromator on the basis of the grating diffraction equation in combination with an analysis of the mechanical transmission relationship between the grating, the sine bar, and the screw of the scanning mechanism. First, the relationship between the mechanical error in the monochromator with the sine drive and the wavelength error is analyzed. Second, a mathematical model of the wavelength error and mechanical error is developed, and an accurate wavelength calibration method based on the sine bar's length adjustment and error compensation is proposed. Based on the mathematical model and calibration method, experiments using a standard light source with known spectral lines and a pre-adjusted sine bar length are conducted. The model parameter equations are solved, and subsequent parameter optimization simulations are performed to determine the optimal length ratio. Lastly, the length of the sine bar is adjusted. The experimental results indicate that the wavelength accuracy is ±0.3 nm, which is better than the original accuracy of ±2.6 nm. The results confirm the validity of the error analysis of the mechanical system of the monochromator as well as the validity of the calibration method.
High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu
2017-05-01
Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.
A new method for distortion magnetic field compensation of a geomagnetic vector measurement system
NASA Astrophysics Data System (ADS)
Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang
2016-12-01
The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.
Modeling of surface dust concentrations using neural networks and kriging
NASA Astrophysics Data System (ADS)
Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.
2016-12-01
Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.
Motion of particles with inertia in a compressible free shear layer
NASA Technical Reports Server (NTRS)
Samimy, M.; Lele, S. K.
1991-01-01
The effects of the inertia of a particle on its flow-tracking accuracy and particle dispersion are studied using direct numerical simulations of 2D compressible free shear layers in convective Mach number (Mc) range of 0.2 to 0.6. The results show that particle response is well characterized by tau, the ratio of particle response time to the flow time scales (Stokes' number). The slip between particle and fluid imposes a fundamental limit on the accuracy of optical measurements such as LDV and PIV. The error is found to grow like tau up to tau = 1 and taper off at higher tau. For tau = 0.2 the error is about 2 percent. In the flow visualizations based on Mie scattering, particles with tau more than 0.05 are found to grossly misrepresent the flow features. These errors are quantified by calculating the dispersion of particles relative to the fluid. Overall, the effect of compressibility does not seem to be significant on the motion of particles in the range of Mc considered here.
Limited Area Predictability: Is There A Limit To The Operational Usefulness of A Lam
NASA Astrophysics Data System (ADS)
Mesinger, F.
The issue of the limited area predictability in the context of the operational experience of the Eta Model, driven by the LBCs of the NCEP global spectral (Avn) model, is examined. The traditional view is that "the contamination at the lateral boundaries ... limits the operational usefulness of the LAM beyond some forecast time range". In the case of the Eta this contamination consists not only of the lower resolution of the Avn LBCs and the much discussed mathematical "lateral boundary error", but also of the use of the LBCs of the previous Avn run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. Looking for the signs of the Eta accuracy in relative terms falling behind that of the Avn we have examined the trend of the Eta vs Avn precipitation scores, the rms fits to raobs of the two models as a function of time, and the errors of these models at extended forecast times in placing the centers of major lows. In none of these efforts, some including forecasts out to 84 h, we were able to notice signs of the Eta accuracy being visibly affected by the inflow of the lateral boundary errors. It is therefore hypothesized that some of the Eta design features compensate for the increasing influence of the Avn LBC errors. Candidate features are discussed, with the eta coordinate being a contender to play a major role. This situation being possible for the pair of models discussed, existence of a general limit for the operational usefulness of a LAM seems questionable.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations
Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T
2016-10-01
Landfills are a significant contributor to anthropogenic methane emissions, but measuring these emissions can be challenging. This work uses numerical simulations to assess the accuracy of the tracer dilution method, which is used to estimate landfill emissions. Atmospheric dispersion simulations with the Weather Research and Forecast model (WRF) are run over Sandtown Landfill in Delaware, USA, using observation data to validate the meteorological model output. A steady landfill methane emissions rate is used in the model, and methane and tracer gas concentrations are collected along various transects downwind from the landfill for use in the tracer dilution method. The calculated methane emissions are compared to the methane emissions rate used in the model to find the percent error of the tracer dilution method for each simulation. The roles of different factors are examined: measurement distance from the landfill, transect angle relative to the wind direction, speed of the transect vehicle, tracer placement relative to the hot spot of methane emissions, complexity of topography, and wind direction. Results show that percent error generally decreases with distance from the landfill, where the tracer and methane plumes become well mixed. Tracer placement has the largest effect on percent error, and topography and wind direction both have significant effects, with measurement errors ranging from -12% to 42% over all simulations. Transect angle and transect speed have small to negligible effects on the accuracy of the tracer dilution method. These tracer dilution method simulations provide insight into measurement errors that might occur in the field, enhance understanding of the method's limitations, and aid interpretation of field data. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the accuracy of personality judgment: a realistic approach.
Funder, D C
1995-10-01
The "accuracy paradigm" for the study of personality judgment provides an important, new complement to the "error paradigm" that dominated this area of research for almost 2 decades. The present article introduces a specific approach within the accuracy paradigm called the Realistic Accuracy Model (RAM). RAM begins with the assumption that personality traits are real attributes of individuals. This assumption entails the use of a broad array of criteria for the evaluation of personality judgment and leads to a model that describes accuracy as a function of the availability, detection, and utilization of relevant behavioral cues. RAM provides a common explanation for basic moderators of accuracy, sheds light on how these moderators interact, and outlines a research agenda that includes the reintegration of the study of error with the study of accuracy.
The Accuracy of Eyelid Movement Parameters for Drowsiness Detection
Wilkinson, Vanessa E.; Jackson, Melinda L.; Westlake, Justine; Stevens, Bronwyn; Barnes, Maree; Swann, Philip; Rajaratnam, Shantha M. W.; Howard, Mark E.
2013-01-01
Study Objectives: Drowsiness is a major risk factor for motor vehicle and occupational accidents. Real-time objective indicators of drowsiness could potentially identify drowsy individuals with the goal of intervening before an accident occurs. Several ocular measures are promising objective indicators of drowsiness; however, there is a lack of studies evaluating their accuracy for detecting behavioral impairment due to drowsiness in real time. Methods: In this study, eye movement parameters were measured during vigilance tasks following restricted sleep and in a rested state (n = 33 participants) at three testing points (n = 71 data points) to compare ocular measures to a gold standard measure of drowsiness (OSLER). The utility of these parameters for detecting drowsiness-related errors was evaluated using receiver operating characteristic curves (ROC) (adjusted by clustering for participant) and identification of optimal cutoff levels for identifying frequent drowsiness-related errors (4 missed signals in a minute using OSLER). Their accuracy was tested for detecting increasing frequencies of behavioral lapses on a different task (psychomotor vigilance task [PVT]). Results: Ocular variables which measured the average duration of eyelid closure (inter-event duration [IED]) and the ratio of the amplitude to velocity of eyelid closure were reliable indicators of frequent errors (area under the curve for ROC of 0.73 to 0.83, p < 0.05). IED produced a sensitivity and specificity of 71% and 88% for detecting ≥ 3 lapses (PVT) in a minute and 100% and 86% for ≥ 5 lapses. A composite measure of several eye movement characteristics (Johns Drowsiness Scale) provided sensitivities of 77% and 100% for detecting 3 and ≥ 5 lapses in a minute, with specificities of 85% and 83%, respectively. Conclusions: Ocular measures, particularly those measuring the average duration of episodes of eye closure are promising real-time indicators of drowsiness. Citation: Wilkinson VE; Jackson ML; Westlake J; Stevens B; Barnes M; Swann P; Rajaratnam SMW; Howard ME. The accuracy of eyelid movement parameters for drowsiness detection. J Clin Sleep Med 2013;9(12):1315-1324. PMID:24340294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Cai, J
2016-06-15
Purpose: To develop a methodology based on digitally-reconstructed-fluoroscopy (DRF) to quantitatively assess target localization accuracy of lung SBRT, and to evaluate using both a dynamic digital phantom and a patient dataset. Methods: For each treatment field, a 10-phase DRF is generated based on the planning 4DCT. Each frame is pre-processed with a morphological top-hat filter, and corresponding beam apertures are projected to each detector plane. A template-matching algorithm based on cross-correlation is used to detect the tumor location in each frame. Tumor motion relative beam aperture is extracted in the superior-inferior direction based on each frame’s impulse response to themore » template, and the mean tumor position (MTP) is calculated as the average tumor displacement. The DRF template coordinates are then transferred to the corresponding MV-cine dataset, which is retrospectively filtered as above. The treatment MTP is calculated within each field’s projection space, relative to the DRF-defined template. The field’s localization error is defined as the difference between the DRF-derived-MTP (planning) and the MV-cine-derived-MTP (delivery). A dynamic digital phantom was used to assess the algorithm’s ability to detect intra-fractional changes in patient alignment, by simulating different spatial variations in the MV-cine and calculating the corresponding change in MTP. Inter-and-intra-fractional variation, IGRT accuracy, and filtering effects were investigated on a patient dataset. Results: Phantom results demonstrated a high accuracy in detecting both translational and rotational variation. The lowest localization error of the patient dataset was achieved at each fraction’s first field (mean=0.38mm), with Fx3 demonstrating a particularly strong correlation between intra-fractional motion-caused localization error and treatment progress. Filtering significantly improved tracking visibility in both the DRF and MV-cine images. Conclusion: We have developed and evaluated a methodology to quantify lung SBRT target localization accuracy based on digitally-reconstructed-fluoroscopy. Our approach may be useful in potentially reducing treatment margins to optimize lung SBRT outcomes. R01-184173.« less
Rettmann, Maryam E.; Holmes, David R.; Kwartowitz, David M.; Gunawan, Mia; Johnson, Susan B.; Camp, Jon J.; Cameron, Bruce M.; Dalegrave, Charles; Kolasa, Mark W.; Packer, Douglas L.; Robb, Richard A.
