Science.gov

Sample records for accuracy selected thermodynamic

  1. Estimation and Accuracy after Model Selection

    PubMed Central

    Efron, Bradley

    2013-01-01

    Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider bootstrap methods for computing standard errors and confidence intervals that take model selection into account. The methodology involves bagging, also known as bootstrap smoothing, to tame the erratic discontinuities of selection-based estimators. A useful new formula for the accuracy of bagging then provides standard errors for the smoothed estimators. Two examples, nonparametric and parametric, are carried through in detail: a regression model where the choice of degree (linear, quadratic, cubic, …) is determined by the Cp criterion, and a Lasso-based estimation problem. PMID:25346558

  2. On the Accuracy of Genomic Selection

    PubMed Central

    Rabier, Charles-Elie; Barre, Philippe; Asp, Torben; Charmet, Gilles; Mangin, Brigitte

    2016-01-01

    Genomic selection is focused on prediction of breeding values of selection candidates by means of high density of markers. It relies on the assumption that all quantitative trait loci (QTLs) tend to be in strong linkage disequilibrium (LD) with at least one marker. In this context, we present theoretical results regarding the accuracy of genomic selection, i.e., the correlation between predicted and true breeding values. Typically, for individuals (so-called test individuals), breeding values are predicted by means of markers, using marker effects estimated by fitting a ridge regression model to a set of training individuals. We present a theoretical expression for the accuracy; this expression is suitable for any configurations of LD between QTLs and markers. We also introduce a new accuracy proxy that is free of the QTL parameters and easily computable; it outperforms the proxies suggested in the literature, in particular, those based on an estimated effective number of independent loci (Me). The theoretical formula, the new proxy, and existing proxies were compared for simulated data, and the results point to the validity of our approach. The calculations were also illustrated on a new perennial ryegrass set (367 individuals) genotyped for 24,957 single nucleotide polymorphisms (SNPs). In this case, most of the proxies studied yielded similar results because of the lack of markers for coverage of the entire genome (2.7 Gb). PMID:27322178

  3. Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D

    SciTech Connect

    Cliff B. Davis

    2010-09-01

    RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

  4. Simulation of selective thermodynamic deposition in nanoholes.

    PubMed

    Pinto, O A; López de Mishima, B A; Leiva, E P M; Oviedo, O A

    2017-01-04

    The deposition of particles in nanoholes is analyzed, taking into account the curvature of their inner walls. Different lattice-gas models of the nanoholes are considered. The heterogeneous surface are shaped from a (100)-surface where a nanohollow are incorporated with parallelepiped or polyhedral geometry. Several deposition stages are identified as a function of the degree of curvature of the inner walls of the nanoholes. The Monte Carlo technique in the grand canonical ensemble is used to calculate isotherms, isosteric heats, energies per site and other thermodynamic properties. This study is based on different magnitudes of the interaction energies between the particles being deposited and those surrounding the nanohole.

  5. Is there a link between selectivity and binding thermodynamics profiles?

    PubMed

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding.

  6. Assessing genomic selection prediction accuracy in a dynamic barley breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection is a method to improve quantitative traits in crops and livestock by estimating breeding values of selection candidates using phenotype and genome-wide marker data sets. Prediction accuracy has been evaluated through simulation and cross-validation, however validation based on prog...

  7. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  8. Thermodynamic targeting of microbial perchlorate reduction by selective electron donors.

    PubMed

    Van Trump, James Ian; Coates, John D

    2009-04-01

    Here we describe 2,6-anthrahydroquinone disulfonate (AH(2)DS) as a model thermodynamically 'targeting' electron donor capable of selectively stimulating respiratory processes relevant to the bioremediation of perchlorate. Pure cultures of Dechloromonas aromatica, Dechloromonas agitata and Azospira suillum, as well as uncharacterized microbial consortia, were capable of stoichiometrically reducing perchlorate to chloride upon oxidation of AH(2)DS to the corresponding quinone 2,6-anthraquinone disulfonate (AQDS). No degradation of the anthraquinone structure was observed, and no organism tested grew by this metabolism. Thermodynamic calculations suggest that AH(2)DS oxidation should support nitrate and perchlorate reduction, whereas sulfate reduction and methanogenesis are predicted to be unfavorable. Mixed community microcosms oxidizing AH(2)DS reduced nitrate and perchlorate, whereas sulfate reduction never occurred. In contrast, microcosms amended with acetate respired nitrate, perchlorate and sulfate, as would be predicted by thermodynamic calculation. Our results suggest that the thermodynamic properties of hydroquinones allow for targeted stimulation of only a subset of potential respiratory processes. This observation could help improve enhanced in situ bioremediation of perchlorate by negating many of the detrimental aspects of biofouling.

  9. Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Peliti, Luca

    2015-06-01

    The high accuracy exhibited by biological information transcription processes is due to kinetic proofreading, i.e. by a mechanism which reduces the error rate of the information-handling process by driving it out of equilibrium. We provide a consistent thermodynamic description of enzyme-assisted assembly processes involving competing substrates, in a master equation framework. We introduce and evaluate a measure of the efficiency based on rigorous non-equilibrium inequalities. The performance of several proofreading models are thus analyzed and the related time, dissipation and efficiency versus error trade-offs exhibited for different discrimination regimes. We finally introduce and analyze in the same framework a simple model which takes into account correlations between consecutive enzyme-assisted assembly steps. This work highlights the relevance of the distinction between energetic and kinetic discrimination regimes in enzyme-substrate interactions.

  10. Accuracy of genomic selection for BCWD resistance in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonids. In this study, we aimed to (1) predict genomic breeding values (GEBV) by genotyping training (n=583) and validation samples (n=53) with a SNP50K chip; and (2) assess the accuracy of genomic selection (GS) for BCWD r...

  11. Thermodynamics of natural selection II: Chemical Carnot cycles.

    PubMed

    Smith, Eric

    2008-05-21

    This is the second in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and to their relations to the thermodynamics of computation. In the first paper of the series, it was shown that a general-form dimensional argument from the second law of thermodynamics captures a number of scaling relations governing growth and development across many domains of life. It was also argued that models of physiology based on reversible transformations provide sensible approximations within which the second-law scaling is realized. This paper provides a formal basis for decomposing general cyclic, fixed-temperature chemical reactions, in terms of the chemical equivalent of Carnot's cycle for heat engines. It is shown that the second law relates the minimal chemical work required to perform a cycle to the Kullback-Leibler divergence produced in its chemical output ensemble from that of a Gibbs equilibrium. Reversible models of physiology are used to create reversible models of natural selection, which relate metabolic energy requirements to information gain under optimal conditions. When dissipation is added to models of selection, the second-law constraint is generalized to a relation between metabolic work and the combined energies of growth and maintenance.

  12. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.

    PubMed

    Schwabe, Tobias; Grimme, Stefan

    2008-04-01

    The thermodynamic properties of molecules are of fundamental interest in physics, chemistry, and biology. This Account deals with the developments that we have made in the about last five years to find quantum chemical electronic structure methods that have the prospect of being applicable to larger molecules. The typical target accuracy is about 0.5-1 kcal mol(-1) for chemical reaction and 0.1 kcal mol(-1) for conformational energies. These goals can be achieved when a few physically motivated corrections to first-principles methods are introduced to standard quantum chemical techniques. These do not lead to a significantly increased computational expense, and thus our methods have the computer hardware requirements of the corresponding standard treatments. Together with the use of density-fitting (RI) integral approximations, routine computations on systems with about 100 non-hydrogen atoms (2000-4000 basis functions) can be performed on modern PCs. Our improvements regarding accuracy are basically due to the use of modified second-order perturbation theory to account for many-particle (electron correlation) effects. Such nonlocal correlations are responsible for important parts of the interaction in and between atoms and molecules. A common example is the long-range dispersion interaction that lead to van der Waals complexes, but as shown here also the conventional thermodynamics of large molecules is significantly influenced by intramolecular dispersion effects. We first present the basic theoretical ideas behind our approaches, which are the spin-component-scaled Møller-Plesset perturbation theory (SCS-MP2) and double-hybrid density functionals (DHDF). Furthermore, the effect of the independently developed empirical dispersion correction (DFT-D) is discussed. Together with the use of large atomic orbital basis sets (of at least triple- or quadruple-zeta quality), the accuracy of the new methods is even competitive with computationally very expensive coupled

  13. The signatures of selection for translational accuracy in plant genes.

    PubMed

    Porceddu, Andrea; Zenoni, Sara; Camiolo, Salvatore

    2013-01-01

    Little is known about the natural selection of synonymous codons within the coding sequences of plant genes. We analyzed the distribution of synonymous codons within plant coding sequences and found that preferred codons tend to encode the more conserved and functionally important residues of plant proteins. This was consistent among several synonymous codon families and applied to genes with different expression profiles and functions. Most of the randomly chosen alternative sets of codons scored weaker associations than the actual sets of preferred codons, suggesting that codon position within plant genes and codon usage bias have coevolved to maximize translational accuracy. All these findings are consistent with the mistranslation-induced protein misfolding theory, which predicts the natural selection of highly preferred codons more frequently at sites where translation errors could compromise protein folding or functionality. Our results will provide an important insight in future studies of protein folding, molecular evolution, and transgene design for optimal expression.

  14. Impact of selective genotyping in the training population on accuracy and bias of genomic selection.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Longin, Friedrich H; Würschum, Tobias; Ranc, Nicolas; Reif, Jochen C

    2012-08-01

    Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.

  15. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  16. DNA Template Dependent Accuracy Variation of Nucleotide Selection in Transcription

    PubMed Central

    Mellenius, Harriet; Ehrenberg, Måns

    2015-01-01

    It has been commonly assumed that the effect of erroneous transcription of DNA genes into messenger RNAs on peptide sequence errors are masked by much more frequent errors of mRNA translation to protein. We present a theoretical model of transcriptional accuracy. It uses experimentally estimated standard free energies of double-stranded DNA and RNA/DNA hybrids and predicts a DNA template dependent transcriptional accuracy variation spanning several orders of magnitude. The model also identifies high-error as well a high-accuracy transcription motifs. The source of the large accuracy span is the context dependent variation of the stacking free energy of pairs of correct and incorrect base pairs in the ever moving transcription bubble. Our model predictions have direct experimental support from recent single molecule based identifications of transcriptional errors in the C. elegans transcriptome. Our conclusions challenge the general view that amino acid substitution errors in proteins are mainly caused by translational errors. It suggests instead that transcriptional error hotspots are the dominating source of peptide sequence errors in some DNA template contexts, while mRNA translation is the major cause of protein errors in other contexts. PMID:25799551

  17. DNA template dependent accuracy variation of nucleotide selection in transcription.

    PubMed

    Mellenius, Harriet; Ehrenberg, Måns

    2015-01-01

    It has been commonly assumed that the effect of erroneous transcription of DNA genes into messenger RNAs on peptide sequence errors are masked by much more frequent errors of mRNA translation to protein. We present a theoretical model of transcriptional accuracy. It uses experimentally estimated standard free energies of double-stranded DNA and RNA/DNA hybrids and predicts a DNA template dependent transcriptional accuracy variation spanning several orders of magnitude. The model also identifies high-error as well a high-accuracy transcription motifs. The source of the large accuracy span is the context dependent variation of the stacking free energy of pairs of correct and incorrect base pairs in the ever moving transcription bubble. Our model predictions have direct experimental support from recent single molecule based identifications of transcriptional errors in the C. elegans transcriptome. Our conclusions challenge the general view that amino acid substitution errors in proteins are mainly caused by translational errors. It suggests instead that transcriptional error hotspots are the dominating source of peptide sequence errors in some DNA template contexts, while mRNA translation is the major cause of protein errors in other contexts.

  18. Free Radical Halogenation, Selectivity, and Thermodynamics: The Polanyi Principle and Hammond's Postulate

    ERIC Educational Resources Information Center

    Scala, Alfred A.

    2004-01-01

    The underlying ideas of the Polanyi principle and Hammond's postulate in relation to the simple free halogenation reactions and their selectivity and thermodynamics is presented. The results indicate that the chlorine atom exhibits a slightly less selectivity in the liquid phase as compared to in the gas phase.

  19. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy.

  20. The accuracy of marker-assisted selection for quantitative traits within populations in linkage equilibrium.

    PubMed Central

    Ollivier, L

    1998-01-01

    Using the concept of conditional coancestry, given observed markers, an explicit expression of the accuracy of marker-based selection is derived in situations of linkage equilibrium between markers and quantitative trait loci (QTL), for the general case of full-sib families nested within half-sib families. Such a selection scheme is rather inaccurate for moderate values of family sizes and QTL variance, and the accuracies predicted for linkage disequilibrium can never be reached. The result is used to predict the accuracy of marker-assisted combined selection (MACS) and is shown to agree with previous MACS results obtained by simulation of a best linear unbiased prediction animal model. Low gains in accuracy are generally to be expected compared to standard combined selection. The maximum gain, assuming infinite family size and all QTLs marked, is about 50%. PMID:9539449

  1. Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts

    NASA Astrophysics Data System (ADS)

    Gesing, Adam J.; Das, Subodh K.

    2017-02-01

    With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.

  2. New accuracy estimators for genomic selection with application in a cassava (Manihot esculenta) breeding program.

    PubMed

    Azevedo, C F; Resende, M D V; Silva, F F; Viana, J M S; Valente, M S F; Resende, M F R; Oliveira, E J

    2016-10-05

    Genomic selection is the main force driving applied breeding programs and accuracy is the main measure for evaluating its efficiency. The traditional estimator (TE) of experimental accuracy is not fully adequate. This study proposes and evaluates the performance and efficiency of two new accuracy estimators, called regularized estimator (RE) and hybrid estimator (HE), which were applied to a practical cassava breeding program and also to simulated data. The simulation study considered two individual narrow sense heritability levels and two genetic architectures for traits. TE, RE, and HE were compared under four validation procedures: without validation (WV), independent validation, ten-fold validation through jacknife allowing different markers, and with the same markers selected in each cycle. RE presented accuracies closer to the parametric ones and less biased and more precise ones than TE. HE proved to be very effective in the WV procedure. The estimators were applied to five traits evaluated in a cassava experiment, including 358 clones genotyped for 390 SNPs. Accuracies ranged from 0.67 to 1.12 with TE and from 0.22 to 0.51 with RE. These results indicated that TE overestimated the accuracy and led to one accuracy estimate (1.12) higher than one, which is outside of the parameter space. Use of RE turned the accuracy into the parameter space. Cassava breeding programs can be more realistically implemented using the new estimators proposed in this study, providing less risky practical inferences.

  3. Effects of implant angulation, material selection, and impression technique on impression accuracy: a preliminary laboratory study.

    PubMed

    Rutkunas, Vygandas; Sveikata, Kestutis; Savickas, Raimondas

    2012-01-01

    The aim of this preliminary laboratory study was to evaluate the effects of 5- and 25-degree implant angulations in simulated clinical casts on an impression's accuracy when using different impression materials and tray selections. A convenience sample of each implant angulation group was selected for both open and closed trays in combination with one polyether and two polyvinyl siloxane impression materials. The influence of material and technique appeared to be significant for both 5- and 25-degree angulations (P < .05), and increased angulation tended to decrease impression accuracy. The open-tray technique was more accurate with highly nonaxially oriented implants for the small sample size investigated.

  4. Science of Test Measurement Accuracy - Data Sampling and Filter Selection during Data Acquisition

    DTIC Science & Technology

    2015-06-01

    sampling rate, aliasing, filtering, butterworth, chebyshev, Bessel, PSD and Bode plots 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION...and PSD plots . SCIENCE OF TEST Measurement Accuracy - Data Sampling and Filter Selection during Data Acquisition David Kidman Air...Use both Bode and PSD plots to evaluate filter and sample rate effects prior to implementation Summary Reference: The Scientist and Engineer’s

  5. Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding

    PubMed Central

    Baldassarre, Luca; Pontil, Massimiliano; Mourão-Miranda, Janaina

    2017-01-01

    Structured sparse methods have received significant attention in neuroimaging. These methods allow the incorporation of domain knowledge through additional spatial and temporal constraints in the predictive model and carry the promise of being more interpretable than non-structured sparse methods, such as LASSO or Elastic Net methods. However, although sparsity has often been advocated as leading to more interpretable models it can also lead to unstable models under subsampling or slight changes of the experimental conditions. In the present work we investigate the impact of using stability/reproducibility as an additional model selection criterion1 on several different sparse (and structured sparse) methods that have been recently applied for fMRI brain decoding. We compare three different model selection criteria: (i) classification accuracy alone; (ii) classification accuracy and overlap between the solutions; (iii) classification accuracy and correlation between the solutions. The methods we consider include LASSO, Elastic Net, Total Variation, sparse Total Variation, Laplacian and Graph Laplacian Elastic Net (GraphNET). Our results show that explicitly accounting for stability/reproducibility during the model optimization can mitigate some of the instability inherent in sparse methods. In particular, using accuracy and overlap between the solutions as a joint optimization criterion can lead to solutions that are more similar in terms of accuracy, sparsity levels and coefficient maps even when different sparsity methods are considered. PMID:28261042

  6. Considerations on selected reaction monitoring experiments: implications for the selectivity and accuracy of measurements.

    PubMed

    Domon, Bruno

    2012-12-01

    Targeted MS analyses based on selected reaction monitoring (SRM) has enabled significant achievements in proteomic quantification, such that its application to clinical studies has augured great advancements for life sciences. The approach has been challenged by the complexity of clinical samples that affects the selectivity of measurements, in many cases limiting analytical performances to a larger extent than expected. This Personal Perspective discusses some insight to better comprehend the mismatch between the often underestimated sample complexity and the selectivity of SRM measurements performed on a triple quadrupole instrument. The implications for the design and evaluation of SRM assays are discussed and illustrated with selected examples, providing a baseline for a more critical use of the technique in the context of clinical samples and to evaluate alternative methods.

  7. Accuracy and responses of genomic selection on key traits in apple breeding

    PubMed Central

    Muranty, Hélène; Troggio, Michela; Sadok, Inès Ben; Rifaï, Mehdi Al; Auwerkerken, Annemarie; Banchi, Elisa; Velasco, Riccardo; Stevanato, Piergiorgio; van de Weg, W Eric; Di Guardo, Mario; Kumar, Satish; Laurens, François; Bink, Marco C A M

    2015-01-01

    The application of genomic selection in fruit tree crops is expected to enhance breeding efficiency by increasing prediction accuracy, increasing selection intensity and decreasing generation interval. The objectives of this study were to assess the accuracy of prediction and selection response in commercial apple breeding programmes for key traits. The training population comprised 977 individuals derived from 20 pedigreed full-sib families. Historic phenotypic data were available on 10 traits related to productivity and fruit external appearance and genotypic data for 7829 SNPs obtained with an Illumina 20K SNP array. From these data, a genome-wide prediction model was built and subsequently used to calculate genomic breeding values of five application full-sib families. The application families had genotypes at 364 SNPs from a dedicated 512 SNP array, and these genotypic data were extended to the high-density level by imputation. These five families were phenotyped for 1 year and their phenotypes were compared to the predicted breeding values. Accuracy of genomic prediction across the 10 traits reached a maximum value of 0.5 and had a median value of 0.19. The accuracies were strongly affected by the phenotypic distribution and heritability of traits. In the largest family, significant selection response was observed for traits with high heritability and symmetric phenotypic distribution. Traits that showed non-significant response often had reduced and skewed phenotypic variation or low heritability. Among the five application families the accuracies were uncorrelated to the degree of relatedness to the training population. The results underline the potential of genomic prediction to accelerate breeding progress in outbred fruit tree crops that still need to overcome long generation intervals and extensive phenotyping costs. PMID:26744627

  8. Estimation of accuracies and expected genetic change from selection for selection indexes that use multiple-trait predictions of breeding values.

    PubMed

    Barwick, S A; Tier, B; Swan, A A; Henzell, A L

    2013-10-01

    Procedures are described for estimating selection index accuracies for individual animals and expected genetic change from selection for the general case where indexes of EBVs predict an aggregate breeding objective of traits that may or may not have been measured. Index accuracies for the breeding objective are shown to take an important general form, being able to be expressed as the product of the accuracy of the index function of true breeding values and the accuracy with which that function predicts the breeding objective. When the accuracies of the individual EBVs of the index are known, prediction error variances (PEVs) and covariances (PECs) for the EBVs within animal are able to be well approximated, and index accuracies and expected genetic change from selection estimated with high accuracy. The procedures are suited to routine use in estimating index accuracies in genetic evaluation, and for providing important information, without additional modelling, on the directions in which a population will move under selection.

  9. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters.

    PubMed

    Wu, Zhikun; MacDonald, Mark A; Chen, Jenny; Zhang, Peng; Jin, Rongchao

    2011-06-29

    This work presents a combined approach of kinetic control and thermodynamic selection for the synthesis of monodisperse 19 gold atom nanoclusters protected by thiolate groups. The step of kinetic control allows the formation of a proper size distribution of initial size-mixed Au(n)(SR)(m) nanoclusters following the reduction of a gold precursor. Unlike the synthesis of Au(25)(SR)(18) nanoclusters, which involves rapid reduction of the gold precursor by NaBH(4) followed by size focusing, the synthesis of 19-atom nanoclusters requires slow reduction effected by a weaker reducing agent, borane-tert-butylamine complex. The initially formed mixture of nanoclusters then undergoes size convergence into a monodisperse product by means of a prolonged aging process. The nanocluster formula was determined to be Au(19)(SC(2)H(4)Ph)(13). This work demonstrates the importance of both kinetic control of the initial size distribution of nanoclusters prior to size focusing and subsequent thermodynamic selection of stable nanoclusters as the final product.

  10. Thermodynamic and Kinetic Studies for Intensifying Selective Decomposition of Zinc Ferrite

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Qin, Wenqing; Jiao, Fen; Wang, Dawei; Liang, Chao

    2016-09-01

    A novel method to intensify the selective decomposition of zinc ferrite by a roasting process including reduction and magnetization stages was proposed. The relevant thermodynamic analysis with HSC [enthalpy (H), entropy (S) and heat capacity (C)] Chemistry 5.0 and experimental research on a laboratory scale were investigated. The thermodynamic calculations show that increasing the temperature and the CO amount promote not only the decomposition of zinc ferrite but also the formation of wustite, which can be converted to magnetite using sufficient CO2 at 823 K. The experimental results indicate that the zinc ferrite was decomposed into zinc oxide and wustite by reduction roasting under a gas mixture of 20% CO, 20% CO2 and 60% N2 at 1023 K for 90 min, and the decomposition degree of zinc ferrite reached 94%. Then, the generated wustite was transformed into magnetite by magnetization roasting under CO2 atmosphere at 823 K for 75 min, after which the selective extraction of zinc from zinc ferrite could be well achieved by low acid leaching. Increasing temperature and time were conducive to the magnetization within low temperature range, but when the temperature was above 823 K the zinc ferrite could be regenerated.

  11. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  12. Cooperative thermodynamic control of selectivity in the self-assembly of rare earth metal-ligand helices.

    PubMed

    Johnson, Amber M; Young, Michael C; Zhang, Xing; Julian, Ryan R; Hooley, Richard J

    2013-11-27

    Metal-selective self-assembly with rare-earth cations is possible with suitable rigid, symmetrical bis-tridentate ligands. Kinetically controlled formation is initially observed, with smaller cations preferentially incorporated. Over time, the more thermodynamically favorable complexes with larger metals are formed. This thermodynamic control is a cooperative supramolecular phenomenon and only occurs upon multiple-metal-based self-assembly: single-metal ML3 analogues do not show reversible selectivity. The selectivity is dependent on small variations in lanthanide ionic radius and occurs despite identical coordination-ligand coordination geometries and minor size differences in the rare-earth metals.

  13. Review of selenium thermodynamic data

    NASA Astrophysics Data System (ADS)

    Cowan, C. E.

    1988-02-01

    This report assesses the accuracy and completeness of available thermodynamic data on selenium. A review of experimental methods from published literature on selenium thermodynamic data focused on chemical reactions responsible for the formation of both aqueous complexes and solid phases of selenate, selenite, and selenide. The reviewer selected best data values, based on the methods used for estimating thermodynamic data. After inclusion of these values into the MINTEQ model, a validation study evaluated model performance for selenite and selenide solid phases. Lack of selenate data precluded model validation for this compound. The review furnished data on 22 aqueous complexes of selenite, 15 of selenide, and 17 of selenate, as well as 21 solid phases of selenite, 20 of selenide and 8 of selenate. These data proved inadequate to represent the formation of species in the solid phase. The validation study gave inconclusive predictions of selenite and selenide solubility and could not be used to assess the accuracy or completeness of the thermodynamic data.