2014-01-01
Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy. PMID:24506630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.
2014-02-15
Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Datamore » from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy.« less
NASA Technical Reports Server (NTRS)
Tsaoussi, Lucia S.; Koblinsky, Chester J.
1994-01-01
In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.
Ripberger, Joseph T; Silva, Carol L; Jenkins-Smith, Hank C; Carlson, Deven E; James, Mark; Herron, Kerry G
2015-01-01
Theory and conventional wisdom suggest that errors undermine the credibility of tornado warning systems and thus decrease the probability that individuals will comply (i.e., engage in protective action) when future warnings are issued. Unfortunately, empirical research on the influence of warning system accuracy on public responses to tornado warnings is incomplete and inconclusive. This study adds to existing research by analyzing two sets of relationships. First, we assess the relationship between perceptions of accuracy, credibility, and warning response. Using data collected via a large regional survey, we find that trust in the National Weather Service (NWS; the agency responsible for issuing tornado warnings) increases the likelihood that an individual will opt for protective action when responding to a hypothetical warning. More importantly, we find that subjective perceptions of warning system accuracy are, as theory suggests, systematically related to trust in the NWS and (by extension) stated responses to future warnings. The second half of the study matches survey data against NWS warning and event archives to investigate a critical follow-up question--Why do some people perceive that their warning system is accurate, whereas others perceive that their system is error prone? We find that subjective perceptions are--in part-a function of objective experience, knowledge, and demographic characteristics. When considered in tandem, these findings support the proposition that errors influence perceptions about the accuracy of warning systems, which in turn impact the credibility that people assign to information provided by systems and, ultimately, public decisions about how to respond when warnings are issued. © 2014 Society for Risk Analysis.
Machine learning of molecular properties: Locality and active learning
NASA Astrophysics Data System (ADS)
Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.
2018-06-01
In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.
Evaluation of centroiding algorithm error for Nano-JASMINE
NASA Astrophysics Data System (ADS)
Hara, Takuji; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki
2014-08-01
The Nano-JASMINE mission has been designed to perform absolute astrometric measurements with unprecedented accuracy; the end-of-mission parallax standard error is required to be of the order of 3 milli arc seconds for stars brighter than 7.5 mag in the zw-band(0.6μm-1.0μm) .These requirements set a stringent constraint on the accuracy of the estimation of the location of the stellar image on the CCD for each observation. However each stellar images have individual shape depend on the spectral energy distribution of the star, the CCD properties, and the optics and its associated wave front errors. So it is necessity that the centroiding algorithm performs a high accuracy in any observables. Referring to the study of Gaia, we use LSF fitting method for centroiding algorithm, and investigate systematic error of the algorithm for Nano-JASMINE. Furthermore, we found to improve the algorithm by restricting sample LSF when we use a Principle Component Analysis. We show that centroiding algorithm error decrease after adapted the method.
Stack Number Influence on the Accuracy of Aster Gdem (V2)
NASA Astrophysics Data System (ADS)
Mirzadeh, S. M. J.; Alizadeh Naeini, A.; Fatemi, S. B.
2017-09-01
In this research, the influence of stack number (STKN) on the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) has been investigated. For this purpose, two data sets of ASTER and Reference DEMs from two study areas with various topography (Bomehen and Tazehabad) were used. The Results show that in both study areas, STKN of 19 results in minimum error so that this minimum error has small difference with other STKN. The analysis of slope, STKN, and error values shows that there is no strong correlation between these parameters in both study areas. For example, the value of mean absolute error increase by changing the topography and the increase of slope values and height on cells but, the changes in STKN has no important effect on error values. Furthermore, according to high values of STKN, effect of slope on elevation accuracy has practically decreased. Also, there is no great correlation between the residual and STKN in ASTER GDEM.
Using incident reports to inform the prevention of medication administration errors.
Härkänen, Marja; Saano, Susanna; Vehviläinen-Julkunen, Katri
2017-11-01
To describe ways of preventing medication administration errors based on reporters' views expressed in medication administration incident reports. Medication administration errors are very common, and nurses play important roles in committing and in preventing such errors. Thus far, incident reporters' perceptions of how to prevent medication administration errors have rarely been analysed. This is a qualitative, descriptive study using an inductive content analysis of the incident reports related to medication administration errors (n = 1012). These free-text descriptions include reporters' views on preventing the reoccurrence of medication administration errors. The data were collected from two hospitals in Finland and pertain to incidents that were reported between 1 January 2013 and 31 December 2014. Reporters' views on preventing medication administration errors were divided into three main categories related to individuals (health professionals), teams and organisations. The following categories related to individuals in preventing medication administration errors were identified: (1) accuracy and preciseness; (2) verification; and (3) following the guidelines, responsibility and attitude towards work. The team categories were as follows: (1) distribution of work; (2) flow of information and cooperation; and (3) documenting and marking the drug information. The categories related to organisation were as follows: (1) work environment; (2) resources; (3) training; (4) guidelines; and (5) development of the work. Health professionals should administer medication with a high moral awareness and an attempt to concentrate on the task. Nonetheless, the system should support health professionals by providing a reasonable work environment and encouraging collaboration among the providers to facilitate the safe administration of medication. Although there are numerous approaches to supporting medication safety, approaches that support the ability of individual health professionals to manage daily medications should be prioritised. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Grábner, Martin; Puričer, Pavel; Vejražka, František; Míchal, Jan; Popp, Jakub
2017-05-01
Nowadays, there exist relatively precise pHEMT models available for computer-aided design, and they are frequently compared to each other. However, such comparisons are mostly based on absolute errors of drain-current equations and their derivatives. In the paper, a novel method is suggested based on relative root-mean-square errors of both drain current and its derivatives up to the third order. Moreover, the relative errors are subsequently relativized to the best model in each category to further clarify obtained accuracies of both drain current and its derivatives. Furthermore, one our older and two newly suggested models are also included in comparison with the traditionally precise Ahmed, TOM-2 and Materka ones. The assessment is performed using measured characteristics of a pHEMT operating up to 110 GHz. Finally, a usability of the proposed models including the higher-order derivatives is illustrated using s-parameters analysis and measurement at more operating points as well as computation and measurement of IP3 points of a low-noise amplifier of a multi-constellation satellite navigation receiver with ATF-54143 pHEMT.
NASA Astrophysics Data System (ADS)
Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang
2018-01-01
This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.
The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1981-01-01
Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.
Assessing and Ensuring GOES-R Magnetometer Accuracy
NASA Technical Reports Server (NTRS)
Carter, Delano R.; Todirita, Monica; Kronenwetter, Jeffrey; Chu, Donald
2016-01-01
The GOES-R magnetometer subsystem accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. Error comes both from outside the magnetometers, e.g. spacecraft fields and misalignments, as well as inside, e.g. zero offset and scale factor errors. Because zero offset and scale factor drift over time, it will be necessary to perform annual calibration maneuvers. To predict performance before launch, we have used Monte Carlo simulations and covariance analysis. Both behave as expected, and their accuracy predictions agree within 30%. With the proposed calibration regimen, both suggest that the GOES-R magnetometer subsystem will meet its accuracy requirements.
NASA Astrophysics Data System (ADS)
Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto
2014-11-01
Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.
Navigation Accuracy Guidelines for Orbital Formation Flying
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Alfriend, Kyle T.
2004-01-01
Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.
Navigation Accuracy Guidelines for Orbital Formation Flying Missions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Alfriend, Kyle T.
2003-01-01
Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Armstrong, John
2004-01-01
Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.
Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.
Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D
2009-01-01
Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.
Numerical optimization in Hilbert space using inexact function and gradient evaluations
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.