  14. Validation of selection accuracy for the total number of piglets born in Landrace pigs using genomic selection

    PubMed Central

    Oh, Jae-Don; Na, Chong-Sam; Park, Kyung-Do

    2017-01-01

    Objective This study was to determine the relationship between estimated breeding value and phenotype information after farrowing when juvenile selection was made in candidate pigs without phenotype information. Methods After collecting phenotypic and genomic information for the total number of piglets born by Landrace pigs, selection accuracy between genomic breeding value estimates using genomic information and breeding value estimates of best linear unbiased prediction (BLUP) using conventional pedigree information were compared. Results Genetic standard deviation (σa) for the total number of piglets born was 0.91. Since the total number of piglets born for candidate pigs was unknown, the accuracy of the breeding value estimated from pedigree information was 0.080. When genomic information was used, the accuracy of the breeding value was 0.216. Assuming that the replacement rate of sows per year is 100% and generation interval is 1 year, genetic gain per year is 0.346 head when genomic information is used. It is 0.128 when BLUP is used. Conclusion Genetic gain estimated from single step best linear unbiased prediction (ssBLUP) method is by 2.7 times higher than that the one estimated from BLUP method, i.e., 270% more improvement in efficiency. PMID:27507181

  15. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    PubMed

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  16. Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models

    PubMed Central

    de Azevedo Peixoto, Leonardo; Laviola, Bruno Galvêas; Alves, Alexandre Alonso; Rosado, Tatiana Barbosa; Bhering, Leonardo Lopes

    2017-01-01

    Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits. PMID:28296913

  17. Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models.

    PubMed

    Azevedo Peixoto, Leonardo de; Laviola, Bruno Galvêas; Alves, Alexandre Alonso; Rosado, Tatiana Barbosa; Bhering, Leonardo Lopes

    2017-01-01

    Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.

  18. Thermodynamics of protein-ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data

    NASA Astrophysics Data System (ADS)

    Krimmer, Stefan G.; Klebe, Gerhard

    2015-09-01

    For a conscientious interpretation of thermodynamic parameters (Gibbs free energy, enthalpy and entropy) obtained by isothermal titration calorimetry (ITC), it is necessary to first evaluate the experimental setup and conditions at which the data were measured. The data quality must be assessed and the precision and accuracy of the measured parameters must be estimated. This information provides the basis at which level discussion of the data is appropriate, and allows insight into the significance of comparisons with other data. The aim of this article is to provide the reader with basic understanding of the ITC technique and the experimental practices commonly applied, in order to foster an appreciation for how much measured thermodynamic parameters can deviate from ideal, error-free values. Particular attention is paid to the shape of the recorded isotherm ( c-value), the influence of the applied buffer used for the reaction (protonation reactions, pH), the chosen experimental settings (temperature), impurities of protein and ligand, sources of systematic errors (solution concentration, solution activity, and device calibration) and to the applied analysis software. Furthermore, we comment on enthalpy-entropy compensation, heat capacities and van't Hoff enthalpies.

  19. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  20. Comparative accuracy of the Albedo, transmission and absorption for selected radiative transfer approximations

    NASA Technical Reports Server (NTRS)

    King, M. D.; HARSHVARDHAN

    1986-01-01

    Illustrations of both the relative and absolute accuracy of eight different radiative transfer approximations as a function of optical thickness, solar zenith angle and single scattering albedo are given. Computational results for the plane albedo, total transmission and fractional absorption were obtained for plane-parallel atmospheres composed of cloud particles. These computations, which were obtained using the doubling method, are compared with comparable results obtained using selected radiative transfer approximations. Comparisons were made between asymptotic theory for thick layers and the following widely used two stream approximations: Coakley-Chylek's models 1 and 2, Meador-Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates.

  1. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.

    PubMed

    Aljabar, P; Heckemann, R A; Hammers, A; Hajnal, J V; Rueckert, D

    2009-07-01

    Quantitative research in neuroimaging often relies on anatomical segmentation of human brain MR images. Recent multi-atlas based approaches provide highly accurate structural segmentations of the brain by propagating manual delineations from multiple atlases in a database to a query subject and combining them. The atlas databases which can be used for these purposes are growing steadily. We present a framework to address the consequent problems of scale in multi-atlas segmentation. We show that selecting a custom subset of atlases for each query subject provides more accurate subcortical segmentations than those given by non-selective combination of random atlas subsets. Using a database of 275 atlases, we tested an image-based similarity criterion as well as a demographic criterion (age) in a leave-one-out cross-validation study. Using a custom ranking of the database for each subject, we combined a varying number n of atlases from the top of the ranked list. The resulting segmentations were compared with manual reference segmentations using Dice overlap. Image-based selection provided better segmentations than random subsets (mean Dice overlap 0.854 vs. 0.811 for the estimated optimal subset size, n=20). Age-based selection resulted in a similar marked improvement. We conclude that selecting atlases from large databases for atlas-based brain image segmentation improves the accuracy of the segmentations achieved. We show that image similarity is a suitable selection criterion and give results based on selecting atlases by age that demonstrate the value of meta-information for selection.

  2. Individual variation in exploratory behaviour improves speed and accuracy of collective nest selection by Argentine ants

    PubMed Central

    Hui, Ashley; Pinter-Wollman, Noa

    2014-01-01

    Collective behaviours are influenced by the behavioural composition of the group. For example, a collective behaviour may emerge from the average behaviour of the group's constituents, or be driven by a few key individuals that catalyse the behaviour of others in the group. When ant colonies collectively relocate to a new nest site, there is an inherent trade-off between the speed and accuracy of their decision of where to move due to the time it takes to gather information. Thus, variation among workers in exploratory behaviour, which allows gathering information about potential new nest sites, may impact the ability of a colony to move quickly into a suitable new nest. The invasive Argentine ant, Linepithema humile, expands its range locally through the dispersal and establishment of propagules: groups of ants and queens. We examine whether the success of these groups in rapidly finding a suitable nest site is affected by their behavioural composition. We compared nest choice speed and accuracy among groups of all-exploratory, all-nonexploratory and half-exploratory–half-nonexploratory individuals. We show that exploratory individuals improve both the speed and accuracy of collective nest choice, and that exploratory individuals have additive, not synergistic, effects on nest site selection. By integrating an examination of behaviour into the study of invasive species we shed light on the mechanisms that impact the progression of invasion. PMID:25018558

  3. [Analysis on the accuracy of simple selection method of Fengshi (GB 31)].

    PubMed

    Li, Zhixing; Zhang, Haihua; Li, Suhe

    2015-12-01

    To explore the accuracy of simple selection method of Fengshi (GB 31). Through the study of the ancient and modern data,the analysis and integration of the acupuncture books,the comparison of the locations of Fengshi (GB 31) by doctors from all dynasties and the integration of modern anatomia, the modern simple selection method of Fengshi (GB 31) is definite, which is the same as the traditional way. It is believed that the simple selec tion method is in accord with the human-oriented thought of TCM. Treatment by acupoints should be based on the emerging nature and the individual difference of patients. Also, it is proposed that Fengshi (GB 31) should be located through the integration between the simple method and body surface anatomical mark.

  4. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.

    PubMed

    Müller, Dominik; Schopp, Pascal; Melchinger, Albrecht E

    2017-03-10

    Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents [Formula: see text] but little is known about how [Formula: see text] affects genomic selection (GS) in RS, especially the persistency of prediction accuracy ([Formula: see text]) and genetic gain. Synthetics were simulated by intermating [Formula: see text]= 2-32 parent lines from an ancestral population with short- or long-range linkage disequilibrium ([Formula: see text]) and subjected to multiple cycles of GS. We determined [Formula: see text] and genetic gain across 30 cycles for different training set (TS) sizes, marker densities, and generations of recombination before model training. Contributions to [Formula: see text] and genetic gain from pedigree relationships, as well as from cosegregation and [Formula: see text] between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of [Formula: see text] was high for small [Formula: see text] where predominantly cosegregation contributed to [Formula: see text], but also for large [Formula: see text] where [Formula: see text] replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing [Formula: see text] > 4, given long-range LDA in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to [Formula: see text] for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size ([Formula: see text]) and higher marker density improved persistency of

  5. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection

    PubMed Central

    Müller, Dominik; Schopp, Pascal; Melchinger, Albrecht E.

    2017-01-01

    Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents (Np), but little is known about how Np affects genomic selection (GS) in RS, especially the persistency of prediction accuracy (rg,g^) and genetic gain. Synthetics were simulated by intermating Np= 2–32 parent lines from an ancestral population with short- or long-range linkage disequilibrium (LDA) and subjected to multiple cycles of GS. We determined rg,g^ and genetic gain across 30 cycles for different training set (TS) sizes, marker densities, and generations of recombination before model training. Contributions to rg,g^ and genetic gain from pedigree relationships, as well as from cosegregation and LDA between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of rg,g^ was high for small Np, where predominantly cosegregation contributed to rg,g^, but also for large Np, where LDA replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing Np > 4, given long-range LDA in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to rg,g^ for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size (NTS) and higher marker density improved persistency of rg,g^ and hence genetic gain, but additional recombinations could not increase genetic gain. PMID:28064189

  6. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  7. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.

    PubMed

    Pickles, C A

    2008-01-31

    Electric arc furnace (EAF) dust, which is produced as a result of the melting of automobile scrap in an electric arc furnace, contains considerable amounts of zinc and lead, which are of significant economic value. Typically, the other major components are iron oxide and calcium oxide with minor amounts of other metal oxides. In this research, a detailed thermodynamic study of the pyrometallurgical processing of the dust, using carbon as a reducing agent was performed. The SOLGASMIX solver of Outokumpu HSC Chemistry((R)) 5.1 was used to calculate the equilibrium composition under reducing conditions. The control input dust composition was as follows (in mass percent): 8.100% CaO, 8.250% 2CaO.SiO(2), 11.200% CaCO(3), 8.830% CaO.Fe(2)O(3), 7.840% Fe(3)O(4), 3.770% PbO, 38.150% ZnFe(2)O(4) and 13.860% ZnO. Selective reduction and separation of both the zinc and the lead as metallic vapours, from the iron, in oxide form, was examined. The separation of the zinc or the lead from the iron, was defined quantitatively in terms of the selectivity factor (logbeta) as follows. Equation [see the text] where the subscript symbols refer to the metal being present in gaseous (g), metallic solid (m), solid oxide (o) or metallic liquid (l) form, respectively. The standard calculations were performed for one hundred grams of dust at atmospheric pressure. The variables investigated were as follows; temperature in the range of 1273-1873K, reactant ratio (i.e. moles of carbon per gram of dust), dust composition, addition of inert gas and reduced total pressure. The calculated values were in reasonable agreement with those from previously published studies and also industrial results.

  8. On the importance of thermodynamic investigations for the re-assessment of selected ternary Fe-base systems

    NASA Astrophysics Data System (ADS)

    Presoly, P.; Bernhard, C.

    2016-07-01

    Reliable thermodynamic data are essential for the design and the production of new alloying systems. Particularly, the knowledge of the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) are important for the solidification and the further processing. Investigations of selected commercial Dual-Phase, TRIP and high-Mn TWIP steels by DTA/DSC measurements show that the experimental results differ significantly from the calculation results of thermodynamic databases with respect to the phase transformation temperature and sequence. Based on these findings, it is very important to identify the defective subsystems of complex alloys in order to optimise the thermodynamic databases. In order to verify a quaternary system, e.g. the Fe-C-Si-Mn system, it is important to check the corresponding ternary subsystems. This was performed by DSC measurements of selected model alloys. By doing so, it was found that in Si- and Mn-alloyed Dual-Phase steels the thermodynamic description of the Fe-Si-Mn system is currently inadequate. This is a very important result, since all new designed steel grades for the automotive industry are based on a Fe-C-Si-Mn matrix.

  9. Sacrificing information for the greater good: how to select photometric bands for optimal accuracy

    NASA Astrophysics Data System (ADS)

    Stensbo-Smidt, Kristoffer; Gieseke, Fabian; Igel, Christian; Zirm, Andrew; Steenstrup Pedersen, Kim

    2017-01-01

    Large-scale surveys make huge amounts of photometric data available. Because of the sheer amount of objects, spectral data cannot be obtained for all of them. Therefore, it is important to devise techniques for reliably estimating physical properties of objects from photometric information alone. These estimates are needed to automatically identify interesting objects worth a follow-up investigation as well as to produce the required data for a statistical analysis of the space covered by a survey. We argue that machine learning techniques are suitable to compute these estimates accurately and efficiently. This study promotes a feature selection algorithm, which selects the most informative magnitudes and colours for a given task of estimating physical quantities from photometric data alone. Using k-nearest neighbours regression, a well-known non-parametric machine learning method, we show that using the found features significantly increases the accuracy of the estimations compared to using standard features and standard methods. We illustrate the usefulness of the approach by estimating specific star formation rates (sSFRs) and redshifts (photo-z's) using only the broad-band photometry from the Sloan Digital Sky Survey (SDSS). For estimating sSFRs, we demonstrate that our method produces better estimates than traditional spectral energy distribution fitting. For estimating photo-z's, we show that our method produces more accurate photo-z's than the method employed by SDSS. The study highlights the general importance of performing proper model selection to improve the results of machine learning systems and how feature selection can provide insights into the predictive relevance of particular input features.

  10. The Effects of Various Item Selection Methods on the Classification Accuracy and Classification Consistency of Criterion-Referenced Instruments.

    ERIC Educational Resources Information Center

    Smith, Douglas U.

    This study examined the effects of certain item selection methods on the classification accuracy and classification consistency of criterion-referenced instruments. Three item response data sets, representing varying situations of instructional effectiveness, were simulated. Five methods of item selection were then applied to each data set for the…

  11. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    SciTech Connect

    Zhao, Donghui; Zhu, Yingchun; Li, Fang; Ruan, Qichao; Zhang, Shengmao; Zhang, Linlin; Xu, Fangfang

    2010-01-15

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  12. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus.

    PubMed

    Sohel, M Imroz; Jack, Michael W

    2011-02-01

    The aim of this paper is to present an exergy analysis of bioethanol production process from lignocellulosic feedstock via a biochemical process to asses the overall thermodynamic efficiency and identify the main loss processes. The thermodynamic efficiency of the biochemical process was found to be 35% and the major inefficiencies of this process were identified as: the combustion of lignin for process heat and power production and the simultaneous scarification and co-fermentation process accounting for 67% and 27% of the lost exergy, respectively. These results were also compared with a previous analysis of a thermochemical process for producing biofuel. Despite fundamental differences, the biochemical and thermochemical processes considered here had similar levels of thermodynamic efficiency. Process heat and power production was the major contributor to exergy loss in both of the processes. Unlike the thermochemical process, the overall efficiency of the biochemical process largely depends on how the lignin is utilized.

  13. The effects of demography and long-term selection on the accuracy of genomic prediction with sequence data.

    PubMed

    MacLeod, Iona M; Hayes, Ben J; Goddard, Michael E

    2014-12-01

    The use of dense SNPs to predict the genetic value of an individual for a complex trait is often referred to as "genomic selection" in livestock and crops, but is also relevant to human genetics to predict, for example, complex genetic disease risk. The accuracy of prediction depends on the strength of linkage disequilibrium (LD) between SNPs and causal mutations. If sequence data were used instead of dense SNPs, accuracy should increase because causal mutations are present, but demographic history and long-term negative selection also influence accuracy. We therefore evaluated genomic prediction, using simulated sequence in two contrasting populations: one reducing from an ancestrally large effective population size (Ne) to a small one, with high LD common in domestic livestock, while the second had a large constant-sized Ne with low LD similar to that in some human or outbred plant populations. There were two scenarios in each population; causal variants were either neutral or under long-term negative selection. For large Ne, sequence data led to a 22% increase in accuracy relative to ∼600K SNP chip data with a Bayesian analysis and a more modest advantage with a BLUP analysis. This advantage increased when causal variants were influenced by negative selection, and accuracy persisted when 10 generations separated reference and validation populations. However, in the reducing Ne population, there was little advantage for sequence even with negative selection. This study demonstrates the joint influence of demography and selection on accuracy of prediction and improves our understanding of how best to exploit sequence for genomic prediction.

  14. Trp(359) regulates flavin thermodynamics and coenzyme selectivity in Mycobacterium tuberculosis FprA.

    PubMed

    Neeli, Rajasekhar; Sabri, Muna; McLean, Kirsty J; Dunford, Adrian J; Scrutton, Nigel S; Leys, David; Munro, Andrew W

    2008-05-01

    Mtb (Mycobacterium tuberculosis) FprA (flavoprotein reductase A) is an NAD(P)H-dependent FAD-binding reductase that is structurally related to mammalian adrenodoxin reductase, and which supports the catalytic function of Mtb cytochrome P450s. Trp(359), proximal to the FAD, was investigated in light of its potential role in controlling coenzyme interactions, as observed for similarly located aromatic residues in diflavin reductases. Phylogenetic analysis indicated that a tryptophan residue corresponding to Trp(359) is conserved across FprA-type enzymes and in adrenodoxin reductases. W359A/H mutants of Mtb FprA were generated, expressed and the proteins characterized to define the role of Trp(359). W359A/H mutants exhibited perturbed UV-visible absorption/fluorescence properties. The FAD semiquinone formed in wild-type NADPH-reduced FprA was destabilized in the W359A/H mutants, which also had more positive FAD midpoint reduction potentials (-168/-181 mV respectively, versus the standard hydrogen electrode, compared with -230 mV for wild-type FprA). The W359A/H mutants had lower ferricyanide reductase k(cat) and NAD(P)H K(m) values, but this led to improvements in catalytic efficiency (k(cat)/K(m)) with NADH as reducing coenzyme (9.6/18.8 muM(-1).min(-1) respectively, compared with 5.7 muM(-1).min(-1) for wild-type FprA). Stopped-flow spectroscopy revealed NAD(P)H-dependent FAD reduction as rate-limiting in steady-state catalysis, and to be retarded in mutants (e.g. limiting rate constants for NADH-dependent FAD reduction were 25.4 s(-1) for wild-type FprA and 4.8 s(-1)/13.4 s(-1) for W359A/H mutants). Diminished mutant FAD content (particularly in W359H FprA) highlighted the importance of Trp(359) for flavin stability. The results demonstrate that the conserved Trp(359) is critical in regulating FprA FAD binding, thermodynamic properties, catalytic efficiency and coenzyme selectivity.

  15. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    NASA Astrophysics Data System (ADS)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  16. The effects of relatedness and GxE interaction on prediction accuracies in genomic selection: a study in cassava

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to implementation of genomic selection, an evaluation of the potential accuracy of prediction can be obtained by cross validation. In this procedure, a population with both phenotypes and genotypes is split into training and validation sets. The prediction model is fitted using the training se...

  17. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability

    PubMed Central

    Julian, Mark C.; Li, Lijuan; Garde, Shekhar; Wilen, Rebecca; Tessier, Peter M.

    2017-01-01

    The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability. PMID:28349921

  18. Genomic selection accuracy for grain quality traits in biparental wheat populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a promising tool for plant and animal breeding that uses genome wide molecular marker data to capture small and large effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction ...

  19. Screening Accuracy of Level 2 Autism Spectrum Disorder Rating Scales: A Review of Selected Instruments

    ERIC Educational Resources Information Center

    Norris, Megan; Lecavalier, Luc

    2010-01-01

    The goal of this review was to examine the state of Level 2, caregiver-completed rating scales for the screening of Autism Spectrum Disorders (ASDs) in individuals above the age of three years. We focused on screening accuracy and paid particular attention to comparison groups. Inclusion criteria required that scales be developed post ICD-10, be…

  20. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    PubMed

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection.

  1. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants

    PubMed Central

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection. PMID:27190509

  2. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome

    PubMed Central

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-01-01

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200–80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNAHis and, as also seen in vivo, Glu-tRNAGlu. We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here. PMID:26195797

  3. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome.

    PubMed

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-08-04

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200-80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNA(His) and, as also seen in vivo, Glu-tRNA(Glu). We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here.

  4. Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates for selection. Originally these models were developed without considering genotype ' environment interaction (GE). Several authors have proposed extensions of the cannonical GS model that accomm...

  5. Genomic selection accuracy using multi-family prediction models in a wheat breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotyp...

  6. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce

    PubMed Central

    Beaulieu, J; Doerksen, T; Clément, S; MacKay, J; Bousquet, J

    2014-01-01

    Genomic selection (GS) is of interest in breeding because of its potential for predicting the genetic value of individuals and increasing genetic gains per unit of time. To date, very few studies have reported empirical results of GS potential in the context of large population sizes and long breeding cycles such as for boreal trees. In this study, we assessed the effectiveness of marker-aided selection in an undomesticated white spruce (Picea glauca (Moench) Voss) population of large effective size using a GS approach. A discovery population of 1694 trees representative of 214 open-pollinated families from 43 natural populations was phenotyped for 12 wood and growth traits and genotyped for 6385 single-nucleotide polymorphisms (SNPs) mined in 2660 gene sequences. GS models were built to predict estimated breeding values using all the available SNPs or SNP subsets of the largest absolute effects, and they were validated using various cross-validation schemes. The accuracy of genomic estimated breeding values (GEBVs) varied from 0.327 to 0.435 when the training and the validation data sets shared half-sibs that were on average 90% of the accuracies achieved through traditionally estimated breeding values. The trend was also the same for validation across sites. As expected, the accuracy of GEBVs obtained after cross-validation with individuals of unknown relatedness was lower with about half of the accuracy achieved when half-sibs were present. We showed that with the marker densities used in the current study, predictions with low to moderate accuracy could be obtained within a large undomesticated population of related individuals, potentially resulting in larger gains per unit of time with GS than with the traditional approach. PMID:24781808

  7. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection

    PubMed Central

    Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns

    2012-01-01

    Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg2+ concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon–anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell. PMID:22190491

  8. Detecting recent positive selection with high accuracy and reliability by conditional coalescent tree.

    PubMed

    Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Jin, Li; He, Yungang

    2014-11-01

    Studies of natural selection, followed by functional validation, are shedding light on understanding of genetic mechanisms underlying human evolution and adaptation. Classic methods for detecting selection, such as the integrated haplotype score (iHS) and Fay and Wu's H statistic, are useful for candidate gene searching underlying positive selection. These methods, however, have limited capability to localize causal variants in selection target regions. In this study, we developed a novel method based on conditional coalescent tree to detect recent positive selection by counting unbalanced mutations on coalescent gene genealogies. Extensive simulation studies revealed that our method is more robust than many other approaches against biases due to various demographic effects, including population bottleneck, expansion, or stratification, while not sacrificing its power. Furthermore, our method demonstrated its superiority in localizing causal variants from massive linked genetic variants. The rate of successful localization was about 20-40% higher than that of other state-of-the-art methods on simulated data sets. On empirical data, validated functional causal variants of four well-known positive selected genes were all successfully localized by our method, such as ADH1B, MCM6, APOL1, and HBB. Finally, the computational efficiency of this new method was much higher than that of iHS implementations, that is, 24-66 times faster than the REHH package, and more than 10,000 times faster than the original iHS implementation. These magnitudes make our method suitable for applying on large sequencing data sets. Software can be downloaded from https://github.com/wavefancy/scct.

  9. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  10. Imputation of unordered markers and the impact on genomic selection accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection, a breeding method that promises to accelerate rates of genetic gain, requires dense, genome-wide marker data. Sequence-based genotyping methods can generate de novo large numbers of markers. However, without a reference genome, these markers are unordered and typically have a lar...

  11. Imputation of unordered markers and the impact on genomic selection accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection, a breeding method that promises to accelerate rates of genetic gain, requires dense, genome-wide marker data. Genotyping-by-sequencing can generate a large number of de novo markers. However, without a reference genome, these markers are unordered and typically have a large propo...

  12. Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements.

    PubMed

    Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert

    2015-02-16

    Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.

  13. Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys

    NASA Astrophysics Data System (ADS)

    Abaspour, Saeideh; Cáceres, Carlos H.

    2015-12-01

    Atomic level thermodynamics arguments that account for the generally weak age hardening response while suggesting that extending the athermal regime through short-range order (SRO) is a most feasible path to increasing the creep strength of many current alloys are presented. The tendency, or otherwise, of many solutes to develop SRO in dilute solid solutions rationalizes a number of observations in current multicomponent Mg alloys, and in particular the retention of linear strain hardening at high temperatures, while it disputes the viability of several micromechanisms often considered active, such as pinning of edge dislocations by mobile solute clouds, dynamic precipitation of thermally stable precipitates, or atomic size effects on the diffusivity. Potential solutes are sorted out and ranked based on the sign and value of the enthalpy of mixing of binary solid solutions using the Miedema phenomenological scheme. Due to their large negative energy of mixing and reasonable solubility (>1 at. pct) at ~473 K (~200 °C), Y and Gd appear as the best candidates to increase the creep strength through SRO, followed by Nd and Ca, in close agreement with data reported in the literature. The feasibility of enhancing the age hardening response through homogeneously nucleated, coherent precipitates, in some cases despite the negative energy of mixing of the alloy, or via internally ordered precipitates mimicking those present in Mg-Th alloys is considered by making parallels with the Al-Zn and the Al-Cu alloy systems. The possible optimization of the strengthening of high pressure die cast alloys combining SRO and intergranular eutectics or of heat-treatable cast alloys through internally ordered precipitates and SRO is discussed.