A high accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer
NASA Astrophysics Data System (ADS)
Liu, Sheng-Wu; Zhang, Zhao-Nian; Hung, James C.
The authors present a magnetic heading system consisting of two fluxgate magnetometers and a single-chip microcomputer. The system, when compared to gyro compasses, is smaller in size, lighter in weight, simpler in construction, quicker in reaction time, free from drift, and more reliable. Using a microcomputer in the system, heading error due to compass deviation, sensor offsets, scale factor uncertainty, and sensor tilts can be compensated with the help of an error model. The laboratory test of a typical system showed that the accuracy of the system was improved from more than 8 deg error without error compensation to less than 0.3 deg error with compensation.
In Search of Grid Converged Solutions
NASA Technical Reports Server (NTRS)
Lockard, David P.
2010-01-01
Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.
Investigating error structure of shuttle radar topography mission elevation data product
NASA Astrophysics Data System (ADS)
Becek, Kazimierz
2008-08-01
An attempt was made to experimentally assess the instrumental component of error of the C-band SRTM (SRTM). This was achieved by comparing elevation data of 302 runways from airports all over the world with the shuttle radar topography mission data product (SRTM). It was found that the rms of the instrumental error is about +/-1.55 m. Modeling of the remaining SRTM error sources, including terrain relief and pixel size, shows that downsampling from 30 m to 90 m (1 to 3 arc-sec pixels) worsened SRTM vertical accuracy threefold. It is suspected that the proximity of large metallic objects is a source of large SRTM errors. The achieved error estimates allow a pixel-based accuracy assessment of the SRTM elevation data product to be constructed. Vegetation-induced errors were not considered in this work.
Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C
2018-06-01
Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chen, Yuanpei; Wang, Lingcao; Li, Kui
2017-10-01
Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.
Thermal error analysis and compensation for digital image/volume correlation
NASA Astrophysics Data System (ADS)
Pan, Bing
2018-02-01
Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.
Volsky, Peter G; Baldassari, Cristina M; Mushti, Sirisha; Derkay, Craig S
2012-09-01
Patients commonly refer to Internet health-related information. To date, no quantitative comparison of the accuracy and readability of common diagnoses in Pediatric Otolaryngology exist. (1) identify the three most frequently referenced Internet sources; (2) compare the content accuracy and (3) ascertain user-friendliness of each site; (4) inform practitioners and patients of the quality of available information. Twenty-four diagnoses in pediatric otolaryngology were entered in Google and the top five URLs for each were ranked. Articles were accessed for each topic in the three most frequently referenced sites. Standard rubrics were developed to include proprietary scores for content, errors, navigability, and validated metrics of readability. Wikipedia, eMedicine, and NLM/NIH MedlinePlus were the most referenced sources. For content accuracy, eMedicine scored highest (84%; p<0.05) over MedlinePlus (49%) and Wikipedia (46%). The highest incidence of errors and omissions per article was found in Wikipedia (0.98±0.19), twice more than eMedicine (0.42±0.19; p<0.05). Errors were similar between MedlinePlus and both eMedicine and Wikipedia. On ratings for user interface, which incorporated Flesch-Kinkaid Reading Level and Flesch Reading Ease, MedlinePlus was the most user-friendly (4.3±0.29). This was nearly twice that of eMedicine (2.4±0.26) and slightly greater than Wikipedia (3.7±0.3). All differences were significant (p<0.05). There were 7 topics for which articles were not available on MedlinePlus. Knowledge of the quality of available information on the Internet improves pediatric otolaryngologists' ability to counsel parents. The top web search results for pediatric otolaryngology diagnoses are Wikipedia, MedlinePlus, and eMedicine. Online information varies in quality, with a 46-84% concordance with current textbooks. eMedicine has the most accurate, comprehensive content and fewest errors, but is more challenging to read and navigate. Both Wikipedia and MedlinePlus have lower content accuracy and more errors, however MedlinePlus is simplest of all to read, at a 9th Grade level. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.
Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G
2013-11-04
Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Wang, Jui-Kai; Jong, Tai-Lang; Tiu, Chui-Mei
2011-08-01
The Tanner-Whitehouse III (TW3) method is popular for assessing children's bone age, but it is time-consuming in clinical settings; to simplify this, a grouped-TW algorithm (GTA) was developed. A total of 534 left-hand roentgenograms of subjects aged 2-15 years, including 270 training and 264 testing datasets, were evaluated by a senior pediatrician. Next, GTA was used to choose the appropriate candidate of radius, ulna, and short bones and to classify the bones into three groups by data mining. Group 1 was composed of the maturity pattern of the radius and the middle phalange of the third and fifth digits and three weights were obtained by data mining, yielding a result similar to that of TW3. Subsequently, new bone-age assessment tables were constructed for boys and girls by linear regression and fuzzy logic. In addition, the Bland-Altman plot was utilized to compare accuracy between the GTA, the Greulich-Pyle (GP), and the TW3 method. The relative accuracy between the GTA and the TW3 was 96.2% in boys and 95% in girls, with an error of 1 year, while that between the assessment results of the GP and TW3 was about 87%, with an error of 1 year. However, even if the three weights were not optimally processed, GTA yielded a marginal result with an accuracy of 78.2% in boys and 79.6% in girls. GTA can efficiently simplify the complexity of the TW3 method, while maintaining almost the same accuracy. The relative accuracy between the assessment results of GTA and GP can also be marginal. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.
GNSS Clock Error Impacts on Radio Occultation Retrievals
NASA Astrophysics Data System (ADS)
Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke
2017-04-01
We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.
The predicted CLARREO sampling error of the inter-annual SW variability
NASA Astrophysics Data System (ADS)
Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.
2009-12-01
The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.
Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan
2015-06-01
Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.
Application of linear regression analysis in accuracy assessment of rolling force calculations
NASA Astrophysics Data System (ADS)
Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.
1998-10-01
Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.
Measures of Linguistic Accuracy in Second Language Writing Research.
ERIC Educational Resources Information Center
Polio, Charlene G.
1997-01-01
Investigates the reliability of measures of linguistic accuracy in second language writing. The study uses a holistic scale, error-free T-units, and an error classification system on the essays of English-as-a-Second-Language students and discusses why disagreements arise within a rater and between raters. (24 references) (Author/CK)
The effect of clock, media, and station location errors on Doppler measurement accuracy
NASA Technical Reports Server (NTRS)
Miller, J. K.
1993-01-01
Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.
Morphological Awareness and Children's Writing: Accuracy, Error, and Invention
McCutchen, Deborah; Stull, Sara
2014-01-01
This study examined the relationship between children's morphological awareness and their ability to produce accurate morphological derivations in writing. Fifth-grade U.S. students (n = 175) completed two writing tasks that invited or required morphological manipulation of words. We examined both accuracy and error, specifically errors in spelling and errors of the sort we termed morphological inventions, which entailed inappropriate, novel pairings of stems and suffixes. Regressions were used to determine the relationship between morphological awareness, morphological accuracy, and spelling accuracy, as well as between morphological awareness and morphological inventions. Linear regressions revealed that morphological awareness uniquely predicted children's generation of accurate morphological derivations, regardless of whether or not accurate spelling was required. A logistic regression indicated that morphological awareness was also uniquely predictive of morphological invention, with higher morphological awareness increasing the probability of morphological invention. These findings suggest that morphological knowledge may not only assist children with spelling during writing, but may also assist with word production via generative experimentation with morphological rules during sentence generation. Implications are discussed for the development of children's morphological knowledge and relationships with writing. PMID:25663748
NASA Astrophysics Data System (ADS)
Krynski, Jan; Zak, Lukasz; Ziolkowski, Dariusz; Cisak, Jan; Lagiewska, Magdalena
2017-06-01
Time series of weekly and daily solutions for coordinates of permanent GNSS stations may indicate local deformations in Earth's crust or local seasonal changes in the atmosphere and hydrosphere. The errors of the determined changes are relatively large, frequently at the level of the signal. Satellite radar interferometry and especially Persistent Scatterer Interferometry (PSI) is a method of a very high accuracy. Its weakness is a relative nature of measurements as well as accumulation of errors which may occur in the case of PSI processing of large areas. It is thus beneficial to confront the results of PSI measurements with those from other techniques, such as GNSS and precise levelling. PSI and GNSS results were jointly processed recreating the history of surface deformation of the area of Warsaw metropolitan with the use of radar images from Envisat and Cosmo-SkyMed satellites. GNSS data from Borowa Gora and Jozefoslaw observatories as well as from WAT1 and CBKA permanent GNSS stations were used to validate the obtained results. Observations from 2000-2015 were processed with the Bernese v.5.0 software. Relative height changes between the GNSS stations were determined from GNSS data and relative height changes between the persistent scatterers located on the objects with GNSS stations were determined from the interferometric results. The consistency of results of the two methods was 3 to 4 times better than the theoretical accuracy of each. The joint use of both methods allows to extract a very small height change below the level of measurement error.