  14. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.

    PubMed

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G

    2016-03-11

    This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions.

  15. Accuracy of travel time distribution (TTD) models as affected by TTD complexity, observation errors, and model and tracer selection

    USGS Publications Warehouse

    Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.

    2014-01-01

    Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.

  16. Classification accuracy analysis of selected land use and land cover products in a portion of West-Central Lower Michigan

    NASA Astrophysics Data System (ADS)

    Ma, Kin Man

    2007-12-01

    Remote sensing satellites have been utilized to characterize and map land cover and its changes since the 1970s. However, uncertainties exist in almost all land use and land cover maps classified from remotely sensed images. In particular, it has been recognized that the spatial mis-registration of land cover maps can affect the true estimates of land use/land cover (LULC) changes. This dissertation addressed the following questions: what are the spatial patterns, magnitudes, and cover-dependencies of classification uncertainty associated with West-Central Lower Michigan's LULC products and how can the adverse effects of spatial misregistration on accuracy assessment be reduced? Two Michigan LULC products were chosen for comparison: 1998 Muskegon River Watershed (MRW) Michigan Resource Information Systems LULC map and a 2001 Integrated Forest Monitoring and Assessment Prescription Project (IFMAP). The 1m resolution 1998 MRW LULC map was derived from U.S. Geological Survey Digital Orthophoto Quarter Quadrangle (USGS DOQQs) color infrared imagery and was used as the reference map, since it has a thematic accuracy of 95%. The IFMAP LULC map was co-registered to a series of selected 1998 USGS DOQQs. The total combined root mean square error (rmse) distance of the georectified 2001 IFMAP was +/-12.20m. A spatial uncertainty buffer of at least 1.5 times the rmse was set at 20m so that polygon core areas would be unaffected by spatial misregistration noise. A new spatial misregistration buffer protocol (SPATIALM_ BUFFER) was developed to limit the effect of spatial misregistration on classification accuracy assessment. Spatial uncertainty buffer zones of 20m were generated around LULC polygons of both datasets. Eight-hundred seventeen (817) stratified random accuracy assessment points (AAPs) were generated across the 1998 MRW map. Classification accuracy and kappa statistics were generated for both the 817 AAPs and 604 AAPs comparisons. For the 817 AAPs comparison, the

  17. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    NASA Astrophysics Data System (ADS)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-01

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.

  18. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    PubMed Central

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  19. Enhancing the High Temperature Capability of Nanocrystalline Alloys: Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through Solute Selection

    DTIC Science & Technology

    2013-12-01

    Army Research Laboratory Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6743 December 2013 Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing...Final Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through

  20. Novel fluorinated block copolymers by selective chemical modification: Chemistry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Davidock, Drew Alan

    Many applications of polymers utilize multi-component systems. Regardless of whether the components are physically linked together or not, the properties that they possess are directly influenced by their self-assembly behavior. To exploit the full potential of such materials, strict control of the polymer-polymer phase behavior is required. The objective of this dissertation was to study polymer-polymer phase behavior by using post-polymerization chemical modification to vary the incompatibility between the components, altering their self-assembly behavior. Initially in this work, the modification chemistries were developed and refined. Model 4,1-polyisoprene-block-1,2-polybutadiene (PI- b-PB) copolymers were used as the parent material. A selective hydrogenation of the PB block was performed using a homogeneous Ru catalyst to yield a saturated hydrocarbon. The PI block was then modified to various extents by the controlled addition of a difluorocarbene (CF2), generated by the thermal decomposition of hexafluoropropylene oxide (HFPO). The effect of these chemical modifications on the self-assembly behavior of a series of PI-PB copolymers was studied. Small-angle x-ray scattering (SAXS) was used to determine the equilibrium morphologies and domain spacings. Effective interaction parameters (chieff) were determined from the temperature- and composition-dependent domain spacings, and were found to increase by a factor of approximately 370 upon complete modification. The experimental morphological map was constructed, and it was found that the gyroid phase appears to be stable into the strong segregation regime, in contrast to expectations based on self-consistent field theory. The modification of block copolymers for the creation of a universal blend compatibilizer was also explored. By changing the chemical nature of one or both blocks, their affinity for various homopolymers can be altered. The compatibilization of blends of polystyrene (PS) and poly

  1. The Role of Some Selected Psychological and Personality Traits of the Rater in the Accuracy of Self- and Peer-Assessment

    ERIC Educational Resources Information Center

    AlFallay, Ibrahim

    2004-01-01

    This paper investigates the role of some selected psychological and personality traits of learners of English as a foreign language in the accuracy of self- and peer-assessments. The selected traits were motivation types, self-esteem, anxiety, motivational intensity, and achievement. 78 students of English as a foreign language participated in…

  2. Thermodynamic modelling of supercritical water gasification: investigating the effect of biomass composition to aid in the selection of appropriate feedstock material.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Knoetze, Johannes H; Burger, Andries J

    2014-12-01

    A process model developed in Aspen Plus®, was used for the thermodynamic modelling of supercritical water gasification (SCWG) using a wide variety of biomass materials as feedstock. The influence of the composition of the biomass material (in terms of carbon, hydrogen and oxygen content) on various performance indicators (such as gas yields, cold gas efficiency, calorific value of product gas and heat of reaction), were determined at various temperatures (600, 700 and 800°C) and biomass feed concentrations (5, 15 and 25wt.%). Generalised contour plots, based on the biomass composition, were developed for these performance indicators to provide the thermodynamic limits at various operating conditions. These plots can aid in the selection or screening of potential biomass materials and appropriate operating conditions for SCWG prior to conducting experimental work.

  3. Selection of representative congener for polychlorinated trans-azobenzenes (PCt-ABs) based on comprehensive thermodynamical and quantum-chemical characterization.

    PubMed

    Wilczyńska-Piliszek, Agata J; Puzyn, Tomasz; Piliszek, Sławomir; Falandysz, Jerzy

    2006-01-01

    Thirty-one thermodynamical and quantum-chemical descriptors were used to characterize all 209 chloro trans-azobenzenes (Ct-ABs, PCt-ABs) in terms of their environmental stability and specific dioxin-like toxicity. Some of the PCt-ABs are produced as a by-side impurity during the manufacture of 3,4-dichloroaniline (DCA) and its derivatives and thus can be found in technical products of certain chloroaniline herbicides. A prepared basic thermodynamic and quantum-chemical property data matrix of PCt-ABs was interpreted using Principal Component Analysis (PCA). The PCA of the thermodynamic and quantum-chemical data matrix created a three-dimensional model that explained 78% (68% + 6% + 4%) of the total variance in the data set. The loading plot shows that the first Principal Component (PC) is influenced by variables describing molecular weight, polarizability and lipophilicity. The second PC was strongly influenced by the most positive partial charge on atoms and the most negative partial charge on atoms. The third PC depends on energy of the highest occupied molecular orbital. Next, factors extracted from PCA were used for selection of a representative set of eight trans-chloroazobenzene congeners, which seemed in the best way reflect a diverse property of all 209 PCt-ABs.

  4. Solvent effect on the complex formation of a crown ether derivative with sodium and potassium ions. Thermodynamic background of selectivity

    NASA Astrophysics Data System (ADS)

    Li, Yin; Huszthy, Péter; Móczár, Ildikó; Szemenyei, Balázs; Kunsági-Máté, Sándor

    2013-01-01

    The complexation properties of dimethyl-pyridino-18-crown-6 ether (M2P18C6) with Na+ and K+ in different primary alcohols including methanol (MeOH), ethanol (EtOH) and n-propanol (n-PrOH) were investigated by UV-vis spectroscopy. Stability constants and thermodynamic parameters have been determined applying the van't Hoff theory. In the cases of both Na+ and K+ the stability constants increase with decreasing permittivity of the solvent used. M2P18C6 always exhibits better affinity to K+ in each alcoholic solution compared to Na+. Thermodynamic studies suggest that in both cases there is a correlation between the permittivity of the solvent and the enthalpy and entropy change of complex formation.

  5. Thermodynamic Properties of Aqueous Carbonate Species and Solid Carbonate Phases of Selected Trace Elements pertinent to Drinking Water Standards of the U.S. Environmental Protection Agency

    SciTech Connect

    Apps, John A.; Wilkin, Richard T.

    2015-09-30

    This report contains a series of tables summarizing the thermodynamic properties of aqueous carbonate complexes and solid carbonate phases of the following elements: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni) thallium (Tl), uranium (U) and zinc (Zn). Most of these elements are potentially hazardous as defined by extant primary drinking water standards of the United States Environmental Protection Agency (EPA). The remainder are not considered hazardous, but are either listed by EPA under secondary standards, or because they can adversely affect drinking water quality. Additional tables are included giving the thermodynamic properties for carbonates of the alkali metal and alkali earth elements, sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and strontium (Sr), because of their value in developing correlative models to estimate the thermodynamic properties of carbonate minerals for which no such data currently exist. The purpose in creating the tables in this report is to provide future investigators with a convenient source for selecting and tracing the sources of thermodynamic data of the above listed elements for use in modeling their geochemical behavior in “underground sources of drinking water” (USDW). The incentive for doing so lies with a heightened concern over the potential consequences of the proposed capture and storage of carbon dioxide (CO2) generated by fossil fuel fired power plants in deep subsurface reservoirs. If CO2 were to leak from such reservoirs, it could migrate upward and contaminate USDWs with undesirable, but undetermined, consequences to water quality. The EPA, Office of Research and Development, through an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory, funded the preparation of this report.

  6. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  7. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  8. A quantitative method for evaluating numerical simulation accuracy of time-transient Lamb wave propagation with its applications to selecting appropriate element size and time step.

    PubMed

    Wan, Xiang; Xu, Guanghua; Zhang, Qing; Tse, Peter W; Tan, Haihui

    2016-01-01

    Lamb wave technique has been widely used in non-destructive evaluation (NDE) and structural health monitoring (SHM). However, due to the multi-mode characteristics and dispersive nature, Lamb wave propagation behavior is much more complex than that of bulk waves. Numerous numerical simulations on Lamb wave propagation have been conducted to study its physical principles. However, few quantitative studies on evaluating the accuracy of these numerical simulations were reported. In this paper, a method based on cross correlation analysis for quantitatively evaluating the simulation accuracy of time-transient Lamb waves propagation is proposed. Two kinds of error, affecting the position and shape accuracies are firstly identified. Consequently, two quantitative indices, i.e., the GVE (group velocity error) and MACCC (maximum absolute value of cross correlation coefficient) derived from cross correlation analysis between a simulated signal and a reference waveform, are proposed to assess the position and shape errors of the simulated signal. In this way, the simulation accuracy on the position and shape is quantitatively evaluated. In order to apply this proposed method to select appropriate element size and time step, a specialized 2D-FEM program combined with the proposed method is developed. Then, the proper element size considering different element types and time step considering different time integration schemes are selected. These results proved that the proposed method is feasible and effective, and can be used as an efficient tool for quantitatively evaluating and verifying the simulation accuracy of time-transient Lamb wave propagation.

  9. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  10. Thermodynamics of statistical inference by cells.

    PubMed

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  11. The equation of state for stellar envelopes. IV - Thermodynamic quantities and selected ionization fractions for six elemental mixes

    NASA Technical Reports Server (NTRS)

    Mihalas, Dimitri; Hummer, D. G.; Mihalas, Barbara Weibel; Daeppen, Werner

    1990-01-01

    The free-energy minimization technique in the form developed in the preceding papers in this series is employed to evaluate thermodynamic quantities and ionization fractions on a fine temperature and density grid for six astrophysical mixtures of 15 elements. The mixtures range from that appropriate to super-metal-rich stars, through solar abundance, to that for extreme Population II objects. In this paper, the results for solar abundances are summarized in a form that is illustrative and which facilitates comparison with the results from other equation of state calculations.

  12. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    PubMed

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  13. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R., II; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  14. Interfacial engineering of solution-processed Ni nanochain-SiOx (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    NASA Astrophysics Data System (ADS)

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; Liu, Jifeng

    2016-04-01

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiOx cermet system compared to conventional Ni-Al2O3 system when annealed in air at 450-600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, we demonstrate that pre-operation annealing of Ni nanochain-SiOx cermets at 900 °C in N2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiOx interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450-600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiOx interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiOx saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal

  15. An Analysis of the Selected Materials Used in Step Measurements During Pre-Fits of Thermal Protection System Tiles and the Accuracy of Measurements Made Using These Selected Materials

    NASA Technical Reports Server (NTRS)

    Kranz, David William

    2010-01-01

    The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.

  16. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  17. Genome-enabled selection doubles the accuracy of predicted breeding values for bacterial cold water disease resistance compared to traditional family-based selection in rainbow trout aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have shown previously that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative enabling exploitation...

  18. Accuracy of genomic prediction for BCWD resistance in rainbow trout using different genotyping platforms and genomic selection models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we aimed to (1) predict genomic estimated breeding value (GEBV) for bacterial cold water disease (BCWD) resistance by genotyping training (n=583) and validation samples (n=53) with two genotyping platforms (24K RAD-SNP and 49K SNP) and using different genomic selection (GS) models (Ba...

  19. Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds

    NASA Astrophysics Data System (ADS)

    Mohanty, Sankhya; Hattel, Jesper H.

    2016-04-01

    Repeatability and reproducibility of parts produced by selective laser melting is a standing issue, and coupled with a lack of standardized quality control presents a major hindrance towards maturing of selective laser melting as an industrial scale process. Consequently, numerical process modelling has been adopted towards improving the predictability of the outputs from the selective laser melting process. Establishing the reliability of the process, however, is still a challenge, especially in components having overhanging structures. In this paper, a systematic approach towards establishing reliability of overhanging structure production by selective laser melting has been adopted. A calibrated, fast, multiscale thermal model is used to simulate the single track formation on a thick powder bed. Single tracks are manufactured on a thick powder bed using same processing parameters, but at different locations in a powder bed and in different laser scanning directions. The difference in melt track widths and depths captures the effect of changes in incident beam power distribution due to location and processing direction. The experimental results are used in combination with numerical model, and subjected to uncertainty and reliability analysis. Cumulative probability distribution functions obtained for melt track widths and depths are found to be coherent with observed experimental values. The technique is subsequently extended for reliability characterization of single layers produced on a thick powder bed without support structures, by determining cumulative probability distribution functions for average layer thickness, sample density and thermal homogeneity.

  20. Performance, Accuracy, Data Delivery, and Feedback Methods in Order Selection: A Comparison of Voice, Handheld, and Paper Technologies

    ERIC Educational Resources Information Center

    Ludwig, Timothy D.; Goomas, David T.

    2007-01-01

    Field study was conducted in auto-parts after-market distribution centers where selectors used handheld computers to receive instructions and feedback about their product selection process. A wireless voice-interaction technology was then implemented in a multiple baseline fashion across three departments of a warehouse (N = 14) and was associated…

  1. Thermodynamic holography

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  2. Thermodynamic Analysis of the Selectivity Enhancement Obtained by Using Smart Hydrogels That Are Zwitterionic When Detecting Glucose With Boronic Acid Moieties

    PubMed Central

    Horkay, F.; Cho, S. H.; Tathireddy, P.; Rieth, L.; Solzbacher, F.; Magda, J.

    2011-01-01

    Because the boronic acid moiety reversibly binds to sugar molecules and has low cytotoxicity, boronic acid-containing hydrogels are being used in a variety of implantable glucose sensors under development, including sensors based on optical, fluorescence, and swelling pressure measurements. However, some method of glucose selectivity enhancement is often necessary, because isolated boronic acid molecules have a binding constant with glucose that is some forty times smaller than their binding constant with fructose, the second most abundant sugar in the human body. In many cases, glucose selectivity enhancement is obtained by incorporating pendant tertiary amines into the hydrogel network, thereby giving rise to a hydrogel that is zwitterionic at physiological pH. However, the mechanism by which incorporation of tertiary amines confers selectivity enhancement is poorly understood. In order to clarify this mechanism, we use the osmotic deswelling technique to compare the thermodynamic interactions of glucose and fructose with a zwitterionic smart hydrogel containing boronic acid moieties. We also investigate the change in the structure of the hydrogel that occurs when it binds to glucose or to fructose using the technique of small angle neutron scattering. PMID:22190765

  3. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    NASA Astrophysics Data System (ADS)

    Escobedo, Fernando A.

    2016-12-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  4. Thermodynamics of Resource Recycling.

    ERIC Educational Resources Information Center

    Hauserman, W. B.

    1988-01-01

    Evaluates the overall economic efficiency of a closed resource cycle. Uses elementary thermodynamic definitions of overall thermal efficiency for determining an economically quantifiable basis. Selects aluminum for investigation and includes a value-entropy diagram for a closed aluminum cycle. (MVL)

  5. Accuracy and Usefulness of Select Methods for Assessing Complete Collection of 24-Hour Urine: A Systematic Review.

    PubMed

    John, Katherine A; Cogswell, Mary E; Campbell, Norm R; Nowson, Caryl A; Legetic, Branka; Hennis, Anselm J M; Patel, Sheena M

    2016-05-01

    Twenty-four-hour urine collection is the recommended method for estimating sodium intake. To investigate the strengths and limitations of methods used to assess completion of 24-hour urine collection, the authors systematically reviewed the literature on the accuracy and usefulness of methods vs para-aminobenzoic acid (PABA) recovery (referent). The percentage of incomplete collections, based on PABA, was 6% to 47% (n=8 studies). The sensitivity and specificity for identifying incomplete collection using creatinine criteria (n=4 studies) was 6% to 63% and 57% to 99.7%, respectively. The most sensitive method for removing incomplete collections was a creatinine index <0.7. In pooled analysis (≥2 studies), mean urine creatinine excretion and volume were higher among participants with complete collection (P<.05); whereas, self-reported collection time did not differ by completion status. Compared with participants with incomplete collection, mean 24-hour sodium excretion was 19.6 mmol higher (n=1781 specimens, 5 studies) in patients with complete collection. Sodium excretion may be underestimated by inclusion of incomplete 24-hour urine collections. None of the current approaches reliably assess completion of 24-hour urine collection.

  6. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  7. Thermodynamics and evolutionary genetics

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2010-03-01

    Thermodynamics and evolutionary genetics have something in common. Thus, the randomness of mutation of cells may be likened to the random thermal fluctuations in a gas. And the probabilistic nature of entropy in statistical thermodynamics can be carried over to a population of haploid and diploid cells without any conceptual change. The energetic potential wells in which the atoms of a liquid are caught correspond to selective advantages for some phenotype over others. Thus, the eventual stable state in a population comes about as a compromise in the universal competition between entropy and energy.

  8. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase.

  9. The Impact of Learning Curve Model Selection and Criteria for Cost Estimation Accuracy in the DoD

    DTIC Science & Technology

    2016-04-30

    Department of the Army. Department of the Air Force. (2007). Air Force cost estimating handbook. Washington, DC: Author. Everest, J. D. (1988). Measuring ...qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = The Impact of Learning Curve Model Selection and Criteria for Cost ...póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 453 - Panel 21. Methods for Improving Cost Estimates for Defense Acquisition Projects Thursday, May 5, 2016 3:30 p.m

  10. Thermodynamic Basis of Selectivity in the Interactions of Tissue Inhibitors of Metalloproteinases N-domains with Matrix Metalloproteinases-1, -3, and -14.

    PubMed

    Zou, Haiyin; Wu, Ying; Brew, Keith

    2016-05-20

    The four tissue inhibitors of metalloproteinases (TIMPs) are potent inhibitors of the many matrixins (MMPs), except that TIMP1 weakly inhibits some MMPs, including MMP14. The broad-spectrum inhibition of MMPs by TIMPs and their N-domains (NTIMPs) is consistent with the previous isothermal titration calorimetric finding that their interactions are entropy-driven but differ in contributions from solvent and conformational entropy (ΔSsolv, ΔSconf), estimated using heat capacity changes (ΔCp). Selective engineered NTIMPs have potential applications for treating MMP-related diseases, including cancer and cardiomyopathy. Here we report isothermal titration calorimetric studies of the effects of selectivity-modifying mutations in NTIMP1 and NTIMP2 on the thermodynamics of their interactions with MMP1, MMP3, and MMP14. The weak inhibition of MMP14 by NTIMP1 reflects a large conformational entropy penalty for binding. The T98L mutation, peripheral to the NTIMP1 reactive site, enhances binding by increasing ΔSsolv but also reduces ΔSconf However, the same mutation increases NTIMP1 binding to MMP3 in an interaction that has an unusual positive ΔCp This indicates a decrease in solvent entropy compensated by increased conformational entropy, possibly reflecting interactions involving alternative conformers. The NTIMP2 mutant, S2D/S4A is a selective MMP1 inhibitor through electrostatic effects of a unique MMP-1 arginine. Asp-2 increases reactive site polarity, reducing ΔCp, but increases conformational entropy to maintain strong binding to MMP1. There is a strong negative correlation between ΔSsolv and ΔSconf for all characterized interactions, but the data for each MMP have characteristic ranges, reflecting intrinsic differences in the structures and dynamics of their free and inhibitor-bound forms.

  11. Influence of Raw Image Preprocessing and Other Selected Processes on Accuracy of Close-Range Photogrammetric Systems According to Vdi 2634

    NASA Astrophysics Data System (ADS)

    Reznicek, J.; Luhmann, T.; Jepping, C.

    2016-06-01

    This paper examines the influence of raw image preprocessing and other selected processes on the accuracy of close-range photogrammetric measurement. The examined processes and features includes: raw image preprocessing, sensor unflatness, distance-dependent lens distortion, extending the input observations (image measurements) by incorporating all RGB colour channels, ellipse centre eccentricity and target detecting. The examination of each effect is carried out experimentally by performing the validation procedure proposed in the German VDI guideline 2634/1. The validation procedure is based on performing standard photogrammetric measurements of high-accurate calibrated measuring lines (multi-scale bars) with known lengths (typical uncertainty = 5 μm at 2 sigma). The comparison of the measured lengths with the known values gives the maximum length measurement error LME, which characterize the accuracy of the validated photogrammetric system. For higher reliability the VDI test field was photographed ten times independently with the same configuration and camera settings. The images were acquired with the metric ALPA 12WA camera. The tests are performed on all ten measurements which gives the possibility to measure the repeatability of the estimated parameters as well. The influences are examined by comparing the quality characteristics of the reference and tested settings.

  12. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  13. Nanoscopic Thermodynamics.

    PubMed

    Qi, Weihong

    2016-09-20

    Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale

  14. Thermodynamics of DNA hybridization on surfaces.

    PubMed

    Schmitt, Terry J; Knotts, Thomas A

    2011-05-28

    Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.

  15. Thermodynamics of DNA hybridization on surfaces

    NASA Astrophysics Data System (ADS)

    Schmitt, Terry J.; Knotts, Thomas A.

    2011-05-01

    Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.

  16. Short communication: The combined use of linkage disequilibrium-based haploblocks and allele frequency-based haplotype selection methods enhances genomic evaluation accuracy in dairy cattle.

    PubMed

    Jónás, Dávid; Ducrocq, Vincent; Croiseau, Pascal

    2017-04-01

    The construction and use of haploblocks [adjacent single nucleotide polymorphisms (SNP) in strong linkage disequilibrium] for genomic evaluation is advantageous, because the number of effects to be estimated can be reduced without discarding relevant genomic information. Furthermore, haplotypes (the combination of 2 or more SNP) can increase the probability of capturing the quantitative trait loci effect compared with individual SNP markers. With regards to haplotypes, the allele frequency parameter is also of interest, because as a selection criterion, it allows the number of rare alleles to be reduced, and the effects of those alleles are usually difficult to estimate. We have proposed a simple pipeline that simultaneously incorporates linkage disequilibrium and allele frequency information in genomic evaluation, and here we present the first results obtained with this procedure. We used a population of 2,235 progeny-tested bulls from the Montbéliarde breed for the tests. Phenotype data were available in the form of daughter yield deviations on 5 production traits, and genotype data were available from the 50K SNP chip. We conducted a classical validation study by splitting the population into training (80% oldest animals) and validation (20% youngest animals) sets to emulate a real-life scenario in which the selection candidates had no available phenotype data. We measured all reported parameters for the validation set. Our results proved that the proposed method was indeed advantageous, and that the accuracy of genomic evaluation could be improved. Compared with results from a genomic BLUP analysis, correlations between daughter yield deviations (a proxy for true) and genomic estimated breeding values increased by an average of 2.7 percentage points for the 5 traits. Inflation of the genomic evaluation of the selection candidates was also significantly reduced. The proposed method outperformed the other SNP and haplotype-based tests we had evaluated in a

  17. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk

    1998-01-01

    This review critically evaluates the reported thermodynamic data on chromium metal, oxides, hydroxides, free aqueous ions, and hydrolysis species. Several discrepancies and inconsistencies have been uncovered and resolved to improve equilibrium calculations for chemical modeling and related engineering purposes. A revised set of data is derived from evaluation of electrochemical measurements, silver chromate solubility measurements, and auxiliary post-1980 data, reevaluation of earlier data, and reconsideration of the path for the thermodynamic network. The recommended thermodynamic values for Cr(cr), C , C , Cr , Cr2 , Cr2O3(cr), CrO3(cr), FeCr2O4(cr), CrCl2(cr), CrCl3(cr), and KFe3(CrO4)2(OH)6(cr)at 25 °C, 1 bar, and infinite dilution are given.