NASA Astrophysics Data System (ADS)
Kauweloa, Kevin Ikaika
The approximate BED (BEDA) is calculated for multi-phase cases due to current treatment planning systems (TPSs) being incapable of performing BED calculations. There has been no study on the mathematical accuracy and precision of BEDA relative to the true BED (BEDT), and how that might negatively impact patient care. The purpose of the first aim was to study the mathematical accuracy and precision in both hypothetical and clinical situations, while the next two aims were to create multi-phase BED optimization ideas for both multi-target liver stereotactic body radiation therapy (SBRT) cases, and gynecological cases where patients are treated with high-dose rate (HDR) brachytherapy along with external beam radiotherapy (EBRT). MATLAB algorithms created for this work were used to mathematically analyze the accuracy and precision of BEDA relative to BEDT in both hypothetical and clinical situations on a 3D basis. The organs-at-risk (OARs) of ten head & neck and ten prostate cancer patients were studied for the clinical situations. The accuracy of BEDA was shown to vary between OARs as well as between patients. The percentage of patients with an overall BEDA percent error less than 1% were, 50% for the Optic Chiasm and Brainstem, 70% for the Left and Right Optic Nerves, as well as the Rectum and Bladder, and 80% for the Normal Brain and Spinal Cord. As seen for each OAR among different patients, there were always cases where the percent error was greater than 1%. This is a cause for concern since the goal of radiation therapy is to reduce the overall uncertainty of treatment, and calculating BEDA distributions increases the treatment uncertainty with percent errors greater than 1%. The revealed inaccuracy and imprecision of BEDA supports the argument to use BEDT. The multi-target liver study involved applying BEDT in order to reduce the number of dose limits to one rather than have one for each fractionation scheme in multi-target liver SBRT treatments. A BEDT limit was found using the current, clinically accepted dose limits, allowing the BEDT distributions to be calculated, which could be used to determine whether at least 700 cc of the healthy liver did not receive the BEDT limit. Three previously multi-target liver cancer patients were studied. For each case, it was shown that the conventional treatment plans were relatively conservative and that more than 700 cc of the healthy liver received less than the BED T limit. These results show that greater doses can be delivered to the targets without exceeding the BEDT limit to the healthy tissue, which typically causes radiation toxicity. When applying BEDT to gynecological cases, the BEDT can reveal the relative effect each treatment would have individually hence the cumulative BEDT would better inform the physician of the potential results with the patient's treatment. The problem presented for these cases, however, is the method in summing dose distributions together when there is significant motion between treatments and the presence of applicators for the HDR phase. One way to calculate the cumulative BEDT is to use structure guided deformable image registration (SG-DIR) that only focuses on the anatomical contours, to avoid errors introduced by the applicators. Eighteen gynecological patients were studied and VelocityAI was used to perform this SG- DIR. In addition, formalism was developed to assess and characterize the remnant dose-mapping error from this approach, from the shortest distance between contour points (SDBP). The results revealed that warping errors rendered relatively large normal tissue complication probability (NTCP) values which are certainly non negligible and does render this method not clinically viable. However, a more accurate SG-DIR algorithm could improve the accuracy of BEDT distributions in these multi-phase cases.
Improving the accuracy of Møller-Plesset perturbation theory with neural networks
NASA Astrophysics Data System (ADS)
McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.
2017-10-01
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.
Improving the accuracy of Møller-Plesset perturbation theory with neural networks.
McGibbon, Robert T; Taube, Andrew G; Donchev, Alexander G; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L; Shaw, David E
2017-10-28
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol -1 (root-mean-square error 0.09 kcal mol -1 ), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung
2013-03-15
Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was considered accurate for measuring 3D intervertebral kinematics during various functional activities for research and clinical applications.« less
Done, Terence; Roelfsema, Chris; Harvey, Andrew; Schuller, Laura; Hill, Jocelyn; Schläppy, Marie-Lise; Lea, Alexandra; Bauer-Civiello, Anne; Loder, Jennifer
2017-04-15
Reef Check Australia (RCA) has collected data on benthic composition and cover at >70 sites along >1000km of Australia's Queensland coast from 2002 to 2015. This paper quantifies the accuracy, precision and power of RCA benthic composition data, to guide its application and interpretation. A simulation study established that the inherent accuracy of the Reef Check point sampling protocol is high (<±7% error absolute), in the range of estimates of benthic cover from 1% to 50%. A field study at three reef sites indicated that, despite minor observer- and deployment-related biases, the protocol does reliably document moderate ecological changes in coral communities. The error analyses were then used to guide the interpretation of inter-annual variability and long term trends at three study sites in RCA's major 2002-2015 data series for the Queensland coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cannella, Marco; Sciuto, Salvatore Andrea
2001-04-01
An evaluation of errors for a method for determination of trajectories and velocities of supersonic objects is conducted. The analytical study of a cluster, composed of three pressure transducers and generally used as an apparatus for cinematic determination of parameters of supersonic objects, is developed. Furthermore, detailed investigation into the accuracy of this cluster on determination of the slope of an incoming shock wave is carried out for optimization of the device. In particular, a specific non-dimensional parameter is proposed in order to evaluate accuracies for various values of parameters and reference graphs are provided in order to properly design the sensor cluster. Finally, on the basis of the error analysis conducted, a discussion on the best estimation of the relative distance for the sensor as a function of temporal resolution of the measuring system is presented.
Application of Intra-Oral Dental Scanners in the Digital Workflow of Implantology
van der Meer, Wicher J.; Andriessen, Frank S.; Wismeijer, Daniel; Ren, Yijin
2012-01-01
Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona), the iTero (Cadent) and the Lava COS (3M). In software the digital files were imported and the distance between the centres of the cylinders and the angulation between the cylinders was assessed. These values were compared to the measurements made on a high accuracy 3D scan of the master model. Results: The distance errors were the smallest and most consistent for the Lava COS. The distance errors for the Cerec were the largest and least consistent. All the angulation errors were small. Conclusions: The Lava COS in combination with a high accuracy scanning protocol resulted in the smallest and most consistent errors of all three scanners tested when considering mean distance errors in full arch impressions both in absolute values and in consistency for both measured distances. For the mean angulation errors, the Lava COS had the smallest errors between cylinders 1–2 and the largest errors between cylinders 1–3, although the absolute difference with the smallest mean value (iTero) was very small (0,0529°). An expected increase in distance and/or angular errors over the length of the arch due to an accumulation of registration errors of the patched 3D surfaces could be observed in this study design, but the effects were statistically not significant. Clinical relevance For making impressions of implant cases for digital workflows, the most accurate scanner with the scanning protocol that will ensure the most accurate digital impression should be used. In our study model that was the Lava COS with the high accuracy scanning protocol. PMID:22937030
The accuracy of eyelid movement parameters for drowsiness detection.
Wilkinson, Vanessa E; Jackson, Melinda L; Westlake, Justine; Stevens, Bronwyn; Barnes, Maree; Swann, Philip; Rajaratnam, Shantha M W; Howard, Mark E
2013-12-15
Drowsiness is a major risk factor for motor vehicle and occupational accidents. Real-time objective indicators of drowsiness could potentially identify drowsy individuals with the goal of intervening before an accident occurs. Several ocular measures are promising objective indicators of drowsiness; however, there is a lack of studies evaluating their accuracy for detecting behavioral impairment due to drowsiness in real time. In this study, eye movement parameters were measured during vigilance tasks following restricted sleep and in a rested state (n = 33 participants) at three testing points (n = 71 data points) to compare ocular measures to a gold standard measure of drowsiness (OSLER). The utility of these parameters for detecting drowsiness-related errors was evaluated using receiver operating characteristic curves (ROC) (adjusted by clustering for participant) and identification of optimal cutoff levels for identifying frequent drowsiness-related errors (4 missed signals in a minute using OSLER). Their accuracy was tested for detecting increasing frequencies of behavioral lapses on a different task (psychomotor vigilance task [PVT]). Ocular variables which measured the average duration of eyelid closure (inter-event duration [IED]) and the ratio of the amplitude to velocity of eyelid closure were reliable indicators of frequent errors (area under the curve for ROC of 0.73 to 0.83, p < 0.05). IED produced a sensitivity and specificity of 71% and 88% for detecting ≥ 3 lapses (PVT) in a minute and 100% and 86% for ≥ 5 lapses. A composite measure of several eye movement characteristics (Johns Drowsiness Scale) provided sensitivities of 77% and 100% for detecting 3 and ≥ 5 lapses in a minute, with specificities of 85% and 83%, respectively. Ocular measures, particularly those measuring the average duration of episodes of eye closure are promising real-time indicators of drowsiness.