  18. Advances in thermodynamics

    SciTech Connect

    Sieniutycz, S. ); Salamon, P. )

    1990-01-01

    This book covers: nonequilibrium thermodynamics for solar energy applications; finite-time thermodynamics as applied to solar power conversion; thermodynamics and economics; exergy analysis; and an analysis of cumulative exergy consumption and exergy losses.

  19. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    PubMed Central

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  20. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    PubMed

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  1. Thermodynamic efficiency out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sivak, David; Crooks, Gavin

    2011-03-01

    Molecular-scale machines typically operate far from thermodynamic equilibrium, limiting the applicability of equilibrium statistical mechanics to understand their efficiency. Thermodynamic length analysis relates a non-equilibrium property (dissipation) to equilibrium properties (equilibrium fluctuations and their relaxation time). Herein we demonstrate that the thermodynamic length framework follows directly from the assumptions of linear response theory. Uniting these two frameworks provides thermodynamic length analysis a firmer statistical mechanical grounding, and equips linear response theory with a metric structure to facilitate the prediction and discovery of optimal (minimum dissipation) paths in complicated free energy landscapes. To explore the applicability of this theoretical framework, we examine its accuracy for simple bistable systems, parametrized to model single-molecule force-extension experiments. Through analytic derivation of the equilibrium fluctuations and numerical calculation of the dissipation and relaxation time, we verify that thermodynamic length analysis (though derived in a near-equilibrium limit) provides a strikingly good approximation even far from equilibrium, and thus provides a useful framework for understanding molecular motor efficiency.

  2. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  3. The accuracy of selected land use and land cover maps at scales of 1:250,000 and 1:100,000

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine

    1980-01-01

    Land use and land cover maps produced by the U.S. Geological Survey are found to meet or exceed the established standard of accuracy. When analyzed using a point sampling technique and binomial probability theory, several maps, illustrative of those produced for different parts of the country, were found to meet or exceed accuracies of 85 percent. Those maps tested were Tampa, Fla., Portland, Me., Charleston, W. Va., and Greeley, Colo., published at a scale of 1:250,000, and Atlanta, Ga., and Seattle and Tacoma, Wash., published at a scale of 1:100,000. For each map, the values were determined by calculating the ratio of the total number of points correctly interpreted to the total number of points sampled. Six of the seven maps tested have accuracies of 85 percent or better at the 95-percent lower confidence limit. When the sample data for predominant categories (those sampled with a significant number of points) were grouped together for all maps, accuracies of those predominant categories met the 85-percent accuracy criterion, with one exception. One category, Residential, had less than 85-percent accuracy at the 95-percent lower confidence limit. Nearly all residential land sampled was mapped correctly, but some areas of other land uses were mapped incorrectly as Residential.

  4. Statistical thermodynamics of clustered populations.

    PubMed

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  5. The Role of Selected Lexical Factors on Confrontation Naming Accuracy, Speed, and Fluency in Adults Who Do and Do Not Stutter

    ERIC Educational Resources Information Center

    Newman, Rochelle S.; Ratner, Nan Bernstein

    2007-01-01

    Purpose: The purpose of this study was to investigate whether lexical access in adults who stutter (AWS) differs from that in people who do not stutter. Specifically, the authors examined the role of 3 lexical factors on naming speed, accuracy, and fluency: word frequency, neighborhood density, and neighborhood frequency. If stuttering results…

  6. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    USGS Publications Warehouse

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  7. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  8. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative enabling exploitation...

  9. Effect of optical digitizer selection on the application accuracy of a surgical localization system-a quantitative comparison between the OPTOTRAK and flashpoint tracking systems

    NASA Technical Reports Server (NTRS)

    Li, Q.; Zamorano, L.; Jiang, Z.; Gong, J. X.; Pandya, A.; Perez, R.; Diaz, F.

    1999-01-01

    Application accuracy is a crucial factor for stereotactic surgical localization systems, in which space digitization camera systems are one of the most critical components. In this study we compared the effect of the OPTOTRAK 3020 space digitization system and the FlashPoint Model 3000 and 5000 3D digitizer systems on the application accuracy for interactive localization of intracranial lesions. A phantom was mounted with several implantable frameless markers which were randomly distributed on its surface. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points represented the deviation from the "true point." The root mean square (RMS) was calculated to show the differences, and a paired t-test was used to analyze the results. The results with the phantom showed that, for 1-mm sections of CT scans, the RMS was 0.76 +/- 0. 54 mm for the OPTOTRAK system, 1.23 +/- 0.53 mm for the FlashPoint Model 3000 3D digitizer system, and 1.00 +/- 0.42 mm for the FlashPoint Model 5000 system. These preliminary results showed that there is no significant difference between the three tracking systems, and, from the quality point of view, they can all be used for image-guided surgery procedures. Copyright 1999 Wiley-Liss, Inc.

  10. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  11. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    DTIC Science & Technology

    2010-08-01

    EIGENVALUE DETONATION Previous studies have shown that the traditional Chapman - Jouguet detonation theory does not explain the observed detonation...PAX- 30 and PAX-29 explosives produce eigenvalue, rather than traditional Chapman - Jouguet detonations, a modified analytic cylinder test model was...the expanding detonation products from the Chapman - Jouguet state. In addition, constant detonation products are assumed across spherical surfaces

  12. Thermodynamics of the Earth

    NASA Astrophysics Data System (ADS)

    Stacey, Frank D.

    2010-04-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 × 1012 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>104 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  13. Redshift-space distortions of galaxies, clusters, and AGN. Testing how the accuracy of growth rate measurements depends on scales and sample selections

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Veropalumbo, Alfonso; Moscardini, Lauro; Cimatti, Andrea; Dolag, Klaus

    2017-03-01

    Aims: Redshift-space clustering anisotropies caused by cosmic peculiar velocities provide a powerful probe to test the gravity theory on large scales. However, to extract unbiased physical constraints, the clustering pattern has to be modelled accurately, taking into account the effects of non-linear dynamics at small scales, and properly describing the link between the selected cosmic tracers and the underlying dark matter field. Methods: We used a large hydrodynamic simulation to investigate how the systematic error on the linear growth rate, f, caused by model uncertainties, depends on sample selections and co-moving scales. Specifically, we measured the redshift-space two-point correlation function of mock samples of galaxies, galaxy clusters and active galactic nuclei, extracted from the Magneticum simulation, in the redshift range 0.2 ≤ z ≤ 2, and adopting different sample selections. We estimated fσ8 by modelling both the monopole and the full two-dimensional anisotropic clustering, using the dispersion model. Results: We find that the systematic error on fσ8 depends significantly on the range of scales considered for the fit. If the latter is kept fixed, the error depends on both redshift and sample selection due to the scale-dependent impact of non-linearities if not properly modelled. Concurrently, we show that it is possible to achieve almost unbiased constraints on fσ8 provided that the analysis is restricted to a proper range of scales that depends non-trivially on the properties of the sample. This can have a strong impact on multiple tracer analyses, and when combining catalogues selected at different redshifts.

  14. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  15. Thermodynamic Model of Afterburning in Explosions

    SciTech Connect

    Kuhl, A L; Howard, M; Fried, L

    2003-04-23

    Thermodynamic states encountered during afterburning of explosion products gases in air were analyzed with the Cheetah code. Results are displayed in the form of Le Chatelier diagrams: the locus of states of specific internal energy versus temperature, for six different condensed explosives charges. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f ( T ) suitable for specifying the thermodynamic properties required for gas-dynamic models of afterburning in explosions.

  16. Thermodynamics of Bioreactions.

    PubMed

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  17. Stochastic Thermodynamics of Learning

    NASA Astrophysics Data System (ADS)

    Goldt, Sebastian; Seifert, Udo

    2017-01-01

    Virtually every organism gathers information about its noisy environment and builds models from those data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency η ≤1 . We discuss the conditions for optimal learning and analyze Hebbian learning in the thermodynamic limit.

  18. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  19. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  20. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  1. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  2. Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes.

    PubMed

    Gan, Quan; Zou, Yiran; Rooney, David; Nancarrow, Paul; Thompson, Jillian; Liang, Lizhe; Lewis, Moira

    2011-05-11

    Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [C(n)mim][NTf2] (n=2.4, 6, 8.10) from simple gas H(2), N(2), to polar CO(2), and C(2)H(6), leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution-diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution-diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H(2), N(2)) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C(2)H(6) and CO(2). With exothermic dissolution enthalpy and large order disruptive entropy, C(2)H(6) displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C(2)H(6) gas molecules "peg" on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO(2)-ILs affinity resulted in a more prolonged "residence time" for the gas molecule, typified by reversed CO(2)/N(2) selectivity and slowest CO(2) transport despite CO(2) possess the highest solubility and

  3. Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data.

    PubMed

    Shyu, Conrad; Ytreberg, F Marty

    2009-11-15

    This report presents the application of polynomial regression for estimating free energy differences using thermodynamic integration data, i.e., slope of free energy with respect to the switching variable lambda. We employ linear regression to construct a polynomial that optimally fits the thermodynamic integration data, and thus reduces the bias and uncertainty of the resulting free energy estimate. Two test systems with analytical solutions were used to verify the accuracy and precision of the approach. Our results suggest that use of regression with high degree of polynomials provides the most accurate free energy difference estimates, but often with slightly larger uncertainty, compared to commonly used quadrature techniques. High degree polynomials possess the flexibility to closely fit the thermodynamic integration data but are often sensitive to small changes in the data points. Thus, we also used Chebyshev nodes to guide in the selection of nonequidistant lambda values for use in thermodynamic integration. We conclude that polynomial regression with nonequidistant lambda values delivers the most accurate and precise free energy estimates for thermodynamic integration data for the systems considered here. Software and documentation is available at http://www.phys.uidaho.edu/ytreberg/software.

  4. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  5. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  6. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    SciTech Connect

    Rodriguez, Kenneth R. Nanney, Warren A.; Maddux, Cassandra J.A.; Martínez, Hernán L.; Malone, Marvin A.; Coe, James V.

    2014-12-15

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (nthermodynamic potentials were obtained using a previously demonstrated robust method based on semi-empirical PM3 calculations and an extrapolated cluster approach. Those values were used to study the relationship between the thermodynamic potentials and the diameter of the nanotube. Results of this study led to the proposal of a single equation for the thermodynamical potential of ΔH{sub AB}{sup 298 K} or ΔG{sub AB}{sup 298 K} (assembly of nanotubes from atoms) versus the chiral vector indexes n and m for any given nanotube. The equations show a good level of accuracy in predicting thermodynamic potentials for practical applications.

  7. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  8. Genomic selection & association mapping in rice: effect of trait genetic architecture, training population composition, marker number & statistical model on accuracy of rice genomic selection in elite, tropical rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its ef...

  9. Physical analogy between continuum thermodynamics and classical mechanics.

    PubMed

    Umantsev, Alex

    2004-01-01

    The main focus of this paper is the profound physical analogy between a continuum thermodynamical system, which evolves with relaxation under (possibly) nonisothermal conditions, and a classical mechanical system of a few interacting particles moving with dissipation in (possibly), time-dependent nonconservative fields. This analogy is applied to the problem of phase transitions in a one-dimensional thermodynamic system. The thermomechanical analogy stems from the validity of variational methods in mechanics and thermodynamics and allows for a different interpretation of the dynamical selection principle in the theory of pattern formation. This physical analogy is very helpful for understanding different nonlinear thermodynamic phenomena and for developing intuition in numerical simulations.

  10. Turbopump thermodynamic cooling

    NASA Technical Reports Server (NTRS)

    Patten, T. C.; Mckee, H. B.

    1972-01-01

    System for cooling turbopumps used in cryogenic fluid storage facilities is described. Technique uses thermodynamic propellant vent to intercept pump heat at desired conditions. Cooling system uses hydrogen from outside source or residual hydrogen from cryogenic storage tank.

  11. Thermodynamics: A Stirling effort

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Parrondo, Juan M. R.

    2012-02-01

    The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

  12. Thermodynamics and Frozen Foods.

    ERIC Educational Resources Information Center

    Kerr, William L.; Reid, David S.

    1993-01-01

    The heat content of a food at a given temperature can be described by the thermodynamic property of enthalpy. Presents a method to construct a simple calorimeter for measuring the enthalpy changes of different foods during freezing. (MDH)

  13. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  14. Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins. The metal-binding properties of amide donors. A crystallographic and thermodynamic study.

    PubMed

    Clapp, Laura A; Siddons, Chynthia J; Whitehead, Jason R; VanDerveer, Donald G; Rogers, Robin D; Griffin, Scott T; Jones, S Bart; Hancock, Robert D

    2005-11-14

    angles involving coordinated amides in these sites are large, commonly being in the 150-180 degrees range. This is discussed in terms of the idea that for purely ionic bonding the M-O=C bond angle will approach 180 degrees, while for covalent bonding the angle should be closer to 120 degrees. How this fact might be used by the proteins to control selectivity for different metal ions is discussed.

  15. Thermodynamics in Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Meilanov, R. P.; Magomedov, R. A.

    2014-11-01

    A generalization of thermodynamics in the formalism of fractional-order derivatives is given. Results of the traditional thermodynamics of Carnot, Clausius, and Helmholtz are obtained in the particular case where the exponent of a fractional-order derivative is equal to unity. A one-parametric "fractal" equation of state is obtained with account of the second virial coefficient. The application of the resulting equation of state in the case of the gas argon is considered.

  16. Assessing the Accuracy of Ancestral Protein Reconstruction Methods

    PubMed Central

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-01-01

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of “ancestral sequences” inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a “best guess” amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated. PMID:16789817

  17. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules.

    PubMed

    Li, Yi-Pei; Bell, Alexis T; Head-Gordon, Martin

    2016-06-14

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO(hf)). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentials are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO(hf) model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By contrast, the HO(hf) model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO(hf) model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol(-1) K(-1) at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol(-1) K(-1), respectively. For a test set

  18. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  19. Stereotype Accuracy: Toward Appreciating Group Differences.

    ERIC Educational Resources Information Center

    Lee, Yueh-Ting, Ed.; And Others

    The preponderance of scholarly theory and research on stereotypes assumes that they are bad and inaccurate, but understanding stereotype accuracy and inaccuracy is more interesting and complicated than simpleminded accusations of racism or sexism would seem to imply. The selections in this collection explore issues of the accuracy of stereotypes…

  20. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail.

  1. Thermodynamics of Biological Processes

    PubMed Central

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  2. Thermodynamics of Nonadditive Systems.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2015-06-12

    The usual formulation of thermodynamics is based on the additivity of macroscopic systems. However, there are numerous examples of macroscopic systems that are not additive, due to the long-range character of the interaction among the constituents. We present here an approach in which nonadditive systems can be described within a purely thermodynamics formalism. The basic concept is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. After presenting the approach, we show its implementation in systems where the interaction decays as 1/r(α) in the interparticle distance r, with α smaller than the embedding dimension d, and in the Thirring model for gravitational systems.

  3. Thermodynamics of graphene

    NASA Astrophysics Data System (ADS)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  4. Viscoplasticity: A thermodynamic formulation

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Chaboche, J. L.

    1989-01-01

    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.

  5. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  6. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  7. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  8. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  9. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  10. Thermodynamically Correct Bioavailability Estimations

    DTIC Science & Technology

    1992-04-30

    6448 I 1. SWPPUMENTA* NOTIS lIa. OISTUAMJTiOAVAILAIILTY STATIMENT 121 OT REbT ostwosCo z I Approved for public release; distribution unlimited... research is to develop thermodynamically correct bioavailability estimations using chromatographic stationary phases as a model of the "interphase

  11. Program Computes Thermodynamic Functions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1994-01-01

    PAC91 is latest in PAC (Properties and Coefficients) series. Two principal features are to provide means of (1) generating theoretical thermodynamic functions from molecular constants and (2) least-squares fitting of these functions to empirical equations. PAC91 written in FORTRAN 77 to be machine-independent.

  12. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  13. Single molecules: Thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2012-09-01

    Technologies aimed at single-molecule resolution of non-equilibrium systems increasingly require sophisticated new ways of thinking about thermodynamics. An elegant extension to standard fluctuation theory grants access to the kinetic intermediate states of these systems -- as DNA-pulling experiments now demonstrate.

  14. On Teaching Thermodynamics

    ERIC Educational Resources Information Center

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  15. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  16. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  17. Practical thermodynamics of Yukawa systems at strong coupling

    SciTech Connect

    Khrapak, Sergey A.; Kryuchkov, Nikita P.; Yurchenko, Stanislav O.; Thomas, Hubertus M.

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.

  18. Enhancing and evaluating diagnostic accuracy.

    PubMed

    Swets, J A; Getty, D J; Pickett, R M; D'Orsi, C J; Seltzer, S E; McNeil, B J

    1991-01-01

    Techniques that may enhance diagnostic accuracy in clinical settings were tested in the context of mammography. Statistical information about the relevant features among those visible in a mammogram and about their relative importances in the diagnosis of breast cancer was the basis of two decision aids for radiologists: a checklist that guides the radiologist in assigning a scale value to each significant feature of the images of a particular case, and a computer program that merges those scale values optimally to estimate a probability of malignancy. A test set of approximately 150 proven cases (including normals and benign and malignant lesions) was interpreted by six radiologists, first in their usual manner and later with the decision aids. The enhancing effect of these feature-analytic techniques was analyzed across subsets of cases that were restricted progressively to more and more difficult cases, where difficulty was defined in terms of the radiologists' judgements in the standard reading condition. Accuracy in both standard and enhanced conditions decreased regularly and substantially as case difficulty increased, but differentially, such that the enhancement effect grew regularly and substantially. For the most difficult case sets, the observed increases in accuracy translated into an increase of about 0.15 in sensitivity (true-positive proportion) for a selected specificity (true-negative proportion) of 0.85 or a similar increase in specificity for a selected sensitivity of 0.85. That measured accuracy can depend on case-set difficulty to different degrees for two diagnostic approaches has general implications for evaluation in clinical medicine. Comparative, as well as absolute, assessments of diagnostic performances--for example, of alternative imaging techniques--may be distorted by inadequate treatments of this experimental variable. Subset analysis, as defined and illustrated here, can be useful in alleviating the problem.

  19. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  20. Landsat wildland mapping accuracy

    USGS Publications Warehouse

    Todd, William J.; Gehring, Dale G.; Haman, J. F.

    1980-01-01

    A Landsat-aided classification of ten wildland resource classes was developed for the Shivwits Plateau region of the Lake Mead National Recreation Area. Single stage cluster sampling (without replacement) was used to verify the accuracy of each class.

  1. Contact symmetries and Hamiltonian thermodynamics

    SciTech Connect

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-10-15

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  2. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  3. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  4. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  5. Statistical Thermodynamics of Biomembranes

    PubMed Central

    Devireddy, Ram V.

    2010-01-01

    An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, Deuteurium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me2SO), a commonly used cryoprotective agent (CPA). PMID:19460363

  6. New distributions in thermodynamics

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2016-09-01

    A model of the equation of state for classical gases consisting of nonpolar molecules is constructed under the assumption that the spinodal, critical isochore, and second virial coefficients of the gas have been set. The corresponding thermodynamic distributions are determined. It is shown that the isotherms constructed in the framework of the proposed model coincide with the isotherms of the van der Waals model obtained on a different basis.

  7. Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  8. Thermodynamical Arguments Against Evolution

    NASA Astrophysics Data System (ADS)

    Rosenhouse, Jason

    2017-02-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be impossible. Scientists have responded primarily by noting that the second law does not rule out increases in complexity in open systems, and since the Earth receives energy from the Sun, it is an open system. This reply is correct as far as it goes, and it adequately rebuts the most crude versions of the second law argument. However, it is insufficient against more sophisticated versions, and it leaves many relevant aspects of thermodynamics unexplained. We shall consider the history of the argument, explain the nuances various anti-evolution writers have brought to it, and offer thorough explanations for why the argument is fallacious. We shall emphasize in particular that the second law is best viewed as a mathematical statement. Since anti-evolutionists never make use of the mathematical structure of thermodynamics, invocations of the second law never contribute anything substantive to their discourse.

  9. The discovery of thermodynamics

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  10. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  11. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  12. Nonequilibrium thermodynamics of nucleation

    NASA Astrophysics Data System (ADS)

    Schweizer, M.; Sagis, L. M. C.

    2014-12-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  13. Finding limiting possibilities of thermodynamic systems by optimization

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw; Tsirlin, Anatoly

    2017-03-01

    We consider typical problems of the field called the finite time thermodynamics (also called the optimization thermodynamics). We also outline selected formal methods applied to solve these problems and discuss some results obtained. It is shown that by introducing constraints imposed on the intensity of fluxes and on the magnitude of coefficients in kinetic equations, it is possible not only to investigate limiting possibilities of thermodynamic systems within the considered class of irreversible processes, but also to state and solve problems whose formulation has no meaning in the class of reversible processes. This article is part of the themed issue 'Horizons of cybernetical physics'.

  14. Actinide thermodynamic predictions. 3. Thermodynamics of compounds and aquo ions of the 2+, 3+ and 4+ oxidation states and standard electrode potentials at 298. 15 K

    SciTech Connect

    Bratsch, S.G.; Lagowski, J.J.

    1986-01-16

    A modified ionic model is applied to selected actinide thermodynamic measurements to allow the evaluation of gas-phase ion thermodynamics across the actinide series. These are used to predict the thermodynamic properties of a number of actinide compounds and aquo ions at 298.15 K. General guidelines are offered for predicting the relative stabilities of actinide(II), -(III), and -(IV) compounds in various chemical environments. 40 references, 6 figures, 8 tables.

  15. Numerical accuracy assessment

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-12-01

    A framework is provided for numerical accuracy assessment. The purpose of numerical flow simulations is formulated. This formulation concerns the classes of aeronautical configurations (boundaries), the desired flow physics (flow equations and their properties), the classes of flow conditions on flow boundaries (boundary conditions), and the initial flow conditions. Next, accuracy and economical performance requirements are defined; the final numerical flow simulation results of interest should have a guaranteed accuracy, and be produced for an acceptable FLOP-price. Within this context, the validation of numerical processes with respect to the well known topics of consistency, stability, and convergence when the mesh is refined must be done by numerical experimentation because theory gives only partial answers. This requires careful design of text cases for numerical experimentation. Finally, the results of a few recent evaluation exercises of numerical experiments with a large number of codes on a few test cases are summarized.

  16. Ornstein-Zernike derivative relations and thermodynamic functions

    NASA Astrophysics Data System (ADS)

    Gan, Hin Hark; Eu, Byung Chan

    1992-01-01

    The consequences of the derivatives of the Ornstein-Zernike relation with respect to the density (ρ) and temperature (T) are examined. An approximate closure for the Ornstein-Zernike relation is used to evaluate the derivatives of the pair-correlation function to all orders without knowing explicitly the correlation functions higher in order than the pair-correlation function. The first- and second-order thermodynamic (ρ or T) derivatives of the pair-correlation function are calculated and compared with the experiments of Egelstaff et al. In addition, the thermodynamic functions involving these derivatives are evaluated to demonstrate the utility and accuracy of the method.

  17. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    SciTech Connect

    Kuhl, . L

    2006-06-19

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  18. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  19. Thermodynamics of adaptive molecular resolution

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  20. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  1. Thermodynamics of Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  2. Stochastic thermodynamics of resetting

    NASA Astrophysics Data System (ADS)

    Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

    2016-03-01

    Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

  3. Dynamics versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    1991-05-01

    An effort is made to characterize the ways in which the approaches of statistical mechanics and thermodynamics can be useful in the study of the dynamic behavior of structures. This meditation proceeds through consideration of such wide-ranging and deliberately provocative questions as: 'What are to be considered values in a stress-distribution function?' and 'How many degrees-of-freedom has a beam?'; it then gives attention to the hierarchy of vibrations, the interaction of the mechanism of dissipation with invisible degrees of freedom, and a plausible view of vibrations for the case of small dissipation.

  4. Autonomous quantum thermodynamic machines

    NASA Astrophysics Data System (ADS)

    Tonner, Friedemann; Mahler, Günter

    2005-12-01

    We investigate the dynamics of a quantum system consisting of a single spin coupled to an oscillator and sandwiched between two thermal baths at different temperatures. By means of an adequately designed Lindblad equation, it is shown that this device can function as a thermodynamic machine exhibiting Carnot-type cycles. For the present model, this means that when run as a heat engine, coherent motion of the oscillator is amplified. Contrary to the quantum computer, such a machine has a quantum as well as a classical limit. Away from the classical limit, it asymptotically approaches a stationary transport scenario.

  5. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  6. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  7. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  8. Thermodynamics of geothermal fluids

    SciTech Connect

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  9. Thermodynamics of Error Correction

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2015-10-01

    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  10. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  11. Thermodynamic stability contributes to immunoglobulin specificity.

    PubMed

    Dimitrov, Jordan D; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien

    2014-05-01

    Antigen-binding specificity of immunoglobulins is important for their function in immune defense. However, immune repertoires contain a considerable fraction of immunoglobulins with promiscuous binding behavior, the physicochemical basis of which is not well understood. Evolution of immunoglobulin specificity occurs through iterative processes of mutation and selection, referred to as affinity maturation. Recent studies reveal that some somatic mutations could compromise the thermodynamic stability of the variable regions of immunoglobulins. By integrating this observation with the wealth of data on the evolution of novel enzyme activities, we propose that antibody specificity is linked to the thermodynamic stability of the antigen-binding regions, which provides a quantitative distinction between highly specific and promiscuous antibodies.

  12. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  13. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    PubMed Central

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  14. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  15. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    PubMed

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  16. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  17. Thermodynamics from Car to Kitchen

    ERIC Educational Resources Information Center

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  18. Ch. 33 Modeling: Computational Thermodynamics

    SciTech Connect

    Besmann, Theodore M

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  19. Comments to Irreversibility in Thermodynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1995-01-01

    The problem of irreversibility in thermodynamics was revisited and analyzed on the microscopic, stochastic, and macroscopic levels of description. It was demonstrated that Newtonian dynamics can be represented in the Reynolds form, a new phenomenological force with non-Lipschitz properties was introduced, and additional non- Lipschitz thermodynamical forces were incorporated into macroscopic models of transport phenomena.

  20. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  1. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  2. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  3. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

  4. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  5. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  6. Thermodynamics of anisotropic branes

    NASA Astrophysics Data System (ADS)

    Ávila, Daniel; Fernández, Daniel; Patiño, Leonardo; Trancanelli, Diego

    2016-11-01

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  7. High Accuracy Fuel Flowmeter, Phase 1

    NASA Technical Reports Server (NTRS)

    Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.

    1983-01-01

    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.

  8. Thermodynamics of feldspathoid solutions

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    We have developed models for the thermody-namic properties of nephelines, kalsilites, and leucites in the simple system NaAlSiO4-KAlSiO4-Ca0.5AlSiO4-SiO2-H2O that are consistent with all known constraints on subsolidus equilibria and thermodynamic properties, and have integrated them into the existing MELTS software package. The model for nepheline is formulated for the simplifying assumptions that (1) a molecular mixing-type approximation describes changes in the configurational entropy associated with the coupled exchange substitutions □Si?NaAl and □Ca? Na2 and that (2) Na+ and K+ display long-range non-convergent ordering between a large cation and the three small cation sites in the Na4Al4Si4O16 formula unit. Notable features of the model include the prediction that the mineral tetrakalsilite (``panunzite'', sensu stricto) results from anti-ordering of Na and K between the large cation and the three small cation sites in the nepheline structure at high temperatures, an average dT/dP slope of about 55°/kbar for the reaction over the temperature and pressure ranges 800-1050 °C and 500-5000 bars, roughly symmetric (i.e. quadratic) solution behavior of the K-Na substitution along joins between fully ordered components in nepheline, and large positive Gibbs energies for the nepheline reciprocal reactions and and for the leucite reciprocal reaction

  9. Laser engines operating by resonance absorption. [thermodynamic feasibility study

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Pechersky, M. J.

    1976-01-01

    Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.

  10. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOEpatents

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  11. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  12. Thermodynamics of weight loss diets.

    PubMed

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  13. The thermodynamic properties of benzothiazole and benzoxazole

    NASA Astrophysics Data System (ADS)

    Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.

  14. The thermodynamic properties of benzothiazole and benzoxazole

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key'' organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments. 68 refs., 6 figs., 15 tabs.

  15. Directionality principles in thermodynamics and evolution.

    PubMed

    Demetrius, L

    1997-04-15

    Directionality in populations of replicating organisms can be parametrized in terms of a statistical concept: evolutionary entropy. This parameter, a measure of the variability in the age of reproducing individuals in a population, is isometric with the macroscopic variable body size. Evolutionary trends in entropy due to mutation and natural selection fall into patterns modulated by ecological and demographic constraints, which are delineated as follows: (i) density-dependent conditions (a unidirectional increase in evolutionary entropy), and (ii) density-independent conditions, (a) slow exponential growth (an increase in entropy); (b) rapid exponential growth, low degree of iteroparity (a decrease in entropy); and (c) rapid exponential growth, high degree of iteroparity (random, nondirectional change in entropy). Directionality in aggregates of inanimate matter can be parametrized in terms of the statistical concept, thermodynamic entropy, a measure of disorder. Directional trends in entropy in aggregates of matter fall into patterns determined by the nature of the adiabatic constraints, which are characterized as follows: (i) irreversible processes (an increase in thermodynamic entropy) and (ii) reversible processes (a constant value for entropy). This article analyzes the relation between the concepts that underlie the directionality principles in evolutionary biology and physical systems. For models of cellular populations, an analytic relation is derived between generation time, the average length of the cell cycle, and temperature. This correspondence between generation time, an evolutionary parameter, and temperature, a thermodynamic variable, is exploited to show that the increase in evolutionary entropy that characterizes population processes under density-dependent conditions represents a nonequilibrium analogue of the second law of thermodynamics.

  16. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K

    USGS Publications Warehouse

    Haas, John L.; Robinson, Glipin R.; Hemingway, Bruch S.

    1981-01-01

    The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.

  17. Thermodynamic Metrics and Optimal Paths

    SciTech Connect

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  18. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  19. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  20. Stochastic thermodynamics of information processing

    NASA Astrophysics Data System (ADS)

    Cardoso Barato, Andre

    2015-03-01

    We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.

  1. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  2. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  3. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  4. The use of thermodynamic and kinetic data in drug discovery: decisive insight or increasing the puzzlement?

    PubMed

    Klebe, Gerhard

    2015-02-01

    The prime property to rate the success of hit-to-lead-to-drug optimization in drug discovery is binding affinity. Rational approaches try to relate this property with structure. Affinity can be linked to the thermodynamic property, Gibbs free energy of binding, which itself factorizes into enthalpy and entropy. With respect to kinetic properties, affinity can be associated with the ratio of koff and kon of complex formation. Do these features help to obtain better insight into affinity? The present viewpoint assesses our current understanding of thermodynamics- or kinetics-structure relationships and questions the accuracy of data collected to learn about the thermodynamic and kinetic basis to comprehend affinity.

  5. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.

    PubMed

    Mohoric, Tomaz; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-14

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  6. Radiocarbon dating accuracy improved

    NASA Astrophysics Data System (ADS)

    Scientists have extended the accuracy of carbon-14 (14C) dating by correlating dates older than 8,000 years with uranium-thorium dates that span from 8,000 to 30,000 years before present (ybp, present = 1950). Edouard Bard, Bruno Hamelin, Richard Fairbanks and Alan Zindler, working at Columbia University's Lamont-Doherty Geological Observatory, dated corals from reefs off Barbados using both 14C and uranium-234/thorium-230 by thermal ionization mass spectrometry techniques. They found that the two age data sets deviated in a regular way, allowing the scientists to correlate the two sets of ages. The 14C dates were consistently younger than those determined by uranium-thorium, and the discrepancy increased to about 3,500 years at 20,000 ybp.

  7. Quantifying uncertainties in first-principles alloy thermodynamics using cluster expansions

    NASA Astrophysics Data System (ADS)

    Aldegunde, Manuel; Zabaras, Nicholas; Kristensen, Jesper

    2016-10-01

    The cluster expansion is a popular surrogate model for alloy modeling to avoid costly quantum mechanical simulations. As its practical implementations require approximations, its use trades efficiency for accuracy. Furthermore, the coefficients of the model need to be determined from some known data set (training set). These two sources of error, if not quantified, decrease the confidence we can put in the results obtained from the surrogate model. This paper presents a framework for the determination of the cluster expansion coefficients using a Bayesian approach, which allows for the quantification of uncertainties in the predictions. In particular, a relevance vector machine is used to automatically select the most relevant terms of the model while retaining an analytical expression for the predictive distribution. This methodology is applied to two binary alloys, SiGe and MgLi, including the temperature dependence in their effective cluster interactions. The resulting cluster expansions are used to calculate the uncertainty in several thermodynamic quantities: ground state line, including the uncertainty in which structures are thermodynamically stable at 0 K, phase diagrams and phase transitions. The uncertainty in the ground state line is found to be of the order of meV/atom, showing that the cluster expansion is reliable to ab initio level accuracy even with limited data. We found that the uncertainty in the predicted phase transition temperature increases when including the temperature dependence of the effective cluster interactions. Also, the use of the bond stiffness versus bond length approximation to calculate temperature dependent properties from a reduced set of alloy configurations showed similar uncertainty to the approach where all training configurations are considered but at a much reduced computational cost.

  8. Program calculation of thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Gill, Walter; Filho, Fernando Fachini; Ribeirodeoliveira, Ronaldo

    1986-12-01

    The determination of the thermodynamic properties are examined through the basic equations such as: state equation (Beattie-Bridgeman Form), saturation pressure equation, specific heat constant pressure or constant volume equation, and specific volume or density of liquid equation.

  9. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  10. Thermodynamics of Asymptotically Conical Geometries.

    PubMed

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  11. Thermodynamic and relativistic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  12. Simulating Metabolism with Statistical Thermodynamics

    SciTech Connect

    Cannon, William R.

    2014-08-04

    Kinetic probabilities of state are usually based on empirical measurements, while thermodynamic state probabilities are based on the assumption that chemical species are distributed to according to a multinomial Boltzmann distribution. While the use of kinetic simulations is desirable, obtaining all the mass action rate constants necessary to carry out kinetic simulations is an overwhelming challenge. Here, the kinetic probability of a state is compared in depth to the thermodynamic probability of a state for sets of coupled reactions. The entropic and energetic contributions to thermodynamic stable states are described and compared to entropic and energetic contributions of kinetic steady states. It is shown that many kinetic steady states are possible for a system of coupled reactions depending on the relative values of the mass action rate constants, but only one of these corresponds to a thermodynamically stable state. Furthermore, the thermodynamic stable state corresponds to a minimum free energy state. The use of thermodynamic simulations of state to model metabolic processes is attractive, since metabolite levels and energy requirements of pathways can be evaluated using only standard free energies of formation as parameters in the probability distribution. In chemical physics, the assumption of a Boltzmann distribution is the basis of transition state theory for modeling transitory species. Application to stable species, such as those found in metabolic processes, is a less severe assumption that would enable the use of simulations of state.

  13. A fast RCS accuracy assessment method for passive radar calibrators

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  14. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish

    2016-10-01

    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  15. Thermodynamics of firms' growth

    PubMed Central

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  16. Reticence, Accuracy and Efficacy

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  17. Groves model accuracy study

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew C.

    1991-08-01

    The United States Air Force Environmental Technical Applications Center (USAFETAC) was tasked to review the scientific literature for studies of the Groves Neutral Density Climatology Model and compare the Groves Model with others in the 30-60 km range. The tasking included a request to investigate the merits of comparing accuracy of the Groves Model to rocketsonde data. USAFETAC analysts found the Groves Model to be state of the art for middle-atmospheric climatological models. In reviewing previous comparisons with other models and with space shuttle-derived atmospheric densities, good density vs altitude agreement was found in almost all cases. A simple technique involving comparison of the model with range reference atmospheres was found to be the most economical way to compare the Groves Model with rocketsonde data; an example of this type is provided. The Groves 85 Model is used routinely in USAFETAC's Improved Point Analysis Model (IPAM). To create this model, Dr. Gerald Vann Groves produced tabulations of atmospheric density based on data derived from satellite observations and modified by rocketsonde observations. Neutral Density as presented here refers to the monthly mean density in 10-degree latitude bands as a function of altitude. The Groves 85 Model zonal mean density tabulations are given in their entirety.

  18. Landauer's blowtorch effect as a thermodynamic cross process: Brownian cooling.

    PubMed

    Das, Moupriya; Das, Debojyoti; Barik, Debashis; Ray, Deb Shankar

    2015-11-01

    The local heating of a selected region in a double-well potential alters the relative stability of the two wells and gives rise to an enhancement of population transfer to the cold well. We show that this Landauer's blowtorch effect may be considered in the spirit of a thermodynamic cross process linearly connecting the flux of particles and the thermodynamic force associated with the temperature difference and consequently ensuring the existence of a reverse cross effect. This reverse effect is realized by directing the thermalized particles in a double-well potential by application of an external bias from one well to the other, which suffers cooling.

  19. Landauer's blowtorch effect as a thermodynamic cross process: Brownian cooling

    NASA Astrophysics Data System (ADS)

    Das, Moupriya; Das, Debojyoti; Barik, Debashis; Ray, Deb Shankar

    2015-11-01

    The local heating of a selected region in a double-well potential alters the relative stability of the two wells and gives rise to an enhancement of population transfer to the cold well. We show that this Landauer's blowtorch effect may be considered in the spirit of a thermodynamic cross process linearly connecting the flux of particles and the thermodynamic force associated with the temperature difference and consequently ensuring the existence of a reverse cross effect. This reverse effect is realized by directing the thermalized particles in a double-well potential by application of an external bias from one well to the other, which suffers cooling.

  20. High accuracy fuel flowmeter

    NASA Technical Reports Server (NTRS)

    1986-01-01

    All three flowmeter concepts (vortex, dual turbine, and angular momentum) were subjected to experimental and analytical investigation to determine the potential portotype performance. The three concepts were subjected to a comprehensive rating. Eight parameters of performance were evaluated on a zero-to-ten scale, weighted, and summed. The relative ratings of the vortex, dual turbine, and angular momentum flowmeters are 0.71, 1.00, and 0.95, respectively. The dual turbine flowmeter concept was selected as the primary candidate and the angular momentum flowmeter as the secondary candidate for prototype development and evaluation.

  1. Electrochemistry of the Zinc-Silver Oxide System. Part 1: Thermodynamic Studies Using Commercial Miniature Cells.

    ERIC Educational Resources Information Center

    Smith, Michael J.; Vincent, Colin A.

    1989-01-01

    Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)

  2. Thermodynamic Limit in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2014-03-01

    The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by Bogoliubov, who developed a general formalism for establishing the limiting distribution functions in the form of formal series in powers of the density. In that study, he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.

  3. Assessment of thermodynamic models for dense gas dynamics

    NASA Astrophysics Data System (ADS)

    Guardone, A.; Vigevano, L.; Argrow, B. M.

    2004-11-01

    The accuracy of thermodynamic models in the computation of nonclassical gasdynamic phenomena is discussed, to investigate their suitability in connection with the design of experimental apparatuses aimed at the observation of nonclassical wavefields. The Soave-Redlich-Kwong and the Peng-Robinson are preliminarily suggested as alternative thermodynamic models to the Martin-Hou usually considered in nonclassical gasdynamics of fluorinated substances. The validity of these models is assessed by comparisons to reference experimental data for fluorinated R13, R125, C318, FC-72, FC-75, and SF6 and to the Martin-Hou model itself. The three models are found to exhibit a comparable accuracy for reduced volumes ranging from 1.4 to 2.5 and near the critical isotherm, i.e., in the thermodynamic region where heavier fluorinated substances such as PP10 are expected to exhibit nonclassical gasdynamic phenomena. The Soave-Redlich-Kwong and the Peng-Robinson models are then used to supplement previous numerical results for a three-discontinuity nonclassical shock-tube experiment with fluid PP10, which was designed under the Martin-Hou model. Under the initial conditions chosen for the experiment, the three models agree in predicting the formation of a supersonic nonclassical rarefaction wave, with wave Mach number in the range 1.01-1.02, thus providing further confidence on the possibility of experimentally observing nonclassical gasdynamic behavior in fluid PP10.

  4. Grain-boundary free energy via thermodynamic integration

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Fellinger, Michael R.; Beale, Paul D.

    2006-02-01

    In a previous publication by Lusk and Beale [Phys. Rev. E 69, 026117 (2004)], fluctuating cell (FC) theory was used to estimate the free energy of symmetric tilt grain boundaries in an assembly of nearly hard disks. The FC method is much faster than the more traditional thermodynamic integration, but the accuracy of the algorithm has not been assessed in association with persistent defect structures. This motivated the present work wherein the FC free energies are compared directly with the data obtained via thermodynamic integration from an Einstein crystal to an assembly of hard disks. This comparison is made over the range of possible misorientations for symmetric tilt boundaries and indicates that the FC method gives quantitatively accurate estimates for grain-boundary free energy. We also demsonstrate that the FC approximation is quantitatively accurate at determining the free-energy contribution of each particle whether in the bulk or the grain boundary. The FC calculation is about two orders of magnitude faster than a full thermodynamic integration. This approach may offer a numerically efficient means of estimating the free energy of persistent defect structures to greater accuracy than is afforded by the quasiharmonic and local harmonic approximations.

  5. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  6. Non-hermitian quantum thermodynamics

    PubMed Central

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  7. Non-hermitian quantum thermodynamics

    SciTech Connect

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  8. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  9. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  10. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  11. Information thermodynamics on causal networks.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2013-11-01

    We study nonequilibrium thermodynamics of complex information flows induced by interactions between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks (i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and the fluctuation theorem, which include an informational quantity characterized by the topology of the causal network. Our result implies that the entropy production in a single system in the presence of multiple other systems is bounded by the information flow between these systems. We demonstrate our general result by a simple model of biochemical adaptation.

  12. Thermodynamic features of dioxins' adsorption.

    PubMed

    Prisciandaro, Marina; Piemonte, Vincenzo; di Celso, Giuseppe Mazziotti; Ronconi, Silvia; Capocelli, Mauro

    2017-02-15

    In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir's model. In particular, the Langmuir isotherm parameters (K and wmax) have been validated through the estimation of the adsorption heat (ΔHads), which varies in the range 20-24kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  13. Simplified curve fits for the thermodynamic properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.

    1987-01-01

    New, improved curve fits for the thermodynamic properties of equilibrium air have been developed. The curve fits are for pressure, speed of sound, temperature, entropy, enthalpy, density, and internal energy. These curve fits can be readily incorporated into new or existing computational fluid dynamics codes if real gas effects are desired. The curve fits are constructed from Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits. These improvements are due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25 000 K and densities from 10 to the -7 to 10 to the 3d power amagats.

  14. Thermodynamic properties of liquid water from a polarizable intermolecular potential.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-01-28

    Molecular dynamics simulation results are reported for the pressure, isothermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient and speed of sound of liquid water using a polarizable potential [Li et al., J. Chem. Phys. 127, 154509 (2007)]. These properties were obtained for a wide range of temperatures and pressures at a common liquid density using the treatment of Lustig [J. Chem. Phys. 100, 3048 (1994)] and Meier and Kabelac [J. Chem. Phys. 124, 064104 (2006)], whereby thermodynamic state variables are expressible in terms of phase-space functions determined directly from molecular dynamics simulations. Comparison with experimental data indicates that the polarizable potential can be used to predict most thermodynamic properties with a very good degree of accuracy.

  15. Obesity: thermodynamic principles in perspective.

    PubMed

    Rampone, A J; Reynolds, P J

    1988-01-01

    The energy balance equation applicable to all living organisms was used as a framework on which to construct a critical review of some of the more controversial aspects of the obesity problem. The equation matches energy intake against all the known forms of work that the body does in utilizing that energy, including external and internal work and the work of adipose tissue synthesis (stored energy). Equations representing everyday living conditions, resting, fasting and basal conditions were constructed. The equation applicable to everyday living (working, non-fasting) was used to develop a set of model paradigms to illustrate some of the devices that can be invoked to decrease expenditure and conserve energy. These served as models of how obesity can arise in the absence of calorie overconsumption. The same equation was then used to create a set of opposite paradigms showing how obesity can be prevented by increasing expenditure to waste energy and stabilize body weight when challenged by hyperphagia. In order to see caloric intake and the various work terms in their proper quantitative relationships it was necessary to assign numerical values to the equation. These were selected from published reports of caloric values representative of a non-obese adult of average size engaged in a typical white collar occupation. It was then easy to adjust these assigned values commensurate with the objectives described in the preceding paragraph. Since obesity research is hampered by a confusing array of metabolic interactions it was essential to alter only one of the energy terms at a time, excluding all metabolic interactions except for those unavoidable ones dictated by the laws of thermodynamics. Only in this way could we see the body's multiple energy forms in clear perspective with regard to their real quantitative significance in the energy balance sheet and their potential impact on body weight. Creating these models gave us the added advantage of enabling us better

  16. Thermodynamic and kinetic aspects of surface acidity

    SciTech Connect

    Dumesic, J.A.

    1992-01-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  17. Thermodynamic evaluation of a microscale heat pump

    SciTech Connect

    Drost, M.K.; Beckette, M.; Wegeng, R.

    1994-11-01

    The development of microscale thermal components has reached a level of maturity that suggests that complete microthermal systems can be developed. This paper presents the results of a thermodynamic evaluation of a microscale heat pump for space heating and cooling applications. The concept involves fabricating individual unit processes on separate sheets of material and then combining the sheets to form complete systems. The sheet architecture allows a large number of microheat pumps to be fabricated and operated in parallel. Results of the thermodynamic analysis suggest that the microscale heat pump is theoretically feasible. Pressure drop in the evaporators and condensers was not significant, and performance requirements for the microscale compressor are challenging but not unattainable. Results also suggest that there is significant potential for improving heat pump performance by optimizing the integration of the heat pump with the microchannel evaporators and condensers. Sensitivity studies investigated the impact of working fluid selection, heat exchanger approach temperature, and compressor efficiency on cycle performance. Based on the results of this evaluation, additional research on microscale heat exchangers and compressors is suggested.

  18. A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung

    2015-12-01

    A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.

  19. Thermodynamic properties of minerals

    USGS Publications Warehouse

    Robie, Richard A.

    1962-01-01

    In the ten years since the publication of the national Bureau of Standards comprehensive tables of thermochemical properties, by Rossini and other (1952), a very large body of modern calorimetric and equilibrium data has become available. Because of the complex interrelations among many thermochemical data and the necessity for internal consistency among these values, a complete revision of this standard reference is required. This is also true of the summaries of thermochemical data for the sulfides (Richardson and Jeffes 1952) and for the oxides (Coughlin 1954). The following tables present critically selected values for the heat and free energy of formation, the logarithm of the equilibrium constant of formation Log Kf, the entropy and the molar volume, at 298.15°K (25.0°C) and one atmosphere for minerals.

  20. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  1. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  2. Analogy between Thermodynamics and Mechanics.

    ERIC Educational Resources Information Center

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  3. Thermodynamic properties of gadolinium disilicide

    SciTech Connect

    Lukashenko, G.M.; Polotskaya, R.I.

    1986-11-01

    The authors determine the Gibbs energy, enthalpy, formation heat, and other thermodynamic properties of gadolinium disilicide by measuring the electromotive force in the 830-960 K temperature range in electrolytes consisting of molten tin and various chlorides. The relationship of these properties to crystal structure is briefly discussed.

  4. Conservation laws and thermodynamic efficiencies.

    PubMed

    Benenti, Giuliano; Casati, Giulio; Wang, Jiao

    2013-02-15

    We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point elastically colliding particles where the total momentum is the only relevant conserved quantity.

  5. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  6. Thermodynamic theory of equilibrium fluctuations

    SciTech Connect

    Mishin, Y.

    2015-12-15

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  7. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  8. Simulating metabolism with statistical thermodynamics.

    PubMed

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  9. Thermodynamics on the Molality Scale

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  10. A Simple Statistical Thermodynamics Experiment

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2010-01-01

    Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…

  11. Some Considerations about Thermodynamic Cycles

    ERIC Educational Resources Information Center

    da Silva, M. F. Ferreira

    2012-01-01

    After completing their introductory studies on thermodynamics at the university level, typically in a second-year university course, most students show a number of misconceptions. In this work, we identify some of those erroneous ideas and try to explain their origins. We also give a suggestion to attack the problem through a systematic and…

  12. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    EPA Science Inventory

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  13. Recycling, Thermodynamics and Environmental Thrift

    ERIC Educational Resources Information Center

    Berry, R. Stephen

    1972-01-01

    Compares the cost, in terms of thermodynamic potential, of manufacturing automobiles from raw mineral resources or from recycled vehicles, and of the production of extended-life products. Uses this as an example for arguing that new technologies, with efficiencies closer to the theoretical themodynamic minima, are needed if a society is to…

  14. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  15. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods

    SciTech Connect

    Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; Beerli, Peter; Zeng, Xiankui; Lu, Dan; Tao, Yuezan

    2016-02-05

    Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamic integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.