SSC Geopositional Assessment of the Advanced Wide Field Sensor
NASA Technical Reports Server (NTRS)
Ross, Kenton
2006-01-01
The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.
NASA Astrophysics Data System (ADS)
Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.
Understanding error generation in fused deposition modeling
NASA Astrophysics Data System (ADS)
Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David
2015-03-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.
Hellier, Elizabeth; Tucker, Mike; Kenny, Natalie; Rowntree, Anna; Edworthy, Judy
2010-09-01
This study aimed to examine the utility of using color and shape to differentiate drug strength information on over-the-counter medicine packages. Medication errors are an important threat to patient safety, and confusions between drug strengths are a significant source of medication error. A visual search paradigm required laypeople to search for medicine packages of a particular strength from among distracter packages of different strengths, and measures of reaction time and error were recorded. Using color to differentiate drug strength information conferred an advantage on search times and accuracy. Shape differentiation did not improve search times and had only a weak effect on search accuracy. Using color to differentiate drug strength information improves drug strength identification performance. Color differentiation of drug strength information may be a useful way of reducing medication errors and improving patient safety.
The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...
The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...
Municipal water consumption forecast accuracy
NASA Astrophysics Data System (ADS)
Fullerton, Thomas M.; Molina, Angel L.
2010-06-01
Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.
NASA Astrophysics Data System (ADS)
Dolloff, John; Hottel, Bryant; Edwards, David; Theiss, Henry; Braun, Aaron
2017-05-01
This paper presents an overview of the Full Motion Video-Geopositioning Test Bed (FMV-GTB) developed to investigate algorithm performance and issues related to the registration of motion imagery and subsequent extraction of feature locations along with predicted accuracy. A case study is included corresponding to a video taken from a quadcopter. Registration of the corresponding video frames is performed without the benefit of a priori sensor attitude (pointing) information. In particular, tie points are automatically measured between adjacent frames using standard optical flow matching techniques from computer vision, an a priori estimate of sensor attitude is then computed based on supplied GPS sensor positions contained in the video metadata and a photogrammetric/search-based structure from motion algorithm, and then a Weighted Least Squares adjustment of all a priori metadata across the frames is performed. Extraction of absolute 3D feature locations, including their predicted accuracy based on the principles of rigorous error propagation, is then performed using a subset of the registered frames. Results are compared to known locations (check points) over a test site. Throughout this entire process, no external control information (e.g. surveyed points) is used other than for evaluation of solution errors and corresponding accuracy.
NASA Technical Reports Server (NTRS)
Jekeli, C.; Rapp, R. H.
1980-01-01
Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.
Sadybekov, Arman; Krylov, Anna I.
2017-07-07
A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less
Arroz, Erin; Jordan, Michael; Dumancas, Gerard G
2017-07-01
An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadybekov, Arman; Krylov, Anna I.
A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less
Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies
Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.
2017-01-01
Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.
Sauer, James; Hope, Lorraine
2016-09-01
Eyewitnesses regulate the level of detail (grain size) reported to balance competing demands for informativeness and accuracy. However, research to date has predominantly examined metacognitive monitoring for semantic memory tasks, and used relatively artificial phased reporting procedures. Further, although the established role of confidence in this regulation process may affect the confidence-accuracy relation for volunteered responses in predictable ways, previous investigations of the confidence-accuracy relation for eyewitness recall have largely overlooked the regulation of response granularity. Using a non-phased paradigm, Experiment 1 compared reporting and monitoring following optimal and sub-optimal (divided attention) encoding conditions. Participants showed evidence of sacrificing accuracy for informativeness, even when memory quality was relatively weak. Participants in the divided (cf. full) attention condition showed reduced accuracy for fine- but not coarse-grained responses. However, indices of discrimination and confidence diagnosticity showed no effect of divided attention. Experiment 2 compared the effects of divided attention at encoding on reporting and monitoring using both non-phased and 2-phase procedures. Divided attention effects were consistent with Experiment 1. However, compared to those in the non-phased condition, participants in the 2-phase condition displayed a more conservative control strategy, and confidence ratings were less diagnostic of accuracy. When memory quality was reduced, although attempts to balance informativeness and accuracy increased the chance of fine-grained response errors, confidence provided an index of the likely accuracy of volunteered fine-grained responses for both condition. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.
1998-01-01
Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.
NASA Astrophysics Data System (ADS)
Wiese, D. N.; McCullough, C. M.
2017-12-01
Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.
2015-01-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604
Ground state properties of 3d metals from self-consistent GW approach
Kutepov, Andrey L.
2017-10-06
The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less
Ground state properties of 3d metals from self-consistent GW approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutepov, Andrey L.
The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less
Wu, Mixia; Zhang, Dianchen; Liu, Aiyi
2016-01-01
New biomarkers continue to be developed for the purpose of diagnosis, and their diagnostic performances are typically compared with an existing reference biomarker used for the same purpose. Considerable amounts of research have focused on receiver operating characteristic curves analysis when the reference biomarker is dichotomous. In the situation where the reference biomarker is measured on a continuous scale and dichotomization is not practically appealing, an index was proposed in the literature to measure the accuracy of a continuous biomarker, which is essentially a linear function of the popular Kendall's tau. We consider the issue of estimating such an accuracy index when the continuous reference biomarker is measured with errors. We first investigate the impact of measurement errors on the accuracy index, and then propose methods to correct for the bias due to measurement errors. Simulation results show the effectiveness of the proposed estimator in reducing biases. The methods are exemplified with hemoglobin A1c measurements obtained from both the central lab and a local lab to evaluate the accuracy of the mean data obtained from the metered blood glucose monitoring against the centrally measured hemoglobin A1c from a behavioral intervention study for families of youth with type 1 diabetes.
Processing techniques development, volume 3
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Anuta, P. E.; Hixson, M. M.; Swain, P. H.
1978-01-01
The author has identified the following significant results. Analysis of the geometric characteristics of the aircraft synthetic aperture radar (SAR) relative to LANDSAT indicated that relatively low order polynominals would model the distortions to subpixel accuracy to bring SAR into registration for good quality imagery. Also the area analyzed was small, about 10 miles square, so this is an additional constraint. For the Air Force/ERIM data, none of the tested methods could achieve subpixel accuracy. Reasons for this is unknown; however, the noisy (high scintillation) nature of the data and attendent unrecognizability of features contribute to this error. It is concluded that the quadratic model would adequately provide distortion modeling for small areas, i.e., 10 to 20 miles square.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
Approaches to reducing photon dose calculation errors near metal implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jessie Y.; Followill, David S.; Howell, Reb
Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less
Yang, Jie; Liu, Qingquan; Dai, Wei
2017-02-01
To improve the air temperature observation accuracy, a low measurement error temperature sensor is proposed. A computational fluid dynamics (CFD) method is implemented to obtain temperature errors under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using a genetic algorithm method. The low measurement error temperature sensor, a naturally ventilated radiation shield, a thermometer screen, and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean temperature errors of the naturally ventilated radiation shield and the thermometer screen are 0.74 °C and 0.37 °C, respectively. In contrast, the mean temperature error of the low measurement error temperature sensor is 0.11 °C. The mean absolute error and the root mean square error between the corrected results and the measured results are 0.008 °C and 0.01 °C, respectively. The correction equation allows the temperature error of the low measurement error temperature sensor to be reduced by approximately 93.8%. The low measurement error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature result.
Aronis, Konstantinos N.; Ashikaga, Hiroshi
2018-01-01
Background Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9–11 mm) inter-electrode distance (IED) of the multi-electrode basket catheter. Methods and results We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2–30 mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED = 1 mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10 mm, the error is 3.8 mm (phase singularity), 3.7 mm (dominant frequency), and 11.8 mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10 mm ranges from 30.0 mm (two rotors) to 96.1 mm (five rotors). Conclusions The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. PMID:28988690
Aronis, Konstantinos N; Ashikaga, Hiroshi
Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9-11mm) inter-electrode distance (IED) of the multi-electrode basket catheter. We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2-30mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED=1mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10mm, the error is 3.8mm (phase singularity), 3.7mm (dominant frequency), and 11.8mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10mm ranges from 30.0mm (two rotors) to 96.1mm (five rotors). The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. Copyright © 2017 Elsevier Inc. All rights reserved.
A fast RCS accuracy assessment method for passive radar calibrators
NASA Astrophysics Data System (ADS)
Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI
2016-10-01
In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.
Design, implementation and accuracy of a prototype for medical augmented reality.
Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg
2005-01-01
This paper is focused on prototype development and accuracy evaluation of a medical Augmented Reality (AR) system. The accuracy of such a system is of critical importance for medical use, and is hence considered in detail. We analyze the individual error contributions and the system accuracy of the prototype. A passive articulated arm is used to track a calibrated end-effector-mounted video camera. The live video view is superimposed in real time with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. The AR accuracy mostly depends on the accuracy of the tracking technology, the registration procedure, the camera calibration, and the image scanning device (e.g., a CT or MRI scanner). The accuracy of the Microscribe arm was measured to be 0.87 mm. After mounting the camera on the tracking device, the AR accuracy was measured to be 2.74 mm on average (standard deviation = 0.81 mm). After using data from a 2-mm-thick CT scan, the AR error remained essentially the same at an average of 2.75 mm (standard deviation = 1.19 mm). For neurosurgery, the acceptable error is approximately 2-3 mm, and our prototype approaches these accuracy requirements. The accuracy could be increased with a higher-fidelity tracking system and improved calibration and object registration. The design and methods of this prototype device can be extrapolated to current medical robotics (due to the kinematic similarity) and neuronavigation systems.
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Gu, Xuejun
2013-10-15
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less
Evaluation of the 3dMDface system as a tool for soft tissue analysis.
Hong, C; Choi, K; Kachroo, Y; Kwon, T; Nguyen, A; McComb, R; Moon, W
2017-06-01
To evaluate the accuracy of three-dimensional stereophotogrammetry by comparing values obtained from direct anthropometry and the 3dMDface system. To achieve a more comprehensive evaluation of the reliability of 3dMD, both linear and surface measurements were examined. UCLA Section of Orthodontics. Mannequin head as model for anthropometric measurements. Image acquisition and analysis were carried out on a mannequin head using 16 anthropometric landmarks and 21 measured parameters for linear and surface distances. 3D images using 3dMDface system were made at 0, 1 and 24 hours; 1, 2, 3 and 4 weeks. Error magnitude statistics used include mean absolute difference, standard deviation of error, relative error magnitude and root mean square error. Intra-observer agreement for all measurements was attained. Overall mean errors were lower than 1.00 mm for both linear and surface parameter measurements, except in 5 of the 21 measurements. The three longest parameter distances showed increased variation compared to shorter distances. No systematic errors were observed for all performed paired t tests (P<.05). Agreement values between two observers ranged from 0.91 to 0.99. Measurements on a mannequin confirmed the accuracy of all landmarks and parameters analysed in this study using the 3dMDface system. Results indicated that 3dMDface system is an accurate tool for linear and surface measurements, with potentially broad-reaching applications in orthodontics, surgical treatment planning and treatment evaluation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effect of timing errors in optical digital systems.
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.
1972-01-01
The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.
A fast radiative transfer method for the simulation of visible satellite imagery
NASA Astrophysics Data System (ADS)
Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard
2016-05-01
A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.
van Schie, Mojca K M; Alblas, Eva E; Thijs, Roland D; Fronczek, Rolf; Lammers, Gert Jan; van Dijk, J Gert
2014-01-01
The Sustained Attention to Response Task (SART) helps to quantify vigilance impairments.Previous studies, in which five SART sessions on one day were administered, demonstrated worse performance during the first session than during the others. The present study comprises two experiments to identify a cause of this phenomenon. Experiment 1, counting eighty healthy participants, assessed effects of repetition,napping, and time of day on SART performance through a between-groups design. The SART was performed twice in the morning or twice in the afternoon; half of the participants took a 20-minute nap before the second SART. A strong correlation between error count and reaction time (RT) suggested effects of test instruction. Participants gave equal weight to speed and accuracy in Experiment 1; therefore, results of 20 participants were compared to those of 20 additional participants who were told to prefer accuracy (Experiment 2). The average SART error count in Experiment 1 was 10.1; the median RT was 280 ms. Neither repetition nor napping influenced error count or RT. Time of day did not influence error count, but RT was significantly longer for morning than for afternoon SARTs. The additional participants in Experiment 2 had a 49% lower error count and a 14% higher RT than the participants in Experiment 1. Error counts reduced by 50% from the first to the second session of Experiment 2, irrespective of napping or time of day. Preferring accuracy over speed was associated with a significantly lower error count. The data suggest that a worse performance in the first SART session only occurs when instructing participants to prefer accuracy, which is caused by repetition, not by napping or time of day. We advise that participants are instructed to prefer accuracy over speed when performing the SART and that a full practice session is included.
Christin, Sylvain; St-Laurent, Martin-Hugues; Berteaux, Dominique
2015-01-01
Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove “bad” locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs additional research. PMID:26545245
Research on calibration error of carrier phase against antenna arraying
NASA Astrophysics Data System (ADS)
Sun, Ke; Hou, Xiaomin
2016-11-01
It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.
Kermani, Bahram G
2016-07-01
Crystal Genetics, Inc. is an early-stage genetic test company, focused on achieving the highest possible clinical-grade accuracy and comprehensiveness for detecting germline (e.g., in hereditary cancer) and somatic (e.g., in early cancer detection) mutations. Crystal's mission is to significantly improve the health status of the population, by providing high accuracy, comprehensive, flexible and affordable genetic tests, primarily in cancer. Crystal's philosophy is that when it comes to detecting mutations that are strongly correlated with life-threatening diseases, the detection accuracy of every single mutation counts: a single false-positive error could cause severe anxiety for the patient. And, more importantly, a single false-negative error could potentially cost the patient's life. Crystal's objective is to eliminate both of these error types.
Direct Geolocation of TerraSAR-X Spotlight Mode Image and Error Correction
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa; Gong, Lixia
2013-01-01
The GERMAN TerraSAR-X mission was launched in June 2007, operating a versatile new-generation SAR sensor in X-band. Its Spotlight mode providing SAR images at very high resolution of about 1m. The product’s specified 3-D geolocation accuracy is tightened to 1m according to the official technical report. However, this accuracy is able to be achieved relies on not only robust mathematical basis of SAR geolocation, but also well knowledge of error sources and their correction. The research focuses on geolocation of TerraSAR-X spotlight image. Mathematical model and resolving algorithms have been analyzed. Several error sources have been researched and corrected especially. The effectiveness and accuracy of the research was verified by the experiment results.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2016-08-01
In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.
Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C
2018-04-01
Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.
Quantitative evaluation of age-related decline in control of preprogramed movement
Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa
2017-01-01
In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20–39 years) (n = 16), the middle-age group (40–59 years) (n = 16), and the elderly group (60–79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement. PMID:29186168
Quantitative evaluation of age-related decline in control of preprogramed movement.
Shimoda, Naoshi; Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa
2017-01-01
In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20-39 years) (n = 16), the middle-age group (40-59 years) (n = 16), and the elderly group (60-79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement.
Kurrant, Douglas; Fear, Elise; Baran, Anastasia; LoVetri, Joe
2017-12-01
The authors have developed a method to combine a patient-specific map of tissue structure and average dielectric properties with microwave tomography. The patient-specific map is acquired with radar-based techniques and serves as prior information for microwave tomography. The impact that the degree of structural detail included in this prior information has on image quality was reported in a previous investigation. The aim of the present study is to extend this previous work by identifying and quantifying the impact that errors in the prior information have on image quality, including the reconstruction of internal structures and lesions embedded in fibroglandular tissue. This study also extends the work of others reported in literature by emulating a clinical setting with a set of experiments that incorporate heterogeneity into both the breast interior and glandular region, as well as prior information related to both fat and glandular structures. Patient-specific structural information is acquired using radar-based methods that form a regional map of the breast. Errors are introduced to create a discrepancy in the geometry and electrical properties between the regional map and the model used to generate the data. This permits the impact that errors in the prior information have on image quality to be evaluated. Image quality is quantitatively assessed by measuring the ability of the algorithm to reconstruct both internal structures and lesions embedded in fibroglandular tissue. The study is conducted using both 2D and 3D numerical breast models constructed from MRI scans. The reconstruction results demonstrate robustness of the method relative to errors in the dielectric properties of the background regional map, and to misalignment errors. These errors do not significantly influence the reconstruction accuracy of the underlying structures, or the ability of the algorithm to reconstruct malignant tissue. Although misalignment errors do not significantly impact the quality of the reconstructed fat and glandular structures for the 3D scenarios, the dielectric properties are reconstructed less accurately within the glandular structure for these cases relative to the 2D cases. However, general agreement between the 2D and 3D results was found. A key contribution of this paper is the detailed analysis of the impact of prior information errors on the reconstruction accuracy and ability to detect tumors. The results support the utility of acquiring patient-specific information with radar-based techniques and incorporating this information into MWT. The method is robust to errors in the dielectric properties of the background regional map, and to misalignment errors. Completion of this analysis is an important step toward developing the method into a practical diagnostic tool. © 2017 American Association of Physicists in Medicine.
Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening
NASA Technical Reports Server (NTRS)
Diskin, Boris
1999-01-01
This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid).