  16. Possible extended forms of thermodynamic entropy

    NASA Astrophysics Data System (ADS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy.

  17. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement.

  18. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  19. A new molecular thermodynamic model for multicomponent Ising lattice

    NASA Astrophysics Data System (ADS)

    Yang, Jianyong; Xin, Qin; Sun, Lei; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2006-10-01

    A new molecular thermodynamic model is developed for multicomponent Ising lattice based on a generalized nonrandom factor from binary system. Predictions of the nonrandom factor and the internal energy of mixing for ternary and quaternary systems match accurately with simulation results. Predictions of liquid-liquid phase equilibrium for ternary systems are in nearly perfect agreement with simulation results, and substantially improved from Flory-Huggins theory and the lattice-cluster theory. The model also satisfactorily correlates the experimental data of real ternary systems. The concise expression and the accuracy of the new model make it well suited for practical engineering applications.

  20. Accuracy of genotype imputation in sheep breeds.

    PubMed

    Hayes, B J; Bowman, P J; Daetwyler, H D; Kijas, J W; van der Werf, J H J

    2012-02-01

    Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re-sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re-sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of

  1. Supercritical fluid thermodynamics from equations of state

    NASA Astrophysics Data System (ADS)

    Giovangigli, Vincent; Matuszewski, Lionel

    2012-03-01

    Supercritical multicomponent fluid thermodynamics are often built from equations of state. We investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low density with that of ideal gas mixtures starting from a pressure law. We further study the structure of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate mathematically the corresponding thermodynamics. This thermodynamics is then used to study the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate the role of nonidealities in a transcritical H2-O2-N2 flame.

  2. Accuracy of distance measurements in biplane angiography

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Oishi, Satoru; Koster, David; Schroth, Gerhard

    1997-05-01

    Distance measurements of the vascular system of the brain can be derived from biplanar digital subtraction angiography (2p-DSA). The measurements are used for planning of minimal invasive surgical procedures. Our 90 degree-fixed-angle G- ring angiography system has the potential of acquiring pairs of such images with high geometric accuracy. The sizes of vessels and aneurysms are estimated applying a fast and accurate extraction method in order to select an appropriate surgical strategy. Distance computation from 2p-DSA is carried out in three steps. First, the boundary of the structure to be measured is detected based on zero-crossings and closeness to user-specified end points. Subsequently, the 3D location of the center of the structure is computed from the centers of gravity of its two projections. This location is used to reverse the magnification factor caused by the cone-shaped projection of the x-rays. Since exact measurements of possibly very small structures are crucial to the usefulness in surgical planning, we identified mechanical and computational influences on the geometry which may have an impact on the measurement accuracy. A study with phantoms is presented distinguishing between the different effects and enabling the computation of an optimal overall exactness. Comparing this optimum with results of distance measurements on phantoms whose exact size and shape is known, we found, that the measurement error for structures of size of 20 mm was less than 0.05 mm on average and 0.50 mm at maximum. The maximum achievable accuracy of 0.15 mm was in most cases exceeded by less than 0.15 mm. This accuracy surpasses by far the requirements for the above mentioned surgery application. The mechanic accuracy of the fixed-angle biplanar system meets the requirements for computing a 3D reconstruction of the small vessels of the brain. It also indicates, that simple measurements will be possible on systems being less accurate.

  3. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  4. WATEQ3 geochemical model: thermodynamic data for several additional solids

    SciTech Connect

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ..delta..G/sup 0//sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs.

  5. When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?

    PubMed Central

    Ramnarine, Shelina; Zhang, Juan; Chen, Li-Shiun; Culverhouse, Robert; Duan, Weimin; Hancock, Dana B.; Hartz, Sarah M.; Johnson, Eric O.; Olfson, Emily; Schwantes-An, Tae-Hwi; Saccone, Nancy L.

    2015-01-01

    Imputation, the process of inferring genotypes for untyped variants, is used to identify and refine genetic association findings. Inaccuracies in imputed data can distort the observed association between variants and a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped data and others are calculated without reference to true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is based on Cohen’s kappa statistic and compares imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement; however, it is not commonly used. To identify differences in accuracy assessment, we compared IQS with concordance rate, squared correlation, and accuracy measures built into imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246 and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP) coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with smoking behaviors. Additional masking and imputation was conducted for sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480 European Americans). Our results offer further evidence that concordance rate inflates accuracy estimates, particularly for rare and low frequency variants. For common variants, squared correlation, BEAGLE R2, IMPUTE2 INFO, and IQS produce similar assessments of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider when evaluating imputation accuracy, particularly for rare and low frequency variants. PMID:26458263

  6. The 4th Thermodynamic Principle?

    SciTech Connect

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-04-28

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.

  7. Learning thermodynamics with Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  8. Thermodynamic Stability of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Usanmaz, Demet; Nath, Pinku; Plata, Jose J.; Hart, Gus L. W.; Nardelli, Marco B.; Curtarolo, Stefano; CenterMaterials Genomics Team; G. L. W. Hart Collaboration; M. B. Nardelli Collaboration

    2015-03-01

    Well known three-dimensional TIs such as Bi2Te3,Bi2Se3,Bi2Te2Se, Sb2Te2Se, have been the subject of research due to potential application for spintronic devices. TIs have large bulk band gap and metallic surface states at the special time-reversal-invariant momentum (TRIM) points of the Brillouin zone. These fascinating properties constitute the current carry along the surface and not conduct current through the bulk. Creating heterostructures of TIs has recently been demonstrated to be advantageous for controlling electronic properties. In addition to the importance of the electronic properties of materials, thermodynamic stability is the key for manufacturability of materials. Guided by cluster expansion, we have investigated the thermodynamic stability of TI interfaces.

  9. Thermodynamics of stochastic Turing machines.

    PubMed

    Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias

    2015-10-01

    In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.

  10. Thermodynamics of black plane solution

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay

    2013-11-01

    We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

  11. Thermodynamics with Continuous Information Flow

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Esposito, Massimiliano

    2014-07-01

    We provide a unified thermodynamic formalism describing information transfers in autonomous as well as nonautonomous systems described by stochastic thermodynamics. We demonstrate how information is continuously generated in an auxiliary system and then transferred to a relevant system that can utilize it to fuel otherwise impossible processes. Indeed, while the joint system satisfies the second law, the entropy balance for the relevant system is modified by an information term related to the mutual information rate between the two systems. We show that many important results previously derived for nonautonomous Maxwell demons can be recovered from our formalism and use a cycle decomposition to analyze the continuous information flow in autonomous systems operating at a steady state. A model system is used to illustrate our findings.

  12. Thermodynamic effects on developed cavitation

    NASA Technical Reports Server (NTRS)

    Holl, J. W.; Billet, M. L.; Weir, D. S.

    1975-01-01

    The results of an investigation of thermodynamic effects are presented. Distributions of temperature and pressure in a developed cavity were measured for zero- and quarter-caliber ogives. A semiempirical entrainment theory was developed to correlate the measured temperature depression in the cavity. This theory correlates the maximum temperature depression expressed in dimensionless form as the Jakob number in terms of the dimensionless numbers of Nusselt, Reynolds, Froude, and Peclet, and dimensionless cavity length, L/D. The results show that in general, the temperature depression increases with L/D and temperature and the cavitation number based on measured cavity pressure is a function of L/D for a given model contour, independent of the thermodynamic effect.

  13. Stochastic thermodynamics with information reservoirs

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2014-10-01

    We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1 /2 . For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1 /2 .

  14. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  15. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  16. A thermodynamic unification of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Brodsky, E. E.; Kavehpour, H. P.

    2008-05-01

    Fragile materials ranging from sand to fire retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here, we quantify jamming using a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the `fluffiness' of a granular mixture. The thermodynamic model, cast in terms of pressure, temperature and free volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy averts the Kauzmann paradox-an unresolved crisis where the configurational entropy becomes negative-entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear banding and the associated features of shear softening and thickness invariance.

  17. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  18. Chemical reactions in endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2016-01-01

    Endoreversible thermodynamics is a theory for the (approximate) description of thermodynamic non-equilibrium systems, which allows us to capture the ever present irreversibilities of real processes. For instance in heat engines the dissipation due to finite heat transport capabilities, as well as the resulting limitations in the energy fluxes, can be incorporated into the theory. It has thus been very successful in closing the gap between observed and theoretically predicted efficiencies. Here an extension of the theory is provided, with which chemical reactions can be included in the formalism. This opens up a wide field of applications for endoreversible modeling and the investigation of dissipative processes, for instance in fuel cells or batteries.

  19. Thermodynamic geometry of supercooled water

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  20. High Accuracy Time Transfer Synchronization

    DTIC Science & Technology

    1994-12-01

    HIGH ACCURACY TIME TRANSFER SYNCHRONIZATION Paul Wheeler, Paul Koppang, David Chalmers, Angela Davis, Anthony Kubik and William Powell U.S. Naval...Observatory Washington, DC 20392 Abstract In July 1994, the US Naval Observatory (USNO) Time Service System Engineering Division conducted a...field test to establish a baseline accuracy for two-way satellite time transfer synchro- nization. Three Hewlett-Packard model 5071 high performance

  1. Process Analysis Via Accuracy Control

    DTIC Science & Technology

    1982-02-01

    0 1 4 3 NDARDS THE NATIONAL February 1982 Process Analysis Via Accuracy Control RESEARCH PROG RAM U.S. DEPARTMENT OF TRANSPORTATION Maritime...SUBTITLE Process Analysis Via Accuracy Control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...examples are contained in Appendix C. Included, are examples of how “A/C” process - analysis leads to design improvement and how a change in sequence can

  2. Thermodynamic Integration Networks and Their Application to Charge Transfer Reactions within the AauDyPI Fungal Peroxidase.

    PubMed

    Bauß, Anna; Langenmaier, Michael; Strittmatter, Eric; Plattner, Dietmar A; Koslowski, Thorsten

    2016-06-09

    We present a computer simulation study of the thermodynamics and kinetics of charge transfer reactions within the fungal peroxidase AauDyPI from Auricularia auriculae-judae. Driving forces and reorganization energies are obtained from a thermodynamic integration scheme based upon molecular dynamics simulations. To enhance the numerical accuracy, the free energies are analyzed within a least-squares scheme of a closely knit thermodynamic network. We identify Tyr147, Tyr229, and Trp105 as oxidative agents, and find Trp377 to be a long-lived reaction intermediate. The results are compared to recent experimental findings.

  3. Thermodynamic aspects of therapeutic hypothermia.

    PubMed

    Vanlandingham, Sean C; Kurz, Michael C; Wang, Henry E

    2015-01-01

    Therapeutic hypothermia (TH) is an important treatment for post-cardiac arrest syndrome. Despite its widespread practice, only limited data describe the thermodynamic aspects of heat transfer during TH. This paper reviews the principles of human body heat balance and provides a conceptual model for characterizing heat exchange during TH. The model may provide a framework for computer simulation for improving training in or clinical methods of TH.

  4. Thermodynamic work from operational principles

    NASA Astrophysics Data System (ADS)

    Gallego, R.; Eisert, J.; Wilming, H.

    2016-10-01

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is to capture a suitable notion of work that models realistically the purpose of quantum machines, in an analogous way to the role played, for macroscopic machines, by the energy stored in the idealisation of a lifted weight. Despite several attempts to resolve this issue by putting forward specific models, these are far from realistically capturing the transitions that a quantum machine is expected to perform. In this work, we adopt a novel strategy by considering arbitrary kinds of systems that one can attach to a quantum thermal machine and defining work quantifiers. These are functions that measure the value of a transition and generalise the concept of work beyond those models familiar from phenomenological thermodynamics. We do so by imposing simple operational axioms that any reasonable work quantifier must fulfil and by deriving from them stringent mathematical condition with a clear physical interpretation. Our approach allows us to derive much of the structure of the theory of thermodynamics without taking the definition of work as a primitive. We can derive, for any work quantifier, a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. We also discuss in detail the role of reversibility and correlations in connection with the second law. Furthermore, we recover the usual identification of work with energy in degrees of freedom with vanishing entropy as a particular case of our formalism. Our mathematical results can be formulated abstractly and are general enough to carry over to other resource theories than quantum thermodynamics.

  5. Thermodynamics of feedback controlled systems

    NASA Astrophysics Data System (ADS)

    Cao, F. J.; Feito, M.

    2009-04-01

    We compute the entropy reduction in feedback controlled systems due to the repeated operation of the controller. This was the lacking ingredient to establish the thermodynamics of these systems, and in particular of Maxwell’s demons. We illustrate some of the consequences of our general results by deriving the maximum work that can be extracted from isothermal feedback controlled systems. As a case example, we finally study a simple system that performs an isothermal information-fueled particle pumping.

  6. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  7. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-12-24

    Specific Heat: Non-Metallic Solids, In Thormophysical Properties of Matter, The TPRC Data Series, Touloukian , Y.S., and Ho, C.Y. (Eds.), IFI, Plenum, New...heating method. Thermodynamic properties of silicon nitride (a, b) and boron nitride (hex, cub) have been determined to 1300K. Calculational...I. ’Research on Therophy/ical Properties . ......... a. Preliminary Measurements oft -"riple Point Temperature of Graphite 1 i_- ng Technique

  8. Nonequilibrium thermodynamics of pressure solution

    NASA Astrophysics Data System (ADS)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  9. Self-association of plant wax components: a thermodynamic analysis.

    PubMed

    Casado, C G; Heredia, A

    2001-01-01

    Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.

  10. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  11. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  12. Thermodynamical journey in plant biology

    PubMed Central

    Barbacci, Adelin; Magnenet, Vincent; Lahaye, Marc

    2015-01-01

    Nonequilibrium irreversible thermodynamics constitute a meaningful point of view suitable to explore life with a rich paradigm. This analytical framework can be used to span the gap from molecular processes to plant function and shows great promise to create a holistic description of life. Since living organisms dissipate energy, exchange entropy and matter with their environment, they can be assimilated to dissipative structures. This concept inherited from nonequilibrium thermodynamics has four properties which defines a scale independent framework suitable to provide a simpler and more comprehensive view of the highly complex plant biology. According to this approach, a biological function is modeled as a cascade of dissipative structures. Each dissipative structure, corresponds to a biological process, which is initiated by the amplification of a fluctuation. Evolution of the process leads to the breakage of the system symmetry and to the export of entropy. Exporting entropy to the surrounding environment corresponds to collecting information about it. Biological actors which break the symmetry of the system and which store information are by consequence, key actors on which experiments and data analysis focus most. This paper aims at illustrating properties of dissipative structure through familiar examples and thus initiating the dialogue between nonequilibrium thermodynamics and plant biology. PMID:26175747

  13. Thermodynamic constraints for biochemical networks.

    PubMed

    Beard, Daniel A; Babson, Eric; Curtis, Edward; Qian, Hong

    2004-06-07

    The constraint-based approach to analysis of biochemical systems has emerged as a useful tool for rational metabolic engineering. Flux balance analysis (FBA) is based on the constraint of mass conservation; energy balance analysis (EBA) is based on non-equilibrium thermodynamics. The power of these approaches lies in the fact that the constraints are based on physical laws, and do not make use of unknown parameters. Here, we show that the network structure (i.e. the stoichiometric matrix) alone provides a system of constraints on the fluxes in a biochemical network which are feasible according to both mass balance and the laws of thermodynamics. A realistic example shows that these constraints can be sufficient for deriving unambiguous, biologically meaningful results. The thermodynamic constraints are obtained by comparing of the sign pattern of the flux vector to the sign patterns of the cycles of the internal cycle space via connection between stoichiometric network theory (SNT) and the mathematical theory of oriented matroids.

  14. Thermodynamic Modeling of the YO(l.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2003-01-01

    The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.

  15. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  16. Development of a Stirling System Dynamic Model With Enhanced Thermodynamics

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-01-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  17. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  18. On the thermodynamics of multilevel evolution.

    PubMed

    Tessera, Marc; Hoelzer, Guy A

    2013-09-01

    Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization.

  19. High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni

    2017-01-01

    Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.

  20. Statistical thermodynamics of the isomerization reaction between n-heptane and isoheptane.

    PubMed

    Yu, Tao; Zheng, Jingjing; Truhlar, Donald G

    2012-01-14

    We have employed electronic structure calculations and the recently proposed multi-structural (MS) anharmonicity method to calculate partition functions and thermodynamic quantities, in particular entropy and heat capacity, for n-heptane and isoheptane. We included all structures, of which there are 59 for n-heptane and 37 for isoheptane, and we carried out the calculations both in the local harmonic approximation and by including torsional (T) anharmonicity. In addition, ΔS°, ΔH, and ΔG° for the isomerization reaction between these two species were also calculated. It is found that all calculated thermodynamic quantities based on the MS-T approximation in the temperature range from 298 K to 1500 K agree well with experimental data from the American Petroleum Institute (API) tables or Thermodynamics Research Center (TRC) data series and with values obtained from Benson's empirical parameters fit to experiment. This demonstrates not only the high accuracy of the electronic structure calculations but also that the MS-T method can be used to include both multiple-structure anharmonicity and torsional anharmonicity in the calculation of thermodynamic properties for complex molecules that contain many torsions. It also gives us confidence that we can apply the MS-T statistical thermodynamic method to obtain thermodynamic properties (i) over a broader temperature range than that for which data are available in the API tables, TRC data series, or from empirical estimation and (ii) to the many molecules for which experimental data are not available at any temperature.

  1. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.

    PubMed

    Kopyt, Paweł; Celuch, Małgorzata

    2007-01-01

    A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.

  2. A morphometric approach for the accurate solvation thermodynamics of proteins and ligands.

    PubMed

    Harano, Yuichi; Roth, Roland; Chiba, Shuntaro

    2013-09-05

    We have developed a versatile method for calculating solvation thermodynamic quantities for molecules, starting from their atomic coordinates. The contribution of each atom to the thermodynamic quantities is estimated as a linear combination of four fundamental geometric measures of the atomic species, which are defined by Hadwiger's theorem, and the coefficients reflecting their solvation properties. This treatment enables us to calculate the solvation free energy with high accuracy despite of the limited computational load. The method can readily be applied to macromolecules in an all-atom molecular model, allowing the stability of these molecules' structures in solution to be evaluated.

  3. Increase in error threshold for quasispecies by heterogeneous replication accuracy

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuhiro; Furusawa, Mitsuru

    2003-09-01

    In this paper we investigate the error threshold for quasispecies with heterogeneous replication accuracy. We show that the coexistence of error-free and error-prone polymerases can greatly increase the error threshold without a catastrophic loss of genetic information. We also show that the error threshold is influenced by the number of replicores. Our research suggests that quasispecies with heterogeneous replication accuracy can reduce the genetic cost of selective evolution while still producing a variety of mutants.

  4. Exploring the thermodynamics of a universal Fermi gas.

    PubMed

    Nascimbène, S; Navon, N; Jiang, K J; Chevy, F; Salomon, C

    2010-02-25

    One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.

  5. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  6. Pedometer accuracy in slow walking older adults

    PubMed Central

    Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.

    2013-01-01

    The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762

  7. Thermodynamic Properties of Supported Catalysts

    SciTech Connect

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  8. Dark-energy thermodynamic models

    SciTech Connect

    Besprosvany, Jaime; Izquierdo, German

    2010-12-07

    We study cosmological consequences of dark-energy thermodynamic models. The assumption that dark energy is conformed of quanta, and an extensivity argument generalize its equation of state. This implies that dark energy and another key component exchange energy. The energy densities of dark energy and the other component then tend asymptotically to a constant, thus explaining the coincidence of dark matter and dark energy today. On the other hand, a model of non-relativistic particles in a Bose-Einstein condensate, with a short-range attractive interaction, produces acceleration. It is shown that the phantom-acceleration regime, at the beginning of the universe, solves the horizon problem.

  9. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1980-09-01

    Department of Commerce 23 -1A , /7 National Bureau of Standards A102 Washington, D.C. 20234 ______________ I I. CONTROLLING OFFICE NAME AND ADDRESS Air...DISTRIBUTION STATEMENT (of this Report) r ~Appro-,’. f’or public re r-: e ; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from...8SOLETE SCRT SEUIYCLASSIFICATION OF TNIS PAGE " e aoEtr AEOST.1-0443 THERMODYNAMICS OF HIGH TEMPERATURE MATERIALS Annual Report for the Period of 1 October

  10. Thermodynamic laws in isolated systems.

    PubMed

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  11. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  12. Thermodynamics of discrete quantum processes

    NASA Astrophysics Data System (ADS)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  13. Thermodynamic laws in isolated systems

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  14. Towards a thermodynamic theory of nerve pulse propagation.

    PubMed

    Andersen, Søren S L; Jackson, Andrew D; Heimburg, Thomas

    2009-06-01

    Nerve membranes consist of an approximately equal mixture of lipids and proteins. The propagation of nerve pulses is usually described with the ionic hypothesis, also known as the Hodgkin-Huxley model. This model assumes that proteins alone enable nerves to conduct signals due to the ability of various ion channel proteins to transport selectively sodium and potassium ions. While the ionic hypothesis describes electrical aspects of the action potential, it does not provide a theoretical framework for understanding other experimentally observed phenomena associated with nerve pulse propagation. This fact has led to a revised view of the action potential based on the laws of thermodynamics and the assumption that membrane lipids play a fundamental role in the propagation of nerve pulses. In general terms, we describe how pulses propagating in nerve membranes resemble propagating sound waves. We explain how the language of thermodynamics enables us to account for a number of phenomena not addressed by the ionic hypothesis. These include a thermodynamic explanation of the effect of anesthetics, the induction of action potentials by local nerve cooling, the physical expansion of nerves during pulse propagation, reversible heat production and the absence of net heat release during the action potential. We describe how these measurable features of a propagating nerve pulse, as well as the observed voltage change that accompanies an action potential, represent different aspects of a single phenomenon that can be predicted and explained by thermodynamics. We suggest that the proteins and lipids of the nerve membrane naturally constitute a single ensemble with thermodynamic properties appropriate for the description of a broad range of phenomena associated with a propagating nerve pulse.

  15. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  16. A Simple Thermodynamic Analysis of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Albarrán-Zavala, E.; Angulo-Brown, F.

    2007-12-01

    In this paper we present a comparative study of nine photosynthetic pathways bymeans of their thermodynamic performance. The comparison is made by using the thermalefficiency of light-to-chemical energy conversion and the so-called ecological criterionarising from finite-time thermodynamics. The application of both criteria leads tophotosynthesis made by metaphytes and non sulfur purple bacteria as those of bestthermodynamic performance. In spite of the simplicity of our thermodynamic approachsome insights over the low overall efficiency of photosynthesis is suggested.

  17. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  18. Camera Calibration Accuracy at Different Uav Flying Heights

    NASA Astrophysics Data System (ADS)

    Yusoff, A. R.; Ariff, M. F. M.; Idris, K. M.; Majid, Z.; Chong, A. K.

    2017-02-01

    Unmanned Aerial Vehicles (UAVs) can be used to acquire highly accurate data in deformation survey, whereby low-cost digital cameras are commonly used in the UAV mapping. Thus, camera calibration is considered important in obtaining high-accuracy UAV mapping using low-cost digital cameras. The main focus of this study was to calibrate the UAV camera at different camera distances and check the measurement accuracy. The scope of this study included camera calibration in the laboratory and on the field, and the UAV image mapping accuracy assessment used calibration parameters of different camera distances. The camera distances used for the image calibration acquisition and mapping accuracy assessment were 1.5 metres in the laboratory, and 15 and 25 metres on the field using a Sony NEX6 digital camera. A large calibration field and a portable calibration frame were used as the tools for the camera calibration and for checking the accuracy of the measurement at different camera distances. Bundle adjustment concept was applied in Australis software to perform the camera calibration and accuracy assessment. The results showed that the camera distance at 25 metres is the optimum object distance as this is the best accuracy obtained from the laboratory as well as outdoor mapping. In conclusion, the camera calibration at several camera distances should be applied to acquire better accuracy in mapping and the best camera parameter for the UAV image mapping should be selected for highly accurate mapping measurement.

  19. Classical Solution Thermodynamics: A Retrospective View.

    ERIC Educational Resources Information Center

    Van Ness, H. C.; Abbott, M. M.

    1985-01-01

    Examines topics related to classical solution thermodynamics, considering energy, enthalpy, and the Gibbs function. Applicable mathematical equations are introduced and discussed when appropriate. (JN)

  20. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  1. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  2. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  3. Astronomic Position Accuracy Capability Study.

    DTIC Science & Technology

    1979-10-01

    portion of F. E. Warren AFB, Wyoming. The three points were called THEODORE ECC , TRACY, and JIM and consisted of metal tribrachs plastered to cinder...sets were computed as a deviation from the standard. Accuracy figures were determined from these residuals. Homo - geneity of variances was tested using

  4. The hidden KPI registration accuracy.

    PubMed

    Shorrosh, Paul

    2011-09-01

    Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.