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Distinguishing Fast and Slow Processes in Accuracy - Response Time Data.
Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L J; Maris, Gunter
2016-01-01
We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two 'one-process' models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a 'two-process' model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses.
Gravity field error analysis for pendulum formations by a semi-analytical approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico
2017-03-01
Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
NASA Astrophysics Data System (ADS)
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Gueymard, Christian A.
2011-02-01
Aerosol optical depth (AOD) has a crucial importance for estimating the optical properties of the atmosphere, and is constantly present in optical models of aerosol systems. Any error in aerosol optical depth (∂AOD) has direct and indirect consequences. On the one hand, such errors affect the accuracy of radiative transfer models (thus implying, e.g., potential errors in the evaluation of radiative forcing by aerosols). Additionally, any error in determining AOD is reflected in the retrieved microphysical properties of aerosol particles, which might therefore be inaccurate. Three distinct effects (circumsolar radiation, optical mass, and solar disk's brightness distribution) affecting ∂AOD are qualified and quantified in the present study. The contribution of circumsolar (CS) radiation to the measured flux density of direct solar radiation has received more attention than the two other effects in the literature. It varies rapidly with meteorological conditions and size distribution of the aerosol particles, but also with instrument field of view. Numerical simulations of the three effects just mentioned were conducted, assuming otherwise "perfect" experimental conditions. The results show that CS is responsible for the largest error in AOD, while the effect of brightness distribution (BD) has only a negligible impact. The optical mass (OM) effect yields negligible errors in AOD generally, but noticeable errors for low sun (within 10° of the horizon). In general, the OM and BD effects result in negative errors in AOD (i.e. the true AOD is smaller than that of the experimental determination), conversely to CS. Although the rapid increase in optical mass at large zenith angles can change the sign of ∂AOD, the CS contribution frequently plays the leading role in ∂AOD. To maximize the accuracy in AOD retrievals, the CS effect should not be ignored. In practice, however, this effect can be difficult to evaluate correctly unless the instantaneous aerosols size distribution is known from, e.g., inversion techniques.
Ichikawa, Tamaki; Kitanosono, Takashi; Koizumi, Jun; Ogushi, Yoichi; Tanaka, Osamu; Endo, Jun; Hashimoto, Takeshi; Kawada, Shuichi; Saito, Midori; Kobayashi, Makiko; Imai, Yutaka
2007-12-20
We evaluated the usefulness of radiological reporting that combines continuous speech recognition (CSR) and error correction by transcriptionists. Four transcriptionists (two with more than 10 years' and two with less than 3 months' transcription experience) listened to the same 100 dictation files and created radiological reports using conventional transcription and a method that combined CSR with manual error correction by the transcriptionists. We compared the 2 groups using the 2 methods for accuracy and report creation time and evaluated the transcriptionists' inter-personal dependence on accuracy rate and report creation time. We used a CSR system that did not require the training of the system to recognize the user's voice. We observed no significant difference in accuracy between the 2 groups and 2 methods that we tested, though transcriptionists with greater experience transcribed faster than those with less experience using conventional transcription. Using the combined method, error correction speed was not significantly different between two groups of transcriptionists with different levels of experience. Combining CSR and manual error correction by transcriptionists enabled convenient and accurate radiological reporting.
Accuracy and Repeatability of Trajectory Rod Measurement Using Laser Scanners.
Liscio, Eugene; Guryn, Helen; Stoewner, Daniella
2017-12-22
Three-dimensional (3D) technologies contribute greatly to bullet trajectory analysis and shooting reconstruction. There are few papers which address the errors associated with utilizing laser scanning for bullet trajectory documentation. This study examined the accuracy and precision of laser scanning for documenting trajectory rods in drywall for angles between 25° and 90°. The inherent error range of 0.02°-2.10° was noted while the overall error for laser scanning ranged between 0.04° and 1.98°. The inter- and intraobserver errors for trajectory rod placement and virtual trajectory marking showed that the range of variation for rod placement was between 0.1°-1° in drywall and 0.05°-0.5° in plywood. Virtual trajectory marking accuracy tests showed that 75% of data values were below 0.91° and 0.61° on azimuth and vertical angles, respectively. In conclusion, many contributing factors affect bullet trajectory analysis, and the use of 3D technologies can aid in reduction of errors associated with documentation. © 2017 American Academy of Forensic Sciences.
L2 Spelling Errors in Italian Children with Dyslexia.
Palladino, Paola; Cismondo, Dhebora; Ferrari, Marcella; Ballagamba, Isabella; Cornoldi, Cesare
2016-05-01
The present study aimed to investigate L2 spelling skills in Italian children by administering an English word dictation task to 13 children with dyslexia (CD), 13 control children (comparable in age, gender, schooling and IQ) and a group of 10 children with an English learning difficulty, but no L1 learning disorder. Patterns of difficulties were examined for accuracy and type of errors, in spelling dictated short and long words (i.e. disyllables and three syllables). Notably, CD were poor in spelling English words. Furthermore, their errors were mainly related with phonological representation of words, as they made more 'phonologically' implausible errors than controls. In addition, CD errors were more frequent for short than long words. Conversely, the three groups did not differ in the number of plausible ('non-phonological') errors, that is, words that were incorrectly written, but whose reading could correspond to the dictated word via either Italian or English rules. Error analysis also showed syllable position differences in the spelling patterns of CD, children with and English learning difficulty and control children. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Spilker, Thomas R.
1995-01-01
A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging. Calibrating the resonator measurements by checking the refractivity of dry gases which are known to better than 0.1% provides a method of controlling the systematic errors to 0.1%. The primary source of error in absorptivity and refractivity measurements is thus the ability to measure the concentration of water vapor in the resonator path. Over the whole thermodynamic range of interest the accuracy of water vapor measurement is 1.5%. However, over the range responsible for most of the radio delay (i.e. conditions in the bottom two kilometers of the atmosphere) the accuracy of water vapor measurements ranges from 0.5% to 1.0%. Therefore the precision of the resonator measurements could be held to 0.3% and the overall absolute accuracy of resonator-based absorption and refractivity measurements will range from 0.6% to 1.
NASA Astrophysics Data System (ADS)
Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou
2013-10-01
A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
Analysis for orbital rendezvous of Chang'E-5 using SBI technique
NASA Astrophysics Data System (ADS)
Huang, Y.; Shan, Q.; Li, P.
2016-12-01
Chang'E-5 will be launched in later 2017/early 2018 using a new generation rocket from Wenchang satellite launch center, Hainan, China. It is a lunar sampling return mission, and it is the first time for China to carry out orbital rendezvous and docking in the Moon. How to achieve orbital rendezvous successfully in the Moon is very important in Chang'E-5 mission. Orbital rendezvous will be implemented between an orbiter and an ascender 200 km above the Moon. The ground tracking techniques include range, Doppler and VLBI, and they will be used to track the orbiter and the ascender when the ascender is about 70 km farther away from the orbiter. Later the ascender will approach the orbiter automatically. As a successful example, in Chang'E-3, the differential phase delay (delta delay) data between the rover and the lander are obtained with a random error of about 1 ps, and the relative position of the rover is determined with an accuracy of several meters by using same beam VLBI (SBI) technique. Here the application of the SBI technique for Chang'E-5 orbital rendezvous is discussed. SBI technique can be used to track the orbiter and the ascender simultaneously when they are in the same beam. Delta delay of the two probes can be derived, and the measurement accuracy is much higher than that of the traditional VLBI data because of the cancelation of common errors. Theoretically it can result in a more accurate relative orbit between the two probes. In the simulation, different strategies are discussed to analyze the contribution of SBI data to the orbit accuracy improvement especially relative orbit between the orbiter and ascender. The simulation results show that the relative position accuracy of the orbiter and ascender can reach about 1 m with delta delay data of 10 ps.
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.
2018-02-01
In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between -2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between -2 mm and 2 mm could lead to a relative error up to 10%.
Thematic accuracy of the NLCD 2001 land cover for the conterminous United States
Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, Collin G.
2010-01-01
The land-cover thematic accuracy of NLCD 2001 was assessed from a probability-sample of 15,000 pixels. Nationwide, NLCD 2001 overall Anderson Level II and Level I accuracies were 78.7% and 85.3%, respectively. By comparison, overall accuracies at Level II and Level I for the NLCD 1992 were 58% and 80%. Forest and cropland were two classes showing substantial improvements in accuracy in NLCD 2001 relative to NLCD 1992. NLCD 2001 forest and cropland user's accuracies were 87% and 82%, respectively, compared to 80% and 43% for NLCD 1992. Accuracy results are reported for 10 geographic regions of the United States, with regional overall accuracies ranging from 68% to 86% for Level II and from 79% to 91% at Level I. Geographic variation in class-specific accuracy was strongly associated with the phenomenon that regionally more abundant land-cover classes had higher accuracy. Accuracy estimates based on several definitions of agreement are reported to provide an indication of the potential impact of reference data error on accuracy. Drawing on our experience from two NLCD national accuracy assessments, we discuss the use of designs incorporating auxiliary data to more seamlessly quantify reference data quality as a means to further advance thematic map accuracy assessment.
A hybrid localization technique for patient tracking.
Rodionov, Denis; Kolev, George; Bushminkin, Kirill
2013-01-01
Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2016-10-03
A novel accurate and useful approximation of the well-known Beckmann distribution is presented here, which is used to model generalized pointing errors in the context of free-space optical (FSO) communication systems. We derive an approximate closed-form probability density function (PDF) for the composite gamma-gamma (GG) atmospheric turbulence with the pointing error model using the proposed approximation of the Beckmann distribution, which is valid for most practical terrestrial FSO links. This approximation takes into account the effect of the beam width, different jitters for the elevation and the horizontal displacement and the simultaneous effect of nonzero boresight errors for each axis at the receiver plane. Additionally, the proposed approximation allows us to delimit two different FSO scenarios. The first of them is when atmospheric turbulence is the dominant effect in relation to generalized pointing errors, and the second one when generalized pointing error is the dominant effect in relation to atmospheric turbulence. The second FSO scenario has not been studied in-depth by the research community. Moreover, the accuracy of the method is measured both visually and quantitatively using curve-fitting metrics. Simulation results are further included to confirm the analytical results.
Counteracting structural errors in ensemble forecast of influenza outbreaks.
Pei, Sen; Shaman, Jeffrey
2017-10-13
For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.
Influence of non-level walking on pedometer accuracy.
Leicht, Anthony S; Crowther, Robert G
2009-05-01
The YAMAX Digiwalker pedometer has been previously confirmed as a valid and reliable monitor during level walking, however, little is known about its accuracy during non-level walking activities or between genders. Subsequently, this study examined the influence of non-level walking and gender on pedometer accuracy. Forty-six healthy adults completed 3-min bouts of treadmill walking at their normal walking pace during 11 inclines (0-10%) while another 123 healthy adults completed walking up and down 47 stairs. During walking, participants wore a YAMAX Digiwalker SW-700 pedometer with the number of steps taken and registered by the pedometer recorded. Pedometer difference (steps registered-steps taken), net error (% of steps taken), absolute error (absolute % of steps taken) and gender were examined by repeated measures two-way ANOVA and Tukey's post hoc tests. During incline walking, pedometer accuracy indices were similar between inclines and gender except for a significantly greater step difference (-7+/-5 steps vs. 1+/-4 steps) and net error (-2.4+/-1.8% for 9% vs. 0.4+/-1.2% for 2%). Step difference and net error were significantly greater during stair descent compared to stair ascent while absolute error was significantly greater during stair ascent compared to stair descent. The current study demonstrated that the YAMAX Digiwalker SW-700 pedometer exhibited good accuracy during incline walking up to 10% while it overestimated steps taken during stair ascent/descent with greater overestimation during stair descent. Stair walking activity should be documented in field studies as the YAMAX Digiwalker SW-700 pedometer overestimates this activity type.
Analysis of spatial distribution of land cover maps accuracy
NASA Astrophysics Data System (ADS)
Khatami, R.; Mountrakis, G.; Stehman, S. V.
2017-12-01
Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.
CO2 laser ranging systems study
NASA Technical Reports Server (NTRS)
Filippi, C. A.
1975-01-01
The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.
Fourier Transform Methods. Chapter 4
NASA Technical Reports Server (NTRS)
Kaplan, Simon G.; Quijada, Manuel A.
2015-01-01
This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..
Cometary ephemerides - needs and concerns
NASA Technical Reports Server (NTRS)
Yeomans, D. K.
1981-01-01
With the use of narrow field-of-view instrumentation on faint comets, the accuracy requirements upon computed ephemerides are increasing. It is not uncommon for instruments with a one arc minute field-of-view to be tracking a faint comet that is not visible without a substantial integration time. As with all ephemerides of solar syste objects, the computed motion and reduction of these observations, the computed motion of a comet is further depenent upon effects related to the comet's activity. Thus, the ephemeris of an active comet is corrupted by both observational errors and errors due to the comet's activity.
NASA Technical Reports Server (NTRS)
Klein, V.; Schiess, J. R.
1977-01-01
An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.
NASA Astrophysics Data System (ADS)
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
Application of the Homotopy Perturbation Method to the Nonlinear Pendulum
ERIC Educational Resources Information Center
Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.
2007-01-01
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…
NASA Technical Reports Server (NTRS)
Khanenya, Nikolay; Paciotti, Gabriel; Forzani, Eugenio; Blecha, Luc
2016-01-01
This paper describes a high-precision optical metrology system - a unique ground test equipment which was designed and implemented for simultaneous precise contactless measurements of 6 degrees-of-freedom (3 translational + 3 rotational) of a space mechanism end-effector [1] in a thermally controlled ISO 5 clean environment. The developed contactless method reconstructs both position and attitude of the specimen from three cross-sections measured by 2D distance sensors [2]. The cleanliness is preserved by the hermetic test chamber filled with high purity nitrogen. The specimen's temperature is controlled by the thermostat [7]. The developed method excludes errors caused by the thermal deformations and manufacturing inaccuracies of the test jig. Tests and simulations show that the measurement accuracy of an object absolute position is of 20 micron in in-plane measurement (XY) and about 50 micron out of plane (Z). The typical absolute attitude is determined with an accuracy better than 3 arcmin in rotation around X and Y and better than 10 arcmin in Z. The metrology system is able to determine relative position and movement with an accuracy one order of magnitude lower than the absolute accuracy. Typical relative displacement measurement accuracies are better than 1 micron in X and Y and about 2 micron in Z. Finally, the relative rotation can be measured with accuracy better than 20 arcsec in any direction.
ERIC Educational Resources Information Center
Bernstein, Lynne E.
2018-01-01
Lipreaders recognize words with phonetically impoverished stimuli, an ability that varies widely in normal-hearing adults. Lipreading accuracy for sentence stimuli was modeled with data from 339 normal-hearing adults. Models used measures of phonemic perceptual errors, insertion of text that was not in the stimulus, gender, and auditory speech…
Accuracy of computerized automatic identification of cephalometric landmarks by a designed software.
Shahidi, Sh; Shahidi, S; Oshagh, M; Gozin, F; Salehi, P; Danaei, S M
2013-01-01
The purpose of this study was to design software for localization of cephalometric landmarks and to evaluate its accuracy in finding landmarks. 40 digital cephalometric radiographs were randomly selected. 16 landmarks which were important in most cephalometric analyses were chosen to be identified. Three expert orthodontists manually identified landmarks twice. The mean of two measurements of each landmark was defined as the baseline landmark. The computer was then able to compare the automatic system's estimate of a landmark with the baseline landmark. The software was designed using Delphi and Matlab programming languages. The techniques were template matching, edge enhancement and some accessory techniques. The total mean error between manually identified and automatically identified landmarks was 2.59 mm. 12.5% of landmarks had mean errors less than 1 mm. 43.75% of landmarks had mean errors less than 2 mm. The mean errors of all landmarks except the anterior nasal spine were less than 4 mm. This software had significant accuracy for localization of cephalometric landmarks and could be used in future applications. It seems that the accuracy obtained with the software which was developed in this study is better than previous automated systems that have used model-based and knowledge-based approaches.
Methods for the computation of detailed geoids and their accuracy
NASA Technical Reports Server (NTRS)
Rapp, R. H.; Rummel, R.
1975-01-01
Two methods for the computation of geoid undulations using potential coefficients and 1 deg x 1 deg terrestrial anomaly data are examined. It was found that both methods give the same final result but that one method allows a more simplified error analysis. Specific equations were considered for the effect of the mass of the atmosphere and a cap dependent zero-order undulation term was derived. Although a correction to a gravity anomaly for the effect of the atmosphere is only about -0.87 mgal, this correction causes a fairly large undulation correction that was not considered previously. The accuracy of a geoid undulation computed by these techniques was estimated considering anomaly data errors, potential coefficient errors, and truncation (only a finite set of potential coefficients being used) errors. It was found that an optimum cap size of 20 deg should be used. The geoid and its accuracy were computed in the Geos 3 calibration area using the GEM 6 potential coefficients and 1 deg x 1 deg terrestrial anomaly data. The accuracy of the computed geoid is on the order of plus or minus 2 m with respect to an unknown set of best earth parameter constants.
Analysis of Sources of Large Positioning Errors in Deterministic Fingerprinting
2017-01-01
Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities. PMID:29186921