  5. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  6. Inventory accuracy in 60 days!

    PubMed

    Miller, G J

    1997-08-01

    Despite great advances in manufacturing technology and management science, thousands of organizations still don't have a handle on basic inventory accuracy. Many companies don't even measure it properly, or at all, and lack corrective action programs to improve it. This article offers an approach that has proven successful a number of times, when companies were quite serious about making improvements. Not only can it be implemented, but also it can likely be implemented within 60 days per area, if properly managed. The hardest part is selling people on the need to improve and then keeping them motivated. The net cost of such a program? Probably less than nothing, since the benefits gained usually far exceed the costs. Improved inventory accuracy can aid in enhancing customer service, determining purchasing and manufacturing priorities, reducing operating costs, and increasing the accuracy of financial records. This article also addresses the gap in contemporary literature regarding accuracy program features for repetitive, JIT, cellular, and process- and project-oriented environments.

  7. Soft mean spherical approximation for dusty plasma liquids: Level of accuracy and analytic expressions

    SciTech Connect

    Tolias, P.; Ratynskaia, S.; Angelis, U. de

    2015-08-15

    The soft mean spherical approximation is employed for the study of the thermodynamics of dusty plasma liquids, the latter treated as Yukawa one-component plasmas. Within this integral theory method, the only input necessary for the calculation of the reduced excess energy stems from the solution of a single non-linear algebraic equation. Consequently, thermodynamic quantities can be routinely computed without the need to determine the pair correlation function or the structure factor. The level of accuracy of the approach is quantified after an extensive comparison with numerical simulation results. The approach is solved over a million times with input spanning the whole parameter space and reliable analytic expressions are obtained for the basic thermodynamic quantities.

  8. Improved accuracies for satellite tracking

    NASA Technical Reports Server (NTRS)

    Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K.

    1991-01-01

    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms.

  9. Thermodynamic properties of triphenylantimony dibenzoate

    NASA Astrophysics Data System (ADS)

    Markin, A. V.; Smirnova, N. N.; Lyakaev, D. V.; Klimova, M. N.; Sharutin, V. V.; Sharutina, O. K.

    2016-10-01

    The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6-480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: C p ° ( T), H°( T)- H°(0), S°( T), and G°(T)- H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature ( T < 50 K) heat capacity of the compound is performed. It is concluded that the structure of the compound has a planar chain topology.

  10. Thermodynamic indicators for environmental certification.

    PubMed

    Panzieri, Margherita; Porcelli, Marcello; Pulselli, Federico Maria

    2002-09-01

    The Earth is an open thermodynamic system, that remains in a steady state far from the equilibrium, through energy and matter exchanges with the surrounding environment. These natural constraints, which prevent the system from maximizing its entropy, are threatened by human action and our ecosystem needs urgent protection. In this viewpoint the environmental certification was born, according to international standards ISO 14001, ISO 14040, and European Regulation EMAS. These are voluntary adhesions to a program of environmental protection by companies, administrations and organizations which, starting from the respect of the existing environmental laws and regulations, decide to further improve their environmental performance. To obtain and maintain certification of a system is necessary to apply some indicators to evaluate its environmental performance and to demonstrate its progressive improvement. Here we propose to use for this purpose the thermodynamic indicators produced from energy analysis by Odum. The case study is Montalcino city (Italy) and energy indicators are used to evaluate environmental performance of this system where exist different activities, from agricultural productions, to tourism. Results show that energy analysis could become a valid standard monitoring method for environmental certification, especially in consideration of its wide application field.

  11. Inconsistencies in steady state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.

  12. QCD thermodynamics on a lattice

    NASA Astrophysics Data System (ADS)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  13. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  14. MAPPING SPATIAL THEMATIC ACCURACY WITH FUZZY SETS

    EPA Science Inventory

    Thematic map accuracy is not spatially homogenous but variable across a landscape. Properly analyzing and representing spatial pattern and degree of thematic map accuracy would provide valuable information for using thematic maps. However, current thematic map accuracy measures (...

  15. Thermodynamic Studies to Support Extraction of Uranium from Seawater

    SciTech Connect

    Rao, Linfeng

    2015-09-01

    This milestone report summarizes the data obtained in FY15 on the major task of quantifying the binding strength of amidoxime-related ligands. Thermodynamic studies of the interaction between U(VI) and amidoxime ligand HLIII were studied to quantify the binding ability of U(VI) with amidoxime-related ligands and help to select grafting/reaction conditions so that higher yield of preferred amidoxime-related ligands is obtained. Besides the thermodynamic task, structural studies on vanadium complexation with amidoxime ligand were conducted to help understand the extremely strong sorption of vanadium on poly(amidoxime) sorbents. Data processing and summarization of the vanadium system are in progress and will be included in the next milestone report.

  16. Thermodynamic Studies to Support Extraction of Uranium from Seawater

    SciTech Connect

    Rao, Linfeng

    2016-09-12

    This milestone report summarizes the data obtained in FY16 on the major task of quantifying the binding strength of amidoxime-related ligands. Thermodynamic studies of the interaction between U(VI) and amidoxime ligand HLIII were studied to quantify the binding ability of U(VI) with amidoxime-related ligands and help to select grafting/reaction conditions so that higher yield of preferred amidoxime-related ligands is obtained. Besides the thermodynamic task, structural studies on vanadium complexation with amidoxime ligand were conducted to help understand the extremely strong sorption of vanadium on poly(amidoxime) sorbents. Data processing and summarization of the vanadium system are in progress and will be included in the next milestone report.

  17. A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases

    NASA Astrophysics Data System (ADS)

    Fasshauer, Detlef W.; Chatterjee, Niranjan D.; Cemic, Ladislav

    Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All Cp measurements have been executed by DSC in the temperature range 133-823K. The data for T>=223K have been fitted to the function Cp(T)=a+cT -2+dT -0.5+fT -3, the fit parameters being The thermal expansion data (up to 525°C) have been fitted to the function V0(T)=V0(T) [1+v1 (T-T0)+v2 (T-T0)2], with T0=298.15K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way.

  18. Accuracy of implant impression techniques.

    PubMed

    Assif, D; Marshak, B; Schmidt, A

    1996-01-01

    Three impression techniques were assessed for accuracy in a laboratory cast that simulated clinical practice. The first technique used autopolymerizing acrylic resin to splint the transfer copings. The second involved splinting of the transfer copings directly to an acrylic resin custom tray. In the third, only impression material was used to orient the transfer copings. The accuracy of stone casts with implant analogs was measured against a master framework. The fit of the framework on the casts was tested using strain gauges. The technique using acrylic resin to splint transfer copings in the impression material was significantly more accurate than the two other techniques. Stresses observed in the framework are described and discussed with suggestions to improve clinical and laboratory techniques.

  19. A high accuracy sun sensor

    NASA Astrophysics Data System (ADS)

    Bokhove, H.

    The High Accuracy Sun Sensor (HASS) is described, concentrating on measurement principle, the CCD detector used, the construction of the sensorhead and the operation of the sensor electronics. Tests on a development model show that the main aim of a 0.01-arcsec rms stability over a 10-minute period is closely approached. Remaining problem areas are associated with the sensor sensitivity to illumination level variations, the shielding of the detector, and the test and calibration equipment.

  20. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  1. The Development of Understanding in Elementary Thermodynamics.

    ERIC Educational Resources Information Center

    Lewis, Eileen Lob

    This study investigates how students participating in the same curriculum construct understanding in elementary thermodynamics during a semester-long eighth-grade physical science class. Two questions were addressed: (1) How does the learners' understanding change during the study of elementary thermodynamics? and (2) What role do students'…

  2. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  3. Thermodynamics of Radiation-Balanced Lasing

    DTIC Science & Technology

    2003-05-01

    Thermodynamics of radiation - balanced lasing Carl E. Mungan Department of Physics, U.S. Naval Academy, Annapolis, Maryland 21402-5026 Received August...1. REPORT DATE DEC 2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Thermodynamics of radiation - balanced lasing 5a

  4. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  5. Molecular thermodynamics for chemical process design.

    PubMed

    Prausnitz, J M

    1979-08-24

    Chemical process design requires quantitative information on the equilibrium properties of a variety of fluid mixtures. Since the experimental effort needed to provide this information is often prohibitive in cost and time, chemical engineers must utilize rational estimation techniques based on limited experimental data. The basis for such techniques is molecular thermodynamics, a synthesis of classical and statistical thermodynamics, molecular physics, and physical chemistry.

  6. A Vector Representation for Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Pogliani, Lionello

    2006-01-01

    The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…

  7. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  8. Understanding the Thermodynamics of Biological Order

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  9. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  10. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  11. Optical Melting Measurements of Nucleic Acid Thermodynamics

    PubMed Central

    Turner, Douglas H.

    2014-01-01

    Optical melting experiments provide measurements of thermodynamic parameters for nucleic acids. These thermodynamic parameters are widely used in RNA structure prediction programs and DNA primer design software. This review briefly summarizes the theory and underlying assumptions of the method and provides practical details for instrument calibration, experimental design, and data interpretation. PMID:20946778

  12. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  13. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  14. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  15. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  16. Thermodynamic Model of Noise Information Transfer

    NASA Astrophysics Data System (ADS)

    Hejna, Bohdan

    2008-10-01

    In this paper we apply a certain unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy [2], we construct a cyclical, thermodynamic, average-value model of an information transfer chain [3] as a general heat engine, in particular a Carnot engine, reversible or irreversible. A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that in a model realized in this way the extended II. Principle of Thermodynamics is valid [2] and we formulate its information form.

  17. Horizon thermodynamics in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen

    2017-03-01

    In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE = TdS - PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called ;Legendre transformation; at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  18. Cost and accuracy of advanced breeding trial designs in apple

    PubMed Central

    Harshman, Julia M; Evans, Kate M; Hardner, Craig M

    2016-01-01

    Trialing advanced candidates in tree fruit crops is expensive due to the long-term nature of the planting and labor-intensive evaluations required to make selection decisions. How closely the trait evaluations approximate the true trait value needs balancing with the cost of the program. Designs of field trials of advanced apple candidates in which reduced number of locations, the number of years and the number of harvests per year were modeled to investigate the effect on the cost and accuracy in an operational breeding program. The aim was to find designs that would allow evaluation of the most additional candidates while sacrificing the least accuracy. Critical percentage difference, response to selection, and correlated response were used to examine changes in accuracy of trait evaluations. For the quality traits evaluated, accuracy and response to selection were not substantially reduced for most trial designs. Risk management influences the decision to change trial design, and some designs had greater risk associated with them. Balancing cost and accuracy with risk yields valuable insight into advanced breeding trial design. The methods outlined in this analysis would be well suited to other horticultural crop breeding programs. PMID:27019717

  19. Stochastic thermodynamics for active matter

    NASA Astrophysics Data System (ADS)

    Speck, Thomas

    2016-05-01

    The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.

  20. Thermodynamic volume of cosmological solitons

    NASA Astrophysics Data System (ADS)

    Mbarek, Saoussen; Mann, Robert B.

    2017-02-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  1. Thermodynamics of freezing and melting.

    PubMed

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-17

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system.

  2. Advanced working fluids: Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  3. Satellite observed thermodynamics during FGGE

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1985-01-01

    During the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE), determinations of temperature and moisture were made from TIROS-N and NOAA-6 satellite infrared and microwave sounding radiance measurements. The data were processed by two methods differing principally in their horizontal resolution. At the National Earth Satellite Service (NESS) in Washington, D.C., the data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE Level IIb data sets for application to large-scale numerical analysis and prediction models. High horizontal resolution (75 km) sounding data sets were produced using man-machine interactive methods for the special observing periods of FGGE at the NASA/Goddard Space Flight Center and archived as supplementary Level IIb. The procedures used for sounding retrieval and the characteristics and quality of these thermodynamic observations are given.

  4. Thermodynamics of Photons on Fractals

    SciTech Connect

    Akkermans, Eric; Dunne, Gerald V.; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV{sub s}=U/d{sub s}, where d{sub s} is the spectral dimension and V{sub s} defines the 'spectral volume'. For regular manifolds, V{sub s} coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  5. Simple thermodynamics of jet engines

    NASA Astrophysics Data System (ADS)

    Patrício, Pedro; Tavares, José M.

    2010-08-01

    We use the first and second laws of thermodynamics to analyze the behavior of an ideal jet engine. Simple analytical expressions for the thermal efficiency, the overall efficiency, and the reduced thrust are derived. We show that the thermal efficiency depends only on the compression ratio r and on the velocity of the aircraft. The other two performance measures depend also on the ratio of the temperature at the turbine to the inlet temperature in the engine, T3/Ti. An analysis of these expressions shows that it is not possible to choose an optimal set of values of r and T3/Ti that maximize both the overall efficiency and thrust. We study how irreversibilities in the compressor and the turbine decrease the overall efficiency of jet engines and show that this effect is more pronounced for smaller T3/Ti.

  6. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  7. Thermodynamics of Intragenic Nucleosome Ordering

    NASA Astrophysics Data System (ADS)

    Chevereau, G.; Palmeira, L.; Thermes, C.; Arneodo, A.; Vaillant, C.

    2009-10-01

    The nucleosome ordering observed in vivo along yeast genes is described by a thermodynamical model of nonuniform fluid of 1D hard rods confined by two excluding energy barriers at gene extremities. For interbarrier distances L≲1.5kbp, nucleosomes equilibrate into a crystal-like configuration with a nucleosome repeat length (NRL) L/ñ165bp, where n is the number of regularly positioned nucleosomes. We also observe “bistable” genes with a fuzzy chromatin resulting from a statistical mixing of two crystal states, one with an expanded chromatin (NRL ˜L/n) and the other with a compact one (NRL ˜L/(n+1)). By means of single nucleosome switching, bistable genes may drastically alter their expression level as suggested by their higher transcriptional plasticity. These results enlighten the role of the intragenic chromatin on gene expression regulation.

  8. Extended thermodynamics of dense gases

    NASA Astrophysics Data System (ADS)

    Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M.

    2012-11-01

    We study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux. As a result, most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also analyze three physically important systems, that is, a gas with the virial equations of state, a hard-sphere system, and a van der Waals fluid, by using the general theory developed in the former part of the present work.

  9. Thermodynamics of lunar ilmenite reduction

    NASA Technical Reports Server (NTRS)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  10. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  11. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  12. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon.

    PubMed

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J

    2016-09-14

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  13. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  14. Thermodynamic pressures for hard spheres and closed-virial equation-of-state.

    PubMed

    Bannerman, Marcus N; Lue, Leo; Woodcock, Leslie V

    2010-02-28

    Hard-sphere molecular dynamics (MD) simulation results, with six-figure accuracy in the thermodynamic equilibrium pressure, are reported and used to test a closed-virial equation-of-state. This latest equation, with no adjustable parameters except known virial coefficients, is comparable in accuracy both to Padé approximants, and to numerical parameterizations of MD data. There is no evidence of nonconvergence at stable fluid densities. The virial pressure begins to deviate significantly from the thermodynamic fluid pressure at or near the freezing density, suggesting that the passage from stable fluid to metastable fluid is associated with a higher-order phase transition; an observation consistent with some previous experimental results. Revised parameters for the crystal equation-of-state [R. J. Speedy, J. Phys.: Condens. Matter 10, 4387 (1998)] are also reported.

  15. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  16. Accuracy of flow hoods in residential applications

    SciTech Connect

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2002-05-01

    To assess whether houses can meet performance expectations, the new practice of residential commissioning will likely use flow hoods to measure supply and return grille airflows in HVAC systems. Depending on hood accuracy, these measurements can be used to determine if individual rooms receive adequate airflow for heating and cooling, to determine flow imbalances between different building spaces, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. This paper discusses these flow hood applications and the accuracy requirements in each case. Laboratory tests of several residential flow hoods showed that these hoods can be inadequate to measure flows in residential systems. Potential errors are about 20% to 30% of measured flow, due to poor calibrations, sensitivity to grille flow non-uniformities, and flow changes from added flow resistance. Active flow hoods equipped with measurement devices that are insensitive to grille airflow patterns have an order of magnitude less error, and are more reliable and consistent in most cases. Our tests also show that current calibration procedures for flow hoods do not account for field application problems. As a result, a new standard for flow hood calibration needs to be developed, along with a new measurement standard to address field use of flow hoods. Lastly, field evaluation of a selection of flow hoods showed that it is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement.

  17. Accuracy of an earpiece face-bow.

    PubMed

    Palik, J F; Nelson, D R; White, J T

    1985-06-01

    The validity of the Hanau ear-bow to transfer an arbitrary hinge axis to a Hanau articulator was clinically compared with a Hanau kinematic face-bow. The study was conducted with 18 randomly selected patients. This investigation demonstrated a significant statistical difference between the arbitrary axis located with an ear-bow and the terminal hinge axis. This discrepancy was significant in the anteroposterior direction but not in the superior-inferior direction. Only 50% of the arbitrary hinge axes were within a 5 mm radius of the terminal hinge axis, while 89% were within a 6 mm radius. Furthermore, the ear-bow method was not repeatable statistically. Additional study is needed to determine the practical value of the arbitrary face-bow and to pursue modifications to improve its accuracy.

  18. Quantitative code accuracy evaluation of ISP33

    SciTech Connect

    Kalli, H.; Miwrrin, A.; Purhonen, H.

    1995-09-01

    Aiming at quantifying code accuracy, a methodology based on the Fast Fourier Transform has been developed at the University of Pisa, Italy. The paper deals with a short presentation of the methodology and its application to pre-test and post-test calculations submitted to the International Standard Problem ISP33. This was a double-blind natural circulation exercise with a stepwise reduced primary coolant inventory, performed in PACTEL facility in Finland. PACTEL is a 1/305 volumetrically scaled, full-height simulator of the Russian type VVER-440 pressurized water reactor, with horizontal steam generators and loop seals in both cold and hot legs. Fifteen foreign organizations participated in ISP33, with 21 blind calculations and 20 post-test calculations, altogether 10 different thermal hydraulic codes and code versions were used. The results of the application of the methodology to nine selected measured quantities are summarized.

  19. Accuracy of lineaments mapping from space

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M.

    1989-01-01

    The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.

  20. Accuracy of the vivofit activity tracker.

    PubMed

    Alsubheen, Sana'a A; George, Amanda M; Baker, Alicia; Rohr, Linda E; Basset, Fabien A

    2016-08-01

    The purpose of this study was to examine the accuracy of the vivofit activity tracker in assessing energy expenditure and step count. Thirteen participants wore the vivofit activity tracker for five days. Participants were required to independently perform 1 h of self-selected activity each day of the study. On day four, participants came to the lab to undergo BMR and a treadmill-walking task (TWT). On day five, participants completed 1 h of office-type activities. BMR values estimated by the vivofit were not significantly different from the values measured through indirect calorimetry (IC). The vivofit significantly underestimated EE for treadmill walking, but responded to the differences in the inclination. Vivofit underestimated step count for level walking but provided an accurate estimate for incline walking. There was a strong correlation between EE and the exercise intensity. The vivofit activity tracker is on par with similar devices and can be used to track physical activity.

  1. Thermodynamics of imidacloprid sorption in Croatian soils

    NASA Astrophysics Data System (ADS)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  2. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  3. Nonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Esposito, Massimiliano

    2016-10-01

    We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of elementary reactions. Their dynamics is described by deterministic rate equations with mass action kinetics. Our most general framework considers open networks driven by time-dependent chemostats. The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced. The difference between this latter and its equilibrium form represents the minimal work done by the chemostats to bring the network to its nonequilibrium state. It is minimized in nondriven detailed-balanced networks (i.e., networks that relax to equilibrium states) and has an interesting information-theoretic interpretation. We further show that the entropy production of complex-balanced networks (i.e., networks that relax to special kinds of nonequilibrium steady states) splits into two non-negative contributions: one characterizing the dissipation of the nonequilibrium steady state and the other the transients due to relaxation and driving. Our theory lays the path to study time-dependent energy and information transduction in biochemical networks.

  4. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  5. Knowledge discovery by accuracy maximization

    PubMed Central

    Cacciatore, Stefano; Luchinat, Claudio; Tenori, Leonardo

    2014-01-01

    Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold’s topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution. This robustness is demonstrated on experimental datasets of gene expression and metabolomics, where KODAMA compares favorably with other existing feature extraction methods. KODAMA is then applied to an astronomical dataset, revealing unexpected features. Interesting and not easily predictable features are also found in the analysis of the State of the Union speeches by American presidents: KODAMA reveals an abrupt linguistic transition sharply separating all post-Reagan from all pre-Reagan speeches. The transition occurs during Reagan’s presidency and not from its beginning. PMID:24706821

  6. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  7. Thermodynamics of cosmological matter creation

    PubMed Central

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  8. Thermodynamics fundamentals of energy conversion

    NASA Astrophysics Data System (ADS)

    Dan, Nicolae

    The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the

  9. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  10. Thermodynamic universality of quantum Carnot engines

    SciTech Connect

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.

  11. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the "first" engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  12. Thermodynamical stability of the Bardeen black hole

    SciTech Connect

    Bretón, Nora; Perez Bergliaffa, Santiago E.

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  13. Thermodynamic universality of quantum Carnot engines

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  14. Thermodynamic universality of quantum Carnot engines.

    PubMed

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-01

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.

  15. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  16. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  17. Simplified curve fits for the thermodynamic properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.

    1986-01-01

    New improved curve fits for the thermodynamic properties of equilibrium air were developed. The curve fits are for p = p(e,rho), a = a(e,rho), T = T(e,rho), s = s(e,rho), T = T(p,rho), h = h(p,rho), rho = rho(p,s), e = e(p,s) and a = a(p,s). These curve fits can be readily incorporated into new or existing Computational Fluid Dynamics (CFD) codes if real-gas effects are desired. The curve fits were constructed using Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits appearing in NASA CR-2470. These improvements were due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25,000 K and densities from 10 to the minus 7th to 100 amagats (rho/rho sub 0).

  18. A single-volume approach for vacancy formation thermodynamics calculations

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. S.; Zamulko, S. O.; Gorbatov, O. I.; Sidorenko, S. I.; Puschnig, P.; Ruban, A. V.

    2016-10-01

    The vacancy formation Gibbs free energy, enthalpy and entropy in fcc Al, Ag, Pd, Cu, and bcc Mo are determined by first-principles calculations using the quasi-harmonic approximation to account for vibrational contributions. We show that the Gibbs free energy can be determined with sufficient accuracy in a single-volume approach using the fixed equilibrium volume of the defect-free supercell. Although the partial contributions to the Gibbs free energy, namely, the formation enthalpy and entropy exhibit substantial errors when obtained directly in this approach, they can be computed from the Gibbs free energy using the proper thermodynamic relations. Compared to experimental data, the temperature dependence of the vacancy formation Gibbs free energy is accounted for at low temperatures, while it overestimates the measurements at high temperature, which is attributed to the neglect of anharmonic effects.

  19. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    PubMed

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity.

  20. [Navigation in implantology: Accuracy assessment regarding the literature].

    PubMed

    Barrak, Ibrahim Ádám; Varga, Endre; Piffko, József

    2016-06-01

    Our objective was to assess the literature regarding the accuracy of the different static guided systems. After applying electronic literature search we found 661 articles. After reviewing 139 articles, the authors chose 52 articles for full-text evaluation. 24 studies involved accuracy measurements. Fourteen of our selected references were clinical and ten of them were in vitro (modell or cadaver). Variance-analysis (Tukey's post-hoc test; p < 0.05) was conducted to summarize the selected publications. Regarding 2819 results the average mean error at the entry point was 0.98 mm. At the level of the apex the average deviation was 1.29 mm while the mean of the angular deviation was 3,96 degrees. Significant difference could be observed between the two methods of implant placement (partially and fully guided sequence) in terms of deviation at the entry point, apex and angular deviation. Different levels of quality and quantity of evidence were available for assessing the accuracy of the different computer-assisted implant placement. The rapidly evolving field of digital dentistry and the new developments will further improve the accuracy of guided implant placement. In the interest of being able to draw dependable conclusions and for the further evaluation of the parameters used for accuracy measurements, randomized, controlled single or multi-centered clinical trials are necessary.

  1. Thermodynamic and Properties of Nanophases

    SciTech Connect

    Wunderlich, Bernhard {nmn}

    2009-01-01

    A large volume of today s research deals with nanophases of various types. The materials engineer, chemist, or physicist, however, when dealing with applications of nanophases is often unaware of the effect of the small size on structure and properties. The smallest nanophases reach the limit of phase definitions by approaching atomic dimensions. There, the required homogeneity of a phase is lost and undue property fluctuations destroy the usefulness of thermodynamic functions. In fact, itwas not expected that a definite nanophasewould exist belowthe size of a microphase.Aneffort ismadein this reviewto identify macrophases, microphases, and nanophases. It is shown that nanophases should contain no bulk matter as defined by macrophases and also found in microphases. The structure and properties of nanophases, thus, must be different from macrophases and microphases. These changes may include different crystal and amorphous structures, and phase transitions of higher or of lower temperature. The phase properties are changing continuously when going from one surface to the opposite one. The discussion makes use of results from structure determination, calorimetry, molecular motion evaluations, and molecular dynamics simulations.

  2. Thermodynamic modeling of asphaltene aggregation.

    PubMed

    Rogel, E

    2004-02-03

    A new molecular thermodynamic model for the description of the aggregation behavior of asphaltenes in different solvents is presented. This new model is relatively simple and strictly predictive and does not use any experimental information from asphaltene solutions. In this model, asphaltene aggregates are described as composed of an aromatic core formed by stacked aromatic sheets surrounded by aliphatic chains. The proposed model qualitatively predicts the asphaltene aggregation behavior in a series of different solvents. In particular, the experimental trends observed for the variation of aggregate size with (1) asphaltene molecular characteristics (condensation index, aromaticity, and chain length), (2) asphaltene concentration, (3) solvent characteristics, and (4) temperature have been successfully reproduced by the proposed model. The model also provides a plausible explanation for the existence or absence of a critical micelle concentration (cmc) for asphaltene solutions. Specifically, the model predicted that the asphaltenes with low aromaticities and low aromatic condensations do not exhibit cmc behavior. Finally, the obtained results clearly support the classical model for asphaltene aggregates.

  3. Thermodynamic stability of hydrogen clathrates

    PubMed Central

    Patchkovskii, Serguei; Tse, John S.

    2003-01-01

    The stability of the recently characterized type II hydrogen clathrate [Mao, W. L., Mao, H.-K., Goncharov, A. F., Struzhkin, V. V., Guo, Q., et al. (2002) Science 297, 2247–2249] with respect to hydrogen occupancy is examined with a statistical mechanical model in conjunction with first-principles quantum chemistry calculations. It is found that the stability of the clathrate is mainly caused by dispersive interactions between H2 molecules and the water forming the cage walls. Theoretical analysis shows that both individual hydrogen molecules and nH2 guest clusters undergo essentially free rotations inside the clathrate cages. Calculations at the experimental conditions – 2,000 bar (1 bar = 100 kPa) and 250 K confirm multiple occupancy of the clathrate cages with average occupations of 2.00 and 3.96 H2 molecules per D-512 (small) and H-51264 (large) cage, respectively. The H2–H2O interactions also are responsible for the experimentally observed softening of the H—H stretching modes. The clathrate is found to be thermodynamically stable at 25 bar and 150 K. PMID:14657391

  4. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  5. Thermodynamic Modeling and Experimental Study of the Fe-Cr-Zr System

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Bei, Hongbin; Busby, Jeremy T

    2013-01-01

    Wide applications of zircaloys, stainless steels and their interactions in nuclear reactors require the knowledge on phase stability and thermodynamic property of the Fe-Cr-Zr system. This knowledge is also important to develop new Zr-contained Fe-Cr ferritic steels. This work aims at developing thermodynamic models for describing phase stability and thermodynamic property of the Fe-Cr-Zr system using the Calphad approach coupled with experimental study. Thermodynamic descriptions of the Fe-Cr and Cr-Zr systems were either directly adopted or slightly modified from literature. The Fe-Zr system has been remodeled to accommodate recent ab-initio calculation of formation enthalpies of various Fe-Zr compounds. Reliable ternary experimental data and thermodynamic models were mainly available in the Zr-rich region. Therefore, selected ternary alloys located in the vicinity of the eutectic valley of (Fe,Cr,Zr) and (Fe,Cr)2Zr laves phase in the Fe-rich region have been experimentally investigated in this study. Microstructure has been examined by using scanning electron microscope, energy-dispersive Xray spectroscopy and X-ray diffraction. These experimental results, along with the literature data were then used to develop thermodynamic models for phases in the Fe-Cr-Zr system. Calculated phase equilibria and thermodynamic properties of the ternary system yield satisfactory agreements with available experimental data, which gives the confidence to use these models as building blocks for developing a Zr, Fe and Cr contained multicomponent thermodynamic database for broader applications in nuclear reactors.

  6. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  7. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  8. Accuracy of Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Guille, M.; Sullivan, J. P.

    2001-01-01

    Uncertainty in pressure sensitive paint (PSP) measurement is investigated from a standpoint of system modeling. A functional relation between the imaging system output and luminescent emission from PSP is obtained based on studies of radiative energy transports in PSP and photodetector response to luminescence. This relation provides insights into physical origins of various elemental error sources and allows estimate of the total PSP measurement uncertainty contributed by the elemental errors. The elemental errors and their sensitivity coefficients in the error propagation equation are evaluated. Useful formulas are given for the minimum pressure uncertainty that PSP can possibly achieve and the upper bounds of the elemental errors to meet required pressure accuracy. An instructive example of a Joukowsky airfoil in subsonic flows is given to illustrate uncertainty estimates in PSP measurements.

  9. Evolution of the Second Law of Thermodynamics

    ERIC Educational Resources Information Center

    Raman, V. V.

    1970-01-01

    Presents the history surrounding the evolution of the second law of thermodynamics. Discusses Sadi Carnot's contributions, but also refers to those by Clapeyron, Thomson, Joule, Clausius, and Boltzman among others. (RR)

  10. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    ERIC Educational Resources Information Center

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  11. Thermodynamical interpretation of gravity in braneworld scenarios

    SciTech Connect

    Sheykhi, Ahmad

    2009-05-15

    We study the thermodynamical properties of the apparent horizon in the various braneworld scenarios. First, we show that the Friedmann equations can be written directly in the form of the first law of thermodynamics, dE = T{sub h}dS{sub h}+WdV, at apparent horizon on the brane, regardless of whether there is the intrinsic curvature term on the brane or a Gauss-Bonnet term in the bulk. This procedure leads to extract an entropy expression in terms of horizon geometry associated with the apparent horizon. Then, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We find that the derived entropy of the apparent horizon on the brane satisfies the generalized second law of thermodynamics in braneworld scenarios. These results further support the idea that gravitation on a macroscopic scale is a manifestation of thermodynamics.

  12. The Irreversible Thermodynamics of Chemical Relaxation.

    ERIC Educational Resources Information Center

    Schelly, Z. A.

    1980-01-01

    Discusses the thermodynamics of relaxation methods, considering (1) mode of perturbation of chemical equilibria, (2) enforced change of the concentrations, and (3) chemical contributions to equations of state. (CS)

  13. Relativistic like structure of classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Quevedo, Hernando; Sánchez, Alberto; Vázquez, Alejandro

    2015-04-01

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  14. Information thermodynamics of near-equilibrium computation

    NASA Astrophysics Data System (ADS)

    Prokopenko, Mikhail; Einav, Itai

    2015-06-01

    In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.

  15. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  16. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  17. Information thermodynamics of near-equilibrium computation.

    PubMed

    Prokopenko, Mikhail; Einav, Itai

    2015-06-01

    In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.

  18. Molecular Thermodynamics for Chemical Process Design

    ERIC Educational Resources Information Center

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  19. Simple, Chemoselective Hydrogenation with Thermodynamic Stereocontrol

    PubMed Central

    2015-01-01

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure. PMID:24428640

  20. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  1. Thermodynamic power of non-Markovianity

    PubMed Central

    Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina

    2016-01-01

    The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947

  2. Theory and practice in engineering thermodynamics

    SciTech Connect

    Polak, P.

    1983-01-01

    The book is a new approach to engineering thermodynamics for students of mechanical engineering at diploma and degree levels. There is an explanation of the basic principles of thermodynamics, followed by several chapters illustrating these principles as applied to piston engines, the gas turbine, steam power, and refrigerators and heat pumps. The book aims to introduce some key features of theory and current practice in a way that students will find interesting.

  3. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  4. Tables of thermodynamic properties of sodium

    SciTech Connect

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  5. Hadron thermodynamics in relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  6. Research into the origins of engineering thermodynamics

    SciTech Connect

    Bejan, A.

    1988-09-01

    This paper draws attention to a series of misconceptions and misstatements regarding the origin and meaning of some of the most basic concepts of engineering thermodynamics. The six examples exhibited in the paper relate to the concepts of reversibility, entropy, mechanical equivalent of the calorie, the first law of thermodynamics for open systems, enthalpy and the Diesel cycle. A complete list of the pioneering references concludes the paper.

  7. Demon and Valve—Information and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Gordon, Lyndsay G. M.

    2008-08-01

    Maxwell proposed that a special membrane component, by facilitating the transference of molecules in a particular way, could challenge the second law of thermodynamics. Initially, he had suggested that the component had the property of an intelligent being (Demon) and later proposed that a mechanical valve could be an alternative description. This paper sets out a minority view that the component as an intelligent being has no direct bearing on thermodynamics and as a valve it retains the original challenge.

  8. Thermodynamic restrictions on mechanosynthesis of strontium titanate

    SciTech Connect

    Monteiro, J.F.; Ferreira, A.A.L.; Antunes, I.; Fagg, D.P.; Frade, J.R.

    2012-01-15

    Chemical potential phase stability diagrams were calculated from relevant thermodynamic properties and used to predict the thermodynamic driving force under prospective conditions of room temperature mechanosynthesis. One analysed the dependence of chemical potential diagrams on temperature and partial pressure of evolving gases such as oxygen or carbon dioxide, as expected on using strontium peroxide or strontium carbonate as precursor reactants for the alkali earth component. Thermodynamic calculations were also obtained for changes in titania precursor reactants, including thermodynamic predictions for reactivity of strontium carbonate with amorphous titania. Experimental evidence showed that strontium titanate can be obtained by mechanosynthesis of strontium carbonate+anatase mixtures, due to previous amorphization under high energy milling. Ability to perform mechanosynthesis with less energetic milling depends on the suitable choice of alternative precursor reactants, which meet the thermodynamic requirements without previous amorphization; this was demonstrated by mechanosynthesis from anatase+strontium peroxide mixtures. - Graphical abstract: X-Ray diffractograms of the starting TiO{sub 2} (anatase)+SrCO{sub 3} mixture and after mechanical activation at 650 rpm, for 1, 2, and 7 h. Different symbols are used to identify reflections ascribed to anatase (diamonds), SrCO{sub 3} (squares) and SrTiO{sub 3} (triangles). Highlights: Black-Right-Pointing-Pointer Prediction of thermodynamic driving force for room temperature mechanosynthesis. Black-Right-Pointing-Pointer Dependence of chemical potential diagrams on temperature and partial pressure. Black-Right-Pointing-Pointer Thermodynamic calculations for changes in titania precursor. Black-Right-Pointing-Pointer Experimental support for thermodynamic predictions.

  9. Large negative numbers in number theory, thermodynamics, information theory, and human thermodynamics

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2016-10-01

    We show how the abstract analytic number theory of Maier, Postnikov, and others can be extended to include negative numbers and apply this to thermodynamics, information theory, and human thermodynamics. In particular, we introduce a certain large number N 0 on the "zero level" with a high multiplicity number q i ≫ 1 related to the physical concept of gap in the spectrum. We introduce a general notion of "hole," similar to the Dirac hole in physics, in the theory. We also consider analogs of thermodynamical notions in human thermodynamics, in particular, in connection with the role of the individual in history.

  10. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  11. Universalities of thermodynamic signatures in topological phases

    PubMed Central

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-01-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041

  12. Universalities of thermodynamic signatures in topological phases

    NASA Astrophysics Data System (ADS)

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-12-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.

  13. Thermodynamics for separation-process technology

    SciTech Connect

    Prausnitz, J.M.

    1995-10-01

    When contemplating or designing a separation process, every chemical engineer at once recognizes the thermodynamic boundary conditions that must be satisfied: when a mixture is continuously processed to yield at least partially purified products, energy and mass must be conserved and work must be done. In his daily tasks, a chemical engineer uses thermodynamic concepts as tacit, almost subconscious, knowledge. Thus, qualitative thermodynamics significantly informs process conception at its most fundamental level. However, quantitative design requires detailed knowledge of thermodynamic relations and physical chemistry. Most process engineers, concerned with flow sheets and economics, cannot easily command that detailed knowledge and therefore it is advantageous for them to maintain close contact with those specialists who do. Quantitative chemical thermodynamics provides an opportunity to evaluate possible separation processes not only because it may give support to the process engineer`s bold imagination but also because, when coupled with molecular models, it can significantly reduce the experimental effort required to determine an optimum choice of process alternatives. Six examples are presented to indicate the application of thermodynamics for conventional and possible future separation processes.

  14. Thermodynamic products in extended phase-space

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    We have examined the thermodynamic properties for a variety of spherically symmetric charged-AdS black hole (BH) solutions, including the charged AdS BH surrounded by quintessence dark energy and charged AdS BH in f(R) gravity in extended phase-space. This framework involves treating the cosmological constant as thermodynamic variable (for example: thermodynamic pressure and thermodynamic volume). Then they should behave as an analog of Van-der-Waal (VdW) like systems. In the extended phase-space we have calculated the entropy product and thermodynamic volume product of all horizons. The mass (or enthalpy) independent nature of the said product signals they are universal quantities. The divergence of the specific heat indicates that the second-order phase transition occurs under certain condition. In Appendix A, we have studied the thermodynamic volume products for axisymmetric spacetime and it is shown to be not universal in nature. Finally, in Appendix B, we have studied the P ‑ V criticality of Cauchy horizon for charged-AdS BH and found to be an universal relation of critical values between two horizons as Pc‑ = P c+, vc‑ = v c+, Tc‑ = ‑T c+, ρc‑ = ‑ρ c+. The symbols are defined in the main work.

  15. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  16. Biophysical connection between evolutionary dynamics and thermodynamics in in vitro evolution.

    PubMed

    Aita, Takuyo; Husimi, Yuzuru

    2012-02-07

    We analyzed a mathematical model of in vitro evolution conducted by repetition of mutagenesis and selection processes. The selection process consists of the selective enrichment and subsequent sampling as follows: each mutant with fitness W is amplified by the Boltzmann factor exp(rW/k(B)T(the)), where the fitness W is defined as the negative Gibbs free energy (-ΔG) in a reaction of the phenotypic molecules and r is the round number of the selective enrichment; then, an arbitrary mutant is randomly chosen from the resulting mutant population and it becomes a new parent in the next generation. As a result, we found that the evolutionary dynamics is described in a mathematical framework similar to thermodynamics: the "evolution constant" k(E) and "evolutionary temperature" T(evo) play key roles similar to the Boltzmann constant k(B) and thermodynamic temperature T(the), respectively. In the stationary state of the evolutionary dynamics, the attractor of the fitness is in inverse proportion to k(E)T(evo). Furthermore, beyond the mathematical analogy, we obtained a biophysical connection between evolutionary dynamics and thermodynamics. Particularly, we found that T(evo) and T(the) are connected by k(E)T(evo)≈k(B)T(the)/2r. These results suggest that we can predict the fitness value in the stationary state by the thermodynamic temperature T(the) in the experimental setup.

  17. Thermodynamically Stable Conducting Films of Intermetallic PtGa2 on Gallium Arsenide

    DTIC Science & Technology

    1989-07-01

    should exhibit a thermodynamically stable tieline to the GaAs semiconductor. A further consideration is that the intermetallic should be compatible with...and illustrated in Fig. 1, PtGa2 was selected as a candidate for thin film growth on GaAs (100). The existence of the pseudobinary tieline between

  18. Analysis of energy disposal - Thermodynamic aspects of the entropy deficiency of a product state distribution

    NASA Technical Reports Server (NTRS)

    Levine, R. D.; Bernstein, R. B.

    1973-01-01

    A thermodynamic-like approach to the characterization of product state distributions is outlined. A moment analysis of the surprisal and the entropy deficiency is presented from a statistical mechanical viewpoint. The role of reactant state selection is discussed using the 'state function' property of the entropy.

  19. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  20. Maximum entropy principle for stationary states underpinned by stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, Ian J.

    2015-11-01

    The selection of an equilibrium state by maximizing the entropy of a system, subject to certain constraints, is often powerfully motivated as an exercise in logical inference, a procedure where conclusions are reached on the basis of incomplete information. But such a framework can be more compelling if it is underpinned by dynamical arguments, and we show how this can be provided by stochastic thermodynamics, where an explicit link is made between the production of entropy and the stochastic dynamics of a system coupled to an environment. The separation of entropy production into three components allows us to select a stationary state by maximizing the change, averaged over all realizations of the motion, in the principal relaxational or nonadiabatic component, equivalent to requiring that this contribution to the entropy production should become time independent for all realizations. We show that this recovers the usual equilibrium probability density function (pdf) for a conservative system in an isothermal environment, as well as the stationary nonequilibrium pdf for a particle confined to a potential under nonisothermal conditions, and a particle subject to a constant nonconservative force under isothermal conditions. The two remaining components of entropy production account for a recently discussed thermodynamic anomaly between over- and underdamped treatments of the dynamics in the nonisothermal stationary state.

  1. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods

    DOE PAGES

    Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...

    2016-02-05

    Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less

  2. Thermodynamic and related properties of parahydrogen from the triple point to 300 K at pressures to 1000 bar

    NASA Technical Reports Server (NTRS)

    Weber, L. A.

    1975-01-01

    Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.

  3. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  4. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  5. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  6. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  7. Reformulating Aerosol Thermodynamics and Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Metzger, S.

    2006-12-01

    Modeling aerosol composition and cloud microphysics is rather complex due to the required thermodynamics, even if chemical and thermodynamical equilibrium is assumed. We show, however, that for deliquescent atmospheric aerosols thermodynamics can be considerably simplified, if we reformulate chemical equilibrium to include water purely based on thermodynamic principles. In chemical and thermodynamical equilibrium, the relative humidity (RH) fixes the molality of atmospheric aerosols. Although this fact is in theory well known, it has hardly been utilized in aerosol modeling nor has been the fact that for the same reason also the aerosol activity (including activity coefficients) and water content are fixed (by RH) for a given aerosol concentration and type. The only model that successfully utilizes this fact is the computationally very efficient EQuilibrium Simplified thermodynamic gas/Aerosol partitioning Model, EQSAM (Metzger et al., 2002a), EQSAM2 (Metzger et al., 2006). In both versions the entire gas/liquid/solid aerosol equilibrium partitioning is solved analytically and hence non-iteratively a substantial advantage in aerosol composition modeling. Here we briefly present the theoretical framework of EQSAM2, which differs from EQSAM in a way that the calculation of the water activity of saturated binary or mixed inorganic/organic salt solutions of multi-component aerosols has been generalized by including the Kelvin-term, thus allowing for any solute activity above the deliquescence relative humidity, including supersaturation. With application of our new concept to a numerical whether prediction (NWP) model, we demonstrate its wide implications for the computation of various aerosol and cloud properties, as our new concept allows to consistently and efficiently link the modeling of aerosol thermodynamics and cloud microphysics through the aerosol water mass, which therefore deserves special attention in atmospheric chemistry, air pollution, NWP and climate

  8. Ground Truth Sampling and LANDSAT Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Gunther, F. J.; Campbell, W. J.

    1982-01-01

    It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.

  9. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations

    SciTech Connect

    Chen, Shentan; Rousseau, Roger J.; Raugei, Simone; Dupuis, Michel; DuBois, Daniel L.; Bullock, R. Morris

    2011-11-28

    Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes compounds that are potential catalysts for production of H2 from protons and electrons, or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that shares similarities with the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible as in the case of the Ni complexes considered here where data are experimentally available for only some species. To overcome this difficulty we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamics properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (~ 0.10 eV of accuracy), for acidities (~1.5 pKa units of accuracy), for hydricities (~2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (~ 1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high

  10. Method and apparatus for adapting steady flow with cyclic thermodynamics

    DOEpatents

    Swift, Gregory W.; Reid, Robert S.; Ward, William C.

    2000-01-01

    Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.

  11. Nonequilibrium Thermodynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Aoki, I.

    2005-12-01

    1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and

  12. Machine tool accuracy characterization workshops. Final report, May 5, 1992--November 5 1993

    SciTech Connect

    1995-01-06

    The ability to assess the accuracy of machine tools is required by both tool builders and users. Builders must have this ability in order to predict the accuracy capability of a machine tool for different part geometry`s, to provide verifiable accuracy information for sales purposes, and to locate error sources for maintenance, troubleshooting, and design enhancement. Users require the same ability in order to make intelligent choices in selecting or procuring machine tools, to predict component manufacturing accuracy, and to perform maintenance and troubleshooting. In both instances, the ability to fully evaluate the accuracy capabilities of a machine tool and the source of its limitations is essential for using the tool to its maximum accuracy and productivity potential. This project was designed to transfer expertise in modern machine tool accuracy testing methods from LLNL to US industry, and to educate users on the use and application of emerging standards for machine tool performance testing.

  13. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  14. A Study of Confidence and Accuracy Using the Rasch Modeling Procedures. Research Report. ETS RR-08-42

    ERIC Educational Resources Information Center

    Paek, Insu; Lee, Jihyun; Stankov, Lazar; Wilson, Mark

    2008-01-01

    This study investigated the relationship between students' actual performance (accuracy) and their subjective judgments of accuracy (confidence) on selected English language proficiency tests. The unidimensional and multidimensional IRT Rasch approaches were used to model the discrepancy between confidence and accuracy at the item and test level…

  15. Quantum Monte Carlo Simulation of Nanoscale MgH2 Cluster Thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Allendorf, Mark; Grossman, Jeffrey

    2010-03-01

    We calculated the desorption energy of MgH2 clusters using the quantum Monte Carlo (QMC) approach, which can provide desorption energies with chemical accuracy (within 1 kcal/mol) and therefore a valuable benchmark for such hydrogen-storage simulations. Compared with these QMC results, the widely used density-functional-theory (DFT) computations cannot reach a consistent and suitable level of accuracy across the thermodynamically tunable range for MgH2 clusters, for a wide range of exchange-correlation functionals. Furthermore, our QMC calculations show that the DFT error depends substantially on cluster size. These results suggest that in simulating metal-hydride systems it is crucial to apply accurate methods that go beyond traditional mean-field approaches as a benchmark of their performance for a given material, and QMC is an appealing method for such a benchmark due to its high level of accuracy and favorable scaling (N^3) with number of electrons.

  16. Thermodynamics of Inozemtsev's elliptic spin chain

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob

    2016-06-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  17. The thermodynamics of simple biomembrane mimetic systems

    PubMed Central

    Raudino, Antonio; Sarpietro, Maria Grazia; Pannuzzo, Martina

    2011-01-01

    Insight into the forces governing a system is essential for understanding its behavior and function. Thermodynamic investigations provide a wealth of information that is not, or is hardly, available from other methods. This article reviews thermodynamic approaches and assays to measure collective properties such as heat adsorption / emission and volume variations. These methods can be successfully applied to the study of lipid vesicles (liposomes) and biological membranes. With respect to instrumentation, differential scanning calorimetry, pressure perturbation calorimetry, isothermal titration calorimetry, dilatometry, and acoustic techniques aimed at measuring the isothermal and adiabatic processes, two- and three-dimensional compressibilities are considered. Applications of these techniques to lipid systems include the measurement of different thermodynamic parameters and a detailed characterization of thermotropic, barotropic, and lyotropic phase behavior. The membrane binding and / or partitioning of solutes (proteins, peptides, drugs, surfactants, ions, etc.) can also be quantified and modeled. Many thermodynamic assays are available for studying the effect of proteins and other additives on membranes, characterizing non-ideal mixing, domain formation, bilayer stability, curvature strain, permeability, solubilization, and fusion. Studies of membrane proteins in lipid environments elucidate lipid–protein interactions in membranes. Finally, a plethora of relaxation phenomena toward equilibrium thermodynamic structures can be also investigated. The systems are described in terms of enthalpic and entropic forces, equilibrium constants, heat capacities, partial volume changes, volume and area compressibility, and so on, also shedding light on the stability of the structures and the molecular origin and mechanism of the structural changes. PMID:21430953

  18. Thermodynamics Insights for the Redshift Drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  19. Single molecule thermodynamics in biological motors.

    PubMed

    Taniguchi, Yuichi; Karagiannis, Peter; Nishiyama, Masayoshi; Ishii, Yoshiharu; Yanagida, Toshio

    2007-04-01

    Biological molecular machines use thermal activation energy to carry out various functions. The process of thermal activation has the stochastic nature of output events that can be described according to the laws of thermodynamics. Recently developed single molecule detection techniques have allowed each distinct enzymatic event of single biological machines to be characterized providing clues to the underlying thermodynamics. In this study, the thermodynamic properties in the stepping movement of a biological molecular motor have been examined. A single molecule detection technique was used to measure the stepping movements at various loads and temperatures and a range of thermodynamic parameters associated with the production of each forward and backward step including free energy, enthalpy, entropy and characteristic distance were obtained. The results show that an asymmetry in entropy is a primary factor that controls the direction in which the motor will step. The investigation on single molecule thermodynamics has the potential to reveal dynamic properties underlying the mechanisms of how biological molecular machines work.

  20. The second laws of quantum thermodynamics.

    PubMed

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-03-17

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